Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A low cost high flux solar simulator  

E-Print Network (OSTI)

A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

Codd, Daniel S.

2

Low Cost Solar Water Heater  

SciTech Connect

This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

William Bostic

2005-12-16T23:59:59.000Z

3

Multi-junction solar cell device  

SciTech Connect

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

4

SunShot Initiative: Low-Cost Solar Thermal Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

5

SunShot Initiative: Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost, Lightweight Solar Concentrators to someone by E-mail Share SunShot Initiative: Low-Cost, Lightweight Solar Concentrators on Facebook Tweet about SunShot Initiative:...

6

Available Technologies: Low-cost, Efficient, Flexible Solar ...  

3D solar cell of nanopillars. ... Layered Nanocrystal Photovoltaic Cells, IB-2511 . Hot Electron Photovoltaics Using Low Cost Materials and Simple Cel ...

7

High Volume Method of Making Low Cost, Lightweight Solar Materials  

ORNL 2010-G00644/jcn UT-B ID 201002380 High Volume Method of Making Low Cost, Lightweight Solar Materials Technology Summary A critical challenge for ...

8

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

9

Low Cost Solar Water Heating R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office...

10

PFTT- Multijunction Hybrid Solar Cell Incorporating Vertically ...  

Disclosure Number 200902282 ... severely limit their applicability. This invention disclosure describes a low-cost technique by integrating ...

11

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

12

Low Cost Solar Water Heating R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

13

Low cost performance evaluation of passive solar buildings  

DOE Green Energy (OSTI)

An approach to low-cost instrumentation and performance evaluation of passive solar heated buildings is presented. Beginning with a statement of the need for a low-cost approach, a minimum list of measured quantities necessary to compute a set of recommended performance factors is developed. Conflicts and confusion surrounding the definition of various performance factors are discussed and suggestions are made for dealing with this situation. Available instrumentation and data processing equipment is presented. The recommended system would monitor approximately ten variables and compute numerous performance factors on site at a projected system cost of less than $3,000 per installation.

Palmiter, L.S.; Hamilton, L.B.; Holtz, M.J.

1979-10-01T23:59:59.000Z

14

Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor  

A University of Colorado research group led by Fernando Mancilla-David has developed a low cost irradiance sensor using a network modeled on a neural ...

15

Low cost bare-plate solar air collector  

DOE Green Energy (OSTI)

The purpose of this project was to develop a low cost, bare-plate collector, determine its performance for a variety of climatic conditions, analyze the economics of this type of solar collector and evaluate specific applications. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60% or greater with air preheat temperature uses up to 20/sup 0/F for one of the prototypes. The economic analyses indicated that an installed cost of between $5 and $10 per square foot would make this type of solar system economically viable. For the materials of construction and the type of fabrication and installation perceived, these costs for the bare-plate solar collector are believed to be attainable. Specific applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

Maag, W.L.; Wenzler, C.J.; Rom, F.E.; VanArsdale, D.R.

1980-09-01T23:59:59.000Z

16

Low-cost solar collector test and evaluation. Final report  

DOE Green Energy (OSTI)

Project was to test and evaluate a highly efficient low cost solar collector and to make this technology available to the average homeowner. The basic collector design was for use in mass production, so approximately forty collector panels were made for testing and to make it simple to be hand built. The collectors performed better than expected and written and visual material was prepared to make construction easier for a first time builder. Publicity was generated to make public aware of benefits with stories by Associated Press and in publications like Popular Science.

Benjamin, C.M.

17

Glass for low-cost photovoltaic solar arrays  

DOE Green Energy (OSTI)

In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

Bouquet, F.L.

1980-02-01T23:59:59.000Z

18

National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers  

E-Print Network (OSTI)

Fresnel lenses for optical concentration, minimizing solar cell area, mass, and cost. The SLA has been of solar energy technologies and sustainable daylighting solutions. The company designs, manufacturers lenses focusing sunlight onto multi-junction solar cells mounted to thin carbon-fiber composite radiators

19

Low-Cost Solar Water Heating Research and Development Roadmap  

DOE Green Energy (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

20

Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells  

DOE Green Energy (OSTI)

AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

AIKEN,DANIEL J.

1999-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A market analysis for high efficiency multi-junction solar cells grown on SiGe  

E-Print Network (OSTI)

Applications, markets and a cost model are presented for III-V multi-junction solar cells built on compositionally graded SiGe buffer layers currently being developed by professors Steven Ringell of Ohio State University ...

Judkins, Zachara Steele

2007-01-01T23:59:59.000Z

22

Ampulse Raises $8 Million to Develop Low-Cost Solar Cells I  

Low-Cost Solar Cells In November 2009 Ampulse ... For consumers the benefits of using this appliance will vary depending on family size and hot

23

Research and Development of a Low Cost Solar Collector  

Science Conference Proceedings (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

24

Research and Development of a Low Cost Solar Collector  

SciTech Connect

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

25

Non-Linear Luminescent Coupling in Series-Connected Multijunction Solar Cells  

Science Conference Proceedings (OSTI)

The assumption of superposition or linearity of photocurrent with solar flux is widespread for calculations and measurements of solar cells. The well-known effect of luminescent coupling in multijunction solar cells has also been assumed to be linear with excess current. Here we show significant non-linearities in luminescent coupling in III-V multijunction solar cells and propose a simple model based on competition between radiative and nonradiative processes in the luminescent junction to explain these non-linearities. We demonstrate a technique for accurately measuring the junction photocurrents under a specified reference spectrum, that accounts for and quantifies luminescent coupling effects.

Steiner, M. A.; Geisz, J. F.

2012-06-18T23:59:59.000Z

26

NREL Spurred the Success of Multijunction Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Many scientists once believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. However, researchers at the National Renewable Energy Laboratory (NREL) thought differently, and they employed GaInP in a material combination that allowed the multijunction cell to flourish. The multijunction cell is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic products.

Not Available

2013-08-01T23:59:59.000Z

27

High Volume Method of Making Low Cost, Lightweight Solar Materials ...  

A critical challenge for solar energy is the high cost (>$1/W) of quality solar materials. Researchers at ORNL have invented an approach for producing large volumes ...

28

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

29

Solar Water Heating with Low-Cost Plastic Systems (Brochure)  

DOE Green Energy (OSTI)

Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

Not Available

2012-01-01T23:59:59.000Z

30

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

iency solar cells that leverage the well-established design and manufacturing technology of silicon cells while delivering the performance previously achievable only by far more complex and expensive tandem solar cells. 

31

Development of low cost concentrating solar collectors. Final report  

DOE Green Energy (OSTI)

A low cost concentrating collector has been developed that has the following features: (1) Material cost per 4 foot by 8 foot panel of $175 or $225 at retail prices depending on which of the two versions are used. (2) Low weight of 159 pounds per panel when liquid-filled or approximately 5 pounds per square foot to result in minor additional roof stress. (3) A concentration factor of 1.72 to reduce the necessary storage volume for winter heating and obtain adequate temperature for future air conditioning.(4) High efficiency when mounted parallel to the roof to reduce wind damage, roof stresses, and blend better with architectural features of a house.

Batzer, D.

1982-01-31T23:59:59.000Z

32

Improved Solar Power Plant Efficiency: Low Cost Vaccine ...  

Background Photovoltaic (PV) systems are of great interest to the efforts of sustainable energy. Solar irradiance is a measure of the sun’s ...

33

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

Wladek Walukiewicz, Joel Ager, and Kin Man Yu of Berkeley Lab have developed high-efficiency solar cells that leverage the well-established design and ...

34

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

35

SunShot Initiative: Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Lightweight Solar Concentrators Cost, Lightweight Solar Concentrators JPL logo Graphic of two dishes, mounted to the ground, that are side-by-side. This graphic shows the JPL/L'Garde lightweight concentrator facets, which are deployed for different configurations. The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing an optimized solar thermal collector structure using a lightweight collector structure capable of lowering structural costs, simplifying installation, and leading to mass-manufacturability. Approach The JPL project seeks to achieve the SunShot Initiative installed cost target of $75/m2 for a solar thermal collector system, as well as SunShot performance targets for optical errors, operations during windy conditions, and lifetime.

36

Low-cost site-assembled solar collector designs for use with heat pumps  

DOE Green Energy (OSTI)

Four low cost solar collector designs have been produced for use in solar assisted heat pump systems. Three principles guided the design: the use of air as the heat transfer medium, the use of on-site easy-to-install construction rather than modularized prefabricated construction, and the collection of solar energy at reduced temperatures.

Andrews, J W; Wilhelm, W

1977-05-01T23:59:59.000Z

37

The Potential for Low-Cost Concentrating Solar Power Systems  

DOE Green Energy (OSTI)

Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

1999-07-08T23:59:59.000Z

38

Low cost solar energy collection for cooling applications  

DOE Green Energy (OSTI)

Solar energy collector designs utilizing thinfilm polymeric materials in the absorber and glazing are now under development at Brookhaven National Laboratory. The objective is dramatic cost reduction consistent with acceptable performance and life. Originally intended for low temperature applications (< 100/sup 0/F), these collectors now appear capable of high temperature applications including desiccant and absorption cooling (150/sup 0/ to 200/sup 0/ F). The performance and economics of the thin-film collector are compared with those of conventional flat-plate designs in cooling applications.

Wilhelm, W.G.

1981-06-01T23:59:59.000Z

39

Processes for producing low cost, high efficiency silicon solar cells  

SciTech Connect

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

1996-01-01T23:59:59.000Z

40

Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint  

DOE Green Energy (OSTI)

State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: News Feature - Super-Efficient Cells Key to Low-Cost Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Super-Efficient Cells Key to Low-Cost Solar Power Super-Efficient Cells Key to Low-Cost Solar Power February 16, 2011 This photo shows eight Amonix 7700 solar power generators, those in front tilted horizontally, those in the rear tilted near vertically. Each is a huge rectangle divided into hundreds of squares holding cells and lenses. Enlarge image The Amonix 7700 Concentrated Photovoltaic (CPV) Solar Power Generators are showcasing reliability and undergoing validation-of-performance measurements at the SolarTAC facility in Aurora, Colo. Credit: Dennis Schroeder In this photo, a man in an orange safety vest and hardhat is using a laptop, with large concentrated photovoltaic generators in the background. Enlarge image A technician at SolarTAC in Aurora, CO, enters some numbers into a laptop as he monitors validation of the Amonix 7700 Solar Power Generators.

42

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

1998-06-16T23:59:59.000Z

43

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

44

Low cost solar concentrator for domestic use in developing countries  

Science Conference Proceedings (OSTI)

The model of solar concentrator described in the present paper is easy to fabricate, has a lower cost of production, is rugged and light in weight. Thin sticks cut from a bamboo are woven into a parabolic basket. At every stage of construction of the basket its shape is checked. The ruff inner surface is smoothened out by applying a paste made from wheat and fennagreak flours mixed in equal proportion with water. This paste after drying forms a smooth thin coating on the inner surface. Metallized polyster paper can be stuck on the inner surface with Fevicol (adhesive). An iron rod pierced horizontally through the basket at its focal height serves to mount the basket on a stand and also can be used to hold the cooking pot. The basket can be rotated through 120 degrees. A 0.8 m diameter basket costing about R x 64 can be used to cook suitable items for a family of five in about 100 minutes.

Pande, D.R.

1980-12-01T23:59:59.000Z

45

III-V Growth on Silicon Toward a Multijunction Cell  

DOE Green Energy (OSTI)

A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

2005-11-01T23:59:59.000Z

46

Low-Cost Solar Array (LSA) Project. Project quarterly report No. 9, April--June 1978  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period April through June 1978 is described. It includes reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations activities, and manufacturing techniques, plus the steps taken to integrate these efforts.

Not Available

1978-01-01T23:59:59.000Z

47

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

SciTech Connect

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

48

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

DOE Green Energy (OSTI)

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

49

NREL Scientists Spurred the Success of Multijunction Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Before 1984, many scientists believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. One researcher at the Solar Energy Research Institute (SERI) thought differently. His name was Jerry Olson, and his innovative thinking changed solar history. Olson identified a material combination that allowed the multijunction cell to flourish. It is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic (CPV) products.

Not Available

2012-09-01T23:59:59.000Z

50

SunShot Initiative: Multijunction III-V Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Multijunction III-V Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions...

51

State-of-the-art low-cost solar reflector materials  

SciTech Connect

Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.

Kennedy, C; Jorgensen, G

1994-11-01T23:59:59.000Z

52

Low-Cost Silicon Solar Array Project quarterly report-2, July 1976--September 1976  

DOE Green Energy (OSTI)

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LCSSAP) was established in January 1975. The project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance objectives include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-three contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 42 kW of state-of-the-art modules have been delivered; contracts have been issued and design development has begun for 130 kW of moderately advanced modules. Efforts of the LCSSA Project are organized into an Analysis and Integration Task, four Technology Development Tasks--covering the areas of Silicon Material, Large Area Silicon Sheet, Encapsulation, and Automated Array Assembly--and a Large Scale Procurement Task, an Engineering Task, and an Operations Task. Research findings are discussed, and project planning is outlined.

Not Available

1976-01-01T23:59:59.000Z

53

Low-Cost Silicon Solar Array Project quarterly report-2, July 1976--September 1976  

SciTech Connect

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LCSSAP) was established in January 1975. The project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance objectives include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-three contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 42 kW of state-of-the-art modules have been delivered; contracts have been issued and design development has begun for 130 kW of moderately advanced modules. Efforts of the LCSSA Project are organized into an Analysis and Integration Task, four Technology Development Tasks--covering the areas of Silicon Material, Large Area Silicon Sheet, Encapsulation, and Automated Array Assembly--and a Large Scale Procurement Task, an Engineering Task, and an Operations Task. Research findings are discussed, and project planning is outlined.

1976-01-01T23:59:59.000Z

54

Low-Cost Silicon Solar Array Project. Quarterly report 3, October 1976--December 1976  

SciTech Connect

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LSSA) was established in January 1975. The activities and progress of the LSSA Project during the months of October, November, and December 1976 are described. The Project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance goals include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-seven contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 58 kW of state-of-the-art modules have been delivered; design development is under way for a second block of moderately advanced modules, and planning for subsequent module procurements has begun.

1976-01-01T23:59:59.000Z

55

Low-Cost Silicon Solar Array Project. Quarterly report 3, October 1976--December 1976  

DOE Green Energy (OSTI)

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LSSA) was established in January 1975. The activities and progress of the LSSA Project during the months of October, November, and December 1976 are described. The Project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance goals include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-seven contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 58 kW of state-of-the-art modules have been delivered; design development is under way for a second block of moderately advanced modules, and planning for subsequent module procurements has begun.

Not Available

1976-01-01T23:59:59.000Z

56

Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis  

E-Print Network (OSTI)

An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the ...

Berrada Sounni, Amine

2010-01-01T23:59:59.000Z

57

III-V-N materials for super high-efficiency multijunction solar cells  

Science Conference Proceedings (OSTI)

We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R and D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.

Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio [Toyota Technological Institute, Nagoya 468-8511 (Japan)

2012-10-06T23:59:59.000Z

58

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

59

Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint  

DOE Green Energy (OSTI)

Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

McConnell, R.; Symko-Davies, M.

2006-05-01T23:59:59.000Z

60

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

Science Conference Proceedings (OSTI)

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low-cost silicon solar array project. First annual report, January 1975--March 1976  

DOE Green Energy (OSTI)

The Low-Cost Silicon Solar Array Project (LSSA) was established to greatly reduce the price of solar arrays by the improvement of manufacturing technology, by adaptation of mass production techniques, and by helping achievement of user acceptance. The Project's approach includes the development of technology, its transfer by industry to commercial practice, the evaluation of the economics involved, and the stimulation of market growth. The activities and progress of the LSSA Project during its first year are described in this document which covers all Project activities, with primary emphasis on the technical plans and accomplishments. The development of manufacturing technology is now and will continue to be performed principally by industries and universities. To date, 24 contractors are working on new silicon-refinement processes, silicon-sheet-growth techniques, encapsulants, and automated-assembly studies. Nine more contractors have been selected to perform additional technology investigations and their contracts are being negotiated. Additional contracts will be issued in the future as promising ideas appear. (WDM)

Not Available

1976-08-09T23:59:59.000Z

62

Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell: Preprint  

DOE Green Energy (OSTI)

The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 degrees C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 degrees C hotter, reaching as high as 100 degrees C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 degrees C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

2011-07-01T23:59:59.000Z

63

Large scale production task: low cost silicon solar array project. Final technical report  

DOE Green Energy (OSTI)

Several design concepts were evaluated and compared with respect to potential for low cost and automation, protection against weathering, potential for array efficiency as a function of weight and area, potential for design flexibility and exposure to electrical breakdown or leakage to ground. This evaluation program narrowed attention to design concepts involving glass as the primary structural and weather resistant component of the module. The leading specific design structure consisted of the solar cell circuit embedded in polyvinyl butyrate by lamination between a glass front surface and a polyester film rear surface. Preliminary evaluation of this structure in high humidity and thermal cycle was promising, and extensive field experience with similar structures in architectural and automotive applications was favorable. The specific design proposed was comprised of 120 two-inch diameter cells in a series-parallel configuration. The laminate was mounted in an aluminum frame with a neoprene gasket providing the requisite mechanical strength with flexibility. The resulting module size of 15 by 46 inches permits three modules to be neatly fitted into the 46 inch square subarray specified by JPL. The design as modified to accommodate subsequent experience is shown. Performance and environmental test results are presented and discussed.

Not Available

1978-09-01T23:59:59.000Z

64

InGaAsN/GaAs heterojunction for multi-junction solar cells  

DOE Patents (OSTI)

An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

2001-01-01T23:59:59.000Z

65

Nanostructure Arrays for Multijunction Solar Cells: Final Subcontract Report, 12 May 1999--11 July 2002  

DOE Green Energy (OSTI)

This project developed the process technologies for the fabrication of high-efficiency multijunction photovoltaic cells using semiconductor nanostructure arrays. These devices are expected to provide increased energy conversion efficiency, as well as increased carrier collection efficiency. In addition, this approach provides the ability to tune the absorption spectrum to match selected windows of the solar spectrum. At the same time, these devices can be fabricated using existing industrial electrochemical processing techniques that can substantially reduce the cost of each device. The fabrication technique is based on electrochemical synthesis of II-VI semiconductor quantum wires using a preformed alumina template. This project focused on and solved the technical challenges that need to be addressed for the implementation of such devices. Specific issues addressed include (a) improved pore ordering on thin-film templates, (b) synthesis of II-VI semiconductor nanostructures by both AC and DC deposition, (c) an in-situ barrier-layer engineering process that allow the fabrication of superior-quality materials and improved template/substrate interface, (d) characterization techniques for templates, (e) process technology for creating stacked layers of nanostructures, (f) process throughput and improved apparatus, (g) modeling tools, (h) use of glass substrates, and (i) a nonlithographic surface texturing technique for silicon PV cells. An important outcome of this project is the demonstration of the fabrication technique on glass substrates. This breakthrough provides the possibility of covering buildings with''transparent'' solar cells fabricated on architectural glass. The accomplishments of this project position it well for the next phase of research, namely, creation and optimization of the nanostructure-based PV cells.

Das, B.

2004-06-01T23:59:59.000Z

66

Low Cost Nanomaterials for PV Devices  

Impact: Low-cost solution for solar energy (Expand to lighting, batteries, etc) Low-cost Nanomaterials for PV Devices . Title: Slide 1 Author: Donna ...

67

Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar ...  

The technology was also used to produce solar modules on flexible substrates that offer more efficient light ... Solar panels; Consumer electronics; More Information ...

68

Low-cost selective deposition of wax onto textured solar cells  

E-Print Network (OSTI)

The active regions of a solar cell must be inoculated with wax, while leaving the metal fingers and bus bars bare, in preparation for the electroplating step of a new solar panel manufacturing process. Different methods ...

Páez, Daýan

2008-01-01T23:59:59.000Z

69

Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators  

DOE Green Energy (OSTI)

The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

1995-03-01T23:59:59.000Z

70

Low-cost passive solar-retrofit options for mobile homes  

DOE Green Energy (OSTI)

Passive solar heating and cooling retrofit options can significantly reduce the energy consumption of new and existing mobile homes. The initial efforts of the Solar Energy Research Institute to explore the solar potential for the existing stock of mobile homes and those in the production stage are described.

Brant, S.; Holtz, M.; Tasker, M.

1981-03-01T23:59:59.000Z

71

Research and development of low cost processes for integrated solar arrays. Final report, April 15, 1974--January 14, 1976  

DOE Green Energy (OSTI)

Results of a program to study process routes leading to a low cost large area integrated silicon solar array manufacture for terrestrial applications are reported. Potential processes for the production of solar-grade silicon are evaluated from thermodynamic, economic, and technical feasibility points of view. Upgrading of the present arc-furnace process is found most favorable. Experimental studies of the Si/SiF/sub 4/ transport and purification process show considerable impurity removal and reasonable transport rates. Silicon deformation experiments indicate production of silicon sheet by rolling at 1350/sup 0/C is feasible. Significant recrystallization by strain-anneal technique has been observed. Experimental recrystallization studies using an electron beam line source are discussed. A maximum recrystallization velocity of approximately 9 m/hr is calculated for silicon sheet. A comparative process rating technique based on detailed cost analysis is presented.

Graham, C.D.; Kulkarni, S.; Louis, E.

1976-05-01T23:59:59.000Z

72

Design of a compact, lightweight, and low-cost solar concentrator  

E-Print Network (OSTI)

The objective of this mechanical design project was to improve the current design of large and heavy solar concentrators. The three main design goals were: making the system compact, making the system lightweight, and ...

González, Gabriel J. (Gabriel Joe), 1980-

2004-01-01T23:59:59.000Z

73

NREL Scientists Spurred the Success of Multijunction Solar Cells (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Spurred the Success Scientists Spurred the Success of Multijunction Solar Cells Before 1984, many scientists believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. One researcher at the Solar Energy Research Institute (SERI) thought differently. His name was Jerry Olson, and his innovative thinking changed solar history. Olson identified a material combination that allowed the multijunction cell to flourish. It is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic (CPV) products. In the early 1980s, Olson was a scientist at SERI, the predecessor of the National Renewable Energy Laboratory (NREL). At the time, solar researchers were looking for the ideal combina-

74

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

DOE Green Energy (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

75

Solar cells with low cost substrates and process of making same  

SciTech Connect

A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

Mitchell, Kim W. (Indian Hills, CO)

1984-01-01T23:59:59.000Z

76

Low cost sprayed CdTe solar cell research. First quarterly progress report, 15 August-14 November 1979  

DOE Green Energy (OSTI)

During the first quarter of this contract, facilities for the spray pyrolysis deposition of CdTe thin films using a process anolagous to that used to spray deposit device-quality films of CdS were prepared. A Te salt, ..beta..-(CH/sub 3/)/sub 2/TeI/sub 2/, suitable for use in the spray process was synthesized. The facilities were shown to function properly by the successful spraying of good quality CdS thin films. A number of initial spray experiments were conducted utilizing the ..beta..-(CH/sub 3/)/sub 2/TeI/sub 2/ and other inorganic tellurium-bearing compounds which also show great promise in producing low-cost sprayed CdTe solar cells. Initial chemical tests of these films indicated the presence of both Cd and Te, and x-ray diffraction analysis is presently underway to determine the actual concentration of CdTe.

Sienkiewicz, P.; Lis, S.; Serreze, H.B.; Entine, G.

1979-12-01T23:59:59.000Z

77

Low-Cost Solar Domestic Hot Water Systems for Mild Climates  

DOE Green Energy (OSTI)

In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

2005-01-01T23:59:59.000Z

78

Solar Water Heating with Low-Cost Plastic Systems (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

buildings consumed over 392,000 billion Btu of site- buildings consumed over 392,000 billion Btu of site- delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. [1] Earlier data indicate that about 10% of this is used to heat water. [2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514. Federal facilities having financial difficulty meeting the EISA mandate and executive order (e.g., facilities with natural

79

Low Cost, Light Weight SOlar Modules Based on Organic Photovoltaic Technology  

SciTech Connect

Objectives - In order to produce solar modules for rooftop applications the performance and the lifetime must be improved to 5% - 7% and >10 year life. Task 1 Stability - (1) Flexible modules are stable to 1000 hrs at 65 C/85%RH, (2) Flexible modules in glass are stable to >2000 hrs at 85 C/85%RH (no decrease in performance); (3) Adhesive + filler helps stabilize modules; and (4) Solution coatable barriers exhibit good WVTR; work in-progress. Task 2 Performance: n-type charge carriers - (1) N-type polymers could not be synthesized; and (2) More than 30 fullerene derivatives synthesized and tested, Several deep LUMO derivatives accept charge from deep LUMO polymers, higher voltage observed, Improvement in cell efficiency not observed, morphology problem. Task 3 Performance: grid electrode - (1) Exceeded flatness and roughness goals; (2) Exceeds sheet resistance goals; (3) Achieved %T goals; and (4) Performance equivalent to ITO - 2% Efficiency ( av.); work in-progress.

Russell Gaudiana; David GInley; Robert Birkmeyer

2009-09-20T23:59:59.000Z

80

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology  

DOE Green Energy (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. (Spire Corp., Bedford, MA (United States))

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-Cost Solar-Array Project. Quarterly progress report, April-June 1980  

DOE Green Energy (OSTI)

The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III Program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capable of producing 1000 MT/yr. This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast to polycrystalline for subsequent use in fabricating solar cells. Progress is reported in detail. (WHK)

Not Available

1980-01-01T23:59:59.000Z

82

Low-Cost Silicon Solar Array project (LSSA). Quarterly report, April 1976--June 1976  

DOE Green Energy (OSTI)

Activities and progress of the LSSA Project during April, May, and June 1976 are described. This involved the awarding of additional contracts, an evaluation and clarification of plans and working relationships with contractors, the receipt of initial technical results, and an expansion of activity in the evaluation and improvement of the solar cell modules that are included in the Project's first procurement (46 kilowatts). For the most part, the new manufacturing technology is being developed under contract by industries and universities. It includes the consideration of new silicon-refinement processes, silicon sheet-growth techniques, encapsulants, and automated-assembly production. During this report period analytical and experimental accomplishments resulted from day-to-day activities that are the early efforts of a long range plan. Thirty-one contracts have been awarded and two more are being negotiated. Five companies have delivered 20 kilowatts out of a total purchase of 46 kilowatts of ''off-the-shelf'' modules that will be used in ERDA's test and demonstration activities. The same five companies have just been awarded contracts for the purchase of 130 kilowatts of semistandardized modules at an average selling price of $15.50 per watt. (WDM)

Not Available

1976-10-08T23:59:59.000Z

83

Low cost solar array project. Quarterly progress report, January-March 1980  

DOE Green Energy (OSTI)

The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and rice commensurate with the production goals of the LSA project for solar-cell modules. As part of -- overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/Yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capably of producing 1000 MT/Yr. Progress is repoted in detail. (WHK)

Not Available

1980-01-01T23:59:59.000Z

84

Phase I of the Automated Array Assembly Task of the Low Cost Silicon Solar Array Project. Technical quarterly report No. 2. Motorola report No. 2258/2  

SciTech Connect

Phase I of the Automated Array Assembly Task, LCSSAP, is concerned with a comprehensive assessment of the improvements in existing technology that may be needed in order to develop, by 1985, an industrial capability for low cost, mass production of very durable silicon solar photovoltaic modules and arrays. Both experimental, literature, and theoretical sources are being utilized to evaluate efficient solar cell design criteria and individual and synergistic process effects on the cost effective production and encapsulation of such efficient solar cells.

Coleman, M.

1976-07-01T23:59:59.000Z

85

Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge  

DOE Patents (OSTI)

A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

2001-01-01T23:59:59.000Z

86

Phase I of the Automated Array Assembly Task of the Low Cost Silicon Solar Array Project. Motorola report No. 2258/1. Technical quarterly report No. 1  

DOE Green Energy (OSTI)

Phase I of the Automated Array Assembly Task, LCSSAP, is concerned with a comprehensive assessment of the improvements in existing technology that may be needed in order to develop, by 1985, an industrial capability for low cost, mass production of very durable silicon solar photovoltaic modules and arrays. Design criteria for efficient solar cells are discussed, emphasis being given to front metal surface pattern and texture etched front surfaces. A generalized processing matrix, containing competing methods for solar cell manufacturing steps, is outlined. The steps in this processing matrix are discussed and characterized according to immediate and potential usefulness. Representative steps have been chosen for empirical evaluation.

Coleman, M.

1976-04-01T23:59:59.000Z

87

Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report  

DOE Green Energy (OSTI)

The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

1982-02-01T23:59:59.000Z

88

Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

Not Available

1980-01-01T23:59:59.000Z

89

Low-Cost Solar Array Project. Progress report 12, January-April 1979 and proceedings of the 12th Project Integration Meeting  

DOE Green Energy (OSTI)

This report describes progress made by the Low-Cost Solar Array Project during the period January through April 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held April 4-5, 1979.

Not Available

1979-01-01T23:59:59.000Z

90

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Quarterly progress report, April--June 1978. Low cost silicon solar array project  

DOE Green Energy (OSTI)

The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the feasibility and cost of manufacturing semiconductor grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and in a free space reactor. The process design program is to provide JPL with engineering and economic parameters for an experimental unit sized for 25 metric tons of silicon per year and a product-cost estimate for silicon produced on a scale of 100 metric tons per year. The purpose of the capacitive fluid-bed heating program is to explore the feasibility of using electrical capacitive heating to control the fluidized silicon-bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model was developed for use in the design of a fluid-bed pyrolysis scheme. Progress is reported in each of these areas. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

91

NREL: Photovoltaics Research - III-V Multijunction Materials and Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

III-V Multijunction Materials and Devices R&D III-V Multijunction Materials and Devices R&D NREL has a strong research capability in III-V multijunction photovoltaic (PV) cells. The inverted metamorphic multijunction (IMM) technology, which is fundamentally a new technology path with breakthrough performance and cost advantages, is a particular focus. We invented and first demonstrated the IMM solar cell and introduced it to the PV industry. Our scientists earlier invented and demonstrated the first-ever multijunction PV cell-and then worked with industry to develop the industry-standard GaInP/Ga(In)As/Ge) technology. III-V multijunction cells, which address both space and terrestrial power needs, have achieved the highest energy conversion efficiencies of all PV cells, with the current record exceeding 40%.

92

Profiling the Built-In Electrical Potential in III-V Multijunction Solar Cells (Poster)  

DOE Green Energy (OSTI)

We have observed three electrical potentials at the top, tunneling, and bottom junctions of GnInP{sub 2}/GaAs tandem-junction solar cells, by performing the UHV-SKPM measurement. The effect of laser illumination was avoided by using GaAs laser with photon energy of 1.4 eV for the AFM operation. We also observed higher potentials at the atomic steps than on the terraces for both p-type GaInP{sub 2} epitaxial layer and p-type GaAs substrate, and found that the potential at steps of GaAs substrate depends on the step directions.

Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

2006-05-01T23:59:59.000Z

93

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low Cost Silicon Solar Array Project. Quarterly progress report, January--March 1978  

DOE Green Energy (OSTI)

The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the viability and economic feasibility of manufacturing semiconductor-grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and a free space reactor. The purpose of the process design program is to provide JPL with engineering and economic parameters for an experimental facility capable of producing 25 metric tons of silicon per year by the pyrolysis of silane gas. An ancillary purpose is to estimate the cost of silicon produced by the same process on a scale of 1000 metric tons per year. The capacitive fluid-bed heating program is exploring the feasibility of utilizing electrical capacitive heating to control the fluidized silicon bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model is being developed to be used in a design of a fluid-bed pyrolysis process scheme. Research progress is described in detail. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

94

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low cost silicon solar array project. Quarterly progress report for July--September 1978  

DOE Green Energy (OSTI)

The project is divided into four tasks: silane production, silicon production, process design, and fluid-bed pyrolysis R and D. The purpose of the silane production task is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production task is to establish the feasibility and cost of manufacturing semi-conductor grade polycrystalline silicon through the pyrolysis of silane (SiH/sub 4/). The silane-to-silicon conversion is to be investigated in a fluid bed reactor and in a free-space reactor. The process design task is to provide JPL with engineering and economic parameters for an experimental unit sized for 25 metric tons of silicon per year and a product-cost estimate for silicon produced on a scale of 1000 metric tons per year. The purpose of fluid-bed pyrolysis task is to explore the feasibility of using electrical capacitive heating to control the fluidized silicon-bed temperature during the heterogeneous decomposition of silane and to further explore the behavior of a fluid bed. These basic studies will form part of the information necessary to assess technical feasibility of the fluid-bed pyrolysis of silane. Status of these tasks are reported. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

95

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

96

Profiling the Built-in Electrical Potential in III-V Multijunction Solar Cells: Preprint  

DOE Green Energy (OSTI)

We report on a direct measurement of the electrical potential on cross-sections of GaInP2/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

2006-05-01T23:59:59.000Z

97

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network (OSTI)

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

98

Study program for encapsulation materials interface for low-cost solar array. Annual report, January 1, 1980-December 31, 1980  

DOE Green Energy (OSTI)

Emphasis is placed on the development of ac impedance as a nondestructive evaluation methodology for solar arrays and the further development of corrosion models and materials selection criteria for corrosion resistant interfaces.

Kaelble, D.H.; Mansfeld, F.B.; Kendig, M.; Leung, C.

1981-02-01T23:59:59.000Z

99

Development of a low-temperature, low-cost, black liquid solar collector. Final report, September 12, 1977-October 31, 1978  

DOE Green Energy (OSTI)

Battelle's Columbus Laboratories (BCL) has developed an efficient, low-cost, low-temperature, nonconcentrating, liquid-heating solar collector suitable for use as a thermal energy source for heat pumps or other heating applications. The collector incorporates a black liquid heat transfer medium permitting solar radiation to be absorbed directly by the liquid. Based on detailed measurements of the spectral absorption properties on many black liquids, and on the results of computer analysis of collector performance, it has been shown that the black liquid collector concept has the potential of significantly improved performance compared with an unglazed (i.e., swimming pool type) black-absorber collector of comparable cost.On the other hand, it has the potential of significant cost savings compared with the single-glazed collector of comparable performance. Experimental data obtained on two black liquid collectors constructed during this project closely match the predicted curves obtained from a theoretical computer analysis. Results of the systems analysis studies have shown that the black liquid collector, when used as a heat source for a solar-assisted heat pump, has comparable performance to that of a single-glazed conventional collector but at considerably lower cost. Another important result is that currently available heat pump systems are not ideally matched or compatible with a solar-assisted system. A solar-assisted system will require design of heat pumps which can take advantage of the higher system coefficient of performance (COP) possible with a heat source at elevated temperatures.

Landstrom, D K; Talbert, S G; Stickford, Jr, G H; Fischer, R D; Hess, R E

1978-10-01T23:59:59.000Z

100

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Ninth quarterly report, October 1--December 31, 1977  

DOE Green Energy (OSTI)

It was proposed to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort has been in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo and C, and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The lifetime of uncontaminated silicon was mesured as a function of heat treatment temperature (200 to 1200/sup 0/C). The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10/sup 18/cm/sup -3/ of Cr, Mn, Fe, Ni, Ti and V, respectively, were measured. Deep level spectroscopy of metal-contaminated ingots has been employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Phase 2 of the array automated assembly task for the low cost silicon solar array project. Final report  

DOE Green Energy (OSTI)

Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process proposed by Motorola, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work has directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The Motorola process was compared with simple electroless nickel plating in a series of parallel experiments. Results are presented. (WHK)

Petersen, R.C.

1980-11-01T23:59:59.000Z

102

Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979  

DOE Green Energy (OSTI)

The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility, and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.

Not Available

1979-06-01T23:59:59.000Z

103

Phase 2 of the automated array assembly task of the Low-Cost Silicon Solar Array Project. Annual report  

DOE Green Energy (OSTI)

This report presents the results of investigations and analyses of an advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner. The entire process sequence is presented and discussed step by step. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are presnted. Further, a detailed cost analysis has been performed to indicate future areas of fruitful cost reduction effort. Finally, recommendations for advanced investigations are presented.

Coleman, M.G.; Grenon, L.P.; Pastirik, E.M.; Pryor, R.A.; Sparks, T.G.

1978-11-01T23:59:59.000Z

104

Analysis and evaluation in the production process and equipment area of the low-cost solar array project  

DOE Green Energy (OSTI)

The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing matrial, and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

Goldman, H.; Wolf, M.

1979-08-01T23:59:59.000Z

105

Phase 2 of the array automated assembly task for the low cost silicon solar array project. Interim report  

DOE Green Energy (OSTI)

The LSA Automated Array Assembly Task has as its goal the manufacture of photovoltaic modules at a capacity of 500 MW per year at a cost of $0.50 per peak watt. Divided between ten solar cell manufacturers, each installation should produce 50 MW per year. This implies that automated machinery would continuously produce 120 solar cells per minute. The purpose of this report is to detail the processes and techniques which are believed to have great promise of accomplishing this task. The initial stages of the program were involved in studying the possibility of automated assembly. Phase 1 reviewed a large cross section of processes, conceptual designs, and innovative technologies in preparation for 1986. Through this documentation, a large amount of comprehensive data has been collected. It is these reports upon which the next phase of the program is based. The purpose of Phase 2 is to propose an automated sequence, verify it and present future cost projections. Utilizing the large amount of information available from Phase 1 and drawing from its own experience Solarex has proposed a process sequence which it is believed has great potential of achieving the LSA goals. This report describes the processes, details, the verification tests performed, and estimates the cost of such an automated array assembly.

Wihl, M.; Toro, J.; Scheinine, A.; Anderson, J.

1978-11-01T23:59:59.000Z

106

Automated array assembly task development of low-cost polysilicon solar cells. Quarterly technical report No. 2  

DOE Green Energy (OSTI)

Three types of polysilicon materials were experimentally evaluated with Sensor Technology's standard production processing sequence during this reporting period. These materials include Wacker, Crystal Systems, and Exotic Materials polysilicon wafers. The average crystal grain size in the three polysilicon materials was obtained by statistically averaging the longest and shortest dimensions of each crystal grain in a set of random grain size measurements. An equation was derived to compute the fractional power loss associated with insufficient gridline coverage of polysilicon crystal grains. Two numerical examples are provided to illustrate the use of the fractional power loss equations in determining the suitability of the gridline spacing in a particular polysilicon grid pattern design. Other processes were explored for the purpose of improving the polysilicon solar cell efficiencies. Several metallization techniques were examined for suitability with a spray-on-dopant junction formation process sequence. A metallization problem was incurred in this program with cause and solution yet to be determined.

Allison, K.L.; Jones, G.T.; Rhee, S.S.; Chitre, S.R.

1979-12-01T23:59:59.000Z

107

Silicon web process development. Low Cost Solar Array Project: Large Area Silicon Test Task. Annual report, April 1978-April 1979  

DOE Green Energy (OSTI)

Silicon dendritic web is a unique mode of ribbon growth in which crystallographic and surface tension forces, rather than shaping dies, are used to control crystal form. The single crystal webs, typically 2-4 cm wide, have been made into solar cells which exhibit AMl conversion efficiencies as high as 15.5%. During crystallization, silicon webs effectively segregate metal impurities to the melt (k/sub eff/ approx. 10/sup -5/) so that the use of cheaper, less pure silicon as feedstock for crystal growth appears feasible. A research program to significantly increase web output rate and to show the feasibility for simultaneous melt replenishment and growth is described. Also, an economic analysis of the silicon web process is presented. (WHK)

Duncan, C.S.; Hopkins, R.H.; Seidensticker, R.G.; McHugh, J.P.; Hill, F.E.; Heimlich, M.E.; Driggers, J.M.

1979-01-01T23:59:59.000Z

108

Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices  

DOE Green Energy (OSTI)

This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

Not Available

1979-06-01T23:59:59.000Z

109

Development of low cost contacts to silicon solar cells. Final report, 15 October 1978-30 April 1980  

DOE Green Energy (OSTI)

A summary of work done on the development of a copper based contact system for silicon solar cells is presented. The work has proceeded in three phases: (1) Development of a copper based contact system using plated Pd-Cr-Cu. Good cells were made but cells degraded under low temperature (300/sup 0/C) heat treatments. (2) The degradation in Phase I was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. (3) An electroless nickel solution was substituted for the electroless chrominum solution in the original process. Efforts were made to replace the palladium bath with an appropriate nickel layer, but these were unsuccessful. 150 cells using the Pd-Ni-Cu contact system were delivered to JPL. Also a cost study was made on the plating process to assess the chance of reaching 5 cents/watt.

Tanner, D.P.; Iles, P.A.

1980-01-01T23:59:59.000Z

110

Excimer laser annealing to fabricate low cost solar cells. Quarterly technical report No. 1, 26 March-30 June 1984  

DOE Green Energy (OSTI)

The objective of this research is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed during the first quarter of this program shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process described by JPL. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. The technical goal of this research is to develop an optimized PELA process compatible with commercial production, and to demonstrate increased cell efficiency with sufficient product for adequate statistical analysis. During the first quarter of this program an excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon. Preliminary results showed that the PELA processed cells had overall efficiencies comparable to furnace annealed ion implanted controls, and that texture-etched material requires lower fluence for annealing than polished silicon. Process optimization will be carried out in the second quarter.

Not Available

1984-07-01T23:59:59.000Z

111

Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH/sub 4/. Low cost silicon solar array project, Task I. Quarterly progress report, July 1976--October 1976  

DOE Green Energy (OSTI)

The study of a process for the low cost production of silane included laboratory investigations of the kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst. The hydrogenation of SiCl/sub 4/ to form HSiCl/sub 3/ and the direct synthesis of H/sub 2/SiCl/sub 2/ from HCl gas and metallurigical silicon metal were also studied. The purification of SiH/sub 4/ using activated carbon adsorbent was studied along with a process for storing SiH/sub 4/ adsorbed on carbon. The latter makes possible a higher volumetric efficiency than the current practice of compressed gas storage. The mini-plant designed to produce ten pounds per day of SiH/sub 4/ is nearly complete, a detailed description of the unit and its essential design features are given.

Breneman, W.C.; Mui, J.Y.P.

1976-10-15T23:59:59.000Z

112

Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH/sub 4/. Low cost silicon solar array project, Task I. Quarterly progress report, October 1, 1976--December 31, 1976  

DOE Green Energy (OSTI)

In the study of a process for the low cost, high volume production of silane (SiH/sub 4/) via redistribution of chlorohydrosilanes, the longevity and nature of the amine functional ion exchange resin catalyst was investigated. A modest decline in catalyst activity appears to be the result of loss of amine function during the initiallizing period. Long term activity remains quite high. In preparation for additional studies, deuterium labeled trichlorosilane is being prepared. The nominally 5 kg/day silane-from-dichlorosilane mini-plant has been constructed, leak tested and conditioned for start up. Approval for operation from a Pre-start Up Safety Review Team has been received in conjunction with an approved flameless method for venting silane. Laboratory studies of the hydrogenation of silicon tetrachloride co-product of the silane process are continuing along with the design of a mini-plant scale unit capable of pressurized operation. Preliminary design of a maxi-plant to integrate the entire process is also underway.

Breneman, W.C.; Mui, J.Y.P.

1977-01-01T23:59:59.000Z

113

Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report  

DOE Green Energy (OSTI)

This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R. [Utility Power Group, Chatsworth, CA (US)

1998-06-01T23:59:59.000Z

114

Optimized III-V Multijunction Concentrator Solar Cells on Patterned Si and Ge Substrates: Final Technical Report, 15 September 2004--30 September 2006  

DOE Green Energy (OSTI)

Goal is to demo realistic path to III-V multijunction concentrator efficiencies > 40% by substrate-engineering combining compositional grading with patterned epitaxy for small-area cells for high concentration.

Ringel, S. A.

2008-11-01T23:59:59.000Z

115

Low Cost TiO2 Nanoparticles - Energy Innovation Portal  

Solar Photovoltaic Advanced Materials Low Cost TiO2 Nanoparticles Sandia National Laboratories. Contact SNL About This Technology Publications: Market ...

116

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

117

Low-Cost Nano-Patterning Process Makes Millions of Holes in Silver Film, Boosting Light-Capturing Qualities of Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers have demonstrated a simple, low-cost way to pattern nano-sized holes in thin silver films in order to trap light waves and boost the transmission of photons into usable energy.

Not Available

2011-02-01T23:59:59.000Z

118

Silicon materials task of the low cost solar array project (Phase III): effect of impurities and processing on silicon solar cells. Fourteenth quarterly report, January-March 1979  

DOE Green Energy (OSTI)

The objective of this program is to determine how various processes, impurities, and impurity-process interactions affect the properties of silicon and the performance of terrestrial solar cells made from silicon. The data provide a basis for cost-benefit analysis to the producers and users of Solar Grade Silicon. The Phase III effort encompasses five major topics: (1) examination of the interaction of impurities with processing treatments, (2) generation of a data base and modeling of impurity effects in n-base solar cells, (3) extension of previous p-base studies to include impurities likely to be introduced during silicon production, refining or crystal growth, (4) a consideration of the potential impact of anisotropic (nonuniform) impurity distribution in large Czochralski and ribbon solar cells and, (5) a preliminary investigation of the permanence of impurity effects in silicon solar cells. During this quarter (1) the mechanisms responsible for impurity deactivation during high temperature gettering treatments was examined in detail, (2) the sead to tang and center to edge variation in Czechralski ingot properties for commercial-size ingots doped with Ti and Mn was evaluated, and (3) aging effects in solar cells doped with Ti or Mo were assessed. Also, an analysis of impurity effects on crystal structure breakdown, and the monitoring of ingot lifetimes by photoconductive decay lifetime measurement before and after processing were continued. The highlights of this work are described. (WHK)

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1979-04-01T23:59:59.000Z

119

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Heliostat Development to Low-Cost Heliostat Development to someone by E-mail Share SunShot Initiative: Low-Cost Heliostat Development on Facebook Tweet about SunShot Initiative: Low-Cost Heliostat Development on Twitter Bookmark SunShot Initiative: Low-Cost Heliostat Development on Google Bookmark SunShot Initiative: Low-Cost Heliostat Development on Delicious Rank SunShot Initiative: Low-Cost Heliostat Development on Digg Find More places to share SunShot Initiative: Low-Cost Heliostat Development on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

120

40 kW of solar cell modules for the Large Scale Production Task, a Low Cost Silicon Solar Array Project. Final technical report  

SciTech Connect

Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60/sup 0/C and 100 mW/cm/sup 2/. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. The solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery are described. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations. It was concluded from this program that volume production on the order of hundreds of kilowatts per year per company as a minimum is required to significantly reduce the price per watt for solar cell modules. Sensor Technology more than doubled its solar cell module manufacturing facilities since the completion of the JPL Block II procurement. Plans are being made for large scale expansion of our facilities to meet growing JPL/DOE procurements.

Jones, G.T.

1977-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)  

DOE Green Energy (OSTI)

The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

Not Available

2012-06-01T23:59:59.000Z

122

Performance of CPV System Using Three Types of III-V Multi-Junction Solar Cells: Preprint  

DOE Green Energy (OSTI)

The performance of sister CPV systems is compared in Japan and the U.S. The conclusion is that the alignment of the systems can affect the design of the solar cells.

Hashimoto, J.; Kurtz, S.; Sakurai, K.; Muller, M.; Otani, K.

2012-04-01T23:59:59.000Z

123

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Effect of impurities and processing on silicon solar cells. Phase II. Summary and eleventh quarterly report  

DOE Green Energy (OSTI)

The effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells were investigated. A variety of aspects including thermal treatments, crystal growth rate, base doping concentration (low resistivity), base doping type (n vs. p), grain boundary structure, and carbon/oxygen-metal interactions (float zone vs Czochralski growth) were studied. The effects of various metallic impurities were studied, introduced singly or in combination into Czochralski, float zone and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The totality of the solar cell data (comprising over 4000 cells) indicate that impurity-induced performance loss is primarily due to reduction in base diffusion length. Based on this assumption an analytical model has been developed which predicts cell performance as a function of metal impurity content. The model has now been verified for p-base material by correlating the projected and measured performance of solar cells made on 19 ingots bearing multiple impurities.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

1978-07-01T23:59:59.000Z

124

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Fifteenth quarterly report, April-June 1979  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions on the performance of terrestrial silicon solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly Solar Grade silicon. The first reported determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals were performed. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon (C/sub S/) while atomic absorption was used to measure the metal content of the residual liquid (C/sub L/) from which the doped crystals were grown. Gettering of Ti-doped silicon wafers improves cell performance by 1 to 2% (absolute) for the highest temperatures and longest times. The measured profile for Ti centers formed after an 850/sup 0/C gettering operation was fitted by a mathematical expression for the out-diffusion of an impurity species. By means of cell performance data and the newly-measured segregation coefficients curves were computed to predict the variation in cell efficiency with impurity concentration for Mo, Ta, W, Nb, and Co, materials commonly employed in the construction of high temperature silicon processing equipment. Using data for second and third generation n-base ingots the cell performance curves were updated for single impurities in n-type silicon. Most impurities degrade n-base cells less than p-base devices. The effect is larges for Mo, Al, Mn, Ti, and V while Fe and Cr behave much the same in both types of solar cells. In contrast Ni and Cu both degrade n-base devices (apparently by a junction mechanism) more severely than p-base cells. (WHK)

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1979-07-01T23:59:59.000Z

125

Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213  

DOE Green Energy (OSTI)

UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

Bhattacharya, R.

2011-02-01T23:59:59.000Z

126

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Effect of impurities and processing on silicon solar cells. Tenth quarterly report, 1 January 1978--31 March 1978  

DOE Green Energy (OSTI)

The objective of this program is to determine how various processes, impurities and impurity-process interactions affect the properties of silicon and the performance of terrestrial solar cells made from silicon. The development of this data base permits the definition of the tolerable impurity levels in a low-cost solar grade silicon and identifies processes which mitigate or enhance impurity effects in silicon. The data further provide the silicon manufacturer with a means to select materials of construction which minimize product contamination and permit the cost effective selection of chemical processes for silicon purification. For the silicon ingot, sheet or ribbon manufacturer the data suggest what silicon feedstock purity must be selected to produce wafers suitable for cell production and what furnace materials minimize wafer contamination. The cell manufacturer may use the data to define an acceptable wafer purity for cell processing or to identify processes which minimize impurity impact on efficiency. In short the data provide a basis for cost-benefit analysis to the producers and users of Solar Grade Silicon. During this quarter the focus of the experimental activity has been in the following four areas: (1) effects of crystal growth rate and thermal processing of silicon on impurity distribution and electrical activity, (2) impurity-grain boundary interactions in polycrystalline silicon, (3) preliminary measurements of impurity trap levels, trap concentrations and capture cross sections by Deep Level Transient Spectroscopy of purposely contaminated solar cells and (4) improvement of the solar cell-impurity concentration data base for n- and p-type silicon for subsequent modeling studies.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M.H.; McCormick, J.R.

1978-01-01T23:59:59.000Z

127

Properties of low cost, high volume glasses  

DOE Green Energy (OSTI)

The properties of new and weathered samples of low cost, high volume glasses have been studied to determine their usefulness for solar energy applications. Glasses of varying compositions produced by float, drawn, rolled fusion, and twin ground techniques were examined. Spectral transmittance and reflectance were measured and solar weighted values calculated. Laser raytrace techniques were used to evaluate surface parallelism and bulk homogeneity. Compositional changes were examined with scanning electron microscopy, x-ray fluorescence, and Auger electron spectroscopy. These techniques were used in conjunction with ellipsometry to study the surface effects associated with weathering.

Lind, M. A.; Hartman, J. S.; Buckwalter, C. Q.

1979-01-01T23:59:59.000Z

128

Low Cost Solar Array Project. Task I. Silicon material. Gaseous melt replenishment system. Fifth quarterly progress report, 17 April-17 July 1980  

DOE Green Energy (OSTI)

The objective of this program is to develop an improved silicon production reactor with periodic batch delivery of product to either a casting or shotting process or through a liquid silicon transfer system directly to a crystal growth system. Progress is reported. The processes and equipment are scaled such that a modest investment can make available to the Czochralski crystal grower a low cost source of silicon. In addition, the smaller scale of operation means that the systems can be put into operation without large capital investments, guarantees of markets, etc. The chemical reactions are those in commercial usage now: deposition from a hydrogen - chlorosilane mixture. The major innovation is in reactor design which allows a high productivity of silicon. The reactor has been conservatively sized on the basis of epitaxial deposition rates. The conclusion of this calculation is that a reasonably sized system can produce rapidly enough to keep pace with either 10cm or 12cm diameter Czochralski crystal growth operating in a semi-continuous mode. (WHK)

Jewett, D.N.; Bates, H.E.; Hill, D.M.

1980-01-01T23:59:59.000Z

129

Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344  

DOE Green Energy (OSTI)

NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

Wanlass, M.

2012-07-01T23:59:59.000Z

130

Silicon Materials Task of the Low Cost Solar Array Project (part 2). Third quarterly report, 1 April 1976--30 June 1976  

DOE Green Energy (OSTI)

The objective of this program is to develop and define purity requirements for solar grade silicon by exploring the effects of metal impurities on the performance of terrestrial silicon solar cells. During this quarter the growth of all first, second, and nearly all third generation ingots was completed and the growth of fourth generation ingots was initiated. Several boron-doped silicon dendritic web baseline samples were grown as well as one web doped with chromium. Chemical analysis of the ingots is proceeding on schedule, though, as expected, difficulties in assessing the impurity levels of lightly-doped ingots have developed. Lifetime measurements were completed for all 38 ingots grown to date. (WDM)

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McHugh, J.P.; McCormick, J.R.

1976-01-01T23:59:59.000Z

131

Silicon Materials Task of the Low Cost Solar Array Project (part 2). Second quarterly report, 1 January 1976--31 March 1976  

DOE Green Energy (OSTI)

The objective of this program, Part 2 of the Silicon Materials Task, is to develop and define purity requirements for solar cell grade silicon material by evaluating the effects of metal impurities and impurity concentration on the performance of terrestrial silicon solar cells. During this quarter the growth of all first generation doubly-doped Czochralski ingots was completed (baseline boron + Cr, Mn, Cu, Ni, Fe, Ti, V, Mg, Zn, Al, and Zr), as were 90 percent of the second generation ingots, several third generation ingots, and three multiply-doped (B + Cu/Mn, Cu/Cr, Mn/Cr) ingots. (WDM)

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.

1976-01-01T23:59:59.000Z

132

Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report  

DOE Green Energy (OSTI)

During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

1984-02-01T23:59:59.000Z

133

Phase I of the automated array assembly task of the low cost silicon solar array project. Annual technical report. Motorola report No. 2258/4  

DOE Green Energy (OSTI)

Work performed to analyze, both technically and economically, the state of technology readiness for the automated production of solar cells and modules is compiled and reviewed critically. The long-term objective solar module characteristics include a selling price of less than $.50/peak watt and a mean-time-before-failure (MTBF) of 20 years in any terrestrial environment. While efficiency is important to attaining the cost goal, it is a most significant factor in array economics; accordingly, this program has stressed high efficiency, with a suggested cell goal of 15 percent. The analysis emphasized technical evaluation of individual process steps first, and then concentrated upon process sequences for making solar cells and modules. Further analysis was performed to yield a detailed cost study of individual process steps; this was applied to the cost analysis of potential process sequences. Potentially economical process sequences formed from process steps deemed to have high technical merit were then identified. Potentially promising technologies needing further development to achieve satisfactory maturity were then identified. It is concluded that, while specific areas of technology need advanced development and the source of silicon needs definition, no fundamentally new technology needs to be developed to permit manufacture of solar cells which will meet the 1985 LSSA Program cost goals.

Coleman, M.G.; Pryor, R.A.; Grenon, L.A.; Lesk, I.A.

1977-02-01T23:59:59.000Z

134

Silicon Materials Task of the Low Cost Solar Array Project (Phase II). Sixth quarterly report, 1 January 1977--March 31, 1977  

DOE Green Energy (OSTI)

Preliminary studies have been conducted to develop a foundation for the work to be carried out in Phase II of the program, which is designed to investigate the effects of processes and impurities on terrestrial silicon solar cells. Solar cells nearly 10% efficient (without AR coatings) can be made on p-type material with resistivities down to about 0.2 ..cap omega..-cm using a process similar to that employed during Phase I of the program. As resistivity falls below about 0.1 ..cap omega..-cm cell efficiency also falls and process instabilities become more prevalent. For this reason the resistivity of the baseline material chosen to study the combined effects of boron and metal doping will probably be in the 0.1 to 0.3 ..cap omega..-cm range. Initial studies on n-base material indicate that 0.2 ..mu..m deep junctions with adequate sheet resistivities can be obtained by boron diffusion from BBr/sub 3/ at 875/sup 0/C. Slow cooling from the diffusion temperature appears necessary to maintain good lifetime and I/sub sc/ values. p/sup +//n/n/sup +/ cells fabricated on a Westinghouse internal program using this type of processing produce coated cells with 16% efficiencies. Future studies will focus on metal impurity doping of low resistivity p-type and n-type substrates and on gettering and heat treatment effects in standard 4 ..cap omega..-cm p-type material.

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McCormick, J.R.

1977-01-01T23:59:59.000Z

135

Silicon materials task of the low cost solar array project (Part 2). Fourth quarterly report, July 1, 1976--September 30, 1976  

DOE Green Energy (OSTI)

During this quarter we have completed the growth of all contract-required Czochralski and silicon dendritic web crystals. The chemical analysis of all the Czochralski ingots is also finished. Preliminary mass spectroscopic evaluation of metal-doped web samples grown at 1.3 cm/min indicates that the effective distribution coefficients for Cu, Ni, and Cr all increase with growth rate as anticipated. For chromium the increase is almost 100 fold compared to the effective k for Czochralski ingots grown at 7.5 cm/hr. PCD lifetime measurements were completed on 46 ingots. The correlation between solar cell performance and PCD lifetime appears valid for all processed wafers except those containing Ti which give lower cell efficiency than would be predicted on the basis of lifetime alone. Solar cell measurements were completed in all but a few of the ingots grown during the contract. In particular, data has now been obtained on the second set of multiply-doped samples containing the impurity combinations Zr/Ti, Cr/Ni, and Cr/Cu/Ni. As in the case of ingots containing only Ti, the Zr/Ti sample shows severely degraded cell efficiency, only about 26% of the baseline. The Cr/Ni and Cr/Cu/Ni samples show efficiencies of 81 and 72% of baseline efficiency reflecting the small effects of Cu and Ni on cell performance and the stronger effect of Cr.

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McHugh, J.P.; McCormick, J.R.

1976-01-01T23:59:59.000Z

136

Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications  

SciTech Connect

Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G. [Utility Power Group, 9410 G De Soto Avenue, Chatsworth, California 91311 (United States)

1997-02-01T23:59:59.000Z

137

Analysis and evaluation in the production process and equipment area of the low-cost solar-array project. Quarterly report, July-October, 1980  

DOE Green Energy (OSTI)

The attributes of the various metallization processes have been investigated which express themselves in economic results. It has been shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add-on price in the range of $6.- to 12.-/m/sup 2/, or 4 to 8 cents/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6.- to 12.-/m/sup 2/ range. The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost-effective. Vacuum deposition of the strike/barrier layer can be competitive with electroless plating.

Wolf, M.; Goldman, H.

1981-01-01T23:59:59.000Z

138

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992  

DOE Green Energy (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. [Spire Corp., Bedford, MA (United States)

1993-04-01T23:59:59.000Z

139

High resolution, low cost solar cell contact development. Quarterly technical progress and schedule report for the period ending December 31, 1980. CDRL 4  

DOE Green Energy (OSTI)

The scope of the contract covers the development and evaluation of forming solar cell collector grid contacts by the MIDFILM process. This is a proprietary process developed by the Ferro Corporation which is a subcontractor for the program. The MIDFILM process attains line resolution characteristics of photoresist methods with processing related to screen printing. The surface to be processed is first coated with a thin layer of photoresist material. Upon exposure to ultraviolet light through a suitable mask, the resist in the non-pattern area cross-links and becomes hard. The unexposed pattern areas remain tacky. The conductor material is applied in the form of a dry mixture of metal and frit particles which adher to the tacky pattern area. The assemblage is then fired to ash the photo-polymer and sinter the fritted conductor powder. Progress is reported. (WHK)

Garcia, A.

1981-01-12T23:59:59.000Z

140

Density Functional Theory Study of Copper Oxide as Low-cost ...  

Science Conference Proceedings (OSTI)

Density Functional Theory Study of Copper Oxide as Low-cost Photovoltaic Material · Dye-sensitized Solar Cells with Anodized Aluminum Alloy-based Counter- ...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Low Cost Solar Array Project: large area silicon sheet task. Silicon web process development. Quarterly report, October 1-December 31, 1979  

DOE Green Energy (OSTI)

Silicon dendritic web is a ribbon form of silicon which grows directly from the melt without dies and can produce solar cells with AM1 conversion efficiency over 15%. The primary objective of this program is to develop the technology to produce silicon web at a cost compatible with the national goal of 50 cents per peak watt (70 cents per watt in 1980$) of photovoltaic output power. During the period covered by this report the dominant activities were directed at developing methods to increase the period of simultaneous growth of web crystal with melt replenishment. To further this work, an adjustable thermal trimmer to dynamically balance the thermal loads during melt replenishment was designed and tested. The highlights of the concept and initial tests are described. Further studies of growth geometries to enhance web output rate were performed, the economic analysis for web growth was performed, and a potentially lower cost solid state power supply for the growth furnace was tested. Results are reported. (WHK)

Duncan, C.S.; Seidensticker, R.; Hopkins, R.H.; McHugh, J.P.; Hill, F.E.; Skutch, M.E.; Driggers, J.M.

1979-01-01T23:59:59.000Z

142

Phase 2 of the automated array assembly task of the low-cost silicon solar array project. Final report, 1 April 1979-31 March 1980  

DOE Green Energy (OSTI)

Several specific processing steps, as part of a total process sequence for manufacturing silicon solar cells, were studied during this contract. Ion implantation has been identified as the Motorola preferred process step for impurity doping. Unanalyzed beam ion implantation has been shown to have major cost advantages over analyzed beam implantation. Further, high quality cells have been fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride has been shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 ..mu..m (10 mils). Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer has been eliminated. Further, copper has been successfully utilized as a conductor layer, utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal has been shown technically feasible, but not cost-effective compared to wet chemical etching techniques.

Coleman, M.G.; Pryor, R.A.; Sparks, T.G.; Legge, R.M.; Saltzman, D.L.

1980-01-01T23:59:59.000Z

143

Analysis and evaluation of processes and equipment in Tasks II and IV of the Low-Cost Solar Array Project. Quarterly report, October 1977-January 1978  

DOE Green Energy (OSTI)

Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible costs through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry-over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. Consequently, the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes has been developed, called the University of Pennsylvania Process Characterization (UPPC) format, and has first been applied, as well as refined, in the Cz crystal pulling analysis. The accumulated Cz process data are presented in this format in the Appendix. The application of this UPPC format with the SAMICS cost and price determination methodology, at least in its Interim Price Estimating Guidelines (IPEG) form, has been established and is detailed.

Goldman, H.; Wolf, M.

1978-08-01T23:59:59.000Z

144

(Investigation of low-cost solar cells based on Cu/sub 2/O). Third quarterly progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

Efforts this quarter concentrated on completion and check-out of the MBE system, deposition of ZnS films, analysis of the internal photoresponse for Cu-Cu/sub 2/O cells, and fabrication and characterization of Cu-Cu/sub 2/O solar cells. In-doped ZnS films with very good optical quality and finite conductivity were obtained by co-depositing In and ZnS. Analysis of the internal photoresponse indicated that minority carrier diffusion lengths on the order of 10 ..mu..m are being achieved with the present Cu/sub 2/O growth procedure. Active area values of J/sub PH/ = 8.52 mA/cm/sup 2/ and AM1 Efficiency = 1.76% were achieved for Cu-Cu/sub 2/O cells. These devices appear to have an MIS structure, or fixed charge at the interface. In particular, analysis of I-V data indicates that the current-voltage characteristics for applied voltages greater than 0.3 V are characterized by n approx. = 1 and J/sub 0/ approx. = 2 x 10/sup -9/ mA/cm/sup 2/, which implies an effective barrier height of 0.94 eV compared to the theoretical value of 0.7 eV for a Cu/Cu/sub 2/O Schottky barrier. Another very significant achievement this past quarter was the development of a surface preparation procedure which results in a nearly perfect stochiometry at the surface.

Olsen, L.C.

1980-03-12T23:59:59.000Z

145

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be...  

NLE Websites -- All DOE Office Websites (Extended Search)

has energized our entire company." Solar Junction, San Jose, California - Concentrated photovoltaic (CPV) manufacturer Solar Junction's multi-junction solar cell recently...

146

SunShot Initiative: Next-Generation Low-Cost Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Low-Cost Next-Generation Low-Cost Reflector to someone by E-mail Share SunShot Initiative: Next-Generation Low-Cost Reflector on Facebook Tweet about SunShot Initiative: Next-Generation Low-Cost Reflector on Twitter Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Google Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Delicious Rank SunShot Initiative: Next-Generation Low-Cost Reflector on Digg Find More places to share SunShot Initiative: Next-Generation Low-Cost Reflector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

147

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | April 18, 2013 | Ganapathi * Mirror module development has been approached with the goal of being applicable to all types of CSP systems * Several heliostat design options being considered to address driving requirements: * Facets that are compliant to winds > 35 mph * Deep structures for optimizing structural efficiency * Pointing accuracy achieved with mechanism design * Simple precision components * Easy on-site assembly with pre-fab components * Structural foam properties and strengthening trades being conducted to reduce overall costs with FEM models Goal: Typical costs for a concentrator (heliostat or parabolic dish) can range between 40-50% of the total costs. To meet SunShot

148

Stable a-Si:H-Based Multijunction Solar Cells with Guidance from Real-Time Optics: Final Report, 17 July 1998--16 November 2001  

DOE Green Energy (OSTI)

This report describes the new insights obtained into the growth of hydrogenated silicon (Si:H) films via real-time spectroscopic ellipsometry (RTSE) measurements. Evolutionary phase diagrams were expanded to include the effects of different deposition conditions, including rf power, pressure, and temperature. Detailed studies of degradation kinetics in thin films and corresponding solar cells have been carried out. Both p-i-n and n-i-p solar cells that incorporate Si:H i-layers deposited with and without H2-dilution have been studied. For the first time, direct and reliable correlations have been obtained between the light-induced changes in thin-film materials and the degradation of the corresponding solar cells.

Wronski, C. R.; Collins, R. W.; Pearce, J. M.; Koval, R. J.; Ferlauto, A. S.; Ferreira, G. M.; Chen C.

2002-08-01T23:59:59.000Z

149

Low Cost Hydrogen Production Platform  

DOE Green Energy (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

150

Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions  

DOE Green Energy (OSTI)

This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

Duda, A.; Ward, S.; Young, M.

2012-02-01T23:59:59.000Z

151

Optimization of Phase-Engineered a-Si:H-Based Multi-Junction Solar Cells: Final Technical Report, October 2001-July 2005  

DOE Green Energy (OSTI)

The scope of the work under this subcontract has involved investigating engineered improvements in the performance and stability of solar cells in a systematic way, which included the following four tasks: (1) Materials research and device development; (2) Process improvement directed by real time diagnostics; (3) Device loss mechanisms; and (4) Characterization strategies for advanced materials Our work has resulted in new and important insights into the deposition of a-Si:H-based materials, as well as into the nature of the Staebler-Wronski Effect (SWE). Presumably, many of these insights will be used by industrial partners to develop more systematic approaches in optimizing solar cells for higher performance and stability. This effort also cleared up several serious misconceptions about the nature of the p-layer in cells and the SWE in materials and cells. Finally, the subcontract identified future directions that should be pursued for greater understanding and improvement.

Wronski, C. R.; Collins, R. W.; Podraza, N. J.; Vlahos, V.; Pearce, J. M.; Deng, J.; Albert, M.; Ferreira, G. M.; Chen, C.

2006-08-01T23:59:59.000Z

152

Commercialization of New Lattice-Matched Multi-Junction Solar Cells Based on Dilute Nitrides: July 8, 2010 - March 7, 2012  

SciTech Connect

Final Technical Progress Report for PV Incubator subcontract NAT-0-99013-03. The overall objective of this Incubator subcontract was to complete the work necessary to make commercial ready solar cells using the dilute nitride technology. The specific objectives of this program were aimed at completing the development of a triple-junction solar cell that incorporates a GaInNAs {approx}1eV subcell to the point of commercial readiness, and determining the cell reliability and, if necessary, identifying and eliminating process or material related issues that lead to early-life cell failures. There were three major objectives for Phase 1, each of which focuses on a key element of the solar cell that determines its performance in a commercial CPV system. One objective was to optimize the quality and performance of the key individual components making up the solar cell structure and then to optimize the integration of these components into a complete triple-junction cell. A second objective was to design and test anti-reflective coating that maximizes the light coupled into a 3J cell with a {approx}1 eV bottom cell bandgap. The third objective was to develop Highly Accelerated Life Tests (HALT) protocols and tools for identifying and correcting potential reliability problems. The Phase 2 objectives were a continuation of the work begun in Phase 1 but aimed at optimizing cell performance for commercial requirements. Phase 2 had four primary objectives: (1) develop a glass-matched anti-reflective coating (ARC) and optimize the cell/ARC to give good performance at 60C operating temperature, (2) optimize the cell for good operation at 60C and high concentration, and (3) complete the light biased HALT system and use it to determine what, if any, failures are observed, and (4) determine the reliability limits of the optimized cell.

Herb, J.

2012-04-01T23:59:59.000Z

153

Optimization of Phase-Engineered a-Si:H-Based Multi-Junction Solar Cells: Second Annual Technical Status Report, January 2003--January 2004  

DOE Green Energy (OSTI)

This subcontract report entails investigation of engineering improvements in the performance and stability of solar cells in a systematic way. It consists of the following four tasks: Task 1-Materials research and device development; Task 2-Process improvement directed by real-time diagnostics; Task 3-Device loss mechanisms; and Task 4-Characterization strategies for advanced materials. The real-time spectroscopic ellipsometry (RTSE) multichamber is near completion, and trial depositions with a-Si:H will begin shortly. Construction of the new dual beam photoconductivity (DBP) apparatus has been completed, and the new capabilities are being used in studies on a-Si:H thin films. A new apparatus is being constructed for in-depth studies on the mechanisms limiting the performance of a-Si:H solar cells and the two track studies (cells and films) of the Staebler-Wronski Effect. The capabilities include the ability to integrate the cell characteristics including the quantum efficiency, at different temperatures on both p-i-n and n-i-p solar cells.

Wronski, C. R.; Collins, R. W.; Vlahos, V.; Pearce, J. M.; Deng, J.; Albert, M.; Ferreira, G. M.; Chen, C.

2004-08-01T23:59:59.000Z

154

Silicon materials task of the Low-Cost Solar Array Project (Phase IV). Effects of impurities and processing on silicon solar cells. Twentieth quarterly report, July-September 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Spectral response measurements made on single crystal and polycrystalline silicon solar cells containing specific impurities agreed well with measured cell efficiencies. For polycrystalline cells it is shown that both grain boundaries and metallic impurities reduce carrier lifetime, resulting in reduced red response and reduced cell efficiency. Spectral response and DLTS measurements on chromium-doped polycrystalline silicon cells indicate an interaction between chromium and grain boundaries; the nature of this interaction is not yet understood. Measurements were made to evaluate possible long term effects of copper contamination on solar cell performance. Nine groups of cells, including a baseline cell group, are undergoing electrical/temperature tests to determine whether electric fields play a role in long term cell degradation. A mathematical model for impurity effects in high efficiency solar cells has been developed.

Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

1980-11-14T23:59:59.000Z

155

Silicon materials task of the low cost solar array project(Phase III): effect of impurities and processing on silicon solar cells. Thirteenth quarterly report, October--December 1978  

DOE Green Energy (OSTI)

The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity--process interactions on the performance of terrestrial silicon solar cells. Gettering experiments with phosphorus oxychloride gas phase treatments at 950/sup 0/C, 1000/sup 0/C, and 1150/sup 0/C have been completed for two Ti-doped ingots (3 x 10/sup 13/ cm/sup -3/ and 2.1 x 10/sup 14/ cm/sup -3/ Ti doping levels, respectively), two molybdenum doped ingots (8 x 10/sup 11/ and 4.2 x 10/sup 12/ cm/sup -3/ Mo) and one iron-doped ingot (3 x 10/sup 14/ cm/sup -3/ Fe). First generation Co and W-doped ingots were grown and processed to solar cells. Miniature solar cells and diodes were used to map the characteristics of wafers from a 3 inch diameter ingot doped with Mn or Ti. A model has been developed to describe the behavior of solar cells bearing non-uniform distributions of impurities or defects.

Hopkins, R.H.; Davis, J.R.; Blais, P.D.; Rohatgi, A.; Campbell, R.B.; Rai-Choudhury, P.; Mollenkopf, H.C.; McCormick, J.R.

1979-01-01T23:59:59.000Z

156

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

157

Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior  

DOE Green Energy (OSTI)

The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-23T23:59:59.000Z

158

Silicon materials task of the Low-Cost Solar Array Project: Phase IV. Effects of impurities and processing on silicon solar cells. Twenty-first quarterly report, October-December 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to define the effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells. The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600/sup 0/C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after groth, preferentially segregates to grain boundaries and becomes electrically deactivated. Both Al and Au introduce deep levels when grown into silicon crystals. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty-year device lifetime. Combined electrical bias and thermal stressing of silicon solar cells containing Nb, Fe, Cu, Ti, Cr, and Ag, respectively produces no performance loss after 100 hour exposures up to 225/sup 0/C. Ti and V, but not Mo, can be gettered from polycrystalline silicon by POCl/sub 3/ or HCl at temperatures of 1000 and 1100/sup 0/C.

Hopkins, R.H.; Hanes, M.H.; Davis, J.R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H.C.

1981-01-30T23:59:59.000Z

159

Low-Cost Nano-Patterning Process Makes Millions of Holes in Silver...  

NLE Websites -- All DOE Office Websites (Extended Search)

solar cells. NREL researchers have demonstrated a simple, low-cost way to pattern nano-sized holes in thin silver films in order to trap light waves and boost the...

160

Projects Move Solar Technologies to Commercial Scale  

Science Conference Proceedings (OSTI)

Jan 21, 2010 ... Solar Junction Corp. (San Jose, California) A manufacturing process will be developed to produce a very high efficiency multi-junction cell.

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Establishment of the feasibility of a process capable of low cost, high volume production of silane (Phase I), and the pyrolysis of silane to semiconductor-grade silicon (Phase II). Low Cost Silicon Solar Array Project, Task I. Quarterly progress report, April--June 1977  

DOE Green Energy (OSTI)

The purpose of this program is to establish the practicality of a process for the high volume, low cost production of silane and its subsequent pyrolysis into a semi-conductive grade silicon metal. A small process develop unit for producing silane from dichlorosilane (DCS) using a tertiary amine functional ion exchange resin as a catalyst for a redistribution reaction has been operated successfully on what is now a routine basis. High quality silane has been produced in good yield and limiting equipment size has been identified. The silane gas product is essentially free of foreign compounds (to 5 ppM detection limit) and produces a silicon epitaxial film with a resistivity of 20 ohm cm and very strong ''N'' type character. Epi film quality was very good. The overall yield of silane was 92% of theory. The production rate, limited by the 2.66 cm diameter distillation column, was 112 g/hr. Design of a silicon tetrachloride (STC) hydrogenation reactor used to convert co-product STC to trichlorosilane has been completed and fabrication and installation are underway, as is a modification of the silane unit to permit use of trichlorosilane as feed, producing STC and silane. The production of silicon by the pyrolysis of silane is currently being accomplished in a free space reactor. The free space reactor product is a very fine powder which is then consolidated by melting. The melt is cast into rods. Analysis of the product from earlier experiments indicated that metal or graphite liners in the reaction chamber region resulted in product contamination. A quartz liner is currently being evaluated in the reaction chamber. Other identified contamination sources are air borne particles and contamination during melting and/or casting.

Breneman, W.C.; Farrier, E.G.; Mui, J.Y.P.; Rexer, J.

1977-10-01T23:59:59.000Z

162

Genetic algorithm based optimization of advanced solar cell designs modeled in Silvaco AtlasTM .  

E-Print Network (OSTI)

??A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM software. The… (more)

Utsler, James

2006-01-01T23:59:59.000Z

163

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

164

Efficient, Low-cost Microchannel Heat Exchanger  

? Buildings (chillers, cooling towers, heat pump water heaters) ... ? Renewable energy (concentrated solar power, residential solar hot water,

165

Low-Cost Installation of Concentrating Photovoltaic  

E-Print Network (OSTI)

Low-Cost Installation of Concentrating Photovoltaic Renewable Energy Research Renewable Energy Research http://www.energy.ca.gov/research/renewabl e/index.html August 2011 The Issue Several factors inhibit the potential growth of the California photovoltaic market: high installation costs, expenses

166

Low-cost nanosecond electronic coincidence detector  

E-Print Network (OSTI)

We present a simple and low-cost implementation of a fast electronic coincidence detector based on PECL logic with a TTL-compatible interface. The detector has negligible dead time and the coincidence window is adjustable with a minimum width of 1 ns. Coincidence measurements of two independent sources of Bose-Einstein distributed photocounts are presented using different coincidence window widths.

Kim, T; Gorelik, P V; Wong, F N C; Kim, Taehyun; Fiorentino, Marco; Gorelik, Pavel V.; Wong, Franco N. C.

2005-01-01T23:59:59.000Z

167

Low-cost inertial measurement unit.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

168

Polycrystalline Thin-Film Multijunction Solar Cells  

DOE Green Energy (OSTI)

We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

2005-11-01T23:59:59.000Z

169

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

170

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

171

Development of mullite substrates and containers. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Silicon Solar array Project. Quarterly report No. 1, October 6, 1977--November 14, 1977  

DOE Green Energy (OSTI)

Eight mullite bodies of varied compositions and microstructures have been prepared and are being characterized. These compositions will be submersed in molten silicon to study the impurity and surface effects. These various mullite materials will be analyzed for use as substrates for Honeywell Contract No. 954356, silicon on ceramic program and for use as a container of molten silicon. Low cost processing methods are being developed and evaluated for manufacturing large mullite sheets and mullite containers. At present, a state-of-the-art roll compaction process has shown promising initial results for substrates. However, these 0.5mm x 10cm x 1m are extremely fragile. Slip casting or iso pressing are anticipated for containers.

Wirth, D.G.; Sibold, J.D.

1977-12-05T23:59:59.000Z

172

Silicon materials task of the Low Cost Silicon Solar Array Project (Part 2). Fifth quarterly report and summary, 1 October 1976--31 December 1976. [Definition of purity requirements  

DOE Green Energy (OSTI)

The objective of this program is to develop and define purity requirements for Solar Grade Silicon by exploring the effects of metal impurities on the performance of terrestrial silicon solar cells. The first phase of this effort is now completed. Fifty-two Czochralski ingots and forty-four dendritic web specimens have been grown, chemically analyzed, sampled, and tested for OCD and PCD lifetime and solar cell performance. The results of this study, compiled with much of the experimental data, are intended both as a summary of the work and as a reference for metal impurity effects on silicon solar cells.

Hopkins, R.H.; Davis, J.R.; Rai-Choudhury, P.; Blais, P.D.; McHugh, J.P.; Seidensticker, R.G.; McCormick, J.R.

1977-01-01T23:59:59.000Z

173

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

174

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

175

Generation of electro-magnetic oscillation in surface multijunction MOMOM  

Science Conference Proceedings (OSTI)

An intergrated surface multijunction MOMOM (metal-oxide-metal-oxide-metal) is reported and coherent electromagnetic oscillation is observed in the low frequency range.

Liao Shiqiang; Wang Yuzhu

1986-04-01T23:59:59.000Z

176

Solar America Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar America Initiative. Solar America Initiative More Documents & Publications Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High...

177

Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications  

Science Conference Proceedings (OSTI)

Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

2006-01-01T23:59:59.000Z

178

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

DOE Green Energy (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

179

Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the Low Cost Silicon Solar Array Project. Fifth quarterly report, March 21, 1977--May 27, 1977  

DOE Green Energy (OSTI)

The multiblade slurry technique capable of slicing 10 cm ingot into wafers 0.25 mm thick with only 0.20 mm kerf loss and 98% yield has been demonstrated. The total silicon requirement represents an ingot to sheet conversion of 0.95 m/sup 2//kg. Full production slicing tests have demonstrated the cost of MS slicing to contribute $40 to $50/m/sup 2/, with ''best effort'' estimates for today's configuration to be $30 to $35/m/sup 2/. By reducing material cost, and increasing the specific capacity of a saw to slice 900 wafers simultaneously, the long-term cost of MS slicing is estimated to be less than $10/m/sup 2/. The conversion of ingot to sheet is shown to be the most valuable contribution of slicing technology. At today's ingot costs, and with the thin wafer, low kerf loss slicing techniques demonstrated, the silicon material represents 5 to 10 times the cost of the wafering process in finished silicon wafers. Increasing the number of blades used in MS slicing from 100 to 150 to 225 to 300 has resulted in a reduction of yield to 33 to 70% for thin slicing, or an increase in wafer thickness to 0.30 mm slices. The limitation is intrinsic misalignment of multiple blades. A technique to correct this condition is presented and forms a key element in low cost slicing. Analysis of blade material accuracy shows that straightness and flatness specifications can be relaxed. The success of the blade alignment technique will allow lower thickness accuracy requirements. The goal is to use blade materials 50% as costly as used presently, reducing the cost of this expendible material.

Holden, S.C.; Fleming, J.R.

1977-07-07T23:59:59.000Z

180

Silicon-on ceramic process. Silicon sheet growth and device developmentt for the Large-Area Silicon Sheet Task of the Low-Cost Solar Array Project. Quarterly report No. 13, October 1-December 31, 1979  

DOE Green Energy (OSTI)

Research on the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating inexpensive ceramic substrates with a thin layer of polycrystalline silicon is reported. The coating methods to be developed are directed toward a minimum-cost process for producing solar cells with a terrestrial conversion efficiency of 11 percent or greater. By applying a graphite coating to one face of a ceramic substrate, molten silicon can be caused to wet only that graphite-coated face and produce uniform thin layers of large-grain polycrystalline silicon; thus, only a minimal quantity of silicon is consumed. A variety of ceramic materials have been dip coated with silicon. The investigation has shown that mullite substrates containing an excess of SiO/sub 2/ best match the thermal expansion coefficient of silicon and hence produce the best SOC layers. With such substrates, smooth and uniform silicon layers 25 cm/sup 2/ in area have been achieved with single-crystal grains as large as 4 mm in width and several cm in length. Crystal length is limited by the length of the substrate. The thickness of the coating and the size of the crystalline grains are controlled by the temperature of the melt and the rate at which the substrate is withdrawn from the melt. The solar-cell potential of this SOC sheet silicon is promising. To date, solar cells with areas from 1 to 10 cm/sup 2/ have been fabricated from material with an as-grown surface. Conversion efficiencies of about 10 percent with antireflection (AR) coating have been achieved. Such cells typically have open-circuit voltage and short-circuit current densities of 0.55V and 23 mA/cm/sup 2/, respectively.

Chapman, P W; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B

1980-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Silicon on ceramic process. Silicon sheet growth development for the Large-Area Silicon Sheet Task of the Low-Cost Silicon Solar Array Project. Annual report No. 2, September 17, 1976--September 19, 1977  

DOE Green Energy (OSTI)

The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. In the past year significant progress was made in all areas of the program. The physical and chemical properties of the standard mullite refractory used for the majority of the coating runs (McDanel MV20 and Coors S1SI) have been characterized. A number of experimental compositions have been identified and procured from Coors. Characterization of the standard compositions revealed that the thermal expansion of mullite depends on both relative amounts of glass phase and on the impurity level in the glass. Since the thermal expansion in mullite exceeds that of silicon, the silicon coating should be in a state of compression. This was confirmed by x-ray measurements. After modifying and cleaning the dip-coating facility, silicon on ceramic (SOC) solar cells were fabricated which demonstrate that the SOC process can produce silicon of solar cell quality. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open-ciruit voltages (V/sub oc/) and short-circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/, respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. Results of an economic analysis of the SOC process are presented.

Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

1977-09-30T23:59:59.000Z

182

Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

Not Available

2011-05-01T23:59:59.000Z

183

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network (OSTI)

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

184

NETL: Syngas Processing Systems - Low-cost, Environmental Friendly...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost, Environmental Friendly Thermal Storage for CO2 Sequestration Project Number: DE-SC00008425 Creare, Inc. has designed a compact, low-cost, reversible Combined Thermal and...

185

The potential for low-cost airlines in Asia  

E-Print Network (OSTI)

The purpose of this thesis is to assess the potential for low-cost airlines in Asia. Low-cost airlines have been very successful in North America and Europe and have significantly impacted the airline industry and its ...

Dietlin, Philipp, 1979-

2004-01-01T23:59:59.000Z

186

A HIGH PERFORMANCE/LOW COST ACCELERATOR CONTROL SYSTEM  

E-Print Network (OSTI)

LOW COST ACCELERATOR CONTROL SYSTEM S. Hagyary, J. GlatŁ» H.LOW COST ACCELERATOR CONTROL SYSTEM S. Magyary, J. Glatz, H.a high performance computer control system tailored to the

Magyary, S.

2010-01-01T23:59:59.000Z

187

Low Cost Titanium Powder Development for Additive Manufacturing ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Cost Affordable Titanium IV. Presentation Title, Low Cost Titanium Powder ...

188

Hot Electron Photovoltaics Using Low Cost Materials and Simple ...  

Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design Lawrence Berkeley National Laboratory. Contact LBL About This Technology

189

Low-Cost Manufacturing of Fuel Cell Bipolar Plates by ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Emerging Material Forming Technologies. Presentation Title, Low-Cost ...

190

Dip coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 6, March 22, 1977--June 24, 1977  

DOE Green Energy (OSTI)

The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in silicon on ceramic (SOC) solar cell performance. SOC cells having 1 cm/sup 2/ active areas demonstrated measured conversion efficiencies as high as 7.2 percent. Typical open circuit voltages (V/sub oc/) and short circuit current densities (J/sub sc/) were 0.51 volt and 20 mA/cm/sup 2/ respectively. Since the active surface of these solar cells is a highly reflective ''as-grown'' surface, one can expect improvement in J/sub sc/ after an anti-reflection (AR) coating is applied. It is significant that single-crystal comparison cells, also measured without benefit of an AR coating, had efficiencies in the 8.5 percent range with typical V/sub oc/'s and J/sub sc/'s of 0.54 volt and 23 mA/cm/sup 2/, respectively. Therefore, improvement in cell design and junction diffusion techniques should increase the efficiency of both the SOC and single-crystal cells. During this quarter the dip coating facility was inadvertently contaminated, but has since been restored to a purity level exceeding its original state. With this facility, silicon coatings were grown with a single-crystal seed attached to the substrate. Single-crystal silicon was not forthcoming, but the results were nonetheless encouraging. Several of the carbon coating types tried appear promising, including one which has high purity and can be applied uniformly by swab or airbrush.

Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

1977-06-30T23:59:59.000Z

191

Multijunction photovoltaic device and fabrication method  

DOE Patents (OSTI)

A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

1993-09-21T23:59:59.000Z

192

Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation  

DOE Green Energy (OSTI)

Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

2012-03-31T23:59:59.000Z

193

Silicon-on ceramic process. Silicon sheet growth and device development for the large-area silicon sheet and cell development tasks of the low-cost solar array project. Quarterly report No. 12, April 2, 1979-June 29, 1979  

DOE Green Energy (OSTI)

The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon. We plan to do this by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the quarter, significant progress was demonstrated in several areas: (1) a 10-cm/sup 2/ cell having 9.9 percent conversion efficiency (AM1, AR) was fabricated; (2) the Honeywall-sponsored SCIM coating development succeeded in producing a 225-cm/sup 2/ layer of sheet silicon (18 inches x 2 inches); and (3) 100 ..mu..m-thick coatings at pull speed of 0.15 cm/sec wer$obta9ned, although apoproximately 50 percent of the layer exhibited dendritic growth. Other results and accomplishments during the quarter are reported in detail. (WHK)

Chapman, P.W.; Zook, J.D.; Heaps, J.D.; Grung, B.L.; Koepke, B.; Schuldt, S.B.

1979-07-31T23:59:59.000Z

194

Heat exchanger-ingot casting/slicing process. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project. Final report, Phase I, November 20, 1975--November 20, 1977  

DOE Green Energy (OSTI)

The proof of concept for silicon casting by the Heat Exchanger Method has been established. One of the major hurdles of ingot cracking has been eliminated with the development of graded crucibles. Such crucibles are compatible with the casting process in that the integrity of the container is maintained at high temperature; however, during the cool-down cycle the crucible fails, thereby leaving a crack-free boule. The controlled growth, heat-flow and cool-down has yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material have yielded conversion efficiency of over 9% (AMI). Representative characterizations of silicon grown has demonstrated a dislocation density of less than 100/cm/sup 2/ and a minority carrier diffusion length of 31 ..mu..m. Excellent surface quality, i.e., surface smoothness and 3 to 5 ..mu..m surface damage, was achieved by multiple wire slicing with fixed diamond abrasive. To achieve this, the silicon workpiece was non-synchronously rocked to produce a radial cut profile and minimize wire contact length. Wire wander was reduced an order of magnitude over the original results by supporting and guiding the wires with grooved rollers. Commercially available impregnated wires that were used failed due to diamond pull-out. Plating after impregnation or electroplating diamonds directly on the core minimized diamond pull-out and corresponding loss in cutting effectiveness. Tungsten wire was the best core material tested because of its high strength, high Young's modulus, and resistance to hydrogen embrittlement. A lighter and longer blade carriage can be used for slicing with wire. This will allow the blade carriage to be reciprocated more rapidly to increase the surface speed. A projected add-on cost calculation shows that these methods will yield silicon for solar cell applications within ERDA/JPL cost goals.

Schmid, F; Khattak, C P

1977-12-01T23:59:59.000Z

195

Circofer -- Low cost approach to DRI production  

SciTech Connect

Lurgi's Circofer Process for reducing fine ores with coal in a Circulating Fluidized Bed (CFB) is a direct approach by using a widely applied and proven reactor in commercializing a state of the art technology. The technology is in response to the demand for a direct reduction process of the future by making possible: the use of low cost ore fines and inexpensive primary energy, fine coal; production of a high grade product used as feedstock by mini mills with the additional advantage of dilution of contaminants introduced by scrap; low environmental impact; and low specific investment costs due to the closed energy circuit. With the incorporation of the latest developments in CFB technology, Circofer offers excellent heat and mass transfer conditions and, consequently, improved gas and energy utilization. High gas conversions using recycle gas have a positive influence on the process economics whereby no export gas is produced. Sticking, accretion and reoxidation problems, which have plagued all previous attempts at developing direct reduction processes using fine ore and coal as a reductant, are avoided, essentially by operating with defined amounts of excess carbon and separation of the reduction and gasifying zones.

Weber, P.; Bresser, W.; Hirsch, M. (Lurgi Metallurgie GmbH, Frankfurt (Germany))

1994-09-01T23:59:59.000Z

196

Dip-coating process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project. Quarterly report No. 7  

DOE Green Energy (OSTI)

The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. During the past quarter, significant progress was demonstrated in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite received from Coors were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L/sub n/, from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which is believed to be due to an unidentified source of impurities. Also, operation of the new coating system fell behind schedule but is expected to improve in the coming quarter, since construction has now been completed.

Zook, J.D.; Heaps, J.D.; Maciolek, R.B.; Koepke, B.; Butter, C.D.; Schuldt, S.B.

1977-12-30T23:59:59.000Z

197

Silicon-on ceramic process: silicon sheet growth and device development for the large-area silicon sheet task of the Low-Cost Solar Array Project. Quarterly report NO. 15, April 1, 1980-June 30, 1980  

DOE Green Energy (OSTI)

The objective of this research is to investigate the technical feasibility of producing solar-cell-quality sheet silicon which could meet the DOE cost goals. The Honeywell approach is to coat one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Results and accomplishments which occurred during the quarter can be summarized as follows: (1) two major problems associated with SCIM-coating wide (10-cm) substrates were identified and solved; (2) the longitudinal temperature profile in SCIM-II has been improved to prevent substrate warping, buckling, and cracking; (3) the transverse temperature profile in SCIM II has been improved to produce more uniform coatings; (4) a strategy to eliminate effects of thermal stress has been developed; (5) the best SOC cell has a total-area conversion efficiency of 10.5% (AM1, AR), for a cell area of 5 cm/sup 2/; (6) a number of experiments are being investigated for improving cell efficiency; (7) for the slow-cooldown experiment, the average efficiency of 29 AR-coated cells was 9.9%, with a standard deviation of 0.3%; (8) encouraging results were obtained on SOC material that had been treated in a hydrogen plasma at Sandia; and (9) thermal modeling has proven to be beneficial in designing modifications of SCIM II.

Whitehead, A B; Zook, J D; Grung, B L; McHenry, K; Schuldt, S B; Chapman, P W

1980-07-31T23:59:59.000Z

198

Heat exchanger-ingot casting/slicing process. Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project. Eighth quarterly progress report, July 1, 1977--September 30, 1977  

DOE Green Energy (OSTI)

Graded crucibles have been developed which are dense enough to avoid penetration of the molten silicon and weak enough to fracture during the cool-down cycle. These crucibles have been used to cast crack-free silicon ingots up to 3.3 kg. Significant progress has been made in the crystallinity of the samples cast. Solar cells made from one of the ingots have yielded over 9% conversion efficiency. The source of silicon carbide in the cast silicon has been identified, both theoretically and experimentally, to be associated with the use of graphite retainers in contact with the crucible. Both 45 ..mu..m and 30 ..mu..m diamonds can be used for efficient slicing of silicon. Wafers sliced with 45 ..mu..m diamond plated wire show a surface roughness of +-0.5 ..mu..m and extent of damage of 3 ..mu..m. In an effort to avoid diamond pullout from impregnated wire it was found that a layer of 0.3 mil thick plating is sufficient to encapsulate the diamonds. A projected cost analysis has shown that the add-on cost of casting and slicing of silicon is $11.57 per square meter.

Schmid, F.; Khattak, C.P.

1977-10-01T23:59:59.000Z

199

Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project. Sixth quarterly report, June 18, 1977--September 18, 1977  

SciTech Connect

The ''Multiple Blade Alignment Device'' has been reported to JPL as a New Technology item, and is currently being reviewed for patent potential. The device has proven difficult to install on a blade package. Successful engagement of the device has resulted in an intrinsic parallelism of the ends of the package to within 3..mu.., compared to standard errors prior to correction of over 50..mu... Measurements of blade misalignment indicate an average runout of 50..mu.. in a 220 blade package. This compares well with predictions based on thickness variation measurements of blades and spacers. Early cutting tests with 0.15 mm blades and 10 cm diameter ingots show lower yield and accuracy and higher cutting speed than previous standard tests. This seems to be a result of effective high abrasive concentration on the blades as a result of the slurry application technique. A similar, more dramatic reduction of yield occurs with a thin slurry oil. This appears to occur by increased slurry transport to the blades and another effective increase of abrasive packing to the cutting region. Design of the large capacity MS saw is proceeding well, with a final conceptual design in progress. A flywheel system for work-piece drive is described. The design offers a practical conservative motion for the drive, requiring a minimum of power. 10 cm MS slices have been sent out for solar cell fabrication. 10 cm diameter and 2 cm square MS slices have been delivered for various surface preparations, and will be fabricated into cells and evaluated for performance. This will develop a minimum surface removal technique for both the damage and profiles peculiar to thin MS sices while allowing high efficiency cell production.

Holden, S.C.; Fleming, J.R.

1977-09-30T23:59:59.000Z

200

Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project. Sixth quarterly report, June 18, 1977--September 18, 1977  

DOE Green Energy (OSTI)

The ''Multiple Blade Alignment Device'' has been reported to JPL as a New Technology item, and is currently being reviewed for patent potential. The device has proven difficult to install on a blade package. Successful engagement of the device has resulted in an intrinsic parallelism of the ends of the package to within 3..mu.., compared to standard errors prior to correction of over 50..mu... Measurements of blade misalignment indicate an average runout of 50..mu.. in a 220 blade package. This compares well with predictions based on thickness variation measurements of blades and spacers. Early cutting tests with 0.15 mm blades and 10 cm diameter ingots show lower yield and accuracy and higher cutting speed than previous standard tests. This seems to be a result of effective high abrasive concentration on the blades as a result of the slurry application technique. A similar, more dramatic reduction of yield occurs with a thin slurry oil. This appears to occur by increased slurry transport to the blades and another effective increase of abrasive packing to the cutting region. Design of the large capacity MS saw is proceeding well, with a final conceptual design in progress. A flywheel system for work-piece drive is described. The design offers a practical conservative motion for the drive, requiring a minimum of power. 10 cm MS slices have been sent out for solar cell fabrication. 10 cm diameter and 2 cm square MS slices have been delivered for various surface preparations, and will be fabricated into cells and evaluated for performance. This will develop a minimum surface removal technique for both the damage and profiles peculiar to thin MS sices while allowing high efficiency cell production.

Holden, S.C.; Fleming, J.R.

1977-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)  

Science Conference Proceedings (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

202

Low-Cost Illumination-Grade LEDs  

SciTech Connect

Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

Epler, John

2013-08-31T23:59:59.000Z

203

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

204

Low Cost Processing: Plasma, Microwave, Laser, Melting and Casting  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Cost Affordable Titanium IV: Low Cost Processing: Plasma, ... obtained by using microwave energy as the consolidation method of Mg-Ti alloys.

205

Research and Development of Low-cost Titanium Alloys for ...  

Science Conference Proceedings (OSTI)

Therefore, low-cost elements such as Fe, Mn, Cr, O, and N are gaining attention in titanium alloy design for biomedical applications. For biomedical applications ...

206

Low-Cost Printable Wireless Sensors for Buildings Applications  

Low-Cost Printable Wireless Sensors for Buildings Applications Note: The technology described above is an early stage opportunity. Licensing rights to this ...

207

Very Low Cost Manufacturing of Titanium Alloy Components  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Cost-Affordable Titanium III. Presentation Title, Very Low Cost Manufacturing ...

208

Low Cost Materials and Processing - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... Cost-Affordable Titanium III: Low Cost Materials and Processing Sponsored by: The Minerals, Metals and Materials Society, TMS Structural ...

209

Low-Cost Prosthetics within Reach with Recycled Materials  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Prohibitive costs aside, the design of standard prosthetic arms does ... A more recent computer rendering of the team's low-cost prosthetic arm.

210

Development of Low-cost Functional Geopolymeric Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Low-cost Functional Geopolymeric Materials. Author(s), Mazen Alshaaer, Rushdi Yousef, Bassam El-Eswed, Hani Khoury, ...

211

New Concept of Ultra Low Cost Chemically Bonded Ceramic ...  

Science Conference Proceedings (OSTI)

Presentation Title, New Concept of Ultra Low Cost Chemically Bonded Ceramic Materials Fabricated From Traditional Fillers and Wastes. Author(s), Henry A.

212

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration,...

213

Low Cost: Additive Manufacturing and Metal Injection molding  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The production of low cost titanium products from synthesized titanium powders, sponge, and other particulates has the potential to enable a ...

214

Five Low Cost Methods to Improve Energy Efficiency on ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Energy Conservation in Metals. Presentation Title, Five Low Cost Methods to ...

215

ESS 2012 Peer Review - Low Cost and Highly Selective Composite...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey...

216

Manufacturing Demonstration Facility Low-Cost Carbon Fiber Available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Carbon Fiber Available to US Manufacturers for Market Development and Demonstration Oak Ridge National Laboratory (ORNL) is making available market development quantities...

217

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... ••Power industry components such as boiler tubing and piping, pressure vessels, chemical

218

Design of small, low-cost, underwater fin manipulator.  

E-Print Network (OSTI)

??This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater… (more)

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

219

Multijunction photovoltaic device and method of manufacture  

DOE Patents (OSTI)

A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

1995-04-04T23:59:59.000Z

220

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2010-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Low-Cost, Lightweight Solar Concentrator (Fact Sheet)  

Science Conference Proceedings (OSTI)

Jet Propulsion Laboratory (JPL) is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

222

STRC's Process for Producing Low Cost Solar Silicon  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Silicon Production, Purification and Recycling for Photovoltaic Cells.

223

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Symmetry Ulrich Kr¨ahmer University of Glasgow RI Masterclass Stirling 2013 Ulrich Kr¨ahmer (University of Glasgow) Symmetry RI Masterclass Stirling 2013 1 / 23 #12;Problem 1: geometry Given two points Kr¨ahmer (University of Glasgow) Symmetry RI Masterclass Stirling 2013 2 / 23 #12;Problem 2: algebra

Sanders, Seth

224

IQ-Station: a low cost portable immersive environment  

Science Conference Proceedings (OSTI)

The emergence of inexpensive 3D-TVs, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive systems. A low cost system (here dubbed an IQ-station), fashioned from commercial ...

William R. Sherman; Patrick O'Leary; Eric T. Whiting; Shane Grover; Eric A. Wernert

2010-11-01T23:59:59.000Z

225

Low-Cost High-Pressure Hydrogen Generator  

DOE Green Energy (OSTI)

Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

Cropley, Cecelia C.; Norman, Timothy J.

2008-04-02T23:59:59.000Z

226

Efficient, Low-cost Microchannel Heat Exchanger - Energy ...  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar ... Renewable energy (concentrated solar power, residential solar h ...

227

Low cost private education in India : challenges and way forward  

E-Print Network (OSTI)

The Low Cost Private School phenomenon has gained momentum and increased visibility in recent years as researchers have begun to map and record the existence of millions of private schools that cater to the education needs ...

Garg, Nupur, M.B.A. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

228

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

229

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

230

Low Cost Aqueous Electrolyte Based Energy Storage: Materials and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Low Cost Aqueous Electrolyte Based Energy Storage: Materials and ... Deployment of New High Temperature Alloys for Power Generation Systems · Designing ... Materials Metrology for a Hydrogen Distribution Infrastructure.

231

Low-cost electromagnetic tagging : design and implementation  

E-Print Network (OSTI)

Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

Fletcher, Richard R. (Richard Ribon)

2002-01-01T23:59:59.000Z

232

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for precursor...

233

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network (OSTI)

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

234

Development and performance of a miniature, low cost mass spectrometer  

E-Print Network (OSTI)

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01T23:59:59.000Z

235

Development of a low-cost underwater manipulator.  

E-Print Network (OSTI)

??This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive… (more)

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

236

Development of a low-cost underwater manipulator  

E-Print Network (OSTI)

This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive or limited in functionality. ...

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

237

Design of small, low-cost, underwater fin manipulator  

E-Print Network (OSTI)

This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater servos commercially available. The design involves modifying a commercially ...

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

238

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

239

Low Cost Fabrication of Oxide Dispersion Strengthened Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Oxide Dispersion Low Cost Fabrication of Oxide Dispersion Strengthened Materials Background To obtain significant increases in the efficiency of coal fired power plants, steam pressure and temperature must be increased beyond current technology to advanced ultra-supercritical (A-USC) conditions -temperatures and pressures up to 760 degrees Celsius (°C) and 35 megapascals (MPa). The upper bounds of operating pressure and temperature are limited by the properties of the current set

240

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A novel low-cost, limited-resource approach to autonomous multi-robot exploration and mapping  

Science Conference Proceedings (OSTI)

Mobile robots are becoming more heavily used in environments where human involvement is limited, impossible, or dangerous. These robots perform some of the more laborious human tasks on Earth and throughout the solar system, simultaneously saving resources ... Keywords: Distributed robots, Low-cost SLAM, Mobile robots, Multi-robot team, Planetary exploration

Christopher M. Gifford; Russell Webb; James Bley; Daniel Leung; Mark Calnon; Joseph Makarewicz; Bryan Banz; Arvin Agah

2010-02-01T23:59:59.000Z

242

Low-Cost Solutions for Dynamic Window Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

243

Low-Cost Solutions for Dynamic Window Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

244

Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for the Development of Polycrystalline Multijunctions Annual Subcontract Report, 24 August 1999 - 23 August 2000  

DOE Green Energy (OSTI)

This report describes the results achieved during Phase I of a three-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient, and with respect to device structure and module encapsulation.

Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.

2001-11-14T23:59:59.000Z

245

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

246

Low-cost appliance state sensing for energy disaggregation  

Science Conference Proceedings (OSTI)

Reliable detection of appliance state change is a barrier to the scalability of Non Intrusive Load Monitoring (NILM) beyond a small number of sufficiently distinct and large loads. We advocate a hybrid approach where a NILM algorithm is assisted by ultra-low-cost ... Keywords: appliance state change, energy disaggregation, sensor

Tianji Wu; Mani Srivastava

2012-11-01T23:59:59.000Z

247

Development of a Low-Cost Tide Gauge  

Science Conference Proceedings (OSTI)

A low-cost tide gauge was developed and field tested to demonstrate a technology that would enable more cost-effective and greater sampling of spatially variable water levels and ocean surface waves. The gauge was designed to be adaptable to ...

Mark F. Giardina; Marshall D. Earle; John C. Cranford; Daniel A. Osiecki

2000-04-01T23:59:59.000Z

248

Low-cost flywheel demonstration program. Final report  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

249

Handheld and low-cost digital holographic microscopy  

E-Print Network (OSTI)

This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

2012-01-01T23:59:59.000Z

250

Low-cost hydrogen sensors: Technology maturation progress  

SciTech Connect

The authors are developing a low-cost, solid-state hydrogen sensor to support the long-term goals of the Department of Energy (DOE) Hydrogen Program to encourage acceptance and commercialization of renewable energy-based technologies. Development of efficient production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen leaks to protect people and equipment. The solid-state hydrogen sensor, developed at Oak Ridge National Laboratory (ORNL), is potentially well-suited to meet cost and performance objectives for many of these applications. Under a cooperative research and development Agreement and license agreement, they are teaming with a private company, DCH Technology, Inc., to develop the sensor for specific market applications related to the use of hydrogen as an energy vector. This report describes the current efforts to optimize materials and sensor performance to reach the goals of low-cost fabrication and suitability for relevant application areas.

Hoffheins, B.S.; Rogers, J.E.; Lauf, R.J.; Egert, C.M. [Oak Ridge National Lab., TN (United States); Haberman, D.P. [DCH Technology, Inc., Sherman Oaks, CA (United States)

1998-04-01T23:59:59.000Z

251

EPRI Family of Low-Cost Multifunction Switchgear Systems  

Science Conference Proceedings (OSTI)

This project is to develop a family of low-cost solid-state switchgear systems for a range of distribution applications. These devices will be designed for use in switchgear replacements and for new installations. Additional benefits will come from other functionality (besides interrupting current) to be built into the switchgear systems. The switchgear systems will be useful in current distribution system infrastructure and, as a part of ADA, in migration to the distribution system of the future. The re...

2006-12-11T23:59:59.000Z

252

Low cost high performance generator technology program. Addendum report  

DOE Green Energy (OSTI)

The results of a system weight, efficiency, and size analysis which was performed on the 500 W(e) low cost high performance generator (LCHPG) are presented. The analysis was performed in an attempt to improve system efficiency and specific power over those presented in June 1975, System Design Study Report TES-SNSO-3-25. Heat source volume, configuration, and safety as related to the 500 W(e) LCHPG are also discussed. (RCK)

Not Available

1975-09-01T23:59:59.000Z

253

An Automated Home Made Low Cost Vibrating Sample Magnetometer  

E-Print Network (OSTI)

The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10-2 emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software

Kundu, S

2011-01-01T23:59:59.000Z

254

Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 January 1991--31 December 1991  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

255

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base  

DOE Green Energy (OSTI)

The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-01T23:59:59.000Z

256

Heterojunction for Multi-Junction Solar Cells - Energy ...  

Sandia National Laboratories has created a semiconductor p-n heterojunction for use in forming a photodetector that has applications for use in a ...

257

Current-matched high-efficiency, multijunction monolithic solar cells  

DOE Patents (OSTI)

The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1993-01-01T23:59:59.000Z

258

Smart Solar Rooftops  

competing with fossil fuels on the energy market, so producing high-efficiency while maintaining a low cost is a major priority for the solar industry.

259

Development of Low Cost Sensors for Hydrogen Safety Applications  

SciTech Connect

We are developing rugged and reliable hydrogen safety sensors that can be easily manufactured. Potential applications also require an inexpensive sensor that can be easily deployed. Automotive applications demand low cost, while personnel safety applications emphasize light-weight, battery-operated, and wearable sensors. Our current efforts involve developing and optimizing sensor materials for stability and compatibility with typical thick-film manufacturing processes. We are also tailoring the sensor design and size along with various packaging and communication schemes for optimal acceptance by end users.

Hoffheins, B.S.; Holmes, W., Jr.; Lauf, R.J.; Maxey, L.C.; Salter, C.; Walker, D.

1999-04-07T23:59:59.000Z

260

NETL: Mercury Emissions Control Technologies - Assessment Of Low Cost Novel  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Of Low Cost Novel Mercury Sorbents Assessment Of Low Cost Novel Mercury Sorbents Project Summary: Apogee Scientific Inc. will assess up to a dozen carbon-based and other sorbents that are expected to remove more than 90 percent of mercury and cost 40 to 75 percent less than commercial sorbents because they feature inexpensive precursors and simple activation steps. Six to 12 sorbents will undergo fixed-bed adsorption tests with the most promising three to six being further evaluated by injecting them into a pilot-scale electrostatic precipitator and baghouse. Commercial flue gas desulfurization activated carbon will provide the baseline for comparisons. A portable pilot system will be constructed and would accommodate a slipstream ESP or baghouse at minimal cost. Tests will be conducted at Wisconsin Electric's Valley power plant in Milwaukee, WI, and Midwest Generation's Powerton Station in Pekin, IL. The project team consists of URS Radian, Austin, TX; the Electric Power Research Institute, Palo Alto, CA; the Illinois State Geological Survey, Champaign, IL; ADA Environmental Solutions, Littleton, CO; and Physical Sciences Inc., Andover, MA.

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

262

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

263

Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

B. Wilding; D. Bramwell

1999-01-01T23:59:59.000Z

264

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

265

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Heliostat Development Cost Heliostat Development HiTek logo Photo of a machine with two round discs connected by intertwined chains. A staged-chain drive unit eliminates destructive coupling loads from severe wind conditions and greatly reduces cumulative fatigue damage. HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of the optimum heliostat size and developing a novel low-cost heliostat design. Approach There are four tasks under this award: Develop a means to determine the optimum size range of the heliostat, in terms of the applied forces and moments, manufacturing learning curve effects, O&M, and optical efficiency. The outcome of this task will be a spreadsheet analysis tool for parametrically determining heliostat costs that are appropriately allocated into categories with inputs for a specific design.

266

Adapting fair information practices to low cost RFID systems  

E-Print Network (OSTI)

Abstract. Within the coming years, low cost radio frequency identification (RFID) systems are expected to become commonplace throughout the business-to-business and business-to-consumer marketplace. Much of the work to date on these systems pertains to systems engineering and electronic product code issues. This paper discusses ways to ensure personal privacy, and presents policies and technologies that could limit abuse. Introduction to RFID “Automatic Identification ” (Auto-ID) describes a wide class of technologies used for automatically identifying objects, individuals, and locations. Typical Auto-ID systems assign a code to a product model or type. This code can then be automatically read and manipulated by an information processing system. The Universal Product Code (UPC) / European Article Number (EAN) bar code present on most consumer

Simson L. Garfinkel

2002-01-01T23:59:59.000Z

267

Low-cost, Modular, Building-integrated Photovoltaic-Thermal ...  

... hot water and pre-heated ventilation air production in ... Heat collection will improve solar electric output by actively cooling the photovoltaic ...

268

CRITICAL NATIONAL NEED IDEA Low-Cost Renewable ...  

Science Conference Proceedings (OSTI)

... Although significant resources are being focused on solar power, w relatively little ... rical trend our energy increase, a d enormous c gm, supply l fe. ...

2011-08-02T23:59:59.000Z

269

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

DOE Green Energy (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

270

SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP to someone by E-mail Share SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough System for...

271

The Development of low cost LiFePO4-based high power lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of low cost LiFePO4-based high power lithium-ion batteries Title The Development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal...

272

Measuring cycling kinematics using a low-cost, flashing LED, multi-camera approach  

E-Print Network (OSTI)

In this thesis a low cost motion capture approach is presented and applied to measure cyclists' kinematics. The motion capture system consists of low cost hardware and custom developed software. Based on still-frame, ...

Gilbertson, Matthew (Matthew W.)

2008-01-01T23:59:59.000Z

273

SunShot Initiative: Advanced Low-Cost Receivers for Parabolic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Low-Cost Receivers for Parabolic Troughs to someone by E-mail Share SunShot Initiative: Advanced Low-Cost Receivers for Parabolic Troughs on Facebook Tweet about SunShot...

274

Low cost high power GaSB photovoltaic cells  

Science Conference Proceedings (OSTI)

High power density and high capacity factor are important attributes of a thermophotovoltaics (TPV) system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein

Lewis M. Fraas; Han X. Huang; Shi-Zhong Ye; She Hui; James Avery; Russell Ballantyne

1997-01-01T23:59:59.000Z

275

Low cost high power GaSb thermophotovoltaic cells  

Science Conference Proceedings (OSTI)

High power density and high capacity factor are important attributes of a TPV system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein

Lewis M. Fraas; Han X. Huang; Shi-Zhong Ye; James Avery; Russell Ballantyne

1997-01-01T23:59:59.000Z

276

Radiometric compensation for a low-cost immersive projection system Julien DEHOS  

E-Print Network (OSTI)

Radiometric compensation for a low-cost immersive projection system Julien DEHOS Eric ZEGHERS Catopsys is a low-cost projection system aiming at making mixed reality (virtual, augmented or diminished the optical axis of P. the home by developing a low-cost immersive projection system. This system is composed

Paris-Sud XI, Université de

277

Development of a Low-Cost Rotary Steerable Drilling System  

DOE Green Energy (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

278

Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development  

Science Conference Proceedings (OSTI)

PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

Scott Benton; Abhinav Bhandari

2012-09-30T23:59:59.000Z

279

Low Cost Geothermal Separators BLISS Boundary Layer Inline Separator Scrubber  

DOE Green Energy (OSTI)

A new compact, low cost, and high performance separator is being developed to help reduce the installed and O and M cost of geothermal power generation. This device has been given the acronym ''BLISS'' that stands for ''Boundary Layer Inline Separator Scrubber''. The device is the first of a series of separators, and in the case of injectates, scrubbers to address the cost-reduction needs of the industry. The BLISS is a multi-positional centrifugal separator primarily designed to be simply installed between pipe supports, in a horizontal position. This lower profile reduces the height safety concern for workers, and significantly reduces the total installation cost. The vessel can demand as little as one-quarter (25%) the amount of steel traditionally required to fabricate many large vertical separators. The compact nature and high separating efficiency of this device are directly attributable to a high centrifugal force coupled with boundary layer control. The pseudo isokinetic flow design imparts a self-cleaning and scale resistant feature. This polishing separator is designed to remove moderate amounts of liquid and entrained solids.

Jung, Douglas; Wai, King

2000-05-26T23:59:59.000Z

280

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Process for Low Cost Domestic Production of LIB Cathode Materials  

DOE Green Energy (OSTI)

The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

Thurston, Anthony

2012-10-31T23:59:59.000Z

282

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

283

Low cost fault detection system for railcars and tracks  

E-Print Network (OSTI)

A "low cost fault detection system" that identifies wheel flats and defective tracks is explored here. This is achieved with the conjunction of sensors, microcontrollers and Radio Frequency (RF) transceivers. The objective of the proposed research is to identify faults plaguing railcars and to be able to clearly distinguish the faults of a railcar from the inherent faults in the track. The focus of the research though, is mainly to identify wheel flats and defective tracks. The thesis has been written with the premise that the results from the simulation software GENSYS are close to the real time data that would have been obtained from an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that helps segregate a fault in a railcar from a defect in a track. The above code is implemented using hardware including microcontrollers, accelerometers, RF transceivers and a real time monitor. An enclosure houses the system completely, so that it is ready for application in a real environment. This also involves selection of suitable hardware so that there is a uniform source of power supply that reduces the cost and assists in building a robust system.

Vengalathur, Sriram T.

2003-08-01T23:59:59.000Z

284

Game-Changing Advancements in Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported multijunction research. | Photo by Daniel Derkacs/Solar Junction Date taken: 2012-11-29 09:21

285

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

their low-cost, fiber-based solar cells even more energy efficient. May 14, 2010 Sensible Solar Fueling Energy Revolution in Georgia Secretary Chu describes a second industrial...

286

Amelio Solar | Open Energy Information  

Open Energy Info (EERE)

low-cost, thin-film photovoltaic module technology, related product manufacturing and power-generation systems. References Amelio Solar1 LinkedIn Connections CrunchBase...

287

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm[sup 2] by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft[sup 2] monolithic module.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1992-09-01T23:59:59.000Z

288

Performance model assessment for multi-junction concentrating photovoltaic systems.  

DOE Green Energy (OSTI)

Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert. (Amonix, Inc., Seal Beach, CA); Sahm, Aaron (University of Nevada, Las Vegas, NV); Crawford, Clark (Amonix, Inc., Seal Beach, CA); King, David L.; Cameron, Christopher P.; Foresi, James S. (Emcore, Inc., Albuquerque, NM)

2010-03-01T23:59:59.000Z

289

A Novel Low-Cost Sodium-Zinc Chloride Battery  

Science Conference Proceedings (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

290

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.

Vohra, Arun

1997-12-01T23:59:59.000Z

291

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar | Open  

Open Energy Info (EERE)

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Cost Financing with Clean Renewable Energy Bonds Agency/Company /Organization: National Renewable Energy Laboratory Partner: United States Department of Energy Sector: Energy Topics: Finance Resource Type: Webinar, Training materials, Lessons learned/best practices Website: www.nrel.gov/applying_technologies/state_local_activities/webinar_2009 Low-Cost Financing with Clean Renewable Energy Bonds Screenshot References: Low-Cost Financing with Clean Renewable Energy Bonds[1] Logo: Low-Cost Financing with Clean Renewable Energy Bonds Sponsored by the U.S. Department of Energy Technical Assistance Project for state and local officials, this Webinar described the elements of clean

292

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network (OSTI)

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low cost incipient fault detection of inverter-fed driven motors. Basically, low order inverter harmonics contributions to fault diagnosis, a motor drive embedded condition monitoring method, analysis of motor fault signatures in noisy line current, and a few specific applications of proposed methods are studied in detail. First, the effects of inverter harmonics on motor current fault signatures are analyzed in detail. The introduced fault signatures due to harmonics provide additional information about the motor faults and enhance the reliability of fault decisions. It is theoretically and experimentally shown that the extended fault signatures caused by the inverter harmonics are similar and comparable to those generated by the fundamental harmonic on the line current. In the next chapter, the reference frame theory is proposed as a powerful toolbox to find the exact magnitude and phase quantities of specific fault signatures in real time. The faulty motors are experimentally tested both offline, using data acquisition system, and online, employing the TMS320F2812 DSP to prove the effectiveness of the proposed tool. In addition to reference frame theory, another digital signal processor (DSP)-based phasesensitive motor fault signature detection is presented in the following chapter. This method has a powerful line current noise suppression capability while detecting the fault signatures. It is experimentally shown that the proposed method can determine the normalized magnitude and phase information of the fault signatures even in the presence of significant noise. Finally, a signal processing based fault diagnosis scheme for on-board diagnosis of rotor asymmetry at start-up and idle mode is presented. It is quite challenging to obtain these regular test conditions for long enough time during daily vehicle operations. In addition, automobile vibrations cause a non-uniform air-gap motor operation which directly affects the inductances of electric motor and results quite noisy current spectrum. The proposed method overcomes the challenges like aforementioned ones simply by testing the rotor asymmetry at zero speed.

Akin, Bilal

2007-08-01T23:59:59.000Z

293

Durable, Low-cost, Improved Fuel Cell Membranes  

Science Conference Proceedings (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

294

Low-Cost Precursors to Novel Hydrogen Storage Materials  

DOE Green Energy (OSTI)

From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities

Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

2010-12-31T23:59:59.000Z

295

Low-Cost, High-Power Laser for Analytical and Other ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Low-Cost, High-Power Laser for Analytical and Other Applications. ...

296

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program...

297

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

298

Production of a Low-Cost DMD Wire Feedstock by Direct ...  

Science Conference Proceedings (OSTI)

Presentation Title, Production of a Low-Cost DMD Wire Feedstock by Direct Consolidation of Ti Sponge. Author(s), Kevin F. Dring, Martin Lefstad, Ola Jensrud.

299

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

300

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Sequestration Program is...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

An Alternative Low-Cost Process for Deposition of MCrAlY Bond ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications. Author(s), Ying ...

302

Transpired Solar Collectors: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

DOE Green Energy (OSTI)

Transpired solar collectors are a reliable, low-cost way to preheat ventilation air in commercial buildings.

Not Available

2000-08-01T23:59:59.000Z

303

Low-Cost Hydrogen Distributed Production System Development  

DOE Green Energy (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

304

Novel Low Cost, High Reliability Wind Turbine Drivetrain  

SciTech Connect

Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain�������¢����������������s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

2012-09-13T23:59:59.000Z

305

Advanced photovoltaic concentrator system low-cost prototype module  

DOE Green Energy (OSTI)

This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted in a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.

Kaminar, N.R.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

1991-09-01T23:59:59.000Z

306

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

307

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

308

Heterojunction solar cells  

DOE Green Energy (OSTI)

A qualitative description of semiconductor/semiconductor heterojunction solar cells is given. The two groups of heterojunctions of greatest economic potential, very highly efficient cells for concentrator applications and moderately efficient thin film cells for flat plates, are described with examples. These examples illustrate the role of heterojunctions in surface passivation, monolithic multijunction devices, devices with semiconductors of only one conductivity type, and low-temperature fabrication techniques.

Wagner, S.

1978-01-01T23:59:59.000Z

309

4th Responsive Space Conference RS4-2006-3003 Low-Cost Responsive Exploitation of Space by  

E-Print Network (OSTI)

This paper addresses advantages and educational values of ultra-small satellite development. In particular, the space-based techniques in designing and manufacturing the HAUSAT (Hankuk Aviation University SATellite) ultra-small satellite series, being developed by SSRL (Space System Research Lab.) of Hankuk Aviation University, are highlighted. These ultra-small satellites can be utilized as a space technology test bed. HAUSAT-2 is intended to be a verification platform for the Korea’s first spaceborne star tracker and a GPS receiver. New technologies for ultra-small satellites, such as solar cell laydown, plug-andplay type Bus Electronics Unit (BEU), attitude control method, and energy balance analysis of body-mounted solar panels, were implemented on HAUSAT-1 and 2. Engineering skills and technologies obtained by the process of programs such as these will be an enabler for the ‘responsive space ’ that will leverage the low cost, high efficiency ultra-small satellites. 1

Hausat- Nano Satellite; Young-keun Chang; Suk-jin Kang; Byoung-young Moon; Byung-hun Lee; Byung-hun Lee

2006-01-01T23:59:59.000Z

310

1 Copyright 2011 by ASME MATERIAL OPTIMIZATION FOR CONCENTRATED SOLAR PHOTOVOLTAIC AND  

E-Print Network (OSTI)

photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35-40% efficiency is moderate [3] in comparison to the concentrated solar photovoltaic, for which multi-junction cells

311

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1991-12-01T23:59:59.000Z

312

Nontoxic quantum dot research improves solar cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve...

313

High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005  

DOE Green Energy (OSTI)

The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

Guha, S.; Yang, J.

2005-10-01T23:59:59.000Z

314

Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules  

DOE Green Energy (OSTI)

The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

Stuart Hellring; Jiping Shao; James Poole

2011-12-05T23:59:59.000Z

315

Low-cost energy conserving zip-up curtains  

Science Conference Proceedings (OSTI)

We originally estimated that sealed fabric curtains would be capable of saving 5% of the heat lost by windows. At the conclusion of our tests it was apparent that they were significantly more effective; and in fact, performed at a level more akin to double glazing by reducing window energy consumption by 20%. Zip-up curtains conserve energy by increasing the effective R-value of the windows they cover during the night while allowing beneficial solar gain during the day. According to the National Bureau of Standards, windows cause 5% of the Nation's energy losses. If zip-up curtains were adopted universally in the United States, they could save 20% of the the 5%, thereby reducing the Nation's energy losses 1%. The results of tests conducted on the zip-up curtains during the winter of 1981-1982 showed significant insulating value. In those tests, employment of the sealed fabric curtains showed an increase in window R-value to 1.77 from the 0.9 of single-glazed windows, nearly halving the energy loss. Many buildings have adopted double-glazing as a means of reducing energy use. When zip-up curtains are used on double-glazed windows, the R-value is increased by less than when they are used on single-glazed windows. The R-value for double glazed windows is 2.00 and when zip-up curtains are added, this is increased by 30% to 2.87 as compared to the almost 50% increase with single glazing. Therefore, it is necessary to take this into account in determining the national or regional impact of adoption of sealed-fabric curtains. 29 figures, 4 tables.

Wehrli, R.

1985-01-01T23:59:59.000Z

316

A low-cost approach to fabrication of multinary compounds for energy-related applications  

DOE Green Energy (OSTI)

Non-vacuum electrodeposition and electroless deposition techniques with a potential to prepare large-area uniform precursor films using low-cost source materials and low-cost capital equipment are very attractive for the growth of compound materials for superconductors and photovoltaic applications. In the first part, a low-cost electrodeposition (ED) method will be discussed for fabrication of high-temperature Tl-oxide-based superconductors. In the second part, electrodeposition and electroless deposition of semiconductor Cu-In-Ga-Se thin films will be discussed.

Bhattacharya, R.N.; Deb, S.K.

2000-01-03T23:59:59.000Z

317

Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells  

DOE Green Energy (OSTI)

This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

2005-08-01T23:59:59.000Z

318

Low-cost CdZnTe devices for cascade cell application  

DOE Green Energy (OSTI)

This report describes a research program to develop a low-cost technique for producing Cd{sub 1-x}Zn{sub x}Te devices for cascade solar cell applications. The technique involves a two-stage process for fabricating such devices with a band gap of about 1.7 eV and a transparent contact layer of low-resistivity ZnTe. In the first stage, thin films of Cd, Zn, and Te are deposited in stacked layers as Cd{sub 1-x}An{sub x}Te. The second stage involves hearing and reacting the layers to form the compound. At first, electrodeposition was used for depositing the layers to successfully fabricate Dc{sub 1-x}Zn{sub x}Te thin-film devices. These films were also intrinsically doped with copper. For the first time, transparent ZnTe films of low resistivity were obtained in a two-stage process; preliminary solar cells using films with low Zn content were demonstrated. A second phase of the project involved growing films with higher Zn content (>15%). Such films were grown on CdS-coated substrates for fabricating devices. The effects of the solar-cell processing steps on the Cd{sub 1-x}Zn{sub x}Te and CdS/Cd{sub 1-x}Zn{sub x}Te interfaces were studied; results showed that the nature of the interface depended on the stoichiometry of the Cd{sub 1-x}Zn{sub x}Te thin film. A sharp interface was observed for the CdS/CdTe structures, but the interface became highly diffused as the Zn content in the absorber layer increased above 15%. The interaction between the CdS window layer and the Cd{sub 1-x}Zn{sub x}Te absorber layer was found to result from an exchange reaction between Zn in the absorber layer and the thin CdS film. 14 refs., 10 figs.

Basol, B.M.; Kapur, V.K. (International Solar Electric Technology, Inglewood, CA (USA))

1990-11-01T23:59:59.000Z

319

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network (OSTI)

solar cells enable very high photovoltaic efficiencies by virtue of employing different band gap to increase the short circuit current and the photovoltaic efficiency of solar cells. INTRODUCTION Multi-junction solar cells based on III-V compound semiconductors are the most efficient photovoltaic devic- es

Heaton, Thomas H.

320

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A direct thin-film path towards low-cost large-area III-V ...  

A direct thin-film path towards low-cost large-area III-V ... depending on the surface energy constraints of the nucleation ... scaling all times in ...

322

Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)  

SciTech Connect

This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

Narumanchi, S.

2013-07-01T23:59:59.000Z

323

Low Cost High Performance Generator Technology Program. Volume 5. Heat Pipe Topical  

DOE Green Energy (OSTI)

Research progress towards the development of a heat pipe for use in the Low Cost High Performance Thermoelectric Generator Program is reported for the period May 15, 1975 through June 1975. (TFD)

Not Available

1975-07-01T23:59:59.000Z

324

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyOffice of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical...

325

Evaluation of a Low-Cost Salmon Production Facility, 1986 Annual Report.  

DOE Green Energy (OSTI)

This fiscal year 1986 study sponsored by the Bonneville Power Administration evaluates the presently existing, low-cost salmon production facility operated and maintained by the Clatsop Economic Development Committee's Fisheries Project.

Hill, James M.

1986-12-01T23:59:59.000Z

326

Evaluation of a Low-Cost Salmon Production Facility, 1985 Annual Report.  

DOE Green Energy (OSTI)

This fiscal year 1985 study sponsored by the Bonneville Power Administration evaluates the presently existing low-cost salmon production facility operated and maintained by the Clatsop Economic Development Committee Fisheries Project.

Hickerson, Andrew W.; Hill, James M.

1985-12-01T23:59:59.000Z

327

Low-Cost Zero-Emission Primary Magnesium Production by Solid ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Solid Oxide Membrane (SOM) Electrolysis is a new low-cost process for direct extraction of magnesium oxide to pure magnesium and oxygen gas. .... Grain Refinement of AZ91 Alloy by Addition of Ceramic Particles.

328

No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common...  

NLE Websites -- All DOE Office Websites (Extended Search)

No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common Areas Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

329

Evaluation of a Low-Cost Salmon Production Facility, 1984 Annual Report.  

DOE Green Energy (OSTI)

This fiscal year 1984 study sponsored by the Bonneville Power Administration evaluates the presently existing low-cost salmon production facility operated and maintained by the Clatsop Economic Development Committee's Fisheries Project.

Hickerson, Andrew W.; Hill, James M.

1984-12-01T23:59:59.000Z

330

Design and testing of components for a low cost laser cutter  

E-Print Network (OSTI)

The main goal of this thesis is to document the design and testing of various components for use in a low cost laser cutting mechanism for hobbyists and recreational designers. Different electronics were used to assess the ...

Ramos, Joshua D

2011-01-01T23:59:59.000Z

331

Low-Cost Continuous Production of Carbon Fiber-Reinforced Aluminum Composites .  

E-Print Network (OSTI)

??The research conducted in this study was concerned with the development of low-cost continuous production of carbon fiber/aluminum composites. Two coatings, alumina and zirconia, were… (more)

Durkin, Craig Raymond

2007-01-01T23:59:59.000Z

332

ORNL makes low-cost carbon fiber available to American manufacturers...  

NLE Websites -- All DOE Office Websites (Extended Search)

material for prototyping of composite applications are invited to come and talk to us." ORNL is accepting proposals from companies that want to try out the low-cost carbon fiber to...

333

ESS 2012 Peer Review - Low Cost, High Performance and Long Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has...

334

NETL: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture Project No.: DE-FE0000469 TDA Research (TDA) is testing and validating the technical and economic...

335

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

336

Low cost monitoring system to diagnose problematic rail bed : case study of Mud Pumping Site  

E-Print Network (OSTI)

This thesis describes the development of low cost sensors and wireless sensor network (WSN) platform aimed at characterizing problematic rail beds (subgrade). The instrumentations are installed at a busy high-speed Northeast ...

Aw, Eng Sew, 1978-

2007-01-01T23:59:59.000Z

337

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

338

Embedded Checker Architectures for Cyclic and Low-Cost Arithmetic Codes  

Science Conference Proceedings (OSTI)

Code checkers that monitor the outputs of a system can detect both permanent and transient faults. We present two novel architectures of embedded self-testing checkers for low-cost and cyclic arithmetic codes, one based on code word generators and adders, ... Keywords: built-in self-test, code checkers, code word accumulators, code word generators, cyclic arithmetic codes, embedded checkers, low-cost arithmetic codes, on-line test, totally self-checking checkers

Albrecht P. Stroele; Steffen Tarnick

2000-08-01T23:59:59.000Z

339

Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012  

DOE Green Energy (OSTI)

This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

Mattos, L.

2012-03-01T23:59:59.000Z

340

Nutritionally Enhanced Edible Oil and Oilseed ProcessingChapter 13 Low-Cost Oil-Processing Techniques  

Science Conference Proceedings (OSTI)

Nutritionally Enhanced Edible Oil and Oilseed Processing Chapter 13 Low-Cost Oil-Processing Techniques Processing eChapters Processing Press Downloadable pdf of Chapter 13 Low-Cost Oil-Processing Techniques from t

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

1999-01-01T23:59:59.000Z

342

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

343

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

Sopori, B.L.

1999-04-27T23:59:59.000Z

344

Low-cost process for P-N junction-type solar cell  

DOE Green Energy (OSTI)

Spray pyrolysis of CuInS/sub 2/ was studied. The concentrations of copper and sulfur in the spray solutions were increased so as to increase the copper content of the films to the stoichiometric level. Although Auger analysis indicates that this was successful, x ray microanalysis has identified the growth of copper-rich crystals on the surfaces of the deposit. Heat treatment in H/sub 2/S did not improve the stoichiometry. The copper-rich crystals were also found on a sample sprayed from a solution with no excess copper. Heterojunctions of glass/SnO/sub 2/(Sb)/CdS/CdTe/carbon(Cu)/Ag-In were prepared with a number of methods used to restrict the junction. The various devices failed to exhibit a diode characteristic or a photo-response. Work on this project is being directed toward understanding the type of junction and how it is formed.

Mooney, J.B.; Cubicciotti, D.D.; Bates, C.W. Jr.

1980-03-01T23:59:59.000Z

345

Enabling Low–Cost Large–Area OPV Solar Power - Programmaster ...  

Science Conference Proceedings (OSTI)

Plextronics, Inc. is helping seed the renewable energy OPV market by .... Stress Relaxation in GaN Epilayers Grown by MOCVD with Indium Surfactant ... Tight Binding and LCAO Methods for Tin Oxide Deposited by Chemical Vapour ...

346

Low cost solar array project. Quarterly progress report, January-March, 1981  

DOE Green Energy (OSTI)

The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are presented. The civil construction work was completed and the mechanical bid package is in preparation. The electrical design effort is in progress. Parallel efforts which complement the mechanical design are the process flow diagrams and control instrumentation logic for startup operation and shutdown. These are in progress and will identify all process and utility streams, control systems, and flow logic. The data collection system takes the signals from the instrumentation, translates them into engineering units and finally develops a data report which summarizes all key performance parameters. Cleaning procedures have been established to assure a contamination-free product and inspection visits have been made to the fabricators of specialty equipment.

Not Available

1981-01-01T23:59:59.000Z

347

Producing Solar Cells By Surface Preparation For Accelerated Nucleation Of Microcrystalline Silicon On Heterogeneous Substrates.  

DOE Patents (OSTI)

Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.

Yang, Liyou (Plainsboro, NJ); Chen, Liangfan (Langhorne, PA)

1998-03-24T23:59:59.000Z

348

Current and lattice matched tandem solar cell  

DOE Patents (OSTI)

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

349

Photovoltaic-Reliability R&D Toward a Solar-Powered World: Preprint  

DOE Green Energy (OSTI)

Paper about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

Kurtz, S.; Granata, J.; Quintana, M.

2009-08-01T23:59:59.000Z

350

Photovoltaic-Reliability R&D Toward a Solar-Powered World (Presentation)  

DOE Green Energy (OSTI)

Presentation about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

Kurtz, S.; Granata, J.

2009-08-01T23:59:59.000Z

351

State-of-the-Art Solar Simulator Reduces Measurement Time and Uncertainty (Fact Sheet)  

DOE Green Energy (OSTI)

One-Sun Multisource Solar Simulator (OSMSS) brings accurate energy-rating predictions that account for the nonlinear behavior of multijunction photovoltaic devices. The National Renewable Energy Laboratory (NREL) is one of only a few International Organization for Standardization (ISO)-accredited calibration labs in the world for primary and secondary reference cells and modules. As such, it is critical to seek new horizons in developing simulators and measurement methods. Current solar simulators are not well suited for accurately measuring multijunction devices. To set the electrical current to each junction independently, simulators must precisely tune the spectral content with no overlap between the wavelength regions. Current simulators do not have this capability, and the overlaps lead to large measurement uncertainties of {+-}6%. In collaboration with LabSphere, NREL scientists have designed and implemented the One-Sun Multisource Solar Simulator (OSMSS), which enables automatic spectral adjustment with nine independent wavelength regions. This fiber-optic simulator allows researchers and developers to set the current to each junction independently, reducing errors relating to spectral effects. NREL also developed proprietary software that allows this fully automated simulator to rapidly 'build' a spectrum under which all junctions of a multijunction device are current matched and behave as they would under a reference spectrum. The OSMSS will reduce the measurement uncertainty for multijunction devices, while significantly reducing the current-voltage measurement time from several days to minutes. These features will enable highly accurate energy-rating predictions that take into account the nonlinear behavior of multijunction photovoltaic devices.

Not Available

2012-04-01T23:59:59.000Z

352

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block February 20, 2010 - 6:21pm Addthis An innovative pilot program in Minneapolis, Minnesota, focuses on rallying whole communities around energy efficiency, one neighborhood at a time. Through the program, area residents cash in on a home energy-efficiency upgrade that saves them roughly $130 on their annual energy bill. All they have to contribute is a little time and a small initial payment. "The most effective way to get people involved is for people to tell each other, neighbor to neighbor," says Lola Schoenrich, who signed up after reading about the program in her neighborhood newsletter. She even volunteered to go door-to-door on her block handing out registration

353

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block February 20, 2010 - 6:21pm Addthis An innovative pilot program in Minneapolis, Minnesota, focuses on rallying whole communities around energy efficiency, one neighborhood at a time. Through the program, area residents cash in on a home energy-efficiency upgrade that saves them roughly $130 on their annual energy bill. All they have to contribute is a little time and a small initial payment. "The most effective way to get people involved is for people to tell each other, neighbor to neighbor," says Lola Schoenrich, who signed up after reading about the program in her neighborhood newsletter. She even volunteered to go door-to-door on her block handing out registration

354

Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C  

NLE Websites -- All DOE Office Websites (Extended Search)

Mainstream Engineering Develops a Low-Cost Energy-Saving Device Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » January 2013 Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Mainstream is achieving its goal to commercialize practical and

355

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

356

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.

357

Design of a low-cost thermoacoustic electricity generator and its experimental verification  

SciTech Connect

This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER

2010-01-01T23:59:59.000Z

358

Parabolic trough solar collectors : design for increasing efficiency.  

E-Print Network (OSTI)

??Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer… (more)

Figueredo, Stacy L. (Stacy Lee), 1981-

2011-01-01T23:59:59.000Z

359

A survey of potential low-cost concentrator concepts for use in low-temperature water detoxification  

DOE Green Energy (OSTI)

Several different concentrator concepts have been considered for use in the detoxification of chemically contaminated water. The reactions of interest are predominantly photocatalytic in nature and are driven by low concentrations (between 1 and 50 suns) of UV radiation in the 300- to 385-nm wavelength range. Optical performance characteristics of these concentrators are thus somewhat different compared to concentrators developed for industrial process heat and electrical energy production. Relaxed optical tolerances might lead to reductions in concentrator cost that, when integrated into overall field system cost, could make the solar-driven process competitive with current UV lamp technology. Aspects of the concentrator system that might realize cost reductions include the concentrating element, the support structure, the tracking and drive system, the manufacturing processes, and the installation procedures. Several ideals have been resurrected from earlier research in the Solar Thermal Program where the need for more stringent optical performance requirements led to a decline or even an end to further investigation. In light of this new application, the most promising of these ideas are presented, including a description and a discussion of the cost and performance trade-offs. In addition, the results of recent investigate research on several of these concepts will be presented. The concepts include a low-cost parabolic trough, the inflatable line-focus concentrator, and the holographic concentrator. 16 refs., 5 figs.

Wendelin, T.

1991-12-01T23:59:59.000Z

360

Low-Cost Ash-Derived Construction Materials: State-of-the-Art Assessment  

Science Conference Proceedings (OSTI)

Existing technologies have been successfully applied in the manufacturing of construction materials that incorporate coal combustion byproducts. This report describes an extensive literature review on coal ash use in low-cost building materials, including information on technical and economic feasibility.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

be manufactured having cement replacement with Illinois coal ashes and their blends in the range of 0 to 60LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS Investigators technology for high-volume applications of Illinois coal combustion by-products generated by using both

Wisconsin-Milwaukee, University of

362

A low cost system for implementing FADCs in imaging atmospheric ^Cerenkov astronomy  

E-Print Network (OSTI)

A low cost system for implementing FADCs in imaging atmospheric ^Cerenkov astronomy M. D. Roberts. The success of early imaging cameras in ground based ^Cerenkov as- tronomy has led to demand for increased a ^Cerenkov imaging camera. A further bene t of this system is that it reduces the amount of data recorded

Adelaide, University of

363

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and 1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies 2.1 M, 33-month program...

364

A low-cost 3 projector display system for pain reduction and improved patient recovery times  

Science Conference Proceedings (OSTI)

Medical procedures are often associated with discomfort, pain and anxiety. Previous studies have shown that one way to reduce pain during treatment is to watch nature scenes and listen to nature sounds or escape into immersive virtual environments. This ... Keywords: head-mounted displays, immersive virtual environments, low-cost 3 projector display system, pain reduction, restorative virtual environments

Eric Fassbender; Paulo de Souza

2012-11-01T23:59:59.000Z

365

Electronic shepherd - a low-cost, low-bandwidth, wireless network system  

Science Conference Proceedings (OSTI)

This paper reports a new novel low-cost, wireless communication network system, called the "Electronic Shepherd" (ES). The system is innovative in the way that it supports flock behavior, meaning that a flock leader monitors the state of the other elements ... Keywords: GPRS, GPS, animal tracking, cost-effective communication, low-power equipment, rural computing, short-range communication, wireless network

Bjřrn Thorstensen; Tore Syversen; Trond-Are Bjřrnvold; Tron Walseth

2004-06-01T23:59:59.000Z

366

Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions  

E-Print Network (OSTI)

papers cited are available through the Sandia National Laboratories website: www.sandia.gov/Renewable_Energy/wind_energy-year experimental study of low- cost composite materials for wind turbine blades. Wind turbines are subjected to 109 in and potential interactions between failure modes. Wind turbine design codes typically assume a Miner's rule

367

One-Sun Multisource Solar Simulator brings accurate energy-rating predictions that account for the nonlinear behavior of  

E-Print Network (OSTI)

One-Sun Multisource Solar Simulator brings accurate energy- rating predictions that account for the nonlinear behavior of multijunction photovoltaic devices. The National Renewable Energy Laboratory (NREL horizons in developing simulators and measurement methods. Current solar simulators are not well suited

368

Simulator Developed to Drastically Reduce Time of Multijunction PV Device Efficiency Measurements (Fact Sheet), NREL Highlights, Research & Development  

DOE Green Energy (OSTI)

NREL's new simulator helps speed up research in the race to improve photovoltaic efficiency. Scientists at the National Renewable Energy Laboratory (NREL) needed a quick and accurate method to predict energy generated from multijunction photovoltaic (PV) test devices. This method had to take into account the nonlinear behavior of multijunction PV. NREL achieved this by developing the One-Sun Multi-Source Simulator (OSMSS), which reduces the time for this type of reference spectrum efficiency measurement from hours or days to minutes. The OSMSS is an automated, spectrally adjustable light source that builds a unique simulator spectrum that causes a multijunction PV device to behave as it would under a reference spectrum. This new simulator consists of four light sources separated into nine wavelength bands between 350 and 2,000 nm. The irradiance in each band is adjustable from zero to about 1.5 suns. All bands are recombined via optical fibers and integrating optics to produce a nearly 10 cm x 10 cm uniform spot. The operator simply links the OSMSS to the quantum efficiency data for the test device, and the OSMSS does the rest. The OSMSS can also determine the power as a function of the spectral irradiance (beyond the reference spectra), total irradiance, and temperature. Major components of the system were built to NREL specification by LabSphere, Inc. NREL developed a new, fully automated tool that rapidly builds a spectrum under which all junctions of a multijunction PV device behave as they would under a reference spectrum. Such a spectrum is essential to properly characterize multijunction devices. The OSMSS reduces the time for building spectra for current vs. voltage measurements from hours or days to minutes. This makes it possible to quickly characterize a multijunction device under many different conditions. The OSMSS will be an important tool to help predict the yearly energy output of a multijunction PV device in a particular environment when provided with a range of spectra and temperatures for that location.

Not Available

2011-11-01T23:59:59.000Z

369

Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators  

SciTech Connect

REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

None

2012-01-01T23:59:59.000Z

370

NETL: News Release - Ultra-low Cost Well Monitoring Could Save Thousands of  

NLE Websites -- All DOE Office Websites (Extended Search)

January 19, 2005 January 19, 2005 Ultra-low Cost Well Monitoring Could Save Thousands of Marginal Oil Wells DOE-funded Project in California Tested Successfully TULSA, OKLA. - A new, ultra-low cost method for monitoring marginal oil wells promises to help rescue thousands of U.S. wells from an early demise. Developed with funding from the Department of Energy (DOE) and project-managed by DOE's National Energy Technology Laboratory, this novel, inexpensive, monitoring-system prototype helps improve the efficiency of rod-pumped oil wells. The ultimate payoff for such an approach could be the recovery of millions of barrels of oil otherwise permanently lost while the United States watches its oil production continue to slide. MORE INFO Marginal Expense Oil Well Wireless Surveillance MEOWS -Phase II final technical report [PDF-294KB]

371

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost open-path Instrument for Low Cost open-path Instrument for monItorIng atmospherIC Carbon DIoxIDe at sequestratIon sItes Background Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere may lead to the curtailment of CO 2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO 2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO 2 concentration above the background level in the air near the ground. Although measurement of CO 2 concentration can be performed, it is

372

NETL: News Release - Innovative Technology Shows Promise for Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2, 2005 June 2, 2005 Innovative Technology Shows Promise for Low-Cost Mercury Control Patented DOE Process Licensed to Industry for Commercial Development WASHINGTON, DC - Close on the heels of the U.S. Environmental Protection Agency's March 15 release of its Clean Air Mercury Rule, the U.S. Department of Energy has issued a license to private industry to commercially develop a promising low-cost, DOE-patented mercury control technology. MORE INFO Technical Report on the Thief Process [PDF-374KB] DOE's National Energy Technology Laboratory issued the license on a technology called the Thief Process to Mobotec USA, Inc., of Walnut Creek, Calif. Mobotec, a leader in developing cost-effective combustion improvement and multi-pollutant reduction technologies for industrial and

373

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with SĂĽd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

374

Building America Top Innovations Hall of Fame Profile Â… Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

375

Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

1980-04-01T23:59:59.000Z

376

Sensors-00997-2005 Low-Cost Surface Mount LED Gas Sensor  

E-Print Network (OSTI)

INTRODUCTION EDs are being used far more commonly as light sources in optical chemical sensors due to the low-cost, low-power consumption, reliability and ever increasing range of devices and wavelengths available. The increased interest in LED sources has had a major impact on low-cost component based chemical sensors, where the main goal is to achieve analytical performance without the expense of more conventional instrumentation [1-5]. Typically a photodiode is used for detection, providing good sensitivity and a significant reduction in system cost. Usually the photodiode is operated at Vbias=0V and hence itself can be considered as a lowpower sensor, however, in addition to the detector, a good quality operational amplifier and mid-to-high resolution ADC are required to complete the device. These additional components not only increase system complexity and cost, but also add to the power requirements, which is of particular importance in battery-powered s

Sensor Films Results; Roderick L. Shepherd; William S. Yerazunis; Senior Member; King Tong Lau; Dermot Diamond

2005-01-01T23:59:59.000Z

377

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

378

Enabling Thin Silicon Technologies for Next Generation Low-cost c ...  

Science Conference Proceedings (OSTI)

Symposium, Solar Cell Silicon ... from fossil fuels to renewable sources has spurred companies to reduce the cost of their solar photovoltaics (PV) systems.

379

VibroTactor: low-cost placement-aware technique using vibration echoes on mobile devices  

Science Conference Proceedings (OSTI)

In this paper, we present a low-cost placement-aware technique, called VibroTactor, which allows mobile devices to determine where they are placed (e.g., in a pocket, on a phone holder, on the bed, or on the desk). This is achieved by filtering and analyzing ... Keywords: context-aware, pattern recognition, placement detection, pseudo sensor, sensor repurposing, vibration echoes

Sungjae Hwang; Kwangyun Wohn

2013-03-01T23:59:59.000Z

380

EPRI Family of Multi-Functional Low-Cost Solid-State Switchgear: Requirements Definition Phase  

Science Conference Proceedings (OSTI)

This report describes the findings of the research performed to assess the requirements for a next generation solid-state breakers ("all solid-state" as well as "hybrid" designs), identify the application areas, and evaluate the economic and technical considerations for different technologies and design options for a family of low-cost solid-state switchgears. The report outlines a research roadmap for design and development of the proposed technology and identifies the key functionalities and criteria t...

2005-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Novel and Low Cost Temperature Sensors for Lines, Transformers, and Cables  

Science Conference Proceedings (OSTI)

This document reports on an investigation into the performance of fiber optic sensing (e.g., in conductors, transformers, and cables) to determine change in fiber characteristics with regards to sensor-aging effects and performance accuracy with time. The project began in 2002 with a rigorous analysis of temperature sensors for both point and distributed systems across a conductor / transformer winding. Key requirements that must be met are low cost, reliable performance, and good aging characteristics (...

2002-12-16T23:59:59.000Z

382

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

383

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

384

Reclaiming lost capability in power plant coal conversions: an innovative, low-cost approach  

Science Conference Proceedings (OSTI)

Some of the capability lost during coal conversion can be recovered for midrange/peaking power generation through low cost, turbine cycle and economizer modifications. The additional output can be realized by shutting off adjacent high pressure feedwater heaters (as specified by turbogenerator manufacturers) and simultaneously increasing heat input to the economizer. The supplemental economizer heat input makes up for heat lost to the feedwater when extraction steam is shut off. Several options for applying this novel approach to capability recovery are described. The reclaimed capability is realized at somewhat lower efficiency but at low cost, compared to the overall cost of a coal conversion. Rather than return converted units to up to 100% oil or gas firing during periods of high system demand, the proposed method allows the continued comsumption of coal for the base-load portion of the plant's output. The development of the low NO/sub x/ Slagging Combustor will allow even the added economizer heat input to be supplied by relatively low cost coal. Following a brief review of factors affecting boiler capability in coal conversions and current approaches to coal conversion in this country and overseas, the results of a preliminary study that apply the proposed novel concept to a West Coast power plant are described.

Miliaras, E.S.; Kelleher, P.J.; Fujimura, K.S.

1983-01-01T23:59:59.000Z

385

Broad spectrum solar cell  

DOE Patents (OSTI)

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

386

Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)  

DOE Green Energy (OSTI)

The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

Not Available

2010-12-01T23:59:59.000Z

387

Amorphous silicon/polycrystalline thin film solar cells  

DOE Patents (OSTI)

An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

Ullal, H.S.

1991-03-13T23:59:59.000Z

388

Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

Not Available

2012-07-01T23:59:59.000Z

389

A Compact, Low-Cost GPS Drifter for Use in the Oceanic Nearshore Zone, Lakes, and Estuaries  

Science Conference Proceedings (OSTI)

The design of small, compact, low-cost GPS drifters that utilize “off the shelf” components is described. The drifters are intended for use in confined or nearshore environments over time scales of up to several days and are a low-cost ...

D. Johnson; R. Stocker; R. Head; J. Imberger; C. Pattiaratchi

2003-12-01T23:59:59.000Z

390

VillageNet: A low-cost, IEEE 802.11-based mesh network for connecting rural areas  

Science Conference Proceedings (OSTI)

VillageNet is a new wireless mesh networking technology that provides low-cost broadband Internet access for wide regions. It targets the rural market around the world, where large populations live but paying capacities are low. VillageNet offers a low-cost, ...

Partha Dutta; Sharad Jaiswal; Rajeev Rastogi

2007-08-01T23:59:59.000Z

391

An experimental and computational study of a rooftop-mounted linear fresnel solar thermal concentrator.  

E-Print Network (OSTI)

??This research study describes the thermal performance of a new low-cost rooftop concentrating solar thermal collector (MCT), developed by Chromasun, which uses linear Fresnel reflectors,… (more)

Sultana, Tanzeen

2013-01-01T23:59:59.000Z

392

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

Contiguous Platinum Monolayer Oxygen Reduction Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Co-PIs: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Brookhaven National Laboratory Yang Shao-Horn Massachusetts Institute of Technology Rachel O'Malley, David Thompsett, Sarah Ball, Graham Hard Johnson Matthey Fuel Cells Radoslav Adzic Brookhaven National Laboratory DOE Projects Kickoff Meeting September 30 , 2009 2 Project Overview Project Overview 1. Objectives: Objectives: Developing high performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer Pt monolayer on stable, inexpensive metal or alloy nanorods, nanowires, nanobars and

393

Low Cost Production of InGaN for Next-Generation Photovoltaic Devices  

SciTech Connect

The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

2012-07-09T23:59:59.000Z

394

Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures  

DOE Green Energy (OSTI)

oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

Kyoung-Shin Choi

2013-06-30T23:59:59.000Z

395

Direct Thin Film Path to Low Cost, Large Area III-V ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; ... ...

396

NETL: Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Project No.: DE-FE0013687 GE global is constructing and operating a continuous, bench-scale CO2 capture system that employs a phase-changing silicone solvent . Experimental data obtained at the laboratory scale in a previous ARPA-E funded project, including mass transfer and kinetic information, is being used to determine process scalability and perform a techno-economic assessment of the commercial scale process. The manufacturability of the solvent is being examined to obtain the material needed for bench-scale testing. Data obtained from the bench-scale system will include mass transfer parameters, kinetic parameters, heat transfer parameters, solvent stability, effects of flue gas contaminants, and recommended operating conditions. Other data such as absorption/desorption isotherms and solvent regeneration energy will be determined in laboratory testing. The solvent manufacturing cost, the bench-scale engineering data, and the laboratory property data will be used to complete the techno-economic assessment and to develop a scale-up strategy for commercialization.

397

NETL: News Release - New, Low-Cost Approach to 4-D Imaging of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2005 7, 2005 New, Low-Cost Approach to 4-D Imaging of CO2 Flood Yields Breakthrough DOE-Funded Kansas Research to Bolster Economics of Marginal EOR Projects TULSA, OK - - U.S. Department of Energy-funded research has yielded a breakthrough in high-resolution subsurface imaging with the first low-cost depiction of CO2 movement through a thin, shallow oil reservoir. The University of Kansas Center for Research project combines the time-lapse approach of 4-D seismic, which is essentially a series of three-dimensional images recorded over time, with a carefully selected application of the higher-resolution imaging of other advanced seismic technologies. The first-of-its-kind project is being implemented for a landmark CO2 flood pilot project underway in the Hall-Gurney oilfield, near Russell, Kan. That pilot-itself the first CO2 flood in Kansas-also is funded by DOE. Both projects are managed by the Office of Fossil Energy's National Energy Technology Laboratory as part of its Enhanced Oil Recovery (EOR) program.

398

NETL: IEP - Bench-Scale Silicone Process for Low-Cost CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Silicone Process for Low-Cost CO2 Capture Bench-Scale Silicone Process for Low-Cost CO2 Capture Project No.: FE0007502 GE Global Research and their project partners are conducting research on the use of a novel silicone solvent to capture CO2 with a continuous bench-scale system. The project will utilize both computational and experimental methods. Previously measured experimental data from a continuous laboratory-scale CO2 capture system will be used to design this bench-scale system. Data from the bench-scale system, such as kinetics and mass transfer information, will be used to determine scale-up effects and needed design parameters to develop a scale-up strategy, update cost of electricity (COE) calculations and perform a technical and economic feasibility study. A manufacturing plan for the aminosilicone solvent and a price model will be used for optimization. The final objective of the program is to demonstrate, at the bench-scale, a process that achieves 90 percent CO2 capture efficiency with less than a 35 percent increase in the COE. Development of this scalable bench-scale process combined with a rigorous process model and thorough manufacturability analysis for the solvent, will enable a practical technology path to later development at larger scales and commercialization. The technology will eventually be retrofittable to coal-based power plants.

399

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

400

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effective, low-cost HVAC controls upgrade in a small bank building  

Science Conference Proceedings (OSTI)

This report summarizes the measured results from a field study of the performance of a low-cost controls retrofit in a small bank building in Knoxville, TN. The retrofit consisted of a simple upgrade of heating and cooling system controls and new operating strategies. The project was undertaken to better understand how commercial energy use measurement studies should be performed and to demonstrate the effectiveness of a low-cost controls retrofit in a small commercial building. This report describes the details of the project, including building and building system characteristics, the HVAC control changes made, energy end use patterns, and the heating and cooling energy savings achieved. An improved control strategy involving thermostat setback/setup and on/off control was devised around a single replacement programmable thermostat. The strategy allowed thermostat setback/setup control of the primary HVAC system in the building and provided on/off (time-of-day) control for the two secondary systems. The energy efficiency improvements provided a 33% reduction in heating and a 21% reduction in cooling energy consumptions. Simple payback for the retrofit, including installation cost, was under 1 year. In addition to reducing the energy needs of the building, the replacement electronic thermostat provided improved interior comfort. 9 refs., 12 figs., 3 tabs.

Sharp, T.R.; MacDonald, J.M.

1990-01-01T23:59:59.000Z

402

Production of low-cost hydrogen. Final report, September 1989--August 1993  

DOE Green Energy (OSTI)

Significant technical progress has been made over the last decade to develop efficient processes for upgrading coal resources to distillable hydrocarbons which may be used to displace petroleum-derived fuels. While several different direct coal liquefaction routes are under investigation, each of them have in common the need for large quantities of hydrogen to convert the aromatic coal matrix to liquid products in the normal distillation range, and for hydrotreating to improve liquid product quality. In fact, it has been estimated that the production, recovery, and efficient use of hydrogen accounts for over 50 percent of the capital cost of the liquefaction facility. For this reason, improved methods for producing low-cost hydrogen are essential to the operating economics of the liquefaction process. This Final Report provides an assessment of the application of the MTCI indirect gasification technology for the production of low-cost hydrogen from coal feedstocks. The MTCI gasification technology is unique in that it overcomes many of the problems and issues associated with direct and other indirectly heated coal gasification systems. Although the MTCI technology can be utilized for producing hydrogen from almost any carbonaceous feedstock (fossil, biomass and waste), this report presents the results of an experimental program sponsored by the Department of Energy, Morgantown Energy Research Center, to demonstrate the production of hydrogen from coal, mild gasification chars, and liquefaction bottoms.

Not Available

1993-06-01T23:59:59.000Z

403

SunShot Initiative: Dye-Sensitized Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Dye-Sensitized Solar Cells to Dye-Sensitized Solar Cells to someone by E-mail Share SunShot Initiative: Dye-Sensitized Solar Cells on Facebook Tweet about SunShot Initiative: Dye-Sensitized Solar Cells on Twitter Bookmark SunShot Initiative: Dye-Sensitized Solar Cells on Google Bookmark SunShot Initiative: Dye-Sensitized Solar Cells on Delicious Rank SunShot Initiative: Dye-Sensitized Solar Cells on Digg Find More places to share SunShot Initiative: Dye-Sensitized Solar Cells on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Dye-Sensitized Solar Cells Graphic showing the seven layers of a dye-sensitized PV cell: electrode, hole conductor, dope, TiO2, blocking layer, transparent conductive oxide, and glass.

404

Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome ( 7th Annual SFAF Meeting, 2012)  

Science Conference Proceedings (OSTI)

David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Jenkins, David [EdgeBio

2012-06-01T23:59:59.000Z

405

Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head  

E-Print Network (OSTI)

This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

Ramirez, Aaron Eduardo

2010-01-01T23:59:59.000Z

406

Low-cost carriers in Japan : challenges and paths to success - using a corporate simulation model for empirical analysis  

E-Print Network (OSTI)

This paper analyzes the causes behind the sluggishness of new airlines, low cost carriers (LCCs), in Japan. The object is to identify and to recommend innovative policy changes and ideas for the industry, by analyzing the ...

Shiotani, Sayaka

2013-01-01T23:59:59.000Z

407

Current-matched, high-efficiency, multi-junction monolithic solar cells  

DOE Patents (OSTI)

In this invention, the efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga{sub 0.52}In{sub 0.48}P and GaAs. Additional lattice-matched systems to which the invention pertains include Al{sub x}Ga{sub l-x}/GaAs (x=0.3 {minus} 0.4), GaAs/Ge and Ga{sub y}In{sub 1-y}P/Ga{sub y+0.5}In{sub 0.5-{sub Y}} As (O

Olson, J.M.; Kurtz, S.R.

1991-02-11T23:59:59.000Z

408

MOVPE Development of III/V Multijunction Terrestrial Solar Cells at ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Demonstrating the 41.6% efficiency world record [1] in concentrator photovoltaics (CPV) requires many areas of expertise. One key element is ...

409

High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169  

DOE Green Energy (OSTI)

NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

Steiner, M.

2012-07-01T23:59:59.000Z

410

Texturization of multicrystalline silicon solar cells  

E-Print Network (OSTI)

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01T23:59:59.000Z

411

NETL: News Release - Four Industry Teams Begin Quest for Low-Cost,  

NLE Websites -- All DOE Office Websites (Extended Search)

August 8, 2001 August 8, 2001 Four Industry Teams Begin Quest for Low-Cost, Breakthrough Fuel Cell Could Broaden Market Acceptance of "Cutting Edge" Technology Cited in President's Climate Change Policy PITTSBURGH, PA - Four new government-industry projects have been selected as the vanguards of a $500 million, 10-year effort to produce breakthrough fuel cells that will shatter current cost barriers and move the advanced, low-polluting technology into mainstream energy markets. - Technician Examining Planar Fuel Cell Assembly Future fuel cells could be mass- produced from flat, ceramic plates. This configuration is called a "planar" fuel cell. Secretary of Energy Spencer Abraham today announced that the U.S. Department of Energy has selected proposals from Honeywell, Inc., Torrence,

412

Low-Cost Substrates for High-Performance Nanorod Array LEDs  

SciTech Connect

The completed project, entitled â??Low-Cost Substrates for High-Performance Nanorod LEDs,â?ť targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: â?˘ Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. â?˘ Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. â?˘ Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. â?˘ Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

Sands, Timothy; Stach, Eric; Garcia, Edwin

2009-04-30T23:59:59.000Z

413

A simple, low-cost, data logging pendulum built from a computer mouse  

SciTech Connect

Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible for all students to have hands-on experience with one of the most important simple physical systems.

Gintautas, Vadas [Los Alamos National Laboratory; Hubler, Alfred [UIUC

2009-01-01T23:59:59.000Z

414

ESS 2012 Peer Review - Low Cost, Manufacturable High Voltage Power Module for ESS - Brandon Passmore, APEI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 Design and Development of a Low Cost, Manufacturable High Voltage Power Module for Energy Storage Systems Phase I SBIR September 27, 2012 Brandon Passmore, PhD Sr. Electronics Packaging Research Engineer Email: bpassmo@apei.net Acknowledgements * I would like to thank Dr. Imre Gyuk of the DOE Energy Storage Systems Program and Dr. Stan Atcitty for technical support * I would also like to thank 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

415

Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh  

SciTech Connect

Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

2009-09-14T23:59:59.000Z

416

Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation  

SciTech Connect

In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

Zeh, C.M.

1996-08-01T23:59:59.000Z

417

Evaluation of low cost residual gas analyzers for ultrahigh vacuum applications  

DOE Green Energy (OSTI)

In recent years several low cost computer controlled residual gas analyzers (RGAs) have been introduced into the market place. It would be very useful to know the performance characteristics of these RGAs in order to make an informed selection for UHV applications. The UHV applications include extreme sensitivity helium leak detection and monitoring of the residual gas spectra in UHV systems. In this article, the sensitivity and linearity data for nitrogen, hydrogen, and helium are presented in the pressure range 10{sup {minus}8}---10{sup {minus}1} Pa. Further, the relationships between focus voltage and ion currents, relative sensitivity, and fragmentation factor are also included. A direct comparison method is used in obtaining this data. Spinning rotor and extractor gauges are the transfer standard gauges used in Jefferson Lab's vacuum calibration facility, with which all the reported measurements here were carried out.

M. Rao; D. Dong

1996-10-01T23:59:59.000Z

418

Thermal Engineering of Lignin for Low-cost Production of Carbon Fiber  

Science Conference Proceedings (OSTI)

Lignin, a sustainable, renewable resource material, is being evaluated for the low cost production of carbon fiber for automotive and other applications. We previously reported the successful production of carbon fiber from a solvent extracted lignin [1] and from other lignins [2]. However, it was found that the lignin fiber, produced by the melt spinning of the solvent extracted lignin, was difficult to stabilize (i.e., render infusible) and thus carbonize. The long stabilization time, due to the fiber s low Tg, led to the conclusion that thermal engineering of a lignin feedstock could ultimately raise the Tg of the lignin and thereby of the spun fiber. This would permit a higher temperature of stabilization, which would reduce stabilization time as well as overall processing times. The thermally-engineered lignins were evaluated in terms of their rheological properties, melt spinning ability, morphology, stabilization and carbonization properties, and ultimately mechanical properties of the carbon fibers obtained.

Baker, Darren A [ORNL; Baker, Frederick S [ORNL; Gallego, Nidia C [ORNL

2009-01-01T23:59:59.000Z

419

Low cost alternative of high speed visible light camera for tokamak experiments  

SciTech Connect

We present design, analysis, and performance evaluation of a new, low cost and high speed visible-light camera diagnostic system for tokamak experiments. The system is based on the camera Casio EX-F1, with the overall price of approximately a thousand USD. The achieved temporal resolution is up to 40 kHz. This new diagnostic was successfully implemented and tested at the university tokamak GOLEM (R = 0.4 m, a = 0.085 m, B{sub T} < 0.5 T, I{sub p} < 4 kA). One possible application of this new diagnostic at GOLEM is discussed in detail. This application is tomographic reconstruction for estimation of plasma position and emissivity.

Odstrcil, T.; Grover, O.; Svoboda, V. [Czech Technical University in Prague, FNSPE, Brehova 7, CZ-115 19 Praha 1 (Czech Republic); Odstrcil, M.; Duran, I.; Mlynar, J. [Czech Technical University in Prague, FNSPE, Brehova 7, CZ-115 19 Praha 1 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Association Euratom-IPP.CR, Za Slovankou 3, CZ-182 00 Praha 8 (Czech Republic)

2012-10-15T23:59:59.000Z

420

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Life and stability testing of packaged low-cost energy storage materials  

DOE Green Energy (OSTI)

A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage-like containers called Chubs is discussed. The results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications have been drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a ..delta..T of 30/sup 0/F can be used for the packaged material.

Frysinger, G.R.

1980-07-01T23:59:59.000Z

422

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for precursor development (lignins, polymers) Belt conveyance for processing precursor in web format Multiple flow regimens in oxidation ovens Low-temperature furnace up to 1,000°C High-temperature furnace up to 2,000°C Flexible posttreatment for various resin systems Winding and packaging Carbon fiber is a strong, stiff, lightweight enabling material for improved performance in many applications. However, its use in cost-sensitive, high-volume industrial applications such as automobiles, wind energy, oil and gas, and infrastructure is limited because of today's relatively high price. Current methods for manufacturing carbon fiber

423

Three-dimensional nanopillar-array photovoltaics on low-cost and ...  

Solar energy represents one of the most abundant and yet ... University of California at Berkeley, Berkeley, California 94720, USA, 2Materials Sciences

424

Low Cost TiOLow Cost TiO22 NanoparticlesNanoparticles  

uniform TiO2 nanoparticles show great potential in numerous markets, including lighting, signage, automotive and solar energy for their excellent

425

Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991  

DOE Green Energy (OSTI)

Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

1991-11-01T23:59:59.000Z

426

Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders  

SciTech Connect

The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.

Dr. David M. Bowden; Dr. William H. Peter

2012-03-31T23:59:59.000Z

427

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

428

Research on stable, high-efficiency amorphous silicon multijunction modules. Final subcontract report, 1 January 1991--31 August 1994  

DOE Green Energy (OSTI)

The principal objective of this program is to conduct research on semiconductor materials and non-semiconductor materials to enhance the performance of multibandgap, multijunction, large-area amorphous silicon-based alloy modules. The goal for this program is to demonstrate stabilized module efficiency of 12% for multijunction modules of area greater than 900 cm{sup 2}. Double-junction and triple-junction cells are made on Ag/ZnO back reflector deposited on stainless steel substrates. The top cell uses a-Si alloy; a-SiGe alloy is used for the i layer in the middle and the bottom cells. After evaporation of antireflection coating, silver grids and bus bars are put on the top surface, and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a one-square-foot monolithic module.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1994-10-01T23:59:59.000Z

429

NETL: News Release - Colorado Company Pursues Low-Cost, Low-Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

10, 2007 10, 2007 Colorado Company Pursues Low-Cost, Low-Impact Technology to Develop Nation's Oil Shale Resources DOE-Funded Research Targets America's Largest Potential Source of Oil WASHINGTON, DC - A U.S. Department of Energy-funded project has successfully demonstrated the viability of a new technology that could prove to be the key to unlocking America's largest potential source of oil. If ongoing research continues to confirm the technology's effectiveness, its application offers the potential to dramatically reduce costs and environmental impacts in the extraction of oil from oil shale. America holds more than three-fourths of the world's estimated 2.6 trillion barrels of oil-in-place of oil shale resources. As much as 1.1 trillion barrels of oil equivalent is believed to be recoverable in the richest single deposit - the Green River formation of Colorado, Utah, and Wyoming. That volume is almost 50 percent greater than the combined proved reserves of conventional oil in the entire Middle East.

430

Low cost/low intensity 50 MeV proton irradiation facility  

SciTech Connect

Protons have been proposed as one of the most useful particles for radiation therapy, but have found limited use due to the cost and scarcity of medium energy proton accelerators. However, the highly successful program on the Harvard Cyclotron has increased interest in expanding the number of treatment facilities. In order to demonstrate that high intensity proton accelerators are not required and to gain experience with treating patients using protons, a low cost and low intensity source of 50 MeV protons was developed at Argonne. Although the beam penetration is limited to 22 mm, the beam is capable of treating a major fraction of the ocular melanoma tumors treated at the Harvard Cyclotron. This beam operates parasitically with the Rapid Cycling Synchrotron at Argonne using a source of 50 MeV H/sup 0/ atoms which are produced by stripping in the gas of the 50 MeV H/sup -/ linear accelerator. A stripping fraction of about 3 to 5 x 10/sup -5/ is observed and yields a 0.4 namp beam of protons. Results on the properties and operation of this parasitic beam are presented. 5 refs., 3 figs.

Kramer, S.L.; Martin, R.L.

1985-01-01T23:59:59.000Z

431

Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites  

SciTech Connect

A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

Singh, M.; Levine, S.R.

1995-07-01T23:59:59.000Z

432

Low-cost, low-weight CNG cylinder development. Final report  

DOE Green Energy (OSTI)

This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

1999-09-01T23:59:59.000Z

433

Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime  

SciTech Connect

The overall objective of the program was to demonstrate a 98% or greater reflective, highly diffuse, low-cost composite material that significantly improves luminaire efficiency, is able to withstand 50,000 hours or greater luminaire operation under expected LED system thermal and environmental operating extremes and meets the cost targets required to be an effective commercial solution for the Solid State Lighting industry. This project met most of the goals defined and contributed to the understanding of high reflectance, white coatings. Research under this program increased the understanding of coatings development using particle size reduction techniques and preparation of coating solutions with a broad range of particle types. The research explored scale-up of coating systems and generated understanding of processing required for high volume manufacturing applications. The work demonstrated how coating formulation and application technique can translate to material durability and LED system lifetime. The research also demonstrated improvements in lighting efficiency to be gained using high reflectance white coatings.

Teather, Eric

2013-02-15T23:59:59.000Z

434

Method for producing low-cost, high volume hydrogen from hydrocarbon sources  

DOE Patents (OSTI)

A method is described for the conversion of naturally-occurring or biomass-derived lower to higher hydrocarbon (C{sub x}H{sub y},where x may vary from 1--3 and y may vary from 4--8) to low-cost, high-volume hydrogen. In one embodiment, methane, the major component of natural gas, is reacted in a single reaction zone of a mixed-conducting ceramic membrane reactor to form hydrogen via simultaneous partial oxidation and water gas shift reactions at temperatures required for thermal excitations of the mixed-conducting membranes. The hydrogen is produced by catalytically reacting the hydrocarbon with oxygen to form synthesis gas (a mixture of carbon monoxide and hydrogen), followed by a water gas shift (WGS) reaction with steam, wherein both reactions occur in a single reaction zone having a multi-functional catalyst or a combination of catalysts. The hydrogen is separated from other reaction products by membrane-assisted transport or by pressure-swing adsorption technique. Membrane-assisted transport may occur via proton transfer or molecular sieving mechanisms.

Bose, Arun C.; Balachandran, Uthamalinga; Kleerfisch, Mark S.; Udovich, Carl A.; Stiegel, Gary J.

1997-12-01T23:59:59.000Z

435

An Exploratory Initiative for Improving Low-Cost Housing in Texas  

E-Print Network (OSTI)

In 1996 the Real Estate Center at Texas A&M University released a report indicating that the population of Texas would double in the next 30 years and that a majority of the 18 million new Texans would be have low to very-low incomes. In order to house that many low income persons, it is apparent that a significant number of affordable housing units must be built in a relatively short time frame. Based on these predictions, our interdisciplinary team made a proposal in the Texas Engineering Experiment Station (TEES) Strategic Initiatives Program to explore technologies related to the production of affordable housing. The purpose of the work is to identify opportunities for research into systems, materials, and processes that might contribute to the development of a low-cost housing industry in Texas that could meet state housing needs and might create export possibilities. The proposal was funded by the Texas Engineering Experiment Station, the Center for Housing and Urban Development, and the College of Architecture Research Fund. This report summarizes the results of the effort.

McKittrick, T. L.; Haberl, J. S.; Graham, C. W.; Claridge, D. E.; Swain, W. B.

2000-01-01T23:59:59.000Z

436

Sensing from the basement: a feasibility study of unobtrusive and low-cost home activity recognition  

E-Print Network (OSTI)

The home deployment of sensor-based systems offers many opportunities, particularly in the area of using sensor-based systems to support aging in place by monitoring an elder’s activities of daily living. But existing approaches to home activity recognition are typically expensive, difficult to install, or intrude into the living space. This paper considers the feasibility of a new approach that “reaches into the home ” via the existing infrastructure. Specifically, we deploy a small number of low-cost sensors at critical locations in a home’s water distribution infrastructure. Based on water usage patterns, we can then infer activities in the home. To examine the feasibility of this approach, we deployed real sensors into a real home for six weeks. Among other findings, we show that a model built on microphone-based sensors that are placed away from systematic noise sources can identify 100 % of clothes washer usage, 95 % of dishwasher usage, 94 % of showers, 88 % of toilet flushes, 73 % of bathroom sink activity lasting ten seconds or longer, and 81 % of kitchen sink activity lasting ten seconds or longer. While there are clear limits to what activities can be detected when analyzing water usage, our new approach represents a sweet spot in the tradeoff between what information is collected at what cost.

James Fogarty

2006-01-01T23:59:59.000Z

437

Low-cost photovoltaic inverters incorporating application-specific integrated circuits  

SciTech Connect

The positive impact of designing a power conditioner control system for photovoltaic applications with an application-specific integrated circuit (ASIC) as the main control element was demonstrated with detailed computer simulations in Phase I of a two phase Small Business Innovative Research Grant issued by the US Department of Energy. Completion of the design, building and testing of three prototypes using different power semiconductors was successfully accomplished in Phase II. The power rating for the residential utility intertied Sunverters Model 753-4-200 is 5 kW. A stand-alone inverter suitable for operation from a photovoltaic array with or without a battery for energy storage was also developed in this effort. A much needed intermediate power level 50-kW three-phase power conditioner, Sunverter Model 759-4-200, was the third product to evolve from the research and development. All designs take advantage of the ASIC and a complementary microprocessor sampled-data control system. The ASIC-controlled power conditioners provide the high reliability, high efficiency, and low cost needed for photovoltaic applications. They cover the power range from the residential level to utility-sized installations.

O`Sullivan, G.A. [Abacus Controls, Inc., Somerville, NJ (United States); O`Sullivan, J.A. [Washington Univ., St. Louis, MO (United States)

1993-10-01T23:59:59.000Z

438

Design, construction and testing of a high-vacuum anneal chamber for in-situ crystallisation of silicon thin-film solar cells.  

E-Print Network (OSTI)

??Thin-film solar cells on glass substrates are likely to have a bright future due to the potentially low costs and the short energy payback times.… (more)

Weber, Jürgen Wolfgang

2006-01-01T23:59:59.000Z

439

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

440

Ranking low cost sorbents for mercury capture from simulated flue gases  

Science Conference Proceedings (OSTI)

Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

442

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

DOE Green Energy (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

443

Investigation of low-cost LNG vehicle fuel tank concepts. Final report  

DOE Green Energy (OSTI)

The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-02-01T23:59:59.000Z

444

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

Science Conference Proceedings (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

445

Solar Power In China | Open Energy Information  

Open Energy Info (EERE)

Solar Power In China Solar Power In China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Working on #ask query to display all Chinese solar companies TODO: query not working: need to select only certain "Place" - China and "Sector" - Solar All Solar PV Anwell Technologies Ltd aka Sungen BSL-Solar Beijing Sijimicoe Solar Energy Beijing Sky Solar Investment Management Co Big China Solar Energy Group CETC Solar Energy Centro Renewables Holding Limited China Innovation Investment Limited China Technology Solar Power Holdings Ltd Hong Kong Taiyang Investment Group Co Ltd Hope Solar Sun Bear Solar Ltd Sunrain Trina Solar Yingli Solar ZTE Energy Co Ltd Investment in Solar China's state-owned banks have provided low-cost loans to China's renewable

446

Low cost sprayed CdTe solar cell research. Second quarterly report, November 15, 1979-February 14, 1980  

DOE Green Energy (OSTI)

A comprehensive series of experiments was performed with the aim of optimizing parameters in the chemical spray deposition (CSD) of CdTe thin films. Two approaches have shown great promise. X-ray diffraction analysis has shown that CdTe can be produced from solutions containing CdCl/sub 2/ and (NH/sub 4/)TeO/sub 4/ with either hydrazine dihydrochloride or oxalic acid as the reducing agent. Films produced from the oxalic acid experiments have yielded encouraging infrared scans, and as a result this approach has received the most effort. In addition, good quality, photoconductive, CdS films have been produced via traditional methods and characterized using optical and electrical measurements. Overall film uniformity for both CdS and CdTe has been improved by the installation of a stainless steel, gravity fed, spray nozzle and mechanical linkage.

Sienkiewicz, P.; Lis, S.; Serreze, H.B.; Entine, G.

1980-03-01T23:59:59.000Z

447

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network (OSTI)

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

448

A fast-developing and low-cost characterization and test environment for a double axis resonating micromirror  

Science Conference Proceedings (OSTI)

Testing and characterization of micro-electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) can be very challenging due to the multi-domain nature of these devices. Nowadays high volume, high-cost, and accurate measuring ... Keywords: Fast-developing, Low-cost characterization, MOEMS, Microelectromechanical systems (MEMS), Micromirror, Testing

Francesco Battini; Emilio Volpi; Eleonora Marchetti; Tommaso Cecchini; Francesco Sechi; Luca Fanucci; Ulrich Hofmann

2010-11-01T23:59:59.000Z

449

Novel CdTe Cell Fabrication Process with Potential for Low Cost and High Throughput  

DOE Green Energy (OSTI)

There are several production disadvantages inherent in the conventional SnO(2)/CdS/CdTe manufacturing processes. In this paper, we report a novel manufacturing process for fabrication of polycrystalline Cd(2)SnO(4)/Zn(2)/SnO(4)/CdS/CdTe thin-film solar cells that yielded a CdS/CdTe device with an NREL-confirmed efficiency of 14.0%.

Wu, X.; Sheldon, P.

2000-01-01T23:59:59.000Z

450

Parabolic trough solar collectors : design for increasing efficiency  

E-Print Network (OSTI)

Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

Figueredo, Stacy L. (Stacy Lee), 1981-

2011-01-01T23:59:59.000Z

451

Potential Role of Concentrating Solar Power in Enabling High...  

NLE Websites -- All DOE Office Websites (Extended Search)

associated evolution of the U.S. grid to 2050. The SunShot Vision Study evaluated the impact of low-cost solar technologies, while the Renewable Electricity Futures Study analyzed...

452

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

453

GaNPAs Solar Cells Lattice-Matched To GaP: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

Geisz, J. F.; Friedman, D. J.; Kurtz, S.

2002-05-01T23:59:59.000Z

454

Energy Department Support Brings Game-Changing Advancements in Solar Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Support Brings Game-Changing Advancements in Department Support Brings Game-Changing Advancements in Solar Energy Energy Department Support Brings Game-Changing Advancements in Solar Energy November 29, 2012 - 10:37am Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported

455

Energy Department Support Brings Game-Changing Advancements in Solar Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Support Brings Game-Changing Advancements in Energy Department Support Brings Game-Changing Advancements in Solar Energy Energy Department Support Brings Game-Changing Advancements in Solar Energy November 29, 2012 - 10:37am Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy Laboratory (NREL). | Photo by Daniel Derkacs/Solar Junction. Date taken: 2012-11-29 09:21 Solar Innovation 2 of 5 Solar Innovation Solar Junction's record-breaking SJ3 solar cell is based on EERE-supported

456

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

DOE Green Energy (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variati