Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A low cost high flux solar simulator  

E-Print Network [OSTI]

A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

Codd, Daniel S.

2

Multi-junction solar cell device  

DOE Patents [OSTI]

A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

Friedman, Daniel J. (Lakewood, CO); Geisz, John F. (Wheat Ridge, CO)

2007-12-18T23:59:59.000Z

3

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

4

Emerging High-Efficiency Low-Cost Solar Cell Technologies  

E-Print Network [OSTI]

. A Manufacturing Cost Analysis Relevant to Photovoltaic Cells Fabricated with IIIEmerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute

McGehee, Michael

5

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...  

Office of Environmental Management (EM)

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2...

6

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

7

Formation of Porous Layers by Electrochemical Etching of Germanium and Gallium Arsenide for Cleave Engineered Layer Transfer (CELT) Application in High Efficiency Multi-Junction Solar Cells  

E-Print Network [OSTI]

III! V Multijunction Solar Cells,” (2003). J. F. Geisz, etEfficiency Multi-Junction Solar Cells A thesis submitted inEfficiency Multi-Junction Solar Cells By David Michael Fong

Fong, David Michael

2012-01-01T23:59:59.000Z

8

Research and Development of a Low Cost Solar Collector  

SciTech Connect (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

9

Aberration-corrected transmission electron microscopy analyses of GaAs/Si interfaces in wafer-bonded multi-junction solar cells  

E-Print Network [OSTI]

-bonded multi-junction solar cells Dietrich Häussler a , Lothar Houben b , Stephanie Essig c , Mert Kurttepeli online 20 July 2013 Keywords: Multi-junction solar cell Wafer bonding Interfaces Aberration corrected and composition fluctuations near interfaces in wafer-bonded multi-junction solar cells. Multi-junction solar

Dunin-Borkowski, Rafal E.

10

A market analysis for high efficiency multi-junction solar cells grown on SiGe  

E-Print Network [OSTI]

Applications, markets and a cost model are presented for III-V multi-junction solar cells built on compositionally graded SiGe buffer layers currently being developed by professors Steven Ringell of Ohio State University ...

Judkins, Zachara Steele

2007-01-01T23:59:59.000Z

11

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Solar Receiver for Use in a Supercritical CO 2 Recompression Cycle Brayton Energy, LLC Award Number: DE-EE0005799 | November 30, 2012 | Sullivan * Numerical Modeling is...

12

Solar Water Heating with Low-Cost Plastic Systems (Brochure)  

SciTech Connect (OSTI)

Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

Not Available

2012-01-01T23:59:59.000Z

13

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

SciTech Connect (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

14

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

15

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

16

UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications  

E-Print Network [OSTI]

UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless nature of the circuit and providing operational autonomy by harvesting solar power without affecting, solar power harvesting. I. INTRODUCTION The increasing use of RFIDs and wireless sensor networks

Tentzeris, Manos

17

Engineering metal-impurity nanodefects for low-cost solar cells  

E-Print Network [OSTI]

LETTERS Engineering metal-impurity nanodefects for low-cost solar cells TONIO BUONASSISI1 online: 14 August 2005; doi:10.1038/nmat1457 A s the demand for high-quality solar-cell feedstock exceeds in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive

18

DESIGN APPROACHES AND MATERIALS PROCESSES FOR ULTRAHIGH EFFICIENCY LATTICE MISMATCHED MULTI-JUNCTION SOLAR CELLS  

E-Print Network [OSTI]

-JUNCTION SOLAR CELLS Melissa J. Griggs 1 , Daniel C. Law 2 , Richard R. King 2 , Arthur C. Ackerman 3 , James M heterostructures grown in a multi-junction solar cell-like structure by MOCVD. Initial solar cell data are also of the minority carrier lifetime. INTRODUCTION High efficiency triple junction solar cells have recently been

Atwater, Harry

19

The Potential for Low-Cost Concentrating Solar Power Systems  

SciTech Connect (OSTI)

Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

1999-07-08T23:59:59.000Z

20

innovati nNREL Scientists Spurred the Success of Multijunction Solar Cells  

E-Print Network [OSTI]

innovati nNREL Scientists Spurred the Success of Multijunction Solar Cells Before 1984, many a solar cell can convert into electricity. Olson thought the focus should change to finding materials-winning gallium indium phosphide/gallium arsenide tandem solar cell, which had achieved record efficiencies, con

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

1996-01-01T23:59:59.000Z

22

NREL Spurred the Success of Multijunction Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Many scientists once believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. However, researchers at the National Renewable Energy Laboratory (NREL) thought differently, and they employed GaInP in a material combination that allowed the multijunction cell to flourish. The multijunction cell is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic products.

Not Available

2013-08-01T23:59:59.000Z

23

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

24

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents [OSTI]

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

1998-06-16T23:59:59.000Z

25

Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint  

SciTech Connect (OSTI)

State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

2012-06-01T23:59:59.000Z

26

III-V Growth on Silicon Toward a Multijunction Cell  

SciTech Connect (OSTI)

A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

2005-11-01T23:59:59.000Z

27

Review of Back Contact Silicon Solar Cells for Low-Cost Application  

SciTech Connect (OSTI)

Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.

Smith, David D.

1999-08-04T23:59:59.000Z

28

Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis  

E-Print Network [OSTI]

An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the ...

Berrada Sounni, Amine

2010-01-01T23:59:59.000Z

29

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-TermLosofLow Cost Solar Water

30

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain,Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

31

NREL Scientists Spurred the Success of Multijunction Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

Before 1984, many scientists believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. One researcher at the Solar Energy Research Institute (SERI) thought differently. His name was Jerry Olson, and his innovative thinking changed solar history. Olson identified a material combination that allowed the multijunction cell to flourish. It is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic (CPV) products.

Not Available

2012-09-01T23:59:59.000Z

32

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

1.6 Schematic of a solar panel with PV cells connected inand installation cost of solar panels and enhance PV cell1.6 Schematic of a solar panel with PV cells connected in

Leow, Shin Woei

2014-01-01T23:59:59.000Z

33

Low-cost evacuated-tube solar collector appendices. Final report  

SciTech Connect (OSTI)

A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

Beecher, D.T.

1980-05-31T23:59:59.000Z

34

Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Highlight describes research into a more precise technology for measuring efficiency of concentrating solar cells, which will enable the industry to advance.

Not Available

2015-01-01T23:59:59.000Z

35

Wide-band-gap InAlAs solar cell for an alternative multijunction approach Marina S. Leite,1,a  

E-Print Network [OSTI]

Wide-band-gap InAlAs solar cell for an alternative multijunction approach Marina S. Leite,1,a Robyn L. Woo,2 William D. Hong,2 Daniel C. Law,2 and Harry A. Atwater1 1 California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA 2 Boeing-Spectrolab Inc., 12500

Atwater, Harry

36

Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint  

SciTech Connect (OSTI)

Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

McConnell, R.; Symko-Davies, M.

2006-05-01T23:59:59.000Z

37

Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell: Preprint  

SciTech Connect (OSTI)

The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 degrees C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 degrees C hotter, reaching as high as 100 degrees C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 degrees C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

2011-07-01T23:59:59.000Z

38

Lithography-free sub-100nm nanocone array antireflection layer for low-cost silicon solar cell  

E-Print Network [OSTI]

High density and uniformity sub-100nm surface oxidized silicon nanocone forest structure is created and integrated onto the existing texturization microstructures on photovoltaic device surface by a one-step high throughput plasma enhanced texturization method. We suppressed the broadband optical reflection on chemically textured grade-B silicon solar cells for up to 70.25% through this nanomanufacturing method. The performance of the solar cell is improved with the short circuit current increased by 7.1%, fill factor increased by 7.0%, conversion efficiency increased by 14.66%. Our method demonstrates the potential to improve the photovoltaic device performance with low cost high and throughput nanomanufacturing technology.

Xu, Zhida

2014-01-01T23:59:59.000Z

39

Low-Cost Light Weigh Thin Film Solar Concentrators | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Termpaul_fini@cree.com CREE SBTC Low-Cost

40

Development of a Low Cost Ultra Specular Advanced Polymer Film Solar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow Cost 3-10kW

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Low-cost selective deposition of wax onto textured solar cells  

E-Print Network [OSTI]

The active regions of a solar cell must be inoculated with wax, while leaving the metal fingers and bus bars bare, in preparation for the electroplating step of a new solar panel manufacturing process. Different methods ...

Páez, Daýan

2008-01-01T23:59:59.000Z

42

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect (OSTI)

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

43

Design of cascaded low cost solar cell with CuO substrate  

SciTech Connect (OSTI)

For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan [Advanced Electronic Technology Center, ECE Dept., University of Massachusetts, Lowell, MA-01851 (United States)

2013-12-04T23:59:59.000Z

44

InGaAsN/GaAs heterojunction for multi-junction solar cells  

DOE Patents [OSTI]

An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

2001-01-01T23:59:59.000Z

45

Design of a compact, lightweight, and low-cost solar concentrator  

E-Print Network [OSTI]

The objective of this mechanical design project was to improve the current design of large and heavy solar concentrators. The three main design goals were: making the system compact, making the system lightweight, and ...

González, Gabriel J. (Gabriel Joe), 1980-

2004-01-01T23:59:59.000Z

46

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

SciTech Connect (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

47

Low cost and high performance light trapping structure for thin-film solar cells  

E-Print Network [OSTI]

Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

Wang, DongLin; Su, Gang

2015-01-01T23:59:59.000Z

48

High volume method of making low-cost, lightweight solar materials  

SciTech Connect (OSTI)

A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

2014-07-15T23:59:59.000Z

49

Solar cells with low cost substrates and process of making same  

DOE Patents [OSTI]

A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

Mitchell, Kim W. (Indian Hills, CO)

1984-01-01T23:59:59.000Z

50

Development of a Low Cost Ultra Specular Advanced Polymer Film...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was...

51

Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light-  

E-Print Network [OSTI]

light-to -electricity conversion efficiency in early implementations under AM1.5 solar light. EasyDye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light- to-electricity conversion in indoors low-light

52

Array automated assembly task low cost silicon solar array project. Phase 2. Final report  

SciTech Connect (OSTI)

The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

Olson, Clayton

1980-12-01T23:59:59.000Z

53

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology  

SciTech Connect (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. (Spire Corp., Bedford, MA (United States))

1993-04-01T23:59:59.000Z

54

High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration  

SciTech Connect (OSTI)

We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

Young, N. G., E-mail: ngyoung@engineering.ucsb.edu; Farrell, R. M.; Iza, M.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Perl, E. E.; Keller, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Bowers, J. E.; Nakamura, S.; DenBaars, S. P. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

2014-04-21T23:59:59.000Z

55

DEVELOPMENT OF A HIGH EFFICIENCY MECHANICALLY STACKED MULTI-JUNCTION SOLAR CELL  

E-Print Network [OSTI]

Monolithic, 2-terminal, epitaxially grown multi-junctions represent the state-of-the-art in high efficiency photovoltaic space power. Their in-situ monolithic integration results in an elegant device structure with high efficiency, relatively high specific power, and a simple fabrication process. The monolithic, epitaxially grown nature of these devices also imposes materials and design restrictions which impede the march to significantly higher

Daniel Aiken; Paul Sharps; Mark Stan; Harry Atwater; Anna Fontcuberta I Morral; James Zahler; Mark Wanlass

56

Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting  

SciTech Connect (OSTI)

Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

Not Available

1980-01-01T23:59:59.000Z

57

Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge  

DOE Patents [OSTI]

A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

2001-01-01T23:59:59.000Z

58

Multijunction III-V Photovoltaics Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

coating. DOE invests in multijunction III-V solar cell research to drive down the costs of the materials, manufacturing, tracking techniques, and concentration methods used...

59

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

60

Low-Cost Heliostat for Modular Systems- Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

62

Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells  

E-Print Network [OSTI]

We report a novel graded refractive index antireflection coating for III/V quadruple solar cells based on bottom-up grown tapered GaP nanowires. We have calculated the photocurrent density of an InGaP-GaAs-InGaAsP-InGaAs solar cell with a MgF2/ZnS double layer antireflection coating and with a graded refractive index coating. The photocurrent density can be increased by 5.9 % when the solar cell is coated with a graded refractive index layer with a thickness of 1\\mu m. We propose to realize such a graded refractive index layer by growing tapered GaP nanowires on III/V solar cells. For a first demonstration of the feasibility of the growth of tapered nanowires on III/V solar cells, we have grown tapered GaP nanowires on AlInP/GaAs substrates. We show experimentally that the reflection from the nanowire coated substrate is reduced and that the transmission into the substrate is increased for a broad spectral and angular range.

Diedenhofen, Silke L; Haverkamp, Erik; Bauhuis, Gerard; Schermer, John; Rivas, Jaime Gómez; 10.1016/j.solmat.2012.02.022

2012-01-01T23:59:59.000Z

63

Phase 2 of the array automated assembly task for the low cost silicon solar array project. Fifth quarterly report  

SciTech Connect (OSTI)

This program focuses attention on one key step of a proposed process sequence for mass production of inexpensive silicon solar arrays for terrestrial use. The process step of concern is the metallization of the solar cell. Solarex has proposed that the metallization be accomplished by a single electroless plating of nickel followed by a dip in molten solder, and Solarex manufactures solar cells using this procedure. ing, cleaning and annealing. Motorola has recommended a process which includes the electroless nickel plate and solder dip of the Solarex process, but which precedes these steps with a number of additional steps of palladium plating, cleaning and annealing. Motorola has claimed that these additional steps are necessary to assure proper ohmic contact with the silicon while at the same time avoiding excessive nickel penetration into the silicon. This program comprises a technical comparison of the Solarex and Motorola processes. Progress is reported.

Petersen, R.C.; Anderson, J.R.

1980-01-01T23:59:59.000Z

64

Phase 2 of the array automated assembly task for the low cost silicon solar array project. Final report  

SciTech Connect (OSTI)

Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process proposed by Motorola, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work has directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The Motorola process was compared with simple electroless nickel plating in a series of parallel experiments. Results are presented. (WHK)

Petersen, R.C.

1980-11-01T23:59:59.000Z

65

Phase 2 of the array automated assembly task for the Low Cost Silicon Solar Array Project. Seventh quarterly report  

SciTech Connect (OSTI)

Work during this quarter emphasized the evaluation of the Motorola metallization process, the major experimental task of the program. The Motorola process is a lengthy one, designed to assure reproducible metallization of solar cells, but it was found difficult to reproduce relative to a single step electroless nickel plating. It is also concluded, on the basis of experiments performed to date, that the product of the Motorola process is virtually identical to the product of a simple electroless nickel plating process.

Petersen, R.C.

1980-07-01T23:59:59.000Z

66

Development of low cost contacts to silicon solar cells. Final report, 15 October 1978-30 April 1980  

SciTech Connect (OSTI)

A summary of work done on the development of a copper based contact system for silicon solar cells is presented. The work has proceeded in three phases: (1) Development of a copper based contact system using plated Pd-Cr-Cu. Good cells were made but cells degraded under low temperature (300/sup 0/C) heat treatments. (2) The degradation in Phase I was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. (3) An electroless nickel solution was substituted for the electroless chrominum solution in the original process. Efforts were made to replace the palladium bath with an appropriate nickel layer, but these were unsuccessful. 150 cells using the Pd-Ni-Cu contact system were delivered to JPL. Also a cost study was made on the plating process to assess the chance of reaching 5 cents/watt.

Tanner, D.P.; Iles, P.A.

1980-01-01T23:59:59.000Z

67

Sponsored by Nanotechnology Seminar Program Fulfilling a Dream: Low Cost  

E-Print Network [OSTI]

material for low cost, thin film, solar cell absorber layers is the quaternary compound of Cu2ZnSnS4 (CZTS for the development of low cost Cu2ZnSn(Se,S)4 thin film solar cells with even higher efficiency. BIOGRAPHY Lili electronics and in flexible solar panels with applications in electric cars, smarter buildings and data

Fisher, Frank

68

Low Cost, Durable Seal  

SciTech Connect (OSTI)

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

69

Low Cost Heliostat Development  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

70

SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)  

SciTech Connect (OSTI)

The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

Not Available

2012-06-01T23:59:59.000Z

71

Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213  

SciTech Connect (OSTI)

UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

Bhattacharya, R.

2011-02-01T23:59:59.000Z

72

Low-Cost Spectral Sensor Development Description.  

SciTech Connect (OSTI)

Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

Armijo, Kenneth Miguel; Yellowhair, Julius

2014-11-01T23:59:59.000Z

73

Calcium niobate nanosheets as a novel electron transport material for solution-processed multi-junction polymer solar cells  

E-Print Network [OSTI]

from a common solvent. Nanoscale interpenetrating networks are formed as the donor and acceptor phase-junction polymer solar cells Lilian Chang,a Michael A. Holmes,b Mollie Waller,b Frank E. Osterlohb and Adam J-processed tandem polymer solar cells are demonstrated using stacked perovskite, (TBA,H) Ca2Nb3O10 (CNO

Osterloh, Frank

74

Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells  

E-Print Network [OSTI]

-Cost, High-Efficiency Solar Cells Tung Ho1 , Robert Vittoe3 , Namratha Kakumanu2 , Sudhir Shrestha2-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 Thin film solar cells made from copper indium gallium thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace

Zhou, Yaoqi

75

Performance of CPV System Using Three Types of III-V Multi-Junction Solar Cells: Preprint  

SciTech Connect (OSTI)

The performance of sister CPV systems is compared in Japan and the U.S. The conclusion is that the alignment of the systems can affect the design of the solar cells.

Hashimoto, J.; Kurtz, S.; Sakurai, K.; Muller, M.; Otani, K.

2012-04-01T23:59:59.000Z

76

Nanobonding for Multi-Junction Solar Cells at Room Temperature T. Yu, M. M. R. Howlader*, F. Zhang, M. Bakr  

E-Print Network [OSTI]

-junction solar cell structure [GaInP/GaAs/InGaAsP/InGaAs] has been proposed, the epitaxially grown GaInP/GaAs junction on Ge layer bonded with oxidized Si substrate and the epitaxially grown InGaAsP/InGaAs junction interest. They are known for their high efficiency, which is achieved by dividing the absorption of light

Howlader, Matiar R

77

Rock glacier monitoring with low-cost GPS  

E-Print Network [OSTI]

moving stations on rock glacier Low-cost L1 GPS receivers (blox) Power source: solar panels Local data Rock glacier GPS antennaGPS antenna Solar panelSolar panel Box incl.Box incl. -GPS receiverData logger Instruments Solar panelSolar panel (24W, 12V, 50x50cm)(24W, 12V, 50x50cm) Costs per station: 2

78

Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344  

SciTech Connect (OSTI)

NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

Wanlass, M.

2012-07-01T23:59:59.000Z

79

Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992  

SciTech Connect (OSTI)

This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

Vernon, S.M. [Spire Corp., Bedford, MA (United States)

1993-04-01T23:59:59.000Z

80

Low Cost Non-Reactive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - Rocky MountainPrepared: 10/28/09 Low Cost

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-Cost, Lightweight Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Concentrators California Institute of TechnologyJet Propulsion Laboratory Award Number:0595-1612 | April 18, 2013 | Ganapathi * Mirror module development has been approached with...

82

Low-Cost, Lightweight Solar Concentrator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Termpaul_fini@cree.comVehicles |JPL/L'Garde

83

Low-Cost, Lightweight Solar Concentrators  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Termpaul_fini@cree.comVehicles |JPL/L'GardeCost,

84

BUSINESS PLAN NIRMAL: LOW COST WATER PURIFICATION  

E-Print Network [OSTI]

the water. Hence we intend to address the issue by providing a low cost water purification system usingNIRMAL #12;BUSINESS PLAN 2 NIRMAL: LOW COST WATER PURIFICATION I. Executive summary Nearly one area, it makes sense to transport the point of use purification system itself. Field research by team

Mlllet, Dylan B.

85

Low Cost Hydrogen Production Platform  

SciTech Connect (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

86

Formation of Porous Layers by Electrochemical Etching of Germanium and Gallium Arsenide for Cleave Engineered Layer Transfer (CELT) Application in High Efficiency Multi-Junction Solar Cells  

E-Print Network [OSTI]

film photovoltaics [1]. This roughly doubling of efficiencyMJ photovoltaics. MJ solar cells achieve higher efficiencies

Fong, David Michael

2012-01-01T23:59:59.000Z

87

Low-Cost Installation of Concentrating Photovoltaic  

E-Print Network [OSTI]

Low-Cost Installation of Concentrating Photovoltaic Renewable Energy Research Renewable Energy inhibit the potential growth of the California photovoltaic market: high installation costs, expenses improvements have been made in recent years on the assembly and deployment of flatplate photovoltaic

88

Advanced Low-Cost Receivers for Parabolic Troughs  

Broader source: Energy.gov [DOE]

This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

89

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber (CF) with at least 650 ksi tensile strength. Development of Low-Cost, High...

90

A Low-Cost Continuous Emissions Monitoring System for Mobile...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition A Low-Cost Continuous Emissions...

91

Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

92

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Broader source: Energy.gov (indexed) [DOE]

10 - Low Cost PM Technology for Particle Reinforced Titanium Automotive Components edm2@chrysler.com February 28, 2008 Low Cost PM Technology for Particle Reinforced Titanium...

93

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

94

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

95

www.praxair.com Low Cost Hydrogen  

E-Print Network [OSTI]

www.praxair.com Low Cost Hydrogen Production Platform Cooperative Agreement: DE-FC36-01GO11004 Timothy M. Aaron Team Praxair - Tonawanda, NY Boothroyd-Dewhurst - Wakefield, RI Diversified Manufacturing (Hot Components Only) Praxair HGS Comparison 1/4 Capacity 1/6 Physical Plant Size Lower H2 Cost

96

Low-cost inertial measurement unit.  

SciTech Connect (OSTI)

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

97

Commercialization of New Lattice-Matched Multi-Junction Solar Cells Based on Dilute Nitrides: July 8, 2010 - March 7, 2012  

SciTech Connect (OSTI)

Final Technical Progress Report for PV Incubator subcontract NAT-0-99013-03. The overall objective of this Incubator subcontract was to complete the work necessary to make commercial ready solar cells using the dilute nitride technology. The specific objectives of this program were aimed at completing the development of a triple-junction solar cell that incorporates a GaInNAs {approx}1eV subcell to the point of commercial readiness, and determining the cell reliability and, if necessary, identifying and eliminating process or material related issues that lead to early-life cell failures. There were three major objectives for Phase 1, each of which focuses on a key element of the solar cell that determines its performance in a commercial CPV system. One objective was to optimize the quality and performance of the key individual components making up the solar cell structure and then to optimize the integration of these components into a complete triple-junction cell. A second objective was to design and test anti-reflective coating that maximizes the light coupled into a 3J cell with a {approx}1 eV bottom cell bandgap. The third objective was to develop Highly Accelerated Life Tests (HALT) protocols and tools for identifying and correcting potential reliability problems. The Phase 2 objectives were a continuation of the work begun in Phase 1 but aimed at optimizing cell performance for commercial requirements. Phase 2 had four primary objectives: (1) develop a glass-matched anti-reflective coating (ARC) and optimize the cell/ARC to give good performance at 60C operating temperature, (2) optimize the cell for good operation at 60C and high concentration, and (3) complete the light biased HALT system and use it to determine what, if any, failures are observed, and (4) determine the reliability limits of the optimized cell.

Herb, J.

2012-04-01T23:59:59.000Z

98

Bifacial solar cell with SnS absorber by vapor transport deposition  

SciTech Connect (OSTI)

The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

Wangperawong, Artit [Stanford University, Stanford, California 94305 (United States); Department of Electrical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140 (Thailand); Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F., E-mail: sbent@stanford.edu [Stanford University, Stanford, California 94305 (United States)

2014-10-27T23:59:59.000Z

99

Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions  

SciTech Connect (OSTI)

This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

Duda, A.; Ward, S.; Young, M.

2012-02-01T23:59:59.000Z

100

Low-Cost Manufacturable Microchannel Systems for Passive  

E-Print Network [OSTI]

for use in fuel cell systems need development in order to achieve cost targets. Low-cost, highLow-Cost Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 LowLow--CostCost;2 Project objective: Create a low cost and passive PEM water management system Project objective

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low-cost laser diode array  

DOE Patents [OSTI]

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

102

Low-cost laser diode array  

DOE Patents [OSTI]

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

103

Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219 255Retrievals of Temperature andEnergy

104

Low cost subpixel method for vibration measurement  

SciTech Connect (OSTI)

Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

2014-05-27T23:59:59.000Z

105

Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010  

SciTech Connect (OSTI)

Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

Fatemi, H.

2012-07-01T23:59:59.000Z

106

Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and...

107

The era of plentiful, low-cost petroleum is  

E-Print Network [OSTI]

The era of plentiful, low-cost petroleum is approaching an end. Without massive mitigation of plentiful, low-cost petroleum is approaching an end. The good news is that commercially viable mitigation

Laughlin, Robert B.

108

Enhanced Photon Recycling in Multijunction Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy

109

Low-Cost MHTES Systems for CSP  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

110

Deploying Low-Cost Suspension Heliostats  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

111

Task 8.8 -- Low cost ceramic materials  

SciTech Connect (OSTI)

This subtask was originally titled ``Reheat Combustor Materials`` and was proposed in anticipation of the addition of a reheat combustor to the ICR gas turbine cycle. When the emphasis of ATS became the optimized recuperated cycle, the goal of the subtask was changed to the evaluation of low cost materials for gas turbine combustor liners. It now supplements similar work being conducted by Solar under DOE Contract No.DE-ACO2-92-CE40960, titled ``Ceramic Stationary Gas Turbine (CSGT) Development.`` The use of a ceramic combustor liner in gas turbines contributes to emissions reductions by freeing cooling air for use as primary combustion air and by allowing higher wall temperatures, which contribute to more complete combustion of hydrocarbons. Information from a literature survey, manufacturer`s data, and Solar`s experience was used to select three materials for testing. In addition to material properties requirements for selection, subscale combustor liner cost was required to be at least half of the high modulus continuous fiber reinforced composite part cost. The three materials initially selected for evaluation are listed in Table 1. Four hour subscale rig tests were planned for eight inch diameter liners made from each material. Upon successful completion of each four hour test, a fifty hour test was planned.

NONE

1997-06-30T23:59:59.000Z

112

Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation  

SciTech Connect (OSTI)

Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

2012-03-31T23:59:59.000Z

113

Adaptive PCCI with Variable Orifice Injector for Low Cost High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Low Cost High Efficiency Clean Diesels Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit,...

114

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

information" 4 Approach BASF has a low cost production process for Li ion battery cathode materials. In this project, the cathode materials developed in the laboratory will be...

115

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensively explored, tested, and...

116

Low Cost Exploration, Testing, and Development of the Chena Geothermal...  

Open Energy Info (EERE)

Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensivelyexplored, tested, and...

117

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode Production Plant in Elyria, Ohio Li-Ion Battery Cell...

118

An integrated approach towards efficient, scalable, and low cost...  

Broader source: Energy.gov (indexed) [DOE]

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and...

119

Fast, Low Cost Method for Manufacturing Porous Structures for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Find More Like This Return to Search Fast, Low Cost Method for Manufacturing Porous Structures for Fuel Cells, Catalysts and Filtration...

120

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

- EV) Use BASF's existing assets and low cost production process. Validate that cost and quality targets are met via coin cells, pouch cells and 18650 cells. ...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development and Commercialization of a Novel Low-Cost Carbon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Commercialization of a Novel Low-Cost Carbon Fiber 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

122

High Performance, Low Cost Hydrogen Generation from Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Performance, Low Cost Hydrogen Generation from Renewable Energy 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

123

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

124

Low-Cost Illumination-Grade LEDs  

SciTech Connect (OSTI)

Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

Epler, John

2013-08-31T23:59:59.000Z

125

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network [OSTI]

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

126

Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)  

SciTech Connect (OSTI)

Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

Not Available

2011-05-01T23:59:59.000Z

127

Low Cost Ceramics:Low Cost Ceramics: Applications in Water FiltrationApplications in Water Filtration  

E-Print Network [OSTI]

compared to price range ofprice range of commercial filterscommercial filters Drawbacks of parabolic mirrors (fires) and solarDrawbacks of parabolic mirrors (fires) and solar cookers Panel DiscussionIRC Princeton Alumnus Panel Discussion

Petta, Jason

128

Low-Cost, Lightweight Solar Concentrator (Fact Sheet)  

SciTech Connect (OSTI)

Jet Propulsion Laboratory (JPL) is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

129

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2011-06-08T23:59:59.000Z

130

Project Profile: Low-Cost, Lightweight Solar Concentrators | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItemsHiTek logo HiTek Services,

131

Low Cost Solar Water Heating R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term Storage ofEnergy High VoltageTemplate

132

Low-Cost, Lightweight Solar Concentrator | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergyTitanium Alloy

133

Architecture of a Small Low-Cost Satellite D. Del Corso, C. Passerone, L. M. Reyneri, C. Sanso`e, M. Borri, S. Speretta, M. Tranchero  

E-Print Network [OSTI]

ones, such as solar panels and antennas. The tem- perature range inside the satellite is [+30,+70] CArchitecture of a Small Low-Cost Satellite D. Del Corso, C. Passerone, L. M. Reyneri, C. Sanso`e, M satellite that we have developed. The main design cri- teria were low cost and fault tolerance, which have

134

Low-Cost High-Pressure Hydrogen Generator  

SciTech Connect (OSTI)

Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

Cropley, Cecelia C.; Norman, Timothy J.

2008-04-02T23:59:59.000Z

135

LOW COST COMPOSITE (LCC) STRUCTURES MASTER'S RESEARCH PROJECT  

E-Print Network [OSTI]

LOW COST COMPOSITE (LCC) STRUCTURES MASTER'S RESEARCH PROJECT November 2010 Supervisors: Profs undergraduate 4th Year Project teams have used the results of this work to manufacture various GS II

Dawson, Jeff W.

136

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network [OSTI]

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

137

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

138

Low cost private education in India : challenges and way forward  

E-Print Network [OSTI]

The Low Cost Private School phenomenon has gained momentum and increased visibility in recent years as researchers have begun to map and record the existence of millions of private schools that cater to the education needs ...

Garg, Nupur, M.B.A. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

139

Low-cost exterior insulation process and structure  

DOE Patents [OSTI]

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

140

Development of a low-cost underwater manipulator  

E-Print Network [OSTI]

This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive or limited in functionality. ...

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Design of small, low-cost, underwater fin manipulator  

E-Print Network [OSTI]

This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater servos commercially available. The design involves modifying a commercially ...

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

142

Low-cost exterior insulation process and structure  

DOE Patents [OSTI]

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

143

Development and performance of a miniature, low cost mass spectrometer  

E-Print Network [OSTI]

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01T23:59:59.000Z

144

Low-cost electromagnetic tagging : design and implementation  

E-Print Network [OSTI]

Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

Fletcher, Richard R. (Richard Ribon)

2002-01-01T23:59:59.000Z

145

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, M. L. Santella, and G. Muralidharan Oak Ridge National Laboratory (ORNL) This presentation does not...

146

Multijunction photovoltaic device and fabrication method  

DOE Patents [OSTI]

A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

Arya, Rajeewa R. (Jamison, PA); Catalano, Anthony W. (Furlong, PA)

1993-09-21T23:59:59.000Z

147

CX-000268: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-000268: Categorical Exclusion Determination High Efficiency, Low-Cost, Multijunction Solar Cells Based on Epitaxial Liftoff and Wafer Bonding; National Renewable Energy...

148

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network [OSTI]

High-resolution modeling of the western North American power system demonstrates low-cost and low energy Carbon emissions a b s t r a c t Decarbonizing electricity production is central to reducing of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear

Kammen, Daniel M.

149

III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

150

Gelatin/graphene systems for low cost energy storage  

SciTech Connect (OSTI)

In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

151

Low-Cost Titanium Powder for Feedstock | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and ElectricityLow-Cost

152

Multijunction photovoltaic device and method of manufacture  

DOE Patents [OSTI]

A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

Arya, Rejeewa R. (Jamison, PA); Catalano, Anthony W. (Boulder, CO); Bennett, Murray (Longhorne, PA)

1995-04-04T23:59:59.000Z

153

Low-cost and durable catalyst support for fuel cells: graphite...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost and durable catalyst support for fuel cells: graphite submicronparticles. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles. Abstract: Low-cost...

154

Low-Cost Carbon-Fiber Integration / Users Facility and Commercializati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile Precursors Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile...

155

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007...

156

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries...

157

Demonstrating Innovative Low-Cost Carbon Fiber for Energy  

E-Print Network [OSTI]

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications #12 posttreatment for various resin systems Winding and packaging Carbon fiber is a strong, stiff, lightweight of today's relatively high price. Current methods for manufacturing carbon fiber and carbon-fiber

Pennycook, Steve

158

Low Cost, High Efficiency Reversible Fuel Cell Systems  

E-Print Network [OSTI]

Low Cost, High Efficiency Reversible Fuel Cell Systems DE-FC36-99GO-10455 POC: Doug Hooker Dr Approach: System Concept Fuel Cell Subsystem Battery Subsystem Converter Electrolyzer Subsystem Inverter, -- (216) 541(216) 541--10001000 Slide 5 Approach: Challenges ·Electrolyzer Subsystem Efficiency ·Fuel Cell

159

Transmitting Digitized Video Using the Low Cost G-Link  

E-Print Network [OSTI]

Transmitting Digitized Video Using the Low Cost G-Link Chipset Application Note 1077 h-Link) to distribute multiple uncompressed digitized video signals across a single coaxial or fiber-optic cable. Although the main theme of the paper is video distribution, the techniques discussed apply to any applica

California at Santa Cruz, University of

160

Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud  

E-Print Network [OSTI]

Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open and maintain. #12;Cloud Computing · Distributed or Cloud computing allows for the use of virtual computers Web Services (AWS) · EC2 ­ Amazon Elastic Compute Cloud "a web service that provides resizable compute

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS  

E-Print Network [OSTI]

common hydrocarbon fuels (e.g., natural gas, propane, and bio-derived fuel) as well as hydrogenLOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS Dr. Christopher E. Milliken, Materials Group Boulevard Cleveland, Ohio 44108 216-541-1000 Abstract Fuel cell technologies are described in the 2001 DOE

162

Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!  

E-Print Network [OSTI]

Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote, Manufacturing Research Center, Georgia Institute of Technology Photovoltaics (PV) will be part of the energy mix volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

Das, Suman

163

Handheld and low-cost digital holographic microscopy  

E-Print Network [OSTI]

This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

2012-01-01T23:59:59.000Z

164

Low Cost PEM Fuel Cell Metal Bipolar Plates  

E-Print Network [OSTI]

Low Cost PEM Fuel Cell Metal Bipolar Plates CH Wang TreadStone Technologies, Inc. Fuel Cell Project, stationary and automobile fuel cell systems. $0.00 $0.05 $0.10 $0.15 $0.20 $0.25 $0.30 $0.35 $0.40 $0.45 $0. · The technology has been evaluated by various clients and used in portable fuel cell power systems. Corporate

165

Accessing Low-Cost Capital Through Securitization (Poster)  

SciTech Connect (OSTI)

Poster for Solar Power International conference presents information on NREL's effort to open capital markets through securitization via Solar Access to Public Capital (SAPC) working group's efforts.

Mendelsohn, M.

2014-10-01T23:59:59.000Z

166

Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base  

SciTech Connect (OSTI)

The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

1980-01-01T23:59:59.000Z

167

Low cost, large area silicon detectors for calorimetry  

SciTech Connect (OSTI)

Trapezoidal detectors with 28 cm{sup 2} active area have been fabricated on >2500 {Omega}cm, 4 in. diameter n-type silicon wafers. Instead of the commonly used ion implantation method, low-cost, high volume solid state diffusion technology along with phosphosilicate-glass and TCA gettering was adopted for boron and phosphorus doping. Typically the diode dark current was 15 {mu}A {at} 100 volts. Efforts are being made to obtain a finished device yield of 80% to meet the $2/cm{sup 2} price goal of SSC semiconductor detector group. 20 refs., 4 figs.

Korde, R. (International Radiation Detectors, Torrance, CA (USA)); Furuno, K.; Hwang, H.; Brau, J.E. (Oregon Univ., Eugene, OR (USA)); Bugg, W.M. (Tennessee Univ., Knoxville, TN (USA))

1990-01-01T23:59:59.000Z

168

Low Cost Nanostructured Smart Window Coatings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-TermLosof EnergyLow Cost

169

Low-Cost Ventilation in Production Housing - Building America Top  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and

170

Low-Cost LED Luminaire for General Illumination  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Termpaul_fini@cree.com CREE SBTC Low-Cost LED

171

Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA andDriving InnovationDurable, Low Cost,

172

low-cost-sorbent | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE MilestoneEddyObservationsLow Cost Sorbent

173

Low-cost fiber-optic chemochromic hydrogen detector  

SciTech Connect (OSTI)

The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

1998-08-01T23:59:59.000Z

174

Low Cost PEM Fuel Cell Metal Bipolar Plates  

SciTech Connect (OSTI)

Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

Wang, Conghua [TreadStone Technologies, Inc.

2013-05-30T23:59:59.000Z

175

Energy Department Announces up to $4 Million to Advance Low-Cost...  

Broader source: Energy.gov (indexed) [DOE]

to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable...

176

DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Requests for Information on Low-Cost Hydrogen Production and Delivery DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery October 29, 2014 -...

177

Low-Cost U.S. Manufacturing of Power Electronics for Electric...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles Low-Cost U.S. Manufacturing of Power Electronics for Electric...

178

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of...

179

Develpment of a low Cost Method to Estimate the Seismic Signiture...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic...

180

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Presentation from the U.S. DOE Office of...

182

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium...

183

Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Image of porous...

184

Low-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process  

E-Print Network [OSTI]

Abstract-- We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidityLow-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process Nan

185

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

SciTech Connect (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

186

LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION  

SciTech Connect (OSTI)

During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

Lowes, Ted

2014-07-31T23:59:59.000Z

187

Project Profile: High-Concentration, Low-Cost Parabolic Trough...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

aperture, while incorporating additional advancements that substantially lower installed solar field costs. For example, the reflective film surfaces are being upgraded to improve...

188

Low Cost High Concentration PV Systems for Utility Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop Practical...

189

Development of an Advanced, Low-Cost parabolic Trough Collector...  

Office of Environmental Management (EM)

for Baseload Operation This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona....

190

Advanced Low-Cost Receivers for Parabolic Troughs  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

191

Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics  

SciTech Connect (OSTI)

The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

Buonassisi, Tonio

2013-02-26T23:59:59.000Z

192

E-Print Network 3.0 - amorphous silicon multijunction Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: amorphous silicon multijunction Page: << < 1 2 3 4 5 > >> 1 Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical...

193

Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development  

SciTech Connect (OSTI)

PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

Scott Benton; Abhinav Bhandari

2012-09-30T23:59:59.000Z

194

Development of a Low-Cost Rotary Steerable Drilling System  

SciTech Connect (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

195

Current-matched high-efficiency, multijunction monolithic solar cells  

DOE Patents [OSTI]

The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

1993-01-01T23:59:59.000Z

196

Voltage-matched multijunction solar cell architectures for integrating PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSLVisualizing

197

Heterojunction for Multi-Junction Solar Cells - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cellHeatExperiment. | EMSL U6+

198

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network [OSTI]

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

199

Process for Low Cost Domestic Production of LIB Cathode Materials  

SciTech Connect (OSTI)

The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

Thurston, Anthony

2012-10-31T23:59:59.000Z

200

Advanced Low-Cost Receivers for Parabolic Troughs  

Broader source: Energy.gov (indexed) [DOE]

Trough Receiver (NRELTP-550-45633): NREL, 2009. 2. Kutscher C, et al. Line-Focus Solar Power Plant Cost Reduction Plan: NREL Milestone Report, 2010. 3. Mahoney R. Trough...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Accessing Low-Cost Capital Through Securitization (Poster), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on turbo formula The information contained in this poster is subject to a government license. Solar Power International Las Vegas, Nevada October 20-23, 2014 NRELPO-6A20-62651...

202

Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new  

E-Print Network [OSTI]

Affordable Solar Energy Solar Powder is a solar-energy company that has developed an innovative technology that will set a new low cost point for solar energy. The company plans to manufacture and distribute high-efficiency, high yield, low cost solar panels. The company is making green energy more

Jawitz, James W.

203

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

using front-facing photovoltaic cell luminescent solarwith front-facing photovoltaic cells using weighted Montefor tandem photovoltaic cells,” Thin Solid Films, vol. 516,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

204

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

Leow, Shin Woei

2014-01-01T23:59:59.000Z

205

A Novel Low-Cost Sodium-Zinc Chloride Battery  

SciTech Connect (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

206

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane  

SciTech Connect (OSTI)

The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm˛); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

Hamdan, Monjid [Giner, Inc.] [Giner, Inc.

2013-08-29T23:59:59.000Z

207

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect (OSTI)

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

208

Low Cost Carbon Fiber Research in the LM Materials Program Overview...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies...

209

Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications CX-009154: Categorical Exclusion Determination Low Cost Carbon Fiber Research in the LM Materials Program Overview Carbon Fiber Technology...

210

Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics  

E-Print Network [OSTI]

Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

Pan, Heng

2009-01-01T23:59:59.000Z

211

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

212

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

213

Building Green Cloud Services at Low Cost Josep Ll. Berral  

E-Print Network [OSTI]

at a relatively low additional cost compared to existing services. Keywords-datacenter; renewable energy; green sources of renewable ("green") energy such as solar and wind into datacenters. In particular, several advantage of green energy produced on- site [7]­[10]. Two key observations behind these works are: (1

Bianchini, Ricardo

214

Durable, Low-cost, Improved Fuel Cell Membranes  

SciTech Connect (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

215

Low-Cost Precursors to Novel Hydrogen Storage Materials  

SciTech Connect (OSTI)

From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities

Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

2010-12-31T23:59:59.000Z

216

Alloy Design and Method for Processing Low-Cost Refractory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCHThermal SolarAllocatio Year

217

Nontoxic quantum dot research improves solar cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve...

218

Novel Low Cost, High Reliability Wind Turbine Drivetrain  

SciTech Connect (OSTI)

Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain�������¢����������������s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

2012-09-13T23:59:59.000Z

219

Low-Cost Hydrogen Distributed Production System Development  

SciTech Connect (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

220

Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs  

E-Print Network [OSTI]

Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs D. Jung, E. J for the development of a low-cost Unmanned Aerial Vehicle (UAV) test-bed for educational purposes. The objective) and graduate students (secondarily) in UAV research. The complete design and development of all hardware

Tsiotras, Panagiotis

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

UNIVERSITY of CALIFORNIA ATTITUDE ESTIMATION FOR A LOW-COST UAV  

E-Print Network [OSTI]

UNIVERSITY of CALIFORNIA SANTA CRUZ ATTITUDE ESTIMATION FOR A LOW-COST UAV A thesis submitted of Physics #12;Copyright c by Gregory M. Horn 2009 #12;Abstract Attitude Estimation for a Low-Cost UAV by Gregory M. Horn Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) are a rapidly growing

Belanger, David P.

222

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis,  

E-Print Network [OSTI]

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis, Kevin Lichy of the project was to design and build a low cost autonomous vehicle control system for a ground vehicle, University of Idaho Electrical and Computer Engineering Dept. Moscow, ID 83844-1023 Abstract ­ Autonomous

Idaho, University of

223

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT  

E-Print Network [OSTI]

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT Chau Nguyen Viet, Ian Marshall Computer.marshall@kent.ac.uk Keywords: obstacle-avoidance, robot vision. Abstract: This paper presents a vision-based obstacle avoidance algorithm for a small indoor mobile robot built from low-cost, and off-the-shelf electronics. The obstacle

Marshall, Ian W.

224

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network [OSTI]

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

225

Sensors and Actuators A 109 (2003) 102113 Low-cost uncooled infrared detectors in CMOS process  

E-Print Network [OSTI]

Sensors and Actuators A 109 (2003) 102­113 Low-cost uncooled infrared detectors in CMOS process the implementation and comparison of two low-cost uncooled infrared microbolometer detectors that can be imple times more self-heating as compared to that of the diode type detector. This detector has a measured rms

Akin, Tayfun

226

Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach  

E-Print Network [OSTI]

Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach proposed both in software and hardware. This paper presents a low cost and low power hardware architecture. A focus on low power and cost allows for scaling of the architecture towards vulnerable portable

Hernandez, Orlando

227

Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules  

SciTech Connect (OSTI)

The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

Stuart Hellring; Jiping Shao; James Poole

2011-12-05T23:59:59.000Z

228

E-Print Network 3.0 - adaheli solar mission Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization 14 National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers Summary: , solar power high radiation...

229

EEE 565 Solar Cells Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the  

E-Print Network [OSTI]

Energy Conversion, Solar Spectrum, Light Absorption (1 week) 2) Background on Semiconductor Material) Heterojunction Solar Cells (1 week) 6) Multi-junction Solar Cells (1 week) 7) Light Management (1 week) 8EEE 565 Solar Cells Fall 2012 Course Objective: To introduce the basic concepts of the operation

Zhang, Junshan

230

E-Print Network 3.0 - alternative low-cost precursors Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: alternative low-cost precursors Page: << < 1 2 3 4 5 > >> 1 Increasing vehicle fuel efficiency and decreasing de-pendence on foreign oil are priorities of the U.S....

231

Evaluating cost-reduction alternatives and low-cost sourcing opportunities for aerospace castings and forgings  

E-Print Network [OSTI]

As companies continue to outsource large portions of their manufacturing, managing costs in the supply chain is increasingly important in reducing overall costs and remaining competitive. Low-cost sourcing has become an ...

Obermoller, Amber J

2008-01-01T23:59:59.000Z

232

TestosterICs: A Low-Cost Functional Chip Tester David Harris and David Diaz  

E-Print Network [OSTI]

TestosterICs: A Low-Cost Functional Chip Tester David Harris and David Diaz Department of Engineering Harvey Mudd College Claremont, CA 91711 David_Harris@hmc.edu Abstract Students in VLSI design

Harris, David Money

233

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Broader source: Energy.gov [DOE]

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

234

Low cost monitoring system to diagnose problematic rail bed : case study of Mud Pumping Site  

E-Print Network [OSTI]

This thesis describes the development of low cost sensors and wireless sensor network (WSN) platform aimed at characterizing problematic rail beds (subgrade). The instrumentations are installed at a busy high-speed Northeast ...

Aw, Eng Sew, 1978-

2007-01-01T23:59:59.000Z

235

Design and testing of components for a low cost laser cutter  

E-Print Network [OSTI]

The main goal of this thesis is to document the design and testing of various components for use in a low cost laser cutting mechanism for hobbyists and recreational designers. Different electronics were used to assess the ...

Ramos, Joshua D

2011-01-01T23:59:59.000Z

236

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network [OSTI]

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

237

Project Profile: Low-Cost Self-Cleaning Reflector Coatings for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Self-Cleaning Reflector Coatings for CSP Collectors Project Profile: Low-Cost Self-Cleaning Reflector Coatings for CSP Collectors Oak Ridge National Laboratory logo The Oak...

238

The Creation of a low-cost, reliable platform for mobile robotics research  

E-Print Network [OSTI]

This work documents the planning process, design, fabrication, and integration of a low-cost robot designed for research on the problem of life-long robot mapping. The robotics platform used is the iRobot Create. This robot ...

Gilbert, Taylor Harrison

2011-01-01T23:59:59.000Z

239

Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)  

SciTech Connect (OSTI)

This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

Narumanchi, S.

2013-07-01T23:59:59.000Z

240

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Energy Savers [EERE]

DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salasoo.pdf More Documents & Publications Scalable, Low-Cost, High...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

optimization and scale up for energy cells To be completed June-13 June-13 Optimized low cost andor safer electrolyte for energy cells On schedule June-13 Cathode coated stack...

242

An Analysis of Energy Reductions from the Use of Daylighting in Low-Cost Housing  

E-Print Network [OSTI]

AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2003 Major Subject: Architecture AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT...

Rungchareonrat, N.

243

Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012  

SciTech Connect (OSTI)

This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

Mattos, L.

2012-03-01T23:59:59.000Z

244

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Broader source: Energy.gov [DOE]

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

245

Photovoltaic-Reliability R&D Toward a Solar-Powered World (Presentation)  

SciTech Connect (OSTI)

Presentation about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

Kurtz, S.; Granata, J.

2009-08-01T23:59:59.000Z

246

Photovoltaic-Reliability R&D Toward a Solar-Powered World: Preprint  

SciTech Connect (OSTI)

Paper about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

Kurtz, S.; Granata, J.; Quintana, M.

2009-08-01T23:59:59.000Z

247

The impact of high-speed rail and low-cost carriers on European air passenger traffic  

E-Print Network [OSTI]

The impact of high-speed rail and low-cost carriers on European air passenger traffic Regina R, and market characteristics on air traffic; and 2) the impact of high-speed rail and low-cost in system-wide air travel demand, whereas the expansion of low-cost carriers has led to a significant

Gummadi, Ramakrishna

248

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents [OSTI]

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

1999-01-01T23:59:59.000Z

249

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents [OSTI]

A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

Sopori, B.L.

1999-04-27T23:59:59.000Z

250

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents [OSTI]

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

251

National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers  

E-Print Network [OSTI]

a thin film lens to concentrate a large area of sunlight onto a small area of photovoltaic (PV) cells optimized for the best performance, reliability, and efficiency through NASA's award-winning space

252

Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar  

ScienceCinema (OSTI)

Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

Ramamoorthy Ramesh:

2010-09-01T23:59:59.000Z

253

Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies  

E-Print Network [OSTI]

First of all, I would like to thank my thesis adviser Harry Atwater for his great mentorship and guidance over the years. While he is an extremely busy professor holding about twenty students in his research group and a lot of domestic and international travels for seminars and conferences, he never hesitated to discuss with me when I knocked on his office’s door. Our discussion often went over 1 hour in his tight schedule, but he did not stop until we reached clear conclusions and decided what to do next. While he always tries to find the most effective way for experimental scheme, Harry one day told me that we engineers should always assume possible to fabricate whatever structure possible when I showed a hesitation for doing a complicated process, which preach is still and will be in my mind. It was also a great pleasure for me to work with the excellent members in the Atwater

Katsuaki Tanabe; Katsuaki Tanabe

2008-01-01T23:59:59.000Z

254

A Novel Low Cost Solar Central Inverters Topology With 99.2 % Efficiency Heiko Preckwinkel and  

E-Print Network [OSTI]

range. In this contribution, a new topology for central inverters connected to the medium-voltage grid and lower cost. Most of the new topologies that found their way to the market belong to a lower power range inverters. In this power range, a lot of topologies are used to meet the high market demands. Examples

Paderborn, Universität

255

Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Termpaul_fini@cree.comVehicles

256

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Celland Contractors |DOCUMENTGovernment HIGH

257

High Volume Method of Making Low Cost, Lightweight Solar Materials - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the Assembly of PhotosystemVehicles

258

Project Profile: Low-Cost Solar Thermal Collector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartment ofCyclesEnergy

259

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - Rocky MountainPrepared: 10/28/09

260

Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar Arrays -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - RockyTemperatureEnergy Innovation Portal

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJulyBadges atEnergyVehicles |ORNLdocument

262

A low-cost, high-resolution, video-rate imaging optical radar  

SciTech Connect (OSTI)

Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

1998-04-01T23:59:59.000Z

263

Design of a low-cost thermoacoustic electricity generator and its experimental verification  

SciTech Connect (OSTI)

This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER

2010-01-01T23:59:59.000Z

264

Low-Cost Production of Hydrogen and Electricity | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and Electricity Low-Cost

265

Low-Cost Wireless Sensors for Building Applications | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen andLow-Cost Wireless

266

Full design of a low-cost quadrotor UAV by student team  

E-Print Network [OSTI]

Full design of a low-cost quadrotor UAV by student team Jean-Baptiste Devaud#1 , Stéphane Najko.marzat@onera.fr Abstract-- This paper presents the complete design of a quadrotor UAV, named VORTEX, comprising its architecture and control. The use of Unmanned Aerial Vehicles (UAV) for surveillance, observation and security

Paris-Sud XI, Université de

267

Low Cost Hydrogen Production Platform Robert B. Bollinger and Timothy M. Aaron  

E-Print Network [OSTI]

Low Cost Hydrogen Production Platform Robert B. Bollinger and Timothy M. Aaron Praxair, Inc. P.O. Box 44 Tonawanda, NY 14151 Phone: 716-879-2000 Abstract Praxair is in the initial phases of developing. Praxair has as partners in this program, Boothroyd-Dewhurst Inc. (BDI) and Diversified Manufacturing Inc

268

CaRbON FibeR Demonstrating Innovative Low-Cost  

E-Print Network [OSTI]

for manufacturing carbon fiber and carbon-fiber-reinforced composite structures tend to be slow and energy intensive the development and growth of existing and new US carbon fiber and composites · Job Growth Seed regionalCaRbON FibeR TeChNOLOGy FaCiLiTy Demonstrating Innovative Low-Cost Carbon Fiber for Energy

Pennycook, Steve

269

UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays  

E-Print Network [OSTI]

in the world does not have access to safe drinking water (1.1 billion people), over 2.5 billion lack adequateUpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays, Pittsburgh, PA, USA {stace, paulos}@cs.cmu.edu ABSTRACT Water is our most precious and most rapidly declining

Paulos, Eric

270

Low-Cost Single-Phase Powered Induction Machine Drive for Residential Applications  

E-Print Network [OSTI]

, and lifetime. Keywords-induction motor; harmonic elimination; power factor correction; efficiency; low cost of the motors are less than 1 hp in size, and account for approximately 10% of the electricity consumed by the electric motor population [1]. These fractional horsepower motors are primarily single- phase induction

Chapman, Patrick

271

Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications  

E-Print Network [OSTI]

Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications H. Ameri, A. Attaran & M. Moghavvemi University ofMalaya INTRODUCTION The use of electronics in the automotive industry will reach (or the position and speed as with other components used in the automotive industry, radars will find widespread

Paris-Sud XI, Université de

272

The PANOPTES project: discovering exoplanets with low-cost digital cameras  

E-Print Network [OSTI]

The PANOPTES project: discovering exoplanets with low-cost digital cameras Olivier Guyona,b, Josh at optimizing system robustness while maintaining adequate cost. PANOPTES is both an outreach project (PANOPTES, www.projectpanoptes.org) project is aimed at identifying transiting exoplanets using a wide

Guyon, Olivier

273

Graphenesponges as high-performance low-cost anodes for microbial fuel Xing Xie,ab  

E-Print Network [OSTI]

Graphene­sponges as high-performance low-cost anodes for microbial fuel cells Xing Xie,ab Guihua Yu February 2012 DOI: 10.1039/c2ee03583a A high-performance microbial fuel cell (MFC) anode was con- structed. Microbial fuel cells (MFCs) harness the metabolism of exoelec- trogens, microorganisms that mediate

Cui, Yi

274

corresponding author: jean-luc.maurice@polytechnique.edu DEVELOPING LOW-COST GRAPHENE DEVICES  

E-Print Network [OSTI]

corresponding author: jean-luc.maurice@polytechnique.edu DEVELOPING LOW-COST GRAPHENE DEVICES C. S In spite of numerous efforts for developing the applications of graphene, it remains difficult to put-area (industrial) graphene includes in its structure and on its surfaces a significant density of defects that make

Paris-Sud XI, Université de

275

Modeling and Identification of 2 DOF Low Cost Driving Simulator: Experimental Results  

E-Print Network [OSTI]

consists in motorized rail for the longitudinal movement while the second system consists in motorized yaw and the modeling aspects of a 2 DOF low cost motion platform allowing the restitution of the longitudinal and yaw will be implemented. The whole system is considered as a two coupled systems and linked mechanically. The first system

Paris-Sud XI, Université de

276

Low-Cost Sensor Can Diagnose Bacterial Infections Copyright 2011 by Virgo Publishing.  

E-Print Network [OSTI]

Low-Cost Sensor Can Diagnose Bacterial Infections Copyright 2011 by Virgo Publishing. http diagnose bacterial infections in only a few hours. Photo by L. Brian Stauffer Bacterial infections really sensor. Led by University of Illinois chemistry professor Ken Suslick, the team published its results

Suslick, Kenneth S.

277

Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure  

SciTech Connect (OSTI)

The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

Carlos H. Rentel

2007-03-31T23:59:59.000Z

278

ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots  

E-Print Network [OSTI]

ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots Anna Eilering of the robot links, which are then 3D printed and assembled. This procedure is generalizable to variety to target robot. smaller scale suitable for desktop use. The puppet is a 3D- printed miniature of the target

Hauser, Kris

279

Strategic Plan for Utilizing Low Cost Engineering Resources at Generic Aerospace  

E-Print Network [OSTI]

of these methods are costly and may cause other issues, such as inconsistent output, high turnover and resource constraints for other sites. One concept that is being more readily adopted is the use of Low Cost Engineering Services (LCES) offered by third party...

Veach, Michael

2012-12-14T23:59:59.000Z

280

Capping the Brown Energy Consumption of Internet Services at Low Cost  

E-Print Network [OSTI]

Capping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Consumption of Data Centers 0 20 40 60 80 100 120 140 2000 2006 2011 Electricity consumption of US DCs Billion Energy Consumption · Improving efficiency does not promote green energy or guarantee limits on brown

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed  

E-Print Network [OSTI]

treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identified for removing P from wastewater (US-EPA, 1993). However, questions of mechanisms, predictabilityOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

Florida, University of

282

DEVELOPMENT OF A LOW-COST ROBOTIC MANIPULATOR AND ITS APPLICATION TO HUMAN MOTOR CONTROL STUDIES  

E-Print Network [OSTI]

DEVELOPMENT OF A LOW-COST ROBOTIC MANIPULATOR AND ITS APPLICATION TO HUMAN MOTOR CONTROL STUDIES C of the experimental results seen with more expensive systems. KEY WORDS Robotics, Manipulator, Motor Learning, a robotic planar manipulator has been used for this purpose [4] [5]. Such systems make use of direct

Moussavi, Zahra M. K.

283

Designing Privacy-preserving Smart Meters with Low-cost Microcontrollers  

E-Print Network [OSTI]

Designing Privacy-preserving Smart Meters with Low-cost Microcontrollers Andres Molina Microsoft Research Cambridge Abstract. Smart meters that track fine-grained electricity usage and implement smart meter deployment is that fine-grained usage data indirectly reveals detailed information about

Shenoy, Prashant

284

Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%  

E-Print Network [OSTI]

Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20.1039/c2ee23073a It is estimated that for photovoltaics to reach grid parity around the planet, they must tandem photovoltaic (HTPV), and show that it is capable of meeting these targets. HTPV is composed

McGehee, Michael

285

reFresh SSDs: Enabling High Endurance, Low Cost Flash in Datacenters  

E-Print Network [OSTI]

reFresh SSDs: Enabling High Endurance, Low Cost Flash in Datacenters Vidyabhushan Mohan Sriram datacenters. Solid State Drives (SSDs) offer both performance and power advantages over hard disk drives it attractive for use in large- scale storage in datacenters. However, flash suffers from limited endurance

Humphrey, Marty

286

Towards Realizing a Low Cost and Highly Available Datacenter Power Infrastructure  

E-Print Network [OSTI]

Towards Realizing a Low Cost and Highly Available Datacenter Power Infrastructure Sriram Govindan,yic@zurich.ibm.com,{anand,bhuvan}@cse.psu.edu Abstract. Realizing highly available datacenter power in- frastructure is an extremely expensive datacenter availability models using Continuous-time Markov Chains and Reliability Block Diagrams to quantify

Urgaonkar, Bhuvan

287

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.  

E-Print Network [OSTI]

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being

288

Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop*  

E-Print Network [OSTI]

Assisted Search and Rescue (CRASAR), which coordinates and assists robotic search and rescue efforts [21 Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop* Frederick L@usna.edu Keywords: Rescue Robotics, Mobile Robotics, Locomotion, Physical Simulation, Genetic Algorithms Abstract

Crabbe, Frederick

289

Volume 7, Issue 1, April 2010 THE INTELLECTUAL PROPERTY IMPLICATIONS OF LOW-COST  

E-Print Network [OSTI]

Volume 7, Issue 1, April 2010 THE INTELLECTUAL PROPERTY IMPLICATIONS OF LOW-COST 3D PRINTING Simon Bradshaw,* Adrian Bowyer° and Patrick Haufe Abstract In the late 1970s 3D printing started to become established as a manufacturing technology. Thirty years on the cost of 3D printing machines is falling

Martin, Ralph R.

290

Low-cost, non-precious metal/polymer composite catalysts for fuel cells  

E-Print Network [OSTI]

will fuel cells take their place as a centerpiece of a hydrogen economy and position hydrogen as a major) activity in known-to-date non- precious metal. Fuel cell testing of the composite Figure 2 shows a hydrogenLow-cost, non-precious metal/polymer composite catalysts for fuel cells R. Bashyam and P. Zelenay 1

291

Low-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay  

E-Print Network [OSTI]

scanning fiber display6 to present icons indicating the location of potential hazards. The scanning fiberLow-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay Ryland C) is a portable system that uses machine vision to track potential walking hazards for the visually impaired

Washington at Seattle, University of

292

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network [OSTI]

technologies. Silicon photovoltaic module cost have continuegeneration photovoltaic panels due to their low cost, easycost-efficient multiple junction solar devices with remarkably high efficiency should be the direction and objective of photovoltaic

Phuyal, Dibya

2012-01-01T23:59:59.000Z

293

A survey of potential low-cost concentrator concepts for use in low-temperature water detoxification  

SciTech Connect (OSTI)

Several different concentrator concepts have been considered for use in the detoxification of chemically contaminated water. The reactions of interest are predominantly photocatalytic in nature and are driven by low concentrations (between 1 and 50 suns) of UV radiation in the 300- to 385-nm wavelength range. Optical performance characteristics of these concentrators are thus somewhat different compared to concentrators developed for industrial process heat and electrical energy production. Relaxed optical tolerances might lead to reductions in concentrator cost that, when integrated into overall field system cost, could make the solar-driven process competitive with current UV lamp technology. Aspects of the concentrator system that might realize cost reductions include the concentrating element, the support structure, the tracking and drive system, the manufacturing processes, and the installation procedures. Several ideals have been resurrected from earlier research in the Solar Thermal Program where the need for more stringent optical performance requirements led to a decline or even an end to further investigation. In light of this new application, the most promising of these ideas are presented, including a description and a discussion of the cost and performance trade-offs. In addition, the results of recent investigate research on several of these concepts will be presented. The concepts include a low-cost parabolic trough, the inflatable line-focus concentrator, and the holographic concentrator. 16 refs., 5 figs.

Wendelin, T.

1991-12-01T23:59:59.000Z

294

Current and lattice matched tandem solar cell  

DOE Patents [OSTI]

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

Olson, Jerry M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

295

Producing Solar Cells By Surface Preparation For Accelerated Nucleation Of Microcrystalline Silicon On Heterogeneous Substrates.  

DOE Patents [OSTI]

Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.

Yang, Liyou (Plainsboro, NJ); Chen, Liangfan (Langhorne, PA)

1998-03-24T23:59:59.000Z

296

Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells  

SciTech Connect (OSTI)

This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

2005-08-01T23:59:59.000Z

297

Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators  

SciTech Connect (OSTI)

REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

None

2012-01-01T23:59:59.000Z

298

Solar Ponds - What Are They?  

E-Print Network [OSTI]

Solar ponds can provide low cost solar energy collection as well as low temperature heat storage. Currently there are two types of solar ponds in an advanced state of development in the U.S. Each system uses a different collection and energy storage...

Anderson, A. L.

1980-01-01T23:59:59.000Z

299

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

various renewable energy sources, such as solar, wind-power,source; no matter how efficient and low cost solar energydemand as a source of renewable energy. Solar energy is more

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

300

Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics  

E-Print Network [OSTI]

5.1 Introduction Dye-sensitized solar cells (DSSCs) are ato fabricate dye sensitized solar cells (DSSCs) on glass andof TiO 2 Nanoparticles for Dye Sensitized Solar Cells 5.1

Pan, Heng

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NATURE MATERIALS | VOL 13 | MARCH 2014 | www.nature.com/naturematerials 233 hotovoltaic devices --which convert abundant, free solar  

E-Print Network [OSTI]

- and downconversion11 , technologies that, like the multi-junction strategy, offer a roadmap beyond the Shockley dot photovoltaics Xinzheng Lan1,2 , Silvia Masala1,3 and Edward H. Sargent1 * The solar -- which convert abundant, free solar radiation into electric power -- are increasingly required to offer

302

The IMM solar cell's advanced ultra-light, highly flexible design earned it a 2008 R&D 100 Award and a 2009 Award for Excellence in Technology Transfer by the Federal Laboratory  

E-Print Network [OSTI]

innovati n The IMM solar cell's advanced ultra-light, highly flexible design earned it a 2008 R. The cell's inventors pioneered a new class of solar cells with marked advantages in performance--particularly for complex multijunction cells. These cells convert solar energy more efficiently than single- junction cells

303

A reliable, fast and low cost maximum power point tracker for photovoltaic applications  

SciTech Connect (OSTI)

This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)

2010-01-15T23:59:59.000Z

304

A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic  

SciTech Connect (OSTI)

A conventional NSI (NASA standard initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium subhydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

Bickes, R.W. Jr.; Grubelich, M.C. [Sandia National Labs., Albuquerque, NM (United States); Hartman, J.K.; McCampbell, C.B. [SCB Technologies, Inc., Albuquerque, NM (United States); Churchill, J.K. [Quantic-Holex, Hollister, CA (United States)

1993-12-31T23:59:59.000Z

305

Low Cost Production of InGaN for Next-Generation Photovoltaic Devices  

SciTech Connect (OSTI)

The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

2012-07-09T23:59:59.000Z

306

Low-Cost Solutions for Dynamic Window Material | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and Electricity

307

An Exploratory Initiative for Improving Low-Cost Housing in Texas  

E-Print Network [OSTI]

Sources and Affordable Housing Program Listing 85 IV.04.b. Habitat For Humanity Construction Costs 87 IV.04.C. National Association of Home Builders' "PATH" Durability Research 88 IV.04.d. Useful Internet Sites 89 VI Part I. The Low-Cost Housing Technology...-cost housing market. This market and demographic analysis revealed the following: There is currently a $5 billion potential market for new homes selling for around $30,000 that would meet the more dramatic needs of 157,000 households, and would be sustainable...

McKittrick, T. L.; Haberl, J. S.; Graham, C. W.; Claridge, D. E.; Swain, W. B.

2000-01-01T23:59:59.000Z

308

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystemLow-Cost Energy

309

Manufacturing Demonstration Facility Low-Cost Carbon Fiber Available to US Manufacturers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministrationManufacturing - GE Appliances, ORNL Low-Cost

310

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct Bonded

311

Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct

312

Low-Cost Light-Emitting Diode Luminaire for General Illumination |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost

313

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2014 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-CostALTEXDepartment

314

A new principle for low-cost hydrogen sensors for fuel cell technology safety  

SciTech Connect (OSTI)

Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

2014-03-24T23:59:59.000Z

315

Broad spectrum solar cell  

DOE Patents [OSTI]

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

316

Subsidizing Solar: The Case for an Environmental Goods and Services Carve-out from the Global Subsidies Regime  

E-Print Network [OSTI]

in the United States. While solar panel manufacturers havesubsidized, low-cost Chinese solar panels imported into theis clear that Chinese solar panel T HE K EARNY A LLIANCE ,

Simmons, Zachary Scott

2014-01-01T23:59:59.000Z

317

Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K  

SciTech Connect (OSTI)

The forward dark current density – voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency – generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 – 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

Kalinovsky, Vitaly S., E-mail: vitak.sopt@mail.ioffe.ru; Kontrosh, Evgeny V., E-mail: vitak.sopt@mail.ioffe.ru; Dmitriev, Pavel A., E-mail: vitak.sopt@mail.ioffe.ru; Pokrovsky, Pavel V., E-mail: vitak.sopt@mail.ioffe.ru; Chekalin, Alexander V., E-mail: vitak.sopt@mail.ioffe.ru; Andreev, Viacheslav M., E-mail: vitak.sopt@mail.ioffe.ru [Ioffe Physical-Technical Institute, St. Petersburg, Politekhicheskaya st. 26 (Russian Federation)

2014-09-26T23:59:59.000Z

318

Texturization of multicrystalline silicon solar cells  

E-Print Network [OSTI]

A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

Li, Dai-Yin

2010-01-01T23:59:59.000Z

319

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents [OSTI]

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

320

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents [OSTI]

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low Cost Carbon Fibre: Applications, Performance and Cost Models - Chapter 17  

SciTech Connect (OSTI)

Weight saving in automotive applications has a major bearing on fuel economy. It is generally accepted that, typically, a 10% weight reduction in an automobile will lead to a 6-8% improvement in fuel economy. In this respect, carbon fibre composites are extremely attractive in their ability to provide superlative mechanical performance per unit weight. That is why they are specified for high-end uses such as Formula 1 racing cars and the latest aircraft (e.g. Boeing 787, Airbus A350 and A380), where they comprise over 50% by weight of the structure However, carbon fibres are expensive and this renders their composites similarly expensive. Research has been carried out at Oak Ridge National Laboratories (ORNL), Tennessee, USA for over a decade with the aim of reducing the cost of carbon fibre such that it becomes a cost-effective option for the automotive industry. Aspects of this research relating to the development of low cost carbon fibre have been reported in Chapter 3 of this publication. In this chapter, the practical industrial applications of low-cost carbon fibre are presented, together with considerations of the performance and cost models which underpin the work.

Warren, Charles David [ORNL; Wheatley, Dr. Alan [University of Sunderland; Das, Sujit [ORNL

2014-01-01T23:59:59.000Z

322

LOW-COST BACTERIAL DETECTION SYSTEM FOR FOOD SAFETY BASED ON AUTOMATED DNA EXTRACTION, AMPLIFICATION AND READOUT  

E-Print Network [OSTI]

To ensure food, medical and environmental safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification and amplification. ...

Hoehl, Melanie Margarete

323

Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome ( 7th Annual SFAF Meeting, 2012)  

ScienceCinema (OSTI)

David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Jenkins, David [EdgeBio

2013-03-22T23:59:59.000Z

324

Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head  

E-Print Network [OSTI]

This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

Ramirez, Aaron Eduardo

2010-01-01T23:59:59.000Z

325

A Low-cost Compliant 7-DOF Robotic Manipulator Morgan Quigley, Alan Asbeck, and Andrew Y. Ng  

E-Print Network [OSTI]

A Low-cost Compliant 7-DOF Robotic Manipulator Morgan Quigley, Alan Asbeck, and Andrew Y. Ng a robotic arm with similar performance on many measures to high-end research robotic Morgan Quigley, Alan

Ng, Andrew Y.

326

Low-cost carriers in Japan : challenges and paths to success - using a corporate simulation model for empirical analysis  

E-Print Network [OSTI]

This paper analyzes the causes behind the sluggishness of new airlines, low cost carriers (LCCs), in Japan. The object is to identify and to recommend innovative policy changes and ideas for the industry, by analyzing the ...

Shiotani, Sayaka

2013-01-01T23:59:59.000Z

327

Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)  

SciTech Connect (OSTI)

The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

Not Available

2010-12-01T23:59:59.000Z

328

Construction and installation of low-cost energy-conservation devices on existing residential structures. Final report  

SciTech Connect (OSTI)

Through the Neighborhood Housing Services, Incorporated of Charlotte, a series of hands-on workshops and a demonstration site was provided to enable residents of the Plaza-Midwood Neighborhood to build and install a variety of low-cost, durable, small scale, energy conservation systems. This experimental approach enabled homeowners to apply specific technologies to their own homes. These cost effective measures were designed to encourage both self reliance and the use of renewable resources. The weekend projects included protected entry, numerous moveable window insulation devices, solar air collector/greenhouse, window greenhouse and water storage tubes. The building used for retrofit was the office for the Neighborhood Housing Services (NHS), a non-profit corporation formed to help revitalize residential structures and maintain the economic, racial, and social character of existing neighborhoods. The particular neighborhood involved was Plaza-Midwood and covers approximately a 2 square mile area. The neighborhood housing stock is of the 1910 to 1940 variety with the predominate architectual style being bungalow frame, having 1000 to 1900 square feet in area. The neighborhood is a racially integrated one, with about 70% of the residents being homeowners. An estimated 1700 housing units are in this area. The NHS office presently serves as a resource center for area residents who need loans and/or construction assistance. Providing a continuing educational program is a function of this organization. The Grant provided a significant contribution as a resource for energy conservation mined residents. A resource room displaying procedures and diagrams for the various projects in this proposal was established. Additional resource literature was provided and used by local residents.

None

1983-01-01T23:59:59.000Z

329

Simulator Developed to Drastically Reduce Time of Multijunction PV Device Efficiency Measurements (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect (OSTI)

NREL's new simulator helps speed up research in the race to improve photovoltaic efficiency. Scientists at the National Renewable Energy Laboratory (NREL) needed a quick and accurate method to predict energy generated from multijunction photovoltaic (PV) test devices. This method had to take into account the nonlinear behavior of multijunction PV. NREL achieved this by developing the One-Sun Multi-Source Simulator (OSMSS), which reduces the time for this type of reference spectrum efficiency measurement from hours or days to minutes. The OSMSS is an automated, spectrally adjustable light source that builds a unique simulator spectrum that causes a multijunction PV device to behave as it would under a reference spectrum. This new simulator consists of four light sources separated into nine wavelength bands between 350 and 2,000 nm. The irradiance in each band is adjustable from zero to about 1.5 suns. All bands are recombined via optical fibers and integrating optics to produce a nearly 10 cm x 10 cm uniform spot. The operator simply links the OSMSS to the quantum efficiency data for the test device, and the OSMSS does the rest. The OSMSS can also determine the power as a function of the spectral irradiance (beyond the reference spectra), total irradiance, and temperature. Major components of the system were built to NREL specification by LabSphere, Inc. NREL developed a new, fully automated tool that rapidly builds a spectrum under which all junctions of a multijunction PV device behave as they would under a reference spectrum. Such a spectrum is essential to properly characterize multijunction devices. The OSMSS reduces the time for building spectra for current vs. voltage measurements from hours or days to minutes. This makes it possible to quickly characterize a multijunction device under many different conditions. The OSMSS will be an important tool to help predict the yearly energy output of a multijunction PV device in a particular environment when provided with a range of spectra and temperatures for that location.

Not Available

2011-11-01T23:59:59.000Z

330

NREL researchers develop a new tool that confirms the stability of the IMM solar cell's 1-eV metamorphic junction.  

E-Print Network [OSTI]

NREL researchers develop a new tool that confirms the stability of the IMM solar cell's 1-eV metamorphic junction. To test the robustness of NREL's inverted metamorphic multijunction (IMM) solar-cost power production using this device. One of NREL's industry partners, RF Micro Devices, demonstrated III

331

Purdue Solar Energy Utilization Laboratory  

SciTech Connect (OSTI)

The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

Agrawal, Rakesh [Purdue] [Purdue

2014-01-21T23:59:59.000Z

332

Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing  

SciTech Connect (OSTI)

Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.

More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Kim, Seong Jip [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 Korea and Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

2013-12-16T23:59:59.000Z

333

Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows  

SciTech Connect (OSTI)

Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

Kwak, B.; Joshi, Ajey

2013-03-31T23:59:59.000Z

334

Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems  

SciTech Connect (OSTI)

Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The logger’s fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.

Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming

2014-06-23T23:59:59.000Z

335

Low-Cost Substrates for High-Performance Nanorod Array LEDs  

SciTech Connect (OSTI)

The completed project, entitled â??Low-Cost Substrates for High-Performance Nanorod LEDs,â?ť targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: â?˘ Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. â?˘ Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. â?˘ Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. â?˘ Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

Sands, Timothy; Stach, Eric; Garcia, Edwin

2009-04-30T23:59:59.000Z

336

Low-cost and durable catalyst support for fuel cells: graphite submicronparticles  

SciTech Connect (OSTI)

Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (~ 3.5 nm) are uniformly dispersed on GSP support. Pt/GSP exhibits the highest activity towards oxygen reduction reactions. The durability study indicates that Pt/GSP is 2 ~ 3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

2010-01-01T23:59:59.000Z

337

Phase-Sensitive Detection in the undergraduate lab using a low-cost microcontroller  

E-Print Network [OSTI]

Phase-sensitive detection (PSD) is an important experimental technique that allows signals to be extracted from noisy data. PSD is also used in modulation spectroscopy and is used in the stabilization of optical sources. Commercial lock-in amplifiers that use PSD are often expensive and host a bewildering array of controls that may intimidate a novice user. Low-cost microcontrollers such as the Arduino family of devices seem like a good match for learning about PSD; however, making a self-contained device (reference signal, voltage input, mixing, filtering, and display) is difficult, but in the end the project teaches students "tricks" to turn the Arduino into a true scientific instrument.

Schultz, K D

2015-01-01T23:59:59.000Z

338

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect (OSTI)

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

339

A simple, low-cost, data logging pendulum built from a computer mouse  

SciTech Connect (OSTI)

Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible for all students to have hands-on experience with one of the most important simple physical systems.

Gintautas, Vadas [Los Alamos National Laboratory; Hubler, Alfred [UIUC

2009-01-01T23:59:59.000Z

340

Life and stability testing of packaged low-cost energy storage materials  

SciTech Connect (OSTI)

A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage-like containers called Chubs is discussed. The results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications have been drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a ..delta..T of 30/sup 0/F can be used for the packaged material.

Frysinger, G.R.

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Structural Studies of Potential 1 eV Solar Cell Materials  

SciTech Connect (OSTI)

Structural studies using transmission electron microscopy have been made on 1-eV band-gap materials, lattice-matched to GaAs and Ge substrates, grown by metal-organic vapor-phase epitaxy for use in multijunction, high-efficiency solar cells.

Norman, A.; Al-Jassim, M.; Friedman, D.; Geisz, J.; Olson, J.; Kurtz, S.

2000-01-01T23:59:59.000Z

342

Development of Low Cost Industrially Scalable PCM Capsules for Thermal Energy Storage in CSP Plants  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

343

Comparative study of Non -Tracking and Low Concentrating Photovoltaic systems Using Low -Cost Reflectors.  

E-Print Network [OSTI]

??The traditional high concentrating photovoltaic systems have proved to be expensive as they use high grade silicon solar cells, highly specular reflecting materials and require… (more)

Hatwaambo, Sylvester

2012-01-01T23:59:59.000Z

344

Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures  

SciTech Connect (OSTI)

The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

Kyoung-Shin Choi

2013-06-30T23:59:59.000Z

345

Design of Zinc Oxide Based Solid-State Excitonic Solar Cell with Improved Efficiency  

E-Print Network [OSTI]

Excitonic photovoltaic devices, including organic, hybrid organic/inorganic, and dye-sensitized solar cells, are attractive alternatives to conventional inorganic solar cells due to their potential for low cost and low temperature solution...

Lee, Tao Hua

2012-02-14T23:59:59.000Z

346

The Story of a Cutting-Edge Solar Startup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

this project do? Watch the video to learn how Alta Devices manufacturers high performance solar cells at a low cost. Alta Devices is rethinking how high performance solar cells are...

347

Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts  

E-Print Network [OSTI]

Department of Materials Science and Engineering, 184 College Street, Toronto, Ontario M5S 3E4, Canada 3 of depleted-heterojunction colloidal quantum dot solar cells, we describe herein a strategy that replaces. © 2010 American Institute of Physics. doi:10.1063/1.3463037 Solar energy harvesting requires

348

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect (OSTI)

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

349

Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders  

SciTech Connect (OSTI)

The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.

Dr. David M. Bowden; Dr. William H. Peter

2012-03-31T23:59:59.000Z

350

Development of a Low Cost Heat Pump Water Heater - First Prototype  

SciTech Connect (OSTI)

Until now the heat pump water heater (HPWH) has been a technical success but a market failure because of its high initial cost. Oak Ridge National Laboratory (ORNL) was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. ORNL was also tasked to verify the technical feasibility of the cost saving opportunities where necessary and appropriate. The objective was to retain most of the HPWH s energy saving performance while reducing cost and simple payback period to approximately three years in a residential application. Several cost saving opportunities were found. Immersing the HPWH condenser directly into the tank allowed the water-circulating pump to be eliminated and a standard electric resistance storage water heater to be used. In addition, designs could be based on refrigerator compressors. Standard water heaters and refrigerator compressors are both reliable, mass produced, and low cost. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water heater tank through a sleeve affixed to one of the standard penetrations at the top of the tank. The sleeve contour causes the bayonet-style condenser to helix while being pushed into the tank, enabling a condenser of sufficient heat transfer surface area to be inserted. Based on this design, ORNL fabricated the first laboratory prototype and completed preliminary laboratory tests in accordance with the DOE Simulated Use Test Procedure. Hardening during double-wall condenser fabrication was not overcome, so the prototype is single-walled with a liner. The prototype unit was found to have an energy factor of 2.02, verifying that the low-cost design retains most of the HPWH s energy saving performance. Industry involvement is being sought to resolve the fabrication issue and quantify progress on reducing cost and simple payback period to approximately three years in a residential application. This report provides information on the design, prototype construction, laboratory test data, and analyses of this HPWH.

Mei, V. C. [Oak Ridge National Laboratory (Retired); Tomlinson, J. J. [Oak Ridge National Laboratory (Retired)

2007-09-01T23:59:59.000Z

351

IX International Materials Research Congress: Cancun 2002 A Hybrid Multijunction Photoelectrode for Hydrogen ProductionA Hybrid Multijunction Photoelectrode for Hydrogen Production  

E-Print Network [OSTI]

light H2 O2 Good Hydrogen Efficiency Long Term Chemical Stability Low Cost Materials ­ SS substrates for OER. Nanocrystalline WO3 (University of Geneva): ­ High bandgap (2.5eV), LOW photocurrent ­ Extremely process sensitive Basic Process: heated substrate Fe2O3 condensate aerosol: FeCl3· 6H20 in ethanol

352

Design, development, and applications of a low-cost, dynamic neutron radiography system utilizing the TAMU NSC TRIGA reactor  

E-Print Network [OSTI]

partial fulfilment of the requirements for the degree of MASTER OF SC'IENCE May 1990 Major Subject: Nuclear Engineering DESIGN, DEVELOPMENT. AND APPLICATIONS OF A LOW ? COST, DYNAMIC NEUTRON RADIOGRAPHY SYSTEM UTILIZING THE TAMU NSC TRIGA REACTOR A...DESIGN, DEVELOPMENT. AND APPLICATIONS OF A LOW ? COST, DYNAMIC NEUTRON RADIOGRAPHY SYSTEM UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis SC'OTT PATRIC'If ItIIDGETT Submitted to the Ofhce of Graduate Studies of Texas AklVI I!niversity rn...

Midgett, Scott Patrick

2012-06-07T23:59:59.000Z

353

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect (OSTI)

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

354

Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites  

SciTech Connect (OSTI)

A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

Singh, M.; Levine, S.R.

1995-07-01T23:59:59.000Z

355

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect (OSTI)

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

356

High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169  

SciTech Connect (OSTI)

NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

Steiner, M.

2012-07-01T23:59:59.000Z

357

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 13, JULY 1, 2008 1151 Low-Cost Optoelectronic Self-Injection-Locked  

E-Print Network [OSTI]

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 13, JULY 1, 2008 1151 Low-Cost Optoelectronic Self by injecting 8-dBm optical signals without using any high-speed optoelectronic components. Index Terms--InP monolithic oscillator, optoelectronic oscillator (OEO), phase-noise reduction, self-injection locking (SIL

Choi, Woo-Young

358

Get a whiff of this: Low-cost sensor can diagnose bacterial April 27th, 2011 in Chemistry / Analytical Chemistry  

E-Print Network [OSTI]

Get a whiff of this: Low-cost sensor can diagnose bacterial infections April 27th, 2011 in Chemistry / Analytical Chemistry Enlarge A colorimetric sensor array is placed in an Petri dish for culturing bacteria and scanned with an ordinary flatbed photo scanner kept inside a lab incubator. The dots

Suslick, Kenneth S.

359

A direct thin-film path towards low-cost large-area III-V photovoltaics  

E-Print Network [OSTI]

A direct thin-film path towards low-cost large-area III-V photovoltaics Rehan Kapadia1,2 *, Zhibin-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi times, and large equipment investments restrict applications to concentrated and space photovoltaics

California at Irvine, University of

360

Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance  

E-Print Network [OSTI]

Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing created under the Energy Tax Incentives Act of 2005 (and detailed in Internal Revenue Code Section 54

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Obstacle detection and mapping in low-cost, low-power multi-robot systems using an Inverted  

E-Print Network [OSTI]

Obstacle detection and mapping in low-cost, low-power multi-robot systems using an Inverted with constrained memory capacity and processing power, and is called the Inverted Particle Filter. This method has circuits. An important benefit of this is reduced power consumption opening for new battery-powered

Paris-Sud XI, Université de

362

Hardware and software architecture for state estimation on an experimental low-cost small-scaled helicopter  

E-Print Network [OSTI]

: Low-cost sensors Embedded systems MEMS Unmanned aerial vehicle Autonomous helicopter Data fusion a b contribution of this paper is to detail, at the light of a successful reported autonomous hovering flight of unmanned aerial vehicles (UAV) with various degrees of auton- omy (see Wise, 2004). Prime examples

363

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network [OSTI]

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

364

Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting  

SciTech Connect (OSTI)

In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

Mike Hack

2008-12-31T23:59:59.000Z

365

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect (OSTI)

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

366

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

367

Parabolic trough solar collectors : design for increasing efficiency  

E-Print Network [OSTI]

Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

Figueredo, Stacy L. (Stacy Lee), 1981-

2011-01-01T23:59:59.000Z

368

Use of coconut fiber as a low-cost thermal insulator  

SciTech Connect (OSTI)

Cost is one of the major factors to be considered when choosing a thermal insulator. Design engineers continuously strive to provide the best at the lowest possible cost. In the tropics climate conditions are essentially hot and humid and a cause for daily discomfort. To some extent, air-conditioning of buildings has solved this problem. The major deterrent to air-conditioning is the exorbitant cost of imported thermal insulation materials. This has prompted a search for local, low-cost but effective thermal insulation for buildings. Coconut fiber is available at minimal cost from the copra industry in Trinidad, as it is a waste product from the coconut. The viability of using coconut fiber as building thermal insulation was explored by conducting thermal conductivity tests on 200 mm X 400 mm X 60 mm thick slab-like specimens. The test equipment used was a locally designed constant temperature hot box apparatus. This apparatus was designed to test slab-like specimens under steady-state conditions. The reliability if this experimental set up was checked using Gypsum Plaster. The thermal conductivity test results for coconut fiber over the density range 30 kg/m{sup 3} to 115 kg/m{sup 3} showed the characteristic hooked shape graph for fibrous material. For the 60 mm thick specimens at a mean temperature of 39 C, a minimum thermal conductivity of 0.058 W/mK occurred at an optimum density of 85 kg/m{sup 3}. The thermal conductivity of commonly used industrial insulators, namely loose-fill expanded vermiculite, cellular glass and blanket fiber glass, at a mean temperature of 38 C are 0.066 W/mK, 0.061 W/mK and 0.052 W/mK respectively. When compared, these results show that air dried coconut fiber has far reaching potential for use as an effective building thermal insulation.

Kochhar, G.S.; Manohar, K. [Univ. of the West Indies, St. Augustine (Trinidad and Tobago)

1997-11-01T23:59:59.000Z

369

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect (OSTI)

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

370

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

SciTech Connect (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

371

Low Cost, Single Layer Replacement for the Back-Sheet and Encapsulant Layers  

SciTech Connect (OSTI)

Ethylene propylene diene monomer (EPDM) based polymers have been formulated for specific use in photovoltaic modules to produce better performance and longer term stability at a lower cost than standard materials. EPDM formulations are advantageous over ethylene vinyl-acetate (EVA) because they can use the same lamination/cure cycle as EVA, they do not need a second back-sheet protective material (e.g. PET/Tedlar), they have a lower glass transition temperature, no melting transition, more constant mechanical moduli as a function of temperature, they are less polar than EVA (provides better corrosion protection), and they have excellent damp heat (85 C/85% relative humidity) resistance against delamination. Module designs typically use EVA on the back side of cells despite the fact that transparency is not advantageous. We have developed a single encapsulant layer that will replace standard module back-sheet constructions consisting of EVA/PET/Tedlar. Because a single low-cost material layer is used, it will provide a significant materials cost savings of about $6 to $8/m{sup 2} as compared to traditional back-sheets. Electrical insulation tests were conducted using 0.85 mm thick stainless steel sheets as a model for a cell. It was found that a polymer layer thickness of about 0.33mm provided better high voltage electrical insulation than a combined film of Tedla (0.038 mm)/PET (0.051 mm)/EVA (0.55 mm). When formulated with a white pigment, reflectivity was comparable to Tedlar{trademark}. Upon accelerated exposure to light at 60C and 60% RH it was found that an EVA layer in front of these materials would decompose before significant yellowing and delamination of the back EPDM layer occurs.

Kempe, M. D.; Thapa, P.

2008-01-01T23:59:59.000Z

372

Investigation of low-cost LNG vehicle fuel tank concepts. Final report  

SciTech Connect (OSTI)

The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-02-01T23:59:59.000Z

373

Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif  

E-Print Network [OSTI]

that concentrate solar energy for conversion into usable energy. Ideally, a solar concentrating system should have, wind and sand loading, and abrasion. Many arid and desert areas, best suited for solar energy advantages of our solar concentrating system: are low cost and durability. Unlike most prior solar

Reif, John H.

374

Materials en Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50%  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time informationScienceStudents

375

Development of a Low Cost 3-10kW Tubular SOFC Power System  

E-Print Network [OSTI]

120 / 240VAC output · Hot swap battery case · Parallelable to 20 kWatts Acumentrics Battery-based UPS #12;Solar Flare Tests RUPS at 170°F for 16 hours General Atomics SkyWarrior #12;Overview Timeline had ~473hrs operation -Hour-averaged data shown 0.9%/1000hr (0.7%/1000hr counting starting hours) 0 0

376

Solid State Processing of New Low Cost Titanium Powders Enabling Affordable  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolarEngineeringAutomotive

377

Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling  

SciTech Connect (OSTI)

GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

None

2012-02-24T23:59:59.000Z

378

A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System  

E-Print Network [OSTI]

A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System Travis Mc://www.funginstitute.berkeley.edu/sites/default/ les/EnergyStorageSystem.pdf May 3, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664 of existing systems. Energy storage is a viable method for increasing the e ciency of a broad range of systems

Sekhon, Jasjeet S.

379

Dielectric nanostructures for broadband light trapping in organic solar cells  

E-Print Network [OSTI]

Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501 (2007). 8. M@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next

Fan, Shanhui

380

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

SciTech Connect (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

2001-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Un/DoPack: Re-Clustering of Large System-on-Chip Designs with Interconnect Variation for Low-Cost FPGAs  

E-Print Network [OSTI]

to offer separate low-cost and resource-rich families. For a similar number of logic elements (LEs. This is demonstrated by Table 1, where the low-cost Cyclone family offers significant savings. Unfortunately, some designs may fit within the Cyclone LE and memory capacity limits but not within the routing capacity

Lemieux, Guy

382

Researchers find 3-D printed parts to provide low-cost, custom alternatives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B C D E FSouthwest Climate andfor

383

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201300070 Stable Dye-Sensitized Solar Cell,* and Udo Bach* Dye-sensitized solar cells (DSCs) can be fabricated from low- cost components with simple fields, including renewable energy research focusing on DSCs and solar-driven hydrogen generation from

384

Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections  

SciTech Connect (OSTI)

X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 {mu}m. It was built as a general purpose nondestructive testing device.

Oliveira, Jose Martins Jr. de [Universidade de Sorocaba-UNISO, Campus Seminario, Caixa Postal 578, Av. Dr. Eugenio Salermo, 100, Centro, 18035-430, Sorocaba, SP (Brazil); Martins, Antonio Cesar Germano [Universidade Estadual Paulista Julio de Mesquita Filho-UNESP, GASI, Av. 3 de Marco, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP (Brazil)

2009-06-03T23:59:59.000Z

385

The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report  

SciTech Connect (OSTI)

Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

George A. Marchetti

1999-12-15T23:59:59.000Z

386

Studies of sputtered CdTe and CdSe solar cells.  

E-Print Network [OSTI]

??CdTe has recently become the most commercially successful polycrystalline thin filmsolar module material. Its low cost, large-area solar module is reshaping the silicondominatedsolar panel market;… (more)

Kwon, Dohyoung

2012-01-01T23:59:59.000Z

387

Co-optimizing silicon solar cell processing for efficiency and throughput  

E-Print Network [OSTI]

Crystalline silicon solar cells are a proven renewable energy technology, but they have yet to reach low costs commensurate with subsidy-free, grid-scale adoption. To achieve the widespread adoption of photovoltaics, the ...

Morishige, Ashley E. (Ashley Elizabeth)

2013-01-01T23:59:59.000Z

388

Project Profile: A Small-Particle Solar Receiver for High-Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high-temperature solar receiver in the multi-megawatt range that can drive a gas turbine to generate low-cost electricity. The goals of this project are to:...

389

Current- and lattice-matched tandem solar cell  

DOE Patents [OSTI]

A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

Olson, J.M.

1985-10-21T23:59:59.000Z

390

Design and engineering of low-cost centimeter-scale repeatable and accurate kinematic fixtures for nanomanufacturing equipment using magnetic preload and potting  

E-Print Network [OSTI]

This paper introduces a low-cost, centimeter-scale kinematic coupling fixture for use in nanomanufacturing equipment. The fixture uses magnetic circuit design techniques to optimize the magnetic preload required to achieve ...

Watral, Adrienne

2011-01-01T23:59:59.000Z

391

Micro-forging technique for rapid, low-cost manufacture of lens array molds and its application in a biomedical instrument  

E-Print Network [OSTI]

Interest in micro-optical components for applications ranging from telecommunications to the life sciences has driven the need for accessible, low-cost fabrication techniques. Most micro-lens fabrication processes are ...

Saez, Miguel Angel

2007-01-01T23:59:59.000Z

392

Low-cost Accelerometers for Robotic Manipulator Perception Morgan Quigley, Reuben Brewer, Sai P. Soundararaj, Vijay Pradeep, Quoc Le, and Andrew Y. Ng  

E-Print Network [OSTI]

Low-cost Accelerometers for Robotic Manipulator Perception Morgan Quigley, Reuben Brewer, Sai P pair of joints and infers the joint angles using an M. Quigley, S. P. Soundararaj, Q. Le, and A. Y. Ng

Ng, Andrew Y.

393

Proceedings of the flat-plate solar array project workshop on low-cost polysilicon for terrestrial photovoltaic solar-cell applications  

SciTech Connect (OSTI)

Separate abstracts were prepared for 21 papers in this workshop proceedings. Topics covered include: polysilicon material requirements; economics; process developments in the USA and internationally; and the polysilicon market and forecasts. (LEW)

Not Available

1986-02-01T23:59:59.000Z

394

A low-cost optical sensing device based on paired emitter-detector light emitting diodes. Analytica Chimica Acta 2006  

E-Print Network [OSTI]

A low power, high sensitivity, very low cost light emitting diode (LED) based device for intensity based light measurements is described. In this approach, a reverse-biased LED functioning as a photodiode, is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in us) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1(+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. this light intensity dependent discharge process has been applied to measuring concentrations of coloured solutions and a mathematical model developed based on the Beer-Lambert Law.

King-tong Lau; Susan Baldwin; Roderick Shepherd; William J. Yerazunis; Shinichi Izuo; Satoshi Ueyama; Dermont Diamond; Emitter-detector Leds; King-tong Lau; Susan Baldwin; Roderick Shepherd; William J; Shinichi Izuo; Satoshi Ueyama; Dermot Diamond

395

Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes  

SciTech Connect (OSTI)

We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

2014-01-27T23:59:59.000Z

396

Solar Power Generation Development  

SciTech Connect (OSTI)

This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

Robert L. Johnson Jr.; Gary E. Carver

2011-10-28T23:59:59.000Z

397

Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding  

SciTech Connect (OSTI)

Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

2006-01-01T23:59:59.000Z

398

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201104786  

E-Print Network [OSTI]

Dye-Sensitized Solar Cells DOI: 10.1002/anie.201104786 Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High- Efficiency Dye-Sensitized Solar Cells** Xukai Xin, Ming He, Wei Han, Jaehan Jung, and Zhiqun Lin* Dye-sensitized solar cells (DSSCs) are among the most promising photovoltaic devices for low

Lin, Zhiqun

399

Hierarchically Structured ZnO Nanorods-Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells  

E-Print Network [OSTI]

). This hierarchical structure had two advantages in improving the power conversion efficiency (PCE) of the solar cells. INTRODUCTION The establishment of low-cost and high-performance solar cells for sustainable energy sourcesHierarchically Structured ZnO Nanorods-Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells

Cao, Guozhong

400

Prospective Article Materials processing strategies for colloidal quantum dot solar cells  

E-Print Network [OSTI]

energy sources, particularly with cheap and plentiful natural gas, solar photovoltaic systems must cost of the solar panels themselves. Third-generation photovoltaic systems, including organic, dye-sensitized, and colloidal quantum dot (CQD) solar cells, offer a path to low-weight, low-cost, and prospectively high

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The dynamics and control of the CubeSail mission: A solar sailing demonstration  

E-Print Network [OSTI]

is a low-cost demonstration of the UltraSail solar sailing concept (Burton et al., 2005; Botter et al nearly identical tip satellites, shown in Fig. 2. Each tip satellite includes solar panels for powerThe dynamics and control of the CubeSail mission: A solar sailing demonstration Andrew Pukniel a

Carroll, David L.

402

Rigid Deployable Solar Array A.M. Watt and S. Pellegrino  

E-Print Network [OSTI]

with the design of low-cost rigid-panel deployable solar arrays with self- locking tape-spring hinges. The reportRigid Deployable Solar Array A.M. Watt and S. Pellegrino CUED/D-STRUCT/TR214 Department on the deployment of a solar array wing are evaluated experimentally. #12;#12;Contents 1 Introduction 1 1.1 Layout

Pellegrino, Sergio

403

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

SciTech Connect (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

404

Solar voltaic research P. D. (Dan) Dapkus is the W. M. Keck Professor of Engineering in the Ming Hsieh Department  

E-Print Network [OSTI]

D in Physics. He has worked at Bell Laboratories (1970 ­ 1976) on light emitting diode technology Nanoscience (CEN) will create low cost, high efficiency solar cells and light emitting diodes (LEDs

Levi, Anthony F. J.

405

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect (OSTI)

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

406

ZnO Nanostructures for Dye-Sensitized Solar Cells By Qifeng Zhang,* Christopher S. Dandeneau, Xiaoyuan Zhou, and  

E-Print Network [OSTI]

ZnO Nanostructures for Dye-Sensitized Solar Cells By Qifeng Zhang,* Christopher S. Dandeneau-low cost (US$0.40 kWhĂ?1 ).[1] To aim at further lowering the production costs, dye-sensitized solar cells, such as solar cells, fuel cells, and biofuels. However, although these alternative energy sources have been

Cao, Guozhong

407

Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings  

E-Print Network [OSTI]

Enhancement of optical absorption in thin-film organic solar cells through the excitation 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However

Veronis, Georgios

408

Solar2010, the 48th AuSES Annual Conference 1-3 December 2010, Canberra, ACT, Australia  

E-Print Network [OSTI]

. Currently, the residential market is dominated by low cost imported electric heat pumps which is now conditioning, Ejector, Refrigeration, Solar cooling INTRODUCTION The solar driven ejector is a heat pump solar cooling device whereby vapour compression is achieved by a heat driven ejector rather than an electrical

409

Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor for Robotic Manipulation  

E-Print Network [OSTI]

Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor fingertip force sensor for robotic manipulation. Our design makes the most of 3D printing technology sensor features a detachable fingertip made of 3D- printed materials, and a cantilever mechanism

Todorov, Emanuel

410

BazookaSPECT: A Low-Cost Approach to High-Resolution, Single-Photon Imaging Using Columnar Scintillators and Image Intensifiers  

E-Print Network [OSTI]

-photon counting gamma-ray detector based on an image intensifier optically coupled to a low-cost CCD. Typically and allowing for a customizable imaging system. Operating in photon-counting mode, individual gamma-ray functioning as a gamma-ray microscope, (b) white-light microscope image of four 111 In oxine source beads, (c

Arizona, University of

411

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007  

SciTech Connect (OSTI)

Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

Tucker, R.

2008-04-01T23:59:59.000Z

412

Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications  

SciTech Connect (OSTI)

Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

Armstrong, Phillip

2014-11-01T23:59:59.000Z

413

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network [OSTI]

of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would. We use a mixed-integer linear programming model ­ SWITCH ­ to analyze least- cost generation, storage be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing

Kammen, Daniel M.

414

Design and performance of a low-cost acrylic reflector for a ~7x concentrating photovoltaic module  

E-Print Network [OSTI]

of the prototype. The final design is an asymmetric compound parabolic concentrator mounted to an encapsulated increase in power output over an encapsulated receiver with no reflector. Keywords: compound parabolic push for drastic cost reductions in the deployment of solar electricity production has renewed interest

Rollins, Andrew M.

415

Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications  

SciTech Connect (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60şC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which – in principle – could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80şC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120şC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council protocols. M41 MEAs shown sizeable advantages over PFSA MEAs in the Open Circuit Voltage Hold test, Relative Humidity Cycling test and the Voltage Cycling test. The main known limitation of the M41 family is its ability to function well at low RH.

Michel Foure, Scott Gaboury, Jim Goldbach, David Mountz and Jung Yi (no longer with company)

2008-01-31T23:59:59.000Z

416

Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M.Extracellular PolysaccharidesTalks and Proceedingshas

417

1. INTRODUCTION CdTe/CdS solar cells are among the most promising  

E-Print Network [OSTI]

Te/CdS SOLAR CELLS A.Romeo, A.N. Tiwari, and H. Zogg Thin Films Physics Group, Institute of Quantum ElectronicsTe/CdS thin film solar cells. The merits of different TCOs and the properties of the CdTe/CdS solar cells1. INTRODUCTION CdTe/CdS solar cells are among the most promising devices for low cost and high

Romeo, Alessandro

418

Nanoscale photon management in silicon solar cells Sangmoo Jeong, Shuang Wang, and Yi Cui  

E-Print Network [OSTI]

benefits. For power generation, low-cost fossil fuel has, however, been pre- ferred to renewable energy and wind, can be accessed easily in most of the world. In particular, the solar energy deliveredNanoscale photon management in silicon solar cells Sangmoo Jeong, Shuang Wang, and Yi Cui Citation

Cui, Yi

419

ISSN:1369 7021 Elsevier Ltd 2007NOVEMBER 2007 | VOLUME 10 | NUMBER 1128 Polymer-based solar  

E-Print Network [OSTI]

molecular design. Charge carrier mobilities are A significant fraction of the cost of solar panels comesISSN:1369 7021 © Elsevier Ltd 2007NOVEMBER 2007 | VOLUME 10 | NUMBER 1128 Polymer-based solar cells Conjugated polymers are excellent candidates for use in low-cost electronics and photovoltaics (PV)1. Polymer

McGehee, Michael

420

SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS  

SciTech Connect (OSTI)

This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch  

SciTech Connect (OSTI)

The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

Spalding, Mark A [The Dow Chemical Company

2014-08-27T23:59:59.000Z

422

Design of an Actinide-Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low-Cost Electricity  

SciTech Connect (OSTI)

The purpose of this Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) University Research Consortium (URC) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, material compatibility, plant engineering, and coolant activation. In the area of core neutronic design, the reactivity vs. burnup and discharge isotopics of both non-fertile and fertile fuels were evaluated. An innovative core for pure actinide burning that uses streaming, fertile-free fuel assemblies was studied in depth. This particular core exhibits excellent reactivity performance upon coolant voiding, even for voids that occur in the core center, and has a transuranic (TRU) destruction rate that is comparable to the proposed accelerator transmutation of waste (ATW) facility. These studies suggest that a core can be designed to achieve a long life while maintaining safety and minimizing waste. In the area of material compatibility studies, an experimental apparatus for the investigation of the flow-assisted dissolution and precipitation (corrosion) of potential fuel cladding and structural materials has been designed and built at the INEEL. The INEEL forced-convection corrosion cell consists of a small heated vessel with a shroud and gas flow system. The corrosion cell is being used to test steel that is commercially available in the United States to temperatures above 650°C. Progress in plant engineering was made for two reactor concepts, one utilizing an indirect cycle with heat exchangers and the other utilizing a direct-contact steam cycle. The evaluation of the indirect cycle designs has investigated the effects of various parameters to increase electric production at full power. For the direct-contact reactor, major issues related to the direct-contact heat transfer rate and entrainment and carryover of liquid lead-bismuth to the turbine have been identified and analyzed. An economic analysis approach was also developed to determine the cost of electricity production in the lead-bismuth reactor. The approach will be formulated into a model and applied to develop scientific cost estimates for the different reactor designs and thus aid in the selection of the most economic option. In the area of lead-bismuth coolant activation, the radiological hazard was evaluated with particular emphasis on the direct-contact reactor. In this system, the lack of a physical barrier between the primary and secondary coolant favors the release of the alpha-emitter Po?210 and its transport throughout the plant. Modeling undertaken on the basis of the scarce information available in the literature confirmed the importance of this issue, as well as the need for experimental work to reduce the uncertainties on the basic characteristics of volatile polonium chemical forms.

Mac Donald, Philip Elsworth; Weaver, Kevan Dean; Davis, Cliff Bybee; MIT folks

2000-07-01T23:59:59.000Z

423

Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report  

SciTech Connect (OSTI)

The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

Meyer, Howard, S.; Lu, Yingzhong

2012-08-10T23:59:59.000Z

424

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect (OSTI)

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

DR. DEVIN MACKENZIE

2011-12-13T23:59:59.000Z

425

Si concentrator solar cell development. [Final report  

SciTech Connect (OSTI)

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01T23:59:59.000Z

426

Solar-blind deep-UV band-pass filter (250 -350 nm) consisting of a metal nano-grid fabricated  

E-Print Network [OSTI]

Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device

427

Quantitative analysis of defects in silicon. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. Final report  

SciTech Connect (OSTI)

The complete procedures for the defect analysis of silicon samples using a QTM-720 Image Analyzing System are described, chemical polishing, etching, and QTM operation are discussed. The data from one hundred and seventy four (174) samples, and a discussion of the data are included. The data include twin boundary density, dislocation pit density, and grain boundary length. (WHK)

Natesh, R.; Smith, J.M.; Bruce, T.; Qidwai, H.A.

1980-04-01T23:59:59.000Z

428

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResults giveSimulatorand Rhotech

429

Recent technological advances in thin film solar cells  

SciTech Connect (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

430

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells and durabilityand durability  

E-Print Network [OSTI]

Semitransparent ultrathin CdTe solar cells Semitransparent ultrathin CdTe solar cells PV coatings based on CdTe. ...for transparent window PV:...for transparent window PV: , p g · The X26 for ultrathin CdTe · X26 PV window coatings (250 500 nm of CdTe) are attractive very low cost and· X26 PV window

Rollins, Andrew M.

431

Boston solar retrofits: studies of solar access and economics  

SciTech Connect (OSTI)

Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

Shapiro, M.

1980-11-01T23:59:59.000Z

432

Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process  

DOE Patents [OSTI]

A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

Ruby, D.S.; Schubert, W.K.; Gee, J.M.

1999-02-16T23:59:59.000Z

433

Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process  

DOE Patents [OSTI]

A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

434

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Annual Technical Progress Report, Phase 1, 22 October 2002-30 September 2003  

SciTech Connect (OSTI)

The primary objectives of this subcontract are for Specialized Technology Resources, Inc., to work with U.S.-based PV module manufacturers representing crystalline silicon, polycrystalline silicon, amorphous silicon, copper indium diselenide (CIS), and other state-of-the-art thin-film technologies to develop formulations, production processes, prototype and qualify new low-cost, high-performance photovoltaic module encapsulants/packaging materials. The manufacturers will assist in identifying each materials' deficiencies while undergoing development, and then ultimately in qualifying the final optimized materials designed to specifically meet their requirements. Upon completion of this program, new low-cost, high-performance, PV module encapsulant/packaging materials will be qualified, by one or more end-users, for their specific application. Information gathering on topics related to thin-film module technology, including device performance/failure analysis, glass stability, and de vice encapsulation, has been completed. This information has provided concepts and considerations for module failure analysis, accelerated testing design, and encapsulation formulation strategy for thin-film modules.

Agro, S. C.; Tucker, R. T.

2004-03-01T23:59:59.000Z

435

Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives  

Broader source: Energy.gov [DOE]

Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

436

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect (OSTI)

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

437

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect (OSTI)

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

438

Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability  

SciTech Connect (OSTI)

In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused laboratory-scale alloy development effort on modified cast austenitic stainless steels at ORNL. Isothermal fatigue testing at 700 C also showed that standard CN12 was far superior to SiMo cast iron, but somewhat less than the desired behavior. During the first year, 3 new modified CF8C heats and 8 new modified CN12 heats were made, based on compositional changes specifically designed to change the nature, dispersion and stability of the as-cast and high-temperature aging-induced microstructures that consisted of carbides and other precipitate phases. Screening of the alloys at room-temperature and at 850 C (tensile and creep-rupture) showed -a ten-fold increase in rupture life of the best modified CN12 relative to the baseline material, better room-temperature ductility after aging, caused by less precipitation in the as-cast material and much less aging-induced precipitation. The best new modified CF8C steel showed strength at tensile and creep-rupture strength comparable to standard CN12 steel at 850 C, due to a unique and very stable microstructure. The CRADA was scheduled to end in July 2001, but was extended twice until July 2002. Based on the very positive results on the newly developed modified CF8C and CN12 cast austenitic stainless steels, a new CRADA with Caterpillar has been set up to commercially scale-up, test and evaluate, and make trial components from the new steels.

Maziasz, P.J.; Swindeman, R.W.; Browning, P.F. (Solar Turbines, Inc.); Frary, M.E. (Caterpillar, Inc.); Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

2004-06-01T23:59:59.000Z

439

Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source  

SciTech Connect (OSTI)

Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

2014-09-30T23:59:59.000Z

440

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001  

SciTech Connect (OSTI)

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report  

SciTech Connect (OSTI)

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo

2002-10-01T23:59:59.000Z

442

Final report on LDRD project: Low-cost Pd-catalyzed metallization technology for rapid prototyping of electronic substrates and devices  

SciTech Connect (OSTI)

A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.

Chen, K.S.; Morgan, W.P.; Zich, J.L.

1998-02-01T23:59:59.000Z

443

Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013  

SciTech Connect (OSTI)

Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

Ravi, T. S.

2013-05-01T23:59:59.000Z

444

Intermediate Mirrors to Reach Theoretical Efficiency Limits of Multi-Bandgap Solar Cells  

E-Print Network [OSTI]

Creating a single bandgap solar cell that approaches the Shockley-Queisser limit requires a highly reflective rear mirror. This mirror enhances the voltage of the solar cell by providing photons with multiple opportunities for escaping out the front surface. Efficient external luminescence is a pre-requisite for high voltage. Intermediate mirrors in a multijunction solar cell can enhance the voltage for each cell in the stack. These intermediate mirrors need to have the added function of transmitting the below bandgap photons to the next cell in the stack. In this work, we quantitatively establish the efficiency increase possible with the use of intermediate selective reflectors between cells in a tandem stack. The absolute efficiency increase can be up to ~6% in dual bandgap cells with optimal intermediate and rear mirrors. A practical implementation of an intermediate selective mirror is an air gap sandwiched by antireflection coatings. The air gap provides perfect reflection for angles outside the escape c...

Ganapati, Vidya; Yablonovitch, Eli

2014-01-01T23:59:59.000Z

445

Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

446

New Battery Design Could Help Solar and Wind Power the Grid  

Broader source: Energy.gov [DOE]

Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life “flow” battery that could enable solar and wind energy to become major suppliers to the electrical grid.

447

Low Cost Carbon Fiber Overview  

Broader source: Energy.gov (indexed) [DOE]

Strength; Fiber Format & Manufacturing Methods 1-10 M lbsyr 100M - 1B lbsyr Oil & Gas Deep Water Production Enabler Pipes, Drill Shafts, Off-Shore Structures Low Mass, High...

448

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

449

High-efficiency solar cell and method for fabrication  

DOE Patents [OSTI]

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

450

Solar Rights  

Broader source: Energy.gov [DOE]

In June 2010, Louisiana enacted solar rights legislation (HB 751) that prohibits certain entities from unreasonably restricting a property owner from installing a solar collector. Solar collectors...

451

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

452

Methods For Improving Polymeric Materials For Use In Solar Cell Applications  

DOE Patents [OSTI]

A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

Hanoka, Jack I. (Brookline, MA)

2001-11-20T23:59:59.000Z

453

Methods For Improving Polymeric Materials For Use In Solar Cell Applications  

DOE Patents [OSTI]

A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

Hanoka, Jack I. (Brookline, MA)

2003-07-01T23:59:59.000Z

454

Very Low-Cost Internet Access Using KioskNet S. Guo, M.H. Falaki, E.A. Oliver, S. Ur Rahman, A. Seth, M.A. Zaharia, and S. Keshav  

E-Print Network [OSTI]

) and appears to be economically viable. We estimate that our system requires a capital expenditure of $100Very Low-Cost Internet Access Using KioskNet S. Guo, M.H. Falaki, E.A. Oliver, S. Ur Rahman, A kiosks in developing regions can cost-effectively provide communication and e-governance services

California at Irvine, University of

455

A LOW COST MULTI-BAND/MULTI-MODE RADIO FOR PUBLIC SAFETY S.M. Hasan (Virginia Tech, Blacksburg, VA, U.S.A., hasan@vt.edu); P. Balister  

E-Print Network [OSTI]

A LOW COST MULTI-BAND/MULTI-MODE RADIO FOR PUBLIC SAFETY S.M. Hasan (Virginia Tech, Blacksburg, VA, U.S.A., hasan@vt.edu); P. Balister (Virginia Tech, Blacksburg, VA, U.S.A., balister@vt.edu); K. Lee

Ellingson, Steven W.

456

Material and Device Analysis for Efficiency Improvement in Epitaxial Crystalline Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-11-433  

SciTech Connect (OSTI)

Crystal Solar has a novel approach for producing low-cost, monocrystalline silicon wafers that are capable of yielding high-efficiency solar cells. The approach involves epitaxial growth of the substrate and a proprietary lift-off technology. Crystal Solar will send selected wafers and cells to NREL for characterization and analyses. NREL will apply a variety of techniques to help identify mechanism(s) that limit the cell efficiency and suggest suitable approaches for mitigation.

Sopori, B.

2014-01-01T23:59:59.000Z

457

The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process  

SciTech Connect (OSTI)

The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

2008-06-24T23:59:59.000Z

458

Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films  

SciTech Connect (OSTI)

Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal.

Benson, D. K.; Tracy, C. E.; Lee, S-H. (National Renewable Energy Laboratory); Hishmeh, G. A.; Haberman, D. P. (DCH Technologies, Valencia, CA); Ciszek, P. A. (Evergreen Solar, Waltham, MA)

1998-10-20T23:59:59.000Z

459

3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation  

E-Print Network [OSTI]

, it is essential to find a cost-effective and clean method for mass production of hydrogen.6 Techniques for directly con- verting water to hydrogen using solar energy, known as photo- electrolysis, are receiving dimensional branched ZnO/Si heterojunction nanowire array by a two-step, wafer-scale, low-cost, solution

Wang, Deli

460

ISES'99, International Solar Energy Society, Jrusalem, ISRAEL, Juin 1999 BUILDING DESIGN IN TROPICAL CLIMATES. ELABORATION OF THE ECODOM  

E-Print Network [OSTI]

ISES'99, International Solar Energy Society, JĂ©rusalem, ISRAEL, Juin 1999 BUILDING DESIGN of optimized bioclimatic urban planning and architectural design, the use of passive cooling architectural public and private partners (low cost housing institutions, architects, energy consultant, etc...) to set

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Recovery Act: Novel Kerf-Free PV Wafering that provides a low-cost approach to generate wafers from 150um to 50um in thickness  

SciTech Connect (OSTI)

The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technology further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.

Fong, Theodore E.

2013-05-06T23:59:59.000Z

462

Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239  

SciTech Connect (OSTI)

In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.

Stradins, P.

2011-10-01T23:59:59.000Z

463

Commercialization of High Efficiency Low Cost CIGS Technology Based on Electroplating: Final Technical Progress Report, 28 September 2007 - 30 June 2009  

SciTech Connect (OSTI)

This report describes SoloPower's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. The project focused on SoloPower's electrodeposition-based copper indium gallium (di)selenide (CIGS) technology. Under this subcontract, SoloPower improved the quality of its flexible metal substrates, increased the size of its solar cells from 0.5 cm2 to 120 cm2, increased the small-area cell efficiencies from near 11% to near 14%, demonstrated large-area cells, and developed a module manufacturing process.

Basol, B.

2010-08-01T23:59:59.000Z

464

High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost  

SciTech Connect (OSTI)

GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

None

2010-10-01T23:59:59.000Z

465

Solar Easements  

Broader source: Energy.gov [DOE]

New Hampshire's "solar skyspace easement" provisions allow property owners to create solar easements in order to create and preserve a right to unobstructed access to solar energy. Easements remain...

466

Solar Easements  

Broader source: Energy.gov [DOE]

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

467

Highly Mismatched Alloys for Intermediate Band Solar Cells  

SciTech Connect (OSTI)

It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

2005-03-21T23:59:59.000Z

468

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Appendix C - Appendix 0 - Solar Radiation Glossary. ConversSolar Data a. Solar Radiation. , , . , . . , , , , . , . . .

Berdahl, P.

2010-01-01T23:59:59.000Z

469

Innovative Approaches to Low Cost Module Manufacturing of String Ribbon Si PV Modules: Phase II, Annual Technical Progress Report, 1 April 2003--31 May 2004  

SciTech Connect (OSTI)

This subcontract resulted in a number of important advances for Evergreen Solar Inc. Foremost amongst these is the production implementation of dual ribbon growth from a single crucible (Gemini) using the String Ribbon continuous ribbon technology. This project has resulted in the flattest ribbon and the highest yields and machine uptime ever seen at Evergreen Solar. This then has resulted in significantly lowered consumables costs and lower overall direct manufacturing costs. In addition, methods to control the as-grown surface of Gemini ribbon have permitted the usage of the so-called no-etch process that allows for direct transfer of as-grown ribbon to diffusion without any intermediate etching step. In-line diagnostics for Gemini were further developed--these included more accurate methods for measuring and controlling melt depth and more accurate means to measure and control ribbon thickness. Earlier in the project, the focus was on monolithic module development. With the Gemini advances described above, monolithic module work was brought to a close during this second year of the overall three year project. A significant advance in this technology was the development of a conductive adhesive in combination with Evergreen's proprietary backskin and encapsulant. 25-W size experimental monolithic modules have been tested and found to be able to withstand up to 1400 thermal cycles.

Hanoka, J. I.

2004-10-01T23:59:59.000Z

470

Community Shared Solar with Solarize  

Broader source: Energy.gov [DOE]

An overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy systems.

471

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect (OSTI)

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

472

Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H{sub 2}/CO{sub 2} Separation in WGS Reactors  

SciTech Connect (OSTI)

The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H{sub 2} separation and Cellulose Acetate membranes for CO{sub 2} separation. Cu-Ni-Ce/alumina, Fe-Ni-Ce/alumina granular WGS catalysts incorporating metal oxide nanoparticles into alumina support were prepared using sol-gel/oil-drop methods. The catalysts were characterized by Powder X-ray Diffractometer (PXRD), Scanning Electron Microscope (SEM), Differential Thermal Analyzer (DTA), Thermal Gravitational Analyzer (TGA), and Brunauer, Emmett and Teller (BET) techniques. TGA shows sharp weight loss at approximately 215°C and DTA shows dehydration of metal hydroxides between 200°C and 250°C. The PXRD spectra show an increase in crystallinity as a result of heating to 1000°C, and indicating a fine dispersion of the metal oxide nanoparticles in alumina supports during the sol-gel synthesis and calcination at 450°C. BET analysis indicated a mesoporous structure of the granules with high surface area. A gas-phase dynamic flow reactor is used to optimize the reaction temperatures. A gas-phase batch reactor was used to obtain kinetic data and the parameters for maximum CO conversion. In Cu-Ni-Ce/alumina category, Cu(0%)Ni(10%)Ce(11%) was found to be the best WGS catalyst among six Low Temperature Shift (LTS) catalysts with optimum temperatures between 200-300�°C, while Ni(5%)Cu(5%)Ce(11%) was found to be the best among four High Temperature Shift (HTS) catalysts with optimum temperature between 350-400°C. In the Fe-Ni-Ce/alumina category catalysts, Fe(8%)Ni(0%)Ce(8%)/alumina and Fe(6%)Ni(2%)Ce(8%)/alumina catalysts showed optimum WGS reaction temperature below 150°C. All Ni(8-x%)Fe(x%)Ce(8%) had lower WGS reaction efficiencies compared to Ni(8-x%)Cu(x%)Ce(8%). Metal (Nb or Ta)/ceramic membranes for hydrogen separation from the WGS reaction gas products have been prepared using a) sputtering and b) aluminothermic techniques. A polyvinyl-glass permeability tester was used with a gas chromatograph (GC) for H{sub 2}/CO permeability testing. Nb films showed a higher permeability than Ta at a given disk porosity. The aluminothermically deposited membranes have higher H{sub 2} permeability compared to the sputtered films, and Nb-film coated disks showed lower H{sub 2} permeability than Ta-film. A three-stage prototype stainless steel reactor with integrated housing for 1) WGS reaction catalysts, 2) H{sub 2}/CO{sub 2} separation metal/ceramic or metal/asbestos membranes, and 3) CO/CO{sub 2} separation cellulose acetate /filter-paper membranes has been designed and tested to have capabilities to perform WGS reactions at temperatures up to 400°C and withstand gas pressures up to 15 bars. The cracking of ceramic disks and gas leaks were successfully prevented by replacing ceramic disks with asbestos sheets that can easily withstand 400°C. Kinetic studies of H{sub 2} and CO permeabilities were performed through the single and double layer Nb and Ta membranes. Cellulose acetate (CA) films with 25% triethyl citrate (TEC) as plasticizer were prepared for H{sub 2}/CO/CO{sub 2} gas separation with varying thickness of the films by acetone solutions at different concentrations and by dip-coating onto filter papers. The AFM analysis of the CA membrane showed that the uniform coating had fewer and smaller pores as the film thickness increased, and corroborated by gas permeability studies. The CO{sub 2} permeability has decreased faster than CO permeability with the CA/TEC membrane thickness, and findings support that the CA membrane could be used to entrap CO{sub 2}. Several CA/TEC membranes were also staked to increase the separation efficiency. Positron Lifetime Spectroscopy (PLS) was used to estimate the micro-porosity (pore size and concentration) and fractional free volume changes of CA/TEC films, and used to understand the variations observed in the CO{sub 2}/CO permeabilities.

Naidu Seetala; Upali Siriwardane

2011-06-30T23:59:59.000Z

473

Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop  

SciTech Connect (OSTI)

Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

Michael Deck; Rick Russell

2010-01-05T23:59:59.000Z

474

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar...  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia, Pennsylvania: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Philadelphia, Pennsylvania: Solar in Action (Brochure),...

475

Final Report for PV Incubator Subcontract No. NEU-0-99010-09: March 29, 2010 - March 28, 2011  

SciTech Connect (OSTI)

MicroLink has developed a process technology that will enable the manufacture of high-efficiency, low-cost, multijunction solar cells for use in concentrating photovoltaic (CPV) applications. The multijunction cells were fabricated using a novel low-temperature wafer bonding process. A triple-junction InGaP/GaAs/Ge tandem solar cell with efficiency of 30% at 1 sun AM1.5 illumination was fabricated by wafer bonding a dual-junction InGaP/GaAs cell to a single-junction Ge cell. Temperature cycling over the range -25 degrees C to +40 degrees C resulted in no degradation of cell performance. Triple junction InGaP/GaAs/Ge cells were mounted onto ceramic carriers and tested at concentrations up to 300 suns.

Pan, N.

2012-04-01T23:59:59.000Z

476

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

477

Introduction to Solar Photon Conversion  

SciTech Connect (OSTI)

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

478

Solar Easements  

Broader source: Energy.gov [DOE]

Rhode Island allows property owners to establish solar easements in the same manner and with the same effect as a conveyance of an interest in real property. Solar easements must be created in...

479

Solar Forecasting  

Broader source: Energy.gov [DOE]

On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

480

Solar Easements  

Broader source: Energy.gov [DOE]

Kansas' solar easement provisions do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar easement contracts for the purpose of ensuring adequate...

Note: This page contains sample records for the topic "low-cost multijunction solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar Rights  

Broader source: Energy.gov [DOE]

Cities and counties in North Carolina generally may not adopt ordinances prohibiting the installation of "a solar collector that gathers solar radiation as a substitute for traditional energy for...

482

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

of the absorber or photovoltaic cell. Color behavior, oras ln (A.27) For a photovoltaic cell under concentrated2 day Multijunction photovoltaic cells are used with medium

Hill, Steven Craig

2013-01-01T23:59:59.000Z

483

GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions Maoqing Yao, Ningfeng Huang, Sen Cong, Chun-Yung Chi, M. Ashkan Seyedi, Yen-Ting Lin, Yu Cao,  

E-Print Network [OSTI]

for future low-cost, high-efficiency photovoltaics. KEYWORDS: Nanowires, solar cells, gallium arsenide, axial.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity

Zhou, Chongwu

484

Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development  

SciTech Connect (OSTI)

The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

2014-12-08T23:59:59.000Z

485

Solar panels as air Cherenkov detectors for extremely high energy cosmic rays  

E-Print Network [OSTI]

Increasing interest towards the observation of the highest energy cosmic rayshas motivated the development of new detection techniques. The properties ofthe Cherenkov photon pulse emitted in the atmosphere by these very rareparticles indicate low-cost semiconductor detectors as good candidates fortheir optical read-out. The aim of this paper is to evaluate the viability of solar panels for thispurpose. The experimental framework resulting from measurements performed withsuitably-designed solar cells and large conventional photovoltaic areas ispresented. A discussion on the obtained and achievable sensitivities follows.

Cecchini, S; Esposti, L D; Giacomelli, G; Guerra, M; Lax, I; Mandrioli, G; Parretta, A; Sarno, A; Schioppo, R; Sorel, M; Spurio, M

2000-01-01T23:59:59.000Z

486

Solar panels as air Cherenkov detectors for extremely high energy cosmic rays  

E-Print Network [OSTI]

Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows.

S. Cecchini; I. D'Antone; L. Degli Esposti; G. Giacomelli; M. Guerra; I. Lax; G. Mandrioli; A. Parretta; A. Sarno; R. Schioppo; M. Sorel; M. Spurio

2000-02-07T23:59:59.000Z

487

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

488

Solar forecasting review  

E-Print Network [OSTI]

and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

Inman, Richard Headen

2012-01-01T23:59:59.000Z

489

Solar Mapper  

Broader source: Energy.gov [DOE]

Interactive, online mapping tool providing access to spatial data related to siting utility-scale solar facilities in the southwestern United States.

490

Solar Rights  

Broader source: Energy.gov [DOE]

Maine law requires that any municipal ordinance, bylaw, or regulation adopted after September 30, 2009 regulating solar energy devices on residential property follow certain requirements. The rules...

491

Solar Energy.  

E-Print Network [OSTI]

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to… (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

492

Solar Car  

SciTech Connect (OSTI)

Des Moines Central Academy Middle School students compete in the Solar Car Challenge at the National Science Bowl, May 2 in Washington D.C.

None

2010-01-01T23:59:59.000Z

493

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

494

US polycrystalline thin film solar cells program  

SciTech Connect (OSTI)

The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

1989-11-01T23:59:59.000Z

495

Solar central receiver heliostat reflector assembly  

DOE Patents [OSTI]

A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

Horton, Richard H. (Schenectady, NY); Zdeb, John J. (Clifton Park, NY)

1980-01-01T23:59:59.000Z

496

Dye-sensitized solar cells  

DOE Patents [OSTI]

A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

Skotheim, Terje A. [Berkeley, CA

1980-03-04T23:59:59.000Z

497

Dye-sensitized solar cells  

DOE Patents [OSTI]

A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

Skotheim, T.A.

1980-03-04T23:59:59.000Z

498

Low cost crowd counting using audio tones  

E-Print Network [OSTI]

With mobile devices becoming ubiquitous, collaborative applications have become increasingly pervasive. In these applications, there is a strong need to obtain a count of the number of mobile devices present in an area, ...

Kannan, Pravein Govindan

499

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2003-07-22T23:59:59.000Z

500

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2004-05-18T23:59:59.000Z