National Library of Energy BETA

Sample records for low-cost multijunction solar

  1. Final Report- Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Broader source: Energy.gov [DOE]

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  2. Low-Cost, Lightweight Solar Concentrator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Low-Cost, Lightweight Solar Concentrator This fact sheet describes a low-cost, lightweight solar conductor project awarded under the DOE's 2012 SunShot Concentrating ...

  3. Multi-junction solar cell device

    DOE Patents [OSTI]

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  4. Enhanced Photon Recycling in Multijunction Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Recycling in Multijunction Solar Cells Work w as p erformed a t U IUC a nd B erkeley X. Sheng, M.H. Yun, C. Zhang, A.M. Al---Okaily, M. Masouraki, L. Shen, S. Wang, W.L. Wilson, J.Y. Kim, P. Ferreira, X. Li, E. Yablonovitch, a nd J .A. R ogers, " Device A rchitectures f or E nhanced Photon Recycling in Thin---Film MulQjuncQon Solar Cells." Adv. Energy M ater. (2014). DOI: 1 0.1002/aenm.201400919 Scientific Achievement We demonstrate improved mul1junc1on (MJ) solar cell

  5. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  6. Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Cost, Lightweight Solar Concentrators FY13 Q2 Low-Cost, Lightweight Solar Concentrator Low-Cost Light Weigh Thin Film Solar Concentrators

  7. Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Energy Efficiency Building Energy ... Return to Search Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs ... gaps will lead to efficient power conversion. ...

  8. Voltage-matched configurations for multijunction solar cells

    SciTech Connect (OSTI)

    Gee, J.M.

    1987-01-01

    Novel methods for interconnecting the subcells of a multijunction solar cell are investigated. The subcells are connected in parallel in these new methods. The bandgaps of the subcells must be selected for matched voltages when operated in parallel. We refer to multijunction solar cells with the subcells connected in parallel as having a voltage-matched configuration. Computer analyses of multijunction solar cells with a voltage-matched configuration and with series-connected subcells were performed. Roughly, the same performance with either approach for a multijunction cell with optimized bandgaps was found. Several advantages for the voltage-matched configuration relative to multijunction solar cells with series-connected subcells were identified, including wider selection of bandgaps for optimal performance, less sensitivity to radiation damage, and less sensitivity to spectral variations.

  9. Modeling of the electronic transport in multijunction solar cells

    SciTech Connect (OSTI)

    Rau, U.; Goldbach, M.

    1994-12-31

    Simulations of the electrical transport in multijunction thin-film solar cells made from polycrystalline silicon are presented. The authors investigate the effect of the grain size on the efficiency of the multijunction solar cell. Here, they concentrate on micro crystalline material with a high recombination velocity at the grain boundaries of 10{sup 4}cm/s. Typical results of their calculations demonstrate that based on the multijunction design structure consisting of 8 or more layers efficiencies of 14% may be obtained from 12--20 {micro}m thick solar cells.

  10. Heterojunction for Multi-Junction Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Solar Photovoltaic Advanced Materials Advanced Materials Find More Like This Return to Search Heterojunction for Multi-Junction Solar Cells Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (1,250 KB) Technology Marketing SummarySandia National Laboratories has created a semiconductor p-n heterojunction for use in forming a photodetector that has applications for use in a multi-junction solar cell and detecting light

  11. New Multijunction Design Leads to Ultra-Efficient Solar Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Four-junction III-V multijunction cell uses buffer layers and other innovations to reach 45.6% efficiency at 690 suns NREL scientists have shown that four-junction solar cells ...

  12. Brookhaven National Laboratory's low cost solar technology

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1984-09-01

    The problems identified in early study - cost, architectural compatibility, and reliability - were not likely to be solved with conventional practices in the solar industry. BNL then embarked upon an iterative development process towards a solution founded on the methodology which establish a set of key guidelines for the research. With the derivation of cost goals ($5 to $6 per square foot, installed) and performance targets (consistent with conventional technology) it was considered important to use sophisticated industrial product development technologies to achieve the desired results. The normal industrial practice to reduce cost, for example, is to reduce material intensity, strive for simplicity in design and apply as much mass production as possible. This approach revealed the potential of polymer films as a basic construction material for solar collectors. Further refinements to reduce cost were developed, including the perfection of a non-pressurized absorber/heat exchanger and the adaptability of a printable optical selective surface. Additional significant advantages were acquired through application of a monocoque construction technique borrowed from the aircraft industry. The procedures used, including important support from industry to help identify materials and guide fabrication techniques, eventually resulted in construction and successful testing of a thin polymer film solar collector. To achieve the overall objectives of viable solar economics some system concepts have been explored by BNL. Consistent with the cost goals mentioned, it is believed that the low pressure designs pursued will be successful. Designs for the storage tank and distribution system that have been pursued include the use of polymer film lined sheet metal for the storage tanks and plastic pipe.

  13. Low-Cost Light Weigh Thin Film Solar Concentrators | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    313_ganapathi.pdf More Documents & Publications Low-Cost, Lightweight Solar Concentrators - FY13 Q1 Low-Cost, Lightweight Solar Concentrators FY13 Q2

  14. Voltage-matched multijunction solar cell architectures for integrating PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies - Energy Innovation Portal Find More Like This Return to Search Voltage-matched multijunction solar cell architectures for integrating PV technologies National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The U.S. Department of Energy SunShot Initiative aims to reduce the total installed cost of solar energy systems to $.06 per kilowatt-hour (kWh) by the year 2020. Reducing the cost of solar electricity requires that solar cell

  15. NREL Funds Research into Low-Cost Solar Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funds Research into Low-Cost Solar Electricity Media contact: George Douglas (303) 275-4096 e:mail: george_douglas@nrel.gov Golden, Colo., Dec. 8, 1997 -- C Contracts worth about $60 million over three years will be awarded under the Thin Film PV (photovoltaic) Partnership program at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Recipients of the money will research ways to lower the cost of producing electricity from sunlight using photovoltaic semiconductors that

  16. Low cost bare-plate solar air collector

    SciTech Connect (OSTI)

    Maag, W.L.; Wenzler, C.J.; Rom, F.E.; VanArsdale, D.R.

    1980-09-01

    The purpose of this project was to develop a low cost, bare-plate collector, determine its performance for a variety of climatic conditions, analyze the economics of this type of solar collector and evaluate specific applications. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60% or greater with air preheat temperature uses up to 20/sup 0/F for one of the prototypes. The economic analyses indicated that an installed cost of between $5 and $10 per square foot would make this type of solar system economically viable. For the materials of construction and the type of fabrication and installation perceived, these costs for the bare-plate solar collector are believed to be attainable. Specific applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  17. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - ...

  18. Municipal Bond- Power Purchase Agreement Model Continues to Provide Low-Cost Solar Energy

    Broader source: Energy.gov [DOE]

    Provides an overview for power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory

  19. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  20. Low Cost Solar Water Heating R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for ... More Documents & Publications Atmospheric Pressure Deposition for Electrochromic Windows ...

  1. Project Profile: Low-Cost, Lightweight Solar Concentrators |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    components and associated control system Design, integrate, and test a low-cost concentrator Analyze the system's cost to demonstrate achieving the 75m2 collector system target. ...

  2. Antireflection Coating Design for Series Interconnected Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    AIKEN,DANIEL J.

    1999-11-29

    AR coating design for multi-junction solar cells can be more challenging than in the single junction case. Reasons for this are discussed. Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J{sub SC}) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design can be used to provide an additional degree of freedom for current matching multi-junction devices.

  3. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

  4. Low-Cost, Third Generation Solar Cells on Solid Ground | U.S...

    Office of Science (SC) Website

    Summary Current solar cell technologies are largely constrained by high production costs, low operating efficiency, and limited durability. A low-cost alternative to current ...

  5. Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells

    SciTech Connect (OSTI)

    Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; France, Ryan M.; McMahon, William E.; Osterwald, Carl R.; Friedman, Daniel J.

    2015-11-01

    The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs of the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.

  6. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    SciTech Connect (OSTI)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham; Guthrey, Harvey; Fetzer, C. M.; King, Richard

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  7. Materials en Multi-junction Solar Cells to Push CPV Efficiencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ceem.ucsb.edurss News and Events - Center for Energy Efficient Materials en Multi-junction Solar Cells to Push CPV Efficiencies Beyond 50% http:www.compoundsemiconductor.net...

  8. Low-cost solar flat-plate-collector development

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1981-01-01

    Cost goals were developed for the collector which led to the rejection of conventional approaches and to the exploration of thin-film technology. A thin-film sola absorber suited for high-speed continous-roll manufacture at low cost was designed. The absorber comprises two sheets of aluminum-foil/polymeric-material laminate bonded together at intervals to form channels with water as the heat transfer fluid. Several flat-plate panels were fabricated and tested. (MHR)

  9. Project Profile: Low-Cost Solar Thermal Collector

    Broader source: Energy.gov [DOE]

    SunTrough, under the Baseload CSP FOA, is developing a new class of solar concentrators with geometries and manufacturability that can significantly reduce the fully installed cost of the solar collector field.

  10. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  11. High Volume Method of Making Low Cost, Lightweight Solar Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search High Volume Method of Making Low Cost, Lightweight Solar Materials Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA critical challenge for solar energy is the high cost (>$1/W) of quality solar materials. Researchers at ORNL have invented an approach for producing large volumes of solar cell material at a fraction of the cost of today's solar cells.

  12. Low-Cost Light Weigh Thin Film Solar Concentrators | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    513ganapathi.pdf More Documents & Publications 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power 2014 SunShot Initiative Peer Review Report

  13. Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; France, Ryan M.; McMahon, William E.; Osterwald, Carl R.; Friedman, Daniel J.

    2015-11-01

    The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs ofmore » the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.« less

  14. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2

    Broader source: Energy.gov (indexed) [DOE]

    Recompression Cycle | Department of Energy 313_sullivan.pdf More Documents & Publications High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY13 Q3 Final Report - High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle

  15. Non-Linear Luminescent Coupling in Series-Connected Multijunction Solar Cells

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.

    2012-06-18

    The assumption of superposition or linearity of photocurrent with solar flux is widespread for calculations and measurements of solar cells. The well-known effect of luminescent coupling in multijunction solar cells has also been assumed to be linear with excess current. Here we show significant non-linearities in luminescent coupling in III-V multijunction solar cells and propose a simple model based on competition between radiative and nonradiative processes in the luminescent junction to explain these non-linearities. We demonstrate a technique for accurately measuring the junction photocurrents under a specified reference spectrum, that accounts for and quantifies luminescent coupling effects.

  16. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  17. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    SciTech Connect (OSTI)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; Young, Michelle; Kurtz, Sarah R.

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector. The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.

  18. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; Garcia, Ivan; Friedman, Daniel J.; King, Richard R.; Chiu, Philip T.; France, Ryan M.; Duda, Anna; Olavarria, Waldo J.; et al

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector.more » The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.« less

  19. NREL Spurred the Success of Multijunction Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    Many scientists once believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. However, researchers at the National Renewable Energy Laboratory (NREL) thought differently, and they employed GaInP in a material combination that allowed the multijunction cell to flourish. The multijunction cell is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic products.

  20. A comparison of the radiation tolerance characteristics of multijunction solar cells with series and voltage-matched configurations

    SciTech Connect (OSTI)

    Gee, J.M; Curtis, H.B.

    1988-01-01

    The effect of series and voltage-matched configurations on the performance of multijunction solar cells in a radiation environment was investigated. It was found that the configuration of the multijunction solar cell can have a significant impact on its radiation tolerence characteristics.

  1. Solar Water Heating with Low-Cost Plastic Systems

    SciTech Connect (OSTI)

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  2. Low cost solar energy collection for cooling applications

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1981-06-01

    Solar energy collector designs utilizing thinfilm polymeric materials in the absorber and glazing are now under development at Brookhaven National Laboratory. The objective is dramatic cost reduction consistent with acceptable performance and life. Originally intended for low temperature applications (< 100/sup 0/F), these collectors now appear capable of high temperature applications including desiccant and absorption cooling (150/sup 0/ to 200/sup 0/ F). The performance and economics of the thin-film collector are compared with those of conventional flat-plate designs in cooling applications.

  3. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  4. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  5. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  6. Low-cost evacuated-tube solar collector. Final report

    SciTech Connect (OSTI)

    Beecher, D. T.

    1981-02-10

    A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

  7. Tandem Microwire Solar Cells for Flexible High Efficiency Low Cost Photovoltaics

    SciTech Connect (OSTI)

    Atwater, Harry A.

    2015-03-10

    This project has developed components of a waferless, flexible, low-cost tandem multijunction III-V/Si microwire array solar cell technology which combines the efficiency of wafered III-V photovoltaic technologies with the process designed to meet the Sunshot object. The project focused on design of lattice-matched GaAsP/SiGe two junction cell design and lattice-mismatched GaInP/Si tandem cell design. Combined electromagnetic simulation/device physics models using realistic microwire tandem structures were developed that predict >22% conversion efficiency for known material parameters, such as tunnel junction structure, window layer structure, absorber lifetimes and optical absorption and these model indicate a clear path to 30% efficiency for high quality III-V heterostructures. SiGe microwire arrays were synthesized via Cu-catalyzed vapor-liquid-solid (VLS) growth with inexpensive chlorosilane and chlorogermance precursors in an atmospheric pressure reactor. SiGe alloy composition in microwires was found to be limited to a maximum of 12% Ge incorporation during chlorogermane growth, due to the melting of the alloy near the solidus composition. Lattice mismatched InGaP double heterostructures were grown by selective epitaxy with a thermal oxide mask on Si microwire substrates using metallorganic vapor phase epitaxy. Transmission electron microscopy (TEM) analysis confirms the growth of individual step graded layers and a high density of defects near the wire/III-V interface. Selective epitaxy was initiated with a low temperature nucleation scheme under “atomic layer epitaxy” or “flow mediated epitaxy” conditions whereby the Ga and P containing precursors are alternately introduced into the reactor to promote layer-bylayer growth. In parallel to our efforts on conformal GaInP heteroepitaxy on selectively masked Si microwires, we explored direct, axial growth of GaAs on Si wire arrays as another route to a tandem junction architecture. We proposed axial, lattice-mismatched growth of a GaAs segment that extrude out of a Si wire via a self-aligned SiO2 hollow cylindrical mask. With this growth strategy, misfit dislocations that would normally form at the GaAs/Si interface during thin film epitaxy may bend over to and thus terminate at the sidewall of the SiO2 tube. A reactive-ion etching technique was employed 1) to remove Si to form a hollow, self-aligned SiO2 cylindrical tube as a growth template for GaAs epitaxy using a vertical, showerhead, low-pressure metal-organic chemical-vapor deposition reactor that was operated at 0.1 atm. Successful epitaxy of axial GaAs wires on non-polar, <111>-oriented Si wire substrates was found at temperatures of ~850C. This and the other III-V/Si heterojunction wire synthesis strategies described here are promising approaches to realize future III-V/Si tandem solar cell designs.

  8. Design of Semiconductor-Based Back Reflectors for High Voc Monolithic Multijunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Garcia, I.; Geisz, J.; Steiner, M.; Olson, J.; Friedman, D.; Kurtz, S.

    2012-06-01

    State-of-the-art multijunction cell designs have the potential for significant improvement before going to higher number of junctions. For example, the Voc can be substantially increased if the photon recycling taking place in the junctions is enhanced. This has already been demonstrated (by Alta Devices) for a GaAs single-junction cell. For this, the loss of re-emitted photons by absorption in the underlying layers or substrate must be minimized. Selective back surface reflectors are needed for this purpose. In this work, different architectures of semiconductor distributed Bragg reflectors (DBR) are assessed as the appropriate choice for application in monolithic multijunction solar cells. Since the photon re-emission in the photon recycling process is spatially isotropic, the effect of the incident angle on the reflectance spectrum is of central importance. In addition, the DBR structure must be designed taking into account its integration into the monolithic multijunction solar cells, concerning series resistance, growth economics, and other issues. We analyze the tradeoffs in DBR design complexity with all these requirements to determine if such a reflector is suitable to improve multijunction solar cells.

  9. NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powerhouses - News Releases | NREL NREL's Multi-Junction Solar Cells Teach Scientists How to Turn Plants into Powerhouses May 12, 2011 Plants can overcome their evolutionary legacies to become much better at using biological photosynthesis to produce energy, the kind of energy that can power vehicles in the near future, an all-star collection of biologists, physicists, photochemists, and solar scientists has found. A U.S. Department of Energy (DOE) workshop that drew a prestigious collection

  10. III-V Growth on Silicon Toward a Multijunction Cell

    SciTech Connect (OSTI)

    Geisz, J.; Olson, J.; McMahon, W.; Friedman, D.; Kibbler, A.; Kramer, C.; Young, M.; Duda, A.; Ward, S.; Ptak, A.; Kurtz, S.; Wanlass, M.; Ahrenkiel, P.; Jiang, C. S.; Moutinho, H.; Norman, A.; Jones, K.; Romero, M.; Reedy, B.

    2005-11-01

    A III-V on Si multijunction solar cell promises high efficiency at relatively low cost. The challenges to epitaxial growth of high-quality III-Vs on Si, though, are extensive. Lattice-matched (LM) dilute-nitride GaNPAs solar cells have been grown on Si, but their performance is limited by defects related to the nitrogen. Advances in the growth of lattice-mismatched (LMM) materials make more traditional III-Vs, such as GaInP and GaAsP, very attractive for use in multijunction solar cells on silicon.

  11. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    SciTech Connect (OSTI)

    Meerheim, Rico Krner, Christian; Leo, Karl

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  12. Low cost, bare plate solar air collector. Semi-annual progress report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A low cost, bare plate solar collector that is specifically designed to preheat ambient air with solar energy is discussed. Two prototype solar collector test systems have been designed, fabricated and assembled. Each system has been instrumented to provide instantaneous and average thermal performance data by means of a computerized data logger system. This data logger system is currently being made operational. Data collection is scheduled to begin March 1, 1980 and continue until the project completion date of June 17, 1980. Some preliminary test data have been obtained for both prototype systems. The results showed that ambient air was preheated between 5/sup 0/F and 10/sup 0/F with the systems achieving a thermal performance of between 15% and 30% efficiency.

  13. NREL Scientists Spurred the Success of Multijunction Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Before 1984, many scientists believed that high-quality gallium indium phosphide (GaInP) alloys could not be grown for use as semiconductors because the alloys would separate. One researcher at the Solar Energy Research Institute (SERI) thought differently. His name was Jerry Olson, and his innovative thinking changed solar history. Olson identified a material combination that allowed the multijunction cell to flourish. It is now the workhorse that powers satellites and the catalyst for renewed interest in concentrator photovoltaic (CPV) products.

  14. Laboratory instrumentation and techniques for characterizing multi-junction solar cells for space applications

    SciTech Connect (OSTI)

    Woodyard, J.R.

    1995-10-01

    Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. The authors report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to `fit` the spectral irradiance of the dual-source solar simulator to WRL AMO data.

  15. Flat-plate solar collectors utilizing polymeric film for high performance and very low cost

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1981-01-01

    Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

  16. Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This NREL Highlight describes research into a more precise technology for measuring efficiency of concentrating solar cells, which will enable the industry to advance.

  17. High-Intensity Silicon Vertical Multi-Junction Solar Cells |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Versatility Can be used in ground-mounted and roof-mounted deployments. Contact Information Mico Perales (216) 535-9200 mico.perales@greenfieldsolar.com GreenField Solar ...

  18. Low-cost evacuated-tube solar collector appendices. Final report

    SciTech Connect (OSTI)

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  19. Performance predictions of alternative, low cost absorbents for open-cycle absorption solar cooling

    SciTech Connect (OSTI)

    Ameel, T.A.; Gee, K.G.; Wood, B.D.

    1995-02-01

    To achieve solar fractions greater than 0.90 using the open-cycle absorption refrigeration system, considerable sorbent solution storage is necessary. Having identified the absorber as the system component whose performance is affected the most by a change in absorbent, an absorber model was selected from available literature pertaining to simultaneous heat and mass transfer. Low-cost absorbent candidates were selected and their physical properties were either located in the literature, measured, or estimated. The most promising of the absorbents considered was a mixture of two parts lithium chloride and one part zinc chloride. Both the lithium-zinc chloride mixture and lithium bromide solutions had estimated pumping powers of less than 0.1 kW. The solubility of the lithium-zinc chloride mixture at absorber conditions was improved over that of lithium bromide, reducing the risk of solidification of the solution. 16 refs., 4 figs., 2 tabs.

  20. Polycrystalline GaAs solar cells on low-cost Silicon-Film{trademark} substrates

    SciTech Connect (OSTI)

    Mauk, M.G.; Feyock, B.W.; Hall, R.B.; Cavanaugh, K.D.; Cotter, J.E.

    1997-12-31

    The authors assess the potential of a low-cost, large-area Silicon-Film{trademark} sheet as a substrate for thin-film polycrystalline GaAs solar cells. Silicon-Film is a relatively inexpensive material on which large-grain (>2 mm) polycrystalline GaAs films can be formed. The GaAs epitaxial layers are grown by a simple close-spaced vapor transport (CSVT) technique using water vapor as a transport agent. A recrystallized Ge{sub 1{minus}x}Si{sub x} buffer layer between the GaAs epilayer and Silicon-Film substrate can facilitate growth of the GaAs. Selective epitaxy on patterned, oxide-masked substrates is effective in reducing thermal stress effects.

  1. III-V-N materials for super high-efficiency multijunction solar cells

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Bouzazi, Boussairi; Suzuki, Hidetoshi; Ikeda, Kazuma; Kojima, Nobuaki; Ohshita, Yoshio

    2012-10-06

    We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R and D program since FY2008. InGaAsN is one of appropriate materials for 4-or 5-junction solar cell configuration because this material can be lattice-matched to GaAs and Ge substrates. However, present InGaAsN single-junction solar cells have been inefficient because of low minority-carrier lifetime due to N-related recombination centers and low carrier mobility due to alloy scattering and non-homogeneity of N. This paper presents our major results in the understanding of majority and minority carrier traps in GaAsN grown by chemical beam epitaxy and their relationships with the poor electrical properties of the materials.

  2. Study of minority carrier diffusion lengths in photoactive layers of multijunction solar cells

    SciTech Connect (OSTI)

    Mintairov, S. A. Andreev, V. M.; Emelyanov, V. M.; Kalyuzhnyy, N. A.; Timoshina, N. K.; Shvarts, M. Z.; Lantratov, V. M.

    2010-08-15

    A technique for determining a minority carrier's diffusion length in photoactive III-V layers of solar cells by approximating their spectral characteristics is presented. Single-junction GaAs, Ge and multi-junction GaAs/Ge, GaInP/GaAs, and GaInP/GaInAs/Ge solar cells fabricated by hydride metal-organic vapor-phase epitaxy (H-MOVPE) have been studied. The dependences of the minority carrier diffusion length on the doping level of p-Ge and n-GaAs are determined. It is shown that the parameters of solid-state diffusion of phosphorus atoms to the p-Ge substrate from the n-GaInP nucleation layer are independent of the thickness of the latter within 35-300 nm. It is found that the diffusion length of subcells of multijunction structures in Ga(In)As layers is smaller in comparison with that of single-junction structures.

  3. Increased efficiency in multijunction solar cells through the incorporation of semimetallic ErAs nanoparticles into the tunnel junction

    SciTech Connect (OSTI)

    Zide, J.M.O.; Kleiman-Shwarsctein, A.; Strandwitz, N.C.; Zimmerman, J.D.; Steenblock-Smith, T.; Gossard, A.C.; Forman, A.; Ivanovskaya, A.; Stucky, G.D.

    2006-04-17

    We report the molecular beam epitaxy growth of Al{sub 0.3}Ga{sub 0.7}As/GaAs multijunction solar cells with epitaxial, semimetallic ErAs nanoparticles at the interface of the tunnel junction. The states provided by these nanoparticles reduce the bias required to pass current through the tunnel junction by three orders of magnitude, and therefore drastically reduce the voltage losses in the tunnel junction. We have measured open-circuit voltages which are 97% of the sum of the constituent cells, which result in nearly double the efficiency of our multijunction cell with a conventional tunnel junction.

  4. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    SciTech Connect (OSTI)

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  5. High performance anti-reflection coatings for broadband multi-junction solar cells

    SciTech Connect (OSTI)

    AIKEN,DANIEL J.

    2000-02-23

    The success of bandgap engineering has made high efficiency broadband multi-junction solar cells possible with photo-response out to the band edge of Ge. Modeling has been conducted which suggests that current double layer anti-reflection coating technology is not adequate for these devices in certain cases. Approaches for the development of higher performance anti-reflection coatings are examined. A new AR coating structure based on the use of Herpin equivalent layers is presented. Optical modeling suggests a decrease in the solar weighted reflectance of over 2.5{percent} absolute as a result. This structure requires no additional optical material development and characterization because no new optical materials are necessary. Experimental results and a sensitivity analysis are presented.

  6. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  7. Research on high-efficiency, multiple-gap, multijunction, amorphous-silicon-based alloy thin-film solar cells

    SciTech Connect (OSTI)

    Guha, S. )

    1989-06-01

    This report presents results of research on advancing our understanding of amorphous-silicon-based alloys and their use in small-area multijunction solar cells. The principal objectives of the program are to develop a broad scientific base for the chemical, structural, optical, and electronic properties of amorphous-silicon-based alloys; to determine the optimum properties of these alloy materials as they relate to high-efficiency cells; to determine the optimum device configuration for multijunction cells; and to demonstrate proof-of-concept, multijunction, a-Si-alloy-based solar cells with 18% efficiency under standard AM1.5 global insolation conditions and with an area of at least 1 cm{sup 2}. A major focus of the work done during this reporting period was the optimization of a novel, multiple-graded structure that enhances cell efficiency through band-gap profiling. The principles of the operation of devices incorporating such a structure, computer simulations of those, and experimental results for both single- and multijunction cells prepared by using the novel structure are discussed in detail. 14 refs., 35 figs., 7 tabs.

  8. Comparison of Theoretical Efficiencies of Multi-junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Kurtz, S.; Myers, D.; McMahon, W. E.; Geisz, J.; Steiner, M.

    2008-01-01

    Champion concentrator cell efficiencies have surpassed 40% and now many are asking whether the efficiencies will surpass 50%. Theoretical efficiencies of >60% are described for many approaches, but there is often confusion about the theoretical efficiency for a specific structure. The detailed balance approach to calculating theoretical efficiency gives an upper bound that can be independent of material parameters and device design. Other models predict efficiencies that are closer to those that have been achieved. Changing reference spectra and the choice of concentration further complicate comparison of theoretical efficiencies. This paper provides a side-by-side comparison of theoretical efficiencies of multi-junction solar cells calculated with the detailed balance approach and a common one-dimensional-transport model for different spectral and irradiance conditions. Also, historical experimental champion efficiencies are compared with the theoretical efficiencies.

  9. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  10. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  11. Multi-crystalline II-VI based multijunction solar cells and modules

    SciTech Connect (OSTI)

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  12. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  13. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Final report

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  14. Progress toward technology transition of GaInP{sub 2}/GaAs/Ge multijunction solar cells

    SciTech Connect (OSTI)

    Keener, D.N.; Marvin, D.C.; Brinker, D.J.; Curtis, H.B.; Price, P.M.

    1997-12-31

    The objective of the joint WL/PL/NASA Multijunction Solar Cell Manufacturing Technology (ManTech) Program is to scale up high efficiency GaInP{sub 2}/GaAs/Ge multijunction solar cells to production size, quantity, and yield while limiting the production cost/Watt ($/W) to 15% over GaAs cells. Progress made by the program contractors, Spectrolab and TECSTAR, include, respectively, best cell efficiencies of 25.76% and 24.7% and establishment of 24.2% and 23.8% lot average efficiency baseline designs. The paper also presents side-by-side testing results collected by Phillips Laboratory and NASA Lewis on Phase 1 deliverable cells, which shows compliance with program objectives. Cell performance, pre- and post-radiation, and temperature coefficient results on initial production GaInP{sub 2}/GaAs/Ge solar cells will be presented.

  15. Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

    2011-01-01

    The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 C hotter, reaching as high as 100 C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

  16. Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell: Preprint

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

    2011-07-01

    The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 degrees C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 degrees C hotter, reaching as high as 100 degrees C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 degrees C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

  17. Stable a-Si:H Based Multijunction Solar Cells with Guidance from Real Time Optics: Annual Report, Phase I: 17 July 1998-16 October 1999

    SciTech Connect (OSTI)

    Wronski, C.R.; Collins, R.W.; Jiao, L.; Ferlauto, A.; Rovira, P.I.; Koval, R.J.; Lu, Z.; Niu, X.

    2000-08-29

    This summary describes tasks of novel improved intrinsic materials for multijunction solar cells, insights into improved stability in materials and solar cells, optimization of solar cell performance with improved intrinsic layers, and optimization of multijunction solar cells. The report characterizes a protocrystalline a-Si:H film growth regime where thin samples retain their amorphous state when their growth time or thickness is limited to small values, even when films are deposited with high hydrogen dilution that results in microcrystalline thick films. The Staebler-Wronski degradation kinetics of films and devices are systematically studied as a function of hydrogen dilution.

  18. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R.; Allerman, Andrew A.; Klem, John F.; Jones, Eric D.

    2001-01-01

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 070%.

  19. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo Dominguez, César Voarino, Philippe Besson, Pierre Baudrit, Mathieu

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  20. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

  1. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  2. Nanostructure Arrays for Multijunction Solar Cells: Final Subcontract Report, 12 May 1999--11 July 2002

    SciTech Connect (OSTI)

    Das, B.

    2004-06-01

    This project developed the process technologies for the fabrication of high-efficiency multijunction photovoltaic cells using semiconductor nanostructure arrays. These devices are expected to provide increased energy conversion efficiency, as well as increased carrier collection efficiency. In addition, this approach provides the ability to tune the absorption spectrum to match selected windows of the solar spectrum. At the same time, these devices can be fabricated using existing industrial electrochemical processing techniques that can substantially reduce the cost of each device. The fabrication technique is based on electrochemical synthesis of II-VI semiconductor quantum wires using a preformed alumina template. This project focused on and solved the technical challenges that need to be addressed for the implementation of such devices. Specific issues addressed include (a) improved pore ordering on thin-film templates, (b) synthesis of II-VI semiconductor nanostructures by both AC and DC deposition, (c) an in-situ barrier-layer engineering process that allow the fabrication of superior-quality materials and improved template/substrate interface, (d) characterization techniques for templates, (e) process technology for creating stacked layers of nanostructures, (f) process throughput and improved apparatus, (g) modeling tools, (h) use of glass substrates, and (i) a nonlithographic surface texturing technique for silicon PV cells. An important outcome of this project is the demonstration of the fabrication technique on glass substrates. This breakthrough provides the possibility of covering buildings with''transparent'' solar cells fabricated on architectural glass. The accomplishments of this project position it well for the next phase of research, namely, creation and optimization of the nanostructure-based PV cells.

  3. Design of cascaded low cost solar cell with CuO substrate

    SciTech Connect (OSTI)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250400 / m{sup 2} leads to a cost of $0.120.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.060.08 / kW-hr.

  4. Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents

    SciTech Connect (OSTI)

    Mintairov, M. A. Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Timoshina, N. Kh.; Kalyuzhnyy, N. A.

    2015-05-15

    A method is proposed for estimating the potential efficiency which can be achieved in an initially unbalanced multijunction solar cell by the mutual convergence of photogenerated currents: to extract this current from a relatively narrow band-gap cell and to add it to a relatively wide-gap cell. It is already known that the properties facilitating relative convergence are inherent to such objects as bound excitons, quantum dots, donor-acceptor pairs, and others located in relatively wide-gap cells. In fact, the proposed method is reduced to the problem of obtaining such a required light current-voltage (I–V) characteristic which corresponds to the equality of all photogenerated short-circuit currents. Two methods for obtaining the required light I–V characteristic are used. The first one is selection of the spectral composition of the radiation incident on the multijunction solar cell from an illuminator. The second method is a double shift of the dark I–V characteristic: a current shift J{sub g} (common set photogenerated current) and a voltage shift (−J{sub g}R{sub s}), where R{sub s} is the series resistance. For the light and dark I–V characteristics, a general analytical expression is derived, which considers the effect of so-called luminescence coupling in multijunction solar cells. The experimental I–V characteristics are compared with the calculated ones for a three-junction InGaP/GaAs/Ge solar cell with R{sub s} = 0.019 Ω cm{sup 2} and a maximum factual efficiency of 36.9%. Its maximum potential efficiency is estimated as 41.2%.

  5. Further development of a Low Cost Solar Panel. Semiannual technical progress report, September 28, 1979-March 31, 1980

    SciTech Connect (OSTI)

    Muller, T.; Erskine, D.; Short, R.; Torok, R.

    1980-04-01

    The primary objective of this phase of the Low Cost Solar Panel (LCSP) development is to fabricate, test, and gain practical operational experience on a full-scale prototype panel section, with emphasis on the unglazed configuration. The program includes design refinement, fabrication of full-scale prototypes by hand and semiautomated equipment, subscale and full-scale structural testing, outdoor performance tests, and an assessment of manufacturing requirements and production costs. The report describes the LCSP concept in more detail, the project approach and the more significant accomplishments to date.

  6. Further development of a low-cost solar panel. Final report, September 28, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Muller, T.; Torok, R.; Erskine, D.; Short, R.

    1980-07-01

    The primary objective of this project was to fabricate, test, and gain practical operational experience on a full-scale prototype panel section, with emphasis on the unglazed configuration. The project included design refinement, fabrication of full-scale prototypes by hand and semiautomated equipment, subscale and full-scale structural testing, outdoor performance tests, and an assessment of manufacturing requirements and production costs. The Low Cost Solar Panel, the project approach, and the more significant accomplishments of this contract are described in detail.

  7. Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fan at Berkeley Lab have invented a method for growing highly regular, single-crystalline nanopillar arrays of optically active semiconductors to produce efficient, 3D solar...

  8. Low-cost, high-performance solar flat-plate collectors for applications in northern latitudes

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1981-01-01

    Solar flat plate collector designs have been developed which incorporate high performance polymer film and laminate technology that have a projected manufacturing cost approaching $15/m/sup 2/ and potential thermal performance consistent with the best commercial solar flat plate collectors available today.

  9. Final Technical Report: Low-Cost Solar Variability Sensors for Ubiquitous Deployment.

    SciTech Connect (OSTI)

    Lave, Matthew Samuel

    2016-01-01

    In this project, an integrated solution to measuring and collecting solar variability data called the solar variability datalogger (SVD) was developed, tested, and the value of its data to distribution grid integration studies was demonstrated. This work addressed the problem that high-frequency solar variability is rarely measured – due to the high cost and complex installation of existing solar irradiance measuring pyranometers – but is critical to the accurate determination of the impact of photovoltaics to electric grid operation. For example, up to a 300% difference in distribution grid voltage regulator tap change operations (a measure of the impact of PV) [1] has been observed due solely to different solar variability profiles.

  10. Low-cost thin-material solar technology, the key to a viable energy alternative

    SciTech Connect (OSTI)

    Wilhelm, W.G.; Ripel, B.D.

    1985-08-01

    The creation of a solar technology based on a dramatic reduction in material intensity and greater simplicity of design is the result of a cost-guided research approach. It takes advantage of a progressive material science based on polymer films and unique construction methods that optimize material requirements, performance and durability. The current level of technical maturity has revealed a solar collector design that has the potential for a dramatic reduction in installed cost while maintaining high thermal performance and durability. In addition, the same methodology has guided total solar system designs with similar economies and performance advantages.

  11. Low-cost solar collectors using thin-film plastics absorbers and glazings

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1980-01-01

    The design, fabrication, performance, cost, and marketing of flat plate solar collectors using plastic absorbers and glazings are described. Manufacturing cost breakdowns are given for single-glazed and double-glazed collectors. (WHK)

  12. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    SciTech Connect (OSTI)

    Paquette, B.; DeVita, M.; Turala, A.; Kolhatkar, G.; Boucherif, A.; Jaouad, A.; Aimez, V.; Ars, R.; Wilkins, M.; Wheeldon, J. F.; Walker, A. W.; Hinzer, K.; Fafard, S.

    2013-09-27

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4?10{sup 20} cm{sup ?3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  13. Recovery Act: A Low Cost Spray Deposited Solar PV Anti-Reflection Coating Final Technical Report

    SciTech Connect (OSTI)

    Harvey, Michael D.

    2010-08-30

    PV module glass is typically low iron glass which exhibits extremely low absorption of light at solar wavelengths. However, reflection losses from typical high quality solar glass are about 4.5% of the input solar energy. By applying an antireflection coating to the cover glass of their modules, a PV module maker will gain at least a 3% increase in the light passing through the glass and being converted to electricity. Thus achieving an increase of >3% in electricity output from the modules. This Project focussed on developing a process that deposits a layer of porous silica (SiO2) on glass or plastic components, and testing the necessary subcomponents and subsystems required to demonstrate the commercial technology. This porous layer acts as a broadband single layer AR coating for glass and plastics, with the added benefit of being a hydrophilic surface for low surface soiling.

  14. Low-cost light-weight thin material solar heating system

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1985-03-01

    Presented in this paper are innovative concepts to substantially reduce the cost of residential solar application. They were based on a research and development approach that establishes cost goals which if successfully met can insure high marketability. Included in this cost goal-oriented approach is the additional need to address aesthetics and performance. With such constraints established, designs were initialized, tested, and iterated towards appropriate solutions. These solutions are based on methods for reducing the material intensity of the products, improving the simplicity for ease of production, and reducing the cost of installation. Such a development approach has yielded past proof-of-concept designs in the solar collector and in the other components that constitute a total solar heating system.

  15. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  16. Low-cost Batch Solar Water Heater research and development project. Final report

    SciTech Connect (OSTI)

    Stickney, B.L.

    1983-06-01

    This report presents a summary of the development and testing of Batch Solar Water Heaters. Batch Heaters tested include several kinds of tank-under-glass (Breadbox) models and several types of Inverted Batch Solar Water Heaters with both fixed and moveable reflector systems. Temperature graphs and tables of performance indices are presented for each water heater tested. An Inverted Batch Water Heater was developed based upon the test results called the Bottomgainer. Two prototypes of the Bottomgainer model were installed and monitored in use on residences. The Bottomgainer concept could be adapted to commercial production.

  17. Thin-film flat-plate solar collectors for low-cost manufacture and installation

    SciTech Connect (OSTI)

    Andrews, J.W.; Wilhelm, W.G.

    1980-03-01

    A flat-plate solar energy collector design using thin-film plastics in both the absorber and glazing is described. The design approach proceeded in two steps. First, cost constraints on solar collectors were determined using reasonable economic projections. Second, engineering was applied only to those ideas which had hope of falling within those cost boundaries. The use of thin-film plastics appeared most attractive according to these criteria. The nature of the marketing and distribution network can be expected to have a strong impact on the final installed cost of the collector; the proposed design has characteristics which could make possible a reduced price markup.

  18. Solar cells with low cost substrates and process of making same

    DOE Patents [OSTI]

    Mitchell, Kim W. (Indian Hills, CO)

    1984-01-01

    A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  19. High volume method of making low-cost, lightweight solar materials

    DOE Patents [OSTI]

    Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

    2014-07-15

    A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

  20. Development of low-cost polymer film solar collectors. Annual report

    SciTech Connect (OSTI)

    Andrews, J.W.; Le Doux, P.; Metz, P.D.; Wilhelm, W.G.

    1983-09-01

    This report covers work performed on the Brookhaven National Laboratory polymer film collector project during the period October 1, 1981 to November 1, 1982, in four major areas of endeavor: materials, engineering, economics, and testing. It also describes the search for solutions to the major problem - delamination of the polymer and metal sheets in the absorber - which occurred during the severe conditions associated with solar cooling applications. Finally, it outlines the plan of work for fiscal year 1983.

  1. Array automated assembly task low cost silicon solar array project. Phase 2. Final report

    SciTech Connect (OSTI)

    Olson, Clayton

    1980-12-01

    The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

  2. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. )

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  3. Low-Cost Solar-Array Project. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The overall objective of the LSA Silicon Material Task is to establish a chemical process for producing silicon at a rate and price commensurate with the production goals of the LSA project for solar-cell modules. As part of the overall Silicon Material Task, Union Carbide developed the silane-silicon process and advanced the technology to the point where it has a definite potential for providing high-purity polysilicon on a commercial scale at a price of $14/kg by 1986 (1980 dollars). This work, completed under Phases I and II of the contract, provided a firm base for the Phase III Program (initiated in April 1979) aimed at establishing the practicality of the process by pursuing the following specific objectives: (1) design, fabricate, install, and operate an Experimental Process System Development Unit (EPSDU) sized for 100 MT/yr to obtain extensive performance data to establish the data base for the design of commercial facilities; (2) perform support research and development to provide an information base usable for the EPSDU and for technological design and economic analysis for potential scale-up of the process; and (3) perform iterative economic analyses of the estimated product cost for the production of semiconductor-grade silicon in a facility capable of producing 1000 MT/yr. This process for preparing semiconductor-grade silicon in the EPSDU from metallurgical-grade (M-G) silicon is based on a well-integrated arrangement of purification steps that provides a cost-effective process system. The three basic steps entail converting M-G silicon to trichlorosilane, redistributing the trichlorosilane to produce silane, and thermally decomposing the silane to form amorphous silicon powder. The powder is then melted and the molten silicon is cast to polycrystalline for subsequent use in fabricating solar cells. Progress is reported in detail. (WHK)

  4. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration

    SciTech Connect (OSTI)

    Young, N. G. Farrell, R. M.; Iza, M.; Speck, J. S.; Perl, E. E.; Keller, S.; Bowers, J. E.; Nakamura, S.; DenBaars, S. P.

    2014-04-21

    We demonstrate InGaN/GaN multiple quantum well solar cells grown by metalorganic chemical vapor deposition on a bulk (0001) substrate with high-performance broadband optical coatings to improve light absorption. A front-side anti-reflective coating and a back-side dichroic mirror were designed to minimize front surface reflections across a broad spectral range and maximize rear surface reflections only in the spectral range absorbed by the InGaN, making the cells suitable for multijunction solar cell integration. Application of optical coatings increased the peak external quantum efficiency by 56% (relative) and conversion efficiency by 37.5% (relative) under 1 sun AM0 equivalent illumination.

  5. 100 mm Engineered InP-on-Si Laminate Substrates for InP-based Multijunction Solar Cells

    SciTech Connect (OSTI)

    Atwater, Harry

    2012-06-25

    The project focused on fabrication of InP/Si laminate substrates as templates for growth of InGaAsP/InGaAs and InAlAs/InGaAsP/InGaAs multijunction solar cells. InP/Si template substrates were developed and used as templates for InGaAs solar growth. A novel feature of the program was development of the virtual substrate template, which enables a substrate to be formed with a lattice constant intermediate between those of GaAs and InP. Large-area virtual substrate templates were formed by transfer and bonding of dislocation free InGaAs films wafer onto silicon substrates.

  6. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes nationwide, offering an opportunity for innovative solar water heating (SWH) technologies to offset energy use and costs. In the Low-Cost Solar Water Heating Research and Development Roadmap, researchers at the National Renewable Energy Laboratory (NREL) outlined a strategy to expand the SWH market. Recognizing that

  7. Development of a Low Cost Ultra Specular Advanced Polymer Film...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was delivered at the ...

  8. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

    2011-01-01

    We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

  9. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  10. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    SciTech Connect (OSTI)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  11. NREL: Photovoltaics Research - III-V Multijunction Materials and Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D III-V Multijunction Materials and Devices R&D NREL has a strong research capability in III-V multijunction photovoltaic (PV) cells. The inverted metamorphic multijunction (IMM) technology, which is fundamentally a new technology path with breakthrough performance and cost advantages, is a particular focus. We invented and first demonstrated the IMM solar cell and introduced it to the PV industry. Our scientists earlier invented and demonstrated the first-ever multijunction PV

  12. Multijunction III-V Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Multijunction III-V Photovoltaics Research Multijunction III-V Photovoltaics Research Graphic showing the 10 layers of a multijunction PV cell: contact, bottomm cell, nucleation, buffer region, tunnel junction, middle cell, wide-bandgap tunnel junction, top cell, contact, and antireflective coating. DOE invests in multijunction III-V solar cell research to drive down the costs of the materials, manufacturing, tracking techniques, and concentration methods used with this

  13. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  14. Phase transformations during the Ag-In plating and bonding of vertical diode elements of multijunction solar cells

    SciTech Connect (OSTI)

    Klochko, N. P. Khrypunov, G. S.; Volkova, N. D.; Kopach, V. R.; Lyubov, V. N.; Kirichenko, M. V.; Momotenko, A. V.; Kharchenko, N. M.; Nikitin, V. A.

    2013-06-15

    The conditions of the bonding of silicon multijunction solar cells with vertical p-n junctions using Ag-In solder are studied. The compositions of electrodeposited indium films on silicon wafers silver plated by screen printing and silver and indium films fabricated by layer-by-layer electrochemical deposition onto the surface of silicon vertical diode cells silver plated in vacuum are studied. Studying the electrochemical-deposition conditions, structure, and surface morphology of the grown layers showed that guaranteed bonding is provided by 8-min heat treatment at 400 Degree-Sign C under the pressure of a stack of metallized silicon wafers; however, the ratio of the indium and silver layer thicknesses should not exceed 1: 3. As this condition is satisfied, the solder after wafer bonding has the InAg{sub 3} structure (or InAg{sub 3} with an Ag phase admixture), due to which the junction melting point exceeds 700 Degree-Sign C, which guarantees the functioning of such solar cells under concentrated illumination.

  15. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  16. Light-Biasing Electron-Beam-Induced-Current Measurements for Multijunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Romero, M. J.; Olson, J. M.; Al-Jassim, M. M.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Results using light-biasing EBIC are illustrated for dual-junction InGaP/InGaAs solar cells.

  17. Low Cost Heliostat Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    blackmon.pdf More Documents & Publications Next Generation Solar Collectors for CSP - FY13 Q1 Next Generation Solar Collectors for CSP - FY12 Q4 Low-Cost Heliostat for Modular Systems - FY13 Q1

  18. Low Cost, Durable Seal

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects.

  19. Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells

    SciTech Connect (OSTI)

    Kalyuzhnyy, N. A.; Gudovskikh, A. S.; Evstropov, V. V.; Lantratov, V. M.; Mintairov, S. A.; Timoshina, N. Kh.; Shvarts, M. Z.; Andreev, V. M.

    2010-11-15

    Photovoltaic converters based on n-GaInP/n-p-Ge heterostructures grown by the OMVPE under different conditions of formation of the p-n junction are studied. The heterostructures are intended for use as narrow-gap subcells of the GaInP/GaInAs/Ge three-junction solar cells. It is shown that, in Ge p-tn junctions, along with the diffusion mechanism, the tunneling mechanism of the current flow exists; therefore, the two-diode electrical equivalent circuit of the Ge p-n junction is used. The diode parameters are determined for both mechanisms from the analysis of both dark and 'light' current-voltage dependences. It is shown that the elimination of the component of the tunneling current allows one to increase the efficiency of the Ge subcell by {approx}1% with conversion of nonconcentrated solar radiation. The influence of the tunneling current on the efficiency of the Ge-based devices can be in practice reduced to zero at photogenerated current density of {approx}1.5 A/cm{sup 2} due to the use of the concentrated solar radiation.

  20. Multijunction GaInP/GaInAs/Ge solar cells with Bragg reflectors

    SciTech Connect (OSTI)

    Emelyanov, V. M. Kalyuzhniy, N. A.; Mintairov, S. A.; Shvarts, M. Z.; Lantratov, V. M.

    2010-12-15

    Effect of subcell parameters on the efficiency of GaInP/Ga(In)As/Ge tandem solar cells irradiated with 1-MeV electrons at fluences of up to 3 x 10{sup 15} cm{sup -2} has been theoretically studied. The optimal thicknesses of GaInP and GaInAs subcells, which provide the best photocurrent matching at various irradiation doses in solar cells with and without built-in Bragg reflectors, were determined. The dependences of the photoconverter efficiency on the fluence of 1-MeV electrons and on the time of residence in the geostationary orbit were calculated for structures optimized to the beginning and end of their service lives. It is shown that the optimization of the subcell heterostructures for a rated irradiation dose and the introduction of Bragg reflectors into the structure provide a 5% overall increase in efficiency for solar cells operating in the orbit compared with unoptimized cells having no Bragg reflector.

  1. Luminescence based series resistance mapping of III-V multijunction solar cells

    SciTech Connect (OSTI)

    Nesswetter, Helmut; Dyck, Wilhelm; Lugli, Paolo; Bett, Andreas W.; Zimmermann, Claus G.

    2013-11-21

    A method to measure the series resistance of Ga{sub 0.5}In{sub 0.5}P/Ga(In)As/Ge triple-junction solar cells spatially resolved is developed, based on luminescence imaging. With the help of network simulations, the dependence of the local series resistance on the external subcell illumination intensities and biasing voltage is predicted and the optimum measurement conditions are clarified. Experimentally, specially prepared test cells with partially irradiated areas are used to verify the capabilities of the method. It is shown that the method is not sensitive to variations of the dark IV parameters of the subcells.

  2. Profiling the Built-In Electrical Potential in III-V Multijunction Solar Cells (Poster)

    SciTech Connect (OSTI)

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-05-01

    We have observed three electrical potentials at the top, tunneling, and bottom junctions of GnInP{sub 2}/GaAs tandem-junction solar cells, by performing the UHV-SKPM measurement. The effect of laser illumination was avoided by using GaAs laser with photon energy of 1.4 eV for the AFM operation. We also observed higher potentials at the atomic steps than on the terraces for both p-type GaInP{sub 2} epitaxial layer and p-type GaAs substrate, and found that the potential at steps of GaAs substrate depends on the step directions.

  3. Phase 2 of the array automated assembly task for the low cost silicon solar array project. Final report

    SciTech Connect (OSTI)

    Petersen, R.C.

    1980-11-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process proposed by Motorola, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work has directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The Motorola process was compared with simple electroless nickel plating in a series of parallel experiments. Results are presented. (WHK)

  4. Final Report- High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO2 Recompression Cycle

    Broader source: Energy.gov [DOE]

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020.

  5. Profiling the Built-In Electrical Potential in III-V Multijunction Solar Cells

    SciTech Connect (OSTI)

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-01-01

    We report on a direct measurement of the electrical potential on cross-sections of GaInP{sub 2}/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

  6. Profiling the Built-in Electrical Potential in III-V Multijunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-05-01

    We report on a direct measurement of the electrical potential on cross-sections of GaInP2/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

  7. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this analysis have just recently been applied to the processing of nanocrystal based CZTSSe absorbers -- with notable success. We expect the notable fundamental understanding of device limitations and absorber sintering achieved under this project will lead to significant improvements in device performance for CZTSSe devices in the near future for devices fabricated from a variety of processing techniques

  8. Development of low cost contacts to silicon solar cells. Final report, 15 October 1978-30 April 1980

    SciTech Connect (OSTI)

    Tanner, D.P.; Iles, P.A.

    1980-01-01

    A summary of work done on the development of a copper based contact system for silicon solar cells is presented. The work has proceeded in three phases: (1) Development of a copper based contact system using plated Pd-Cr-Cu. Good cells were made but cells degraded under low temperature (300/sup 0/C) heat treatments. (2) The degradation in Phase I was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. (3) An electroless nickel solution was substituted for the electroless chrominum solution in the original process. Efforts were made to replace the palladium bath with an appropriate nickel layer, but these were unsuccessful. 150 cells using the Pd-Ni-Cu contact system were delivered to JPL. Also a cost study was made on the plating process to assess the chance of reaching 5 cents/watt.

  9. Raising the Efficiency Ceiling with Multijunction III-V Concentrator Photovoltaics

    SciTech Connect (OSTI)

    King, R. R.; Boca, A.; Edmondson, K. M.; Romero, M. J.; Yoon, H.; Law, D. C.; Fetzer, C. M.; Haddad, M.; Zakaria, A.; Hong, W.; Mesropian, S.; Krut, D. D.; Kinsey, G. S.; Pien, R.; Sherif, R. A.; Karam, N. H.

    2008-01-01

    In this paper, we look at the question 'how high can solar cell efficiency go?' from both theoretical and experimental perspectives. First-principle efficiency limits are analyzed for some of the main candidates for high-efficiency multijunction terrestrial concentrator cells. Many of these cell designs use lattice-mismatched, or metamorphic semiconductor materials in order to tune subcell band gaps to the solar spectrum. Minority-carrier recombination at dislocations is characterized in GaInAs inverted metamorphic solar cells, with band gap ranging from 1.4 to 0.84 eV, by light I-V, electron-beam-induced current (EBIC), and cathodoluminescence (CL). Metamorphic solar cells with a 3-junction GaInP/ GaInAs/ Ge structure were the first cells to reach over 40% efficiency, with an independently confirmed efficiency of 40.7% (AM1.5D, low-AOD, 240 suns, 25 C). The high efficiency of present III-V multijunction cells now in high-volume production, and still higher efficiencies of next-generation cells, is strongly leveraging for low-cost terrestrial concentrator PV systems.

  10. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  11. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  12. Low-Cost Nano-Patterning Process Makes Millions of Holes in Silver Film, Boosting Light-Capturing Qualities of Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    NREL researchers have demonstrated a simple, low-cost way to pattern nano-sized holes in thin silver films in order to trap light waves and boost the transmission of photons into usable energy.

  13. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. PDF icon Low Cost High Concentration PV Systems for Utility Power Generation More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power Generation

  14. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    SciTech Connect (OSTI)

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.

  15. Low cost back contact heterojunction solar cells on thin c-Si wafers. Integrating laser and thin film processing for improved manufacturability

    SciTech Connect (OSTI)

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerfless techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.

  16. SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

  17. Optimized III-V Multijunction Concentrator Solar Cells on Patterned Si and Ge Substrates: Final Technical Report, 15 September 2004--30 September 2006

    SciTech Connect (OSTI)

    Ringel, S. A.

    2008-11-01

    Goal is to demo realistic path to III-V multijunction concentrator efficiencies > 40% by substrate-engineering combining compositional grading with patterned epitaxy for small-area cells for high concentration.

  18. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  19. Boosting Accuracy of Testing Multijunction Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has developed a more precise technology for measuring efficiency of concentrating solar cells, enabling the industry to advance. Solar researchers have long been unable to reduce an error that occurs during efficiency measurements of triple-absorber, concentrating photovoltaic (CPV) cells- one that is caused by too much spectral irradiance from unfiltered, pulsed xenon solar simulators entering into the bottom subcell during testing. This condition causes an artificial increase in the measured

  20. New Multijunction Design Leads to Ultra-Efficient Solar Cell; Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-09-01

    NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.

  1. Performance of CPV System Using Three Types of III-V Multi-Junction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Hashimoto, J.; Kurtz, S.; Sakurai, K.; Muller, M.; Otani, K.

    2012-04-01

    The performance of sister CPV systems is compared in Japan and the U.S. The conclusion is that the alignment of the systems can affect the design of the solar cells.

  2. Low-Cost Spectral Sensor Development Description.

    SciTech Connect (OSTI)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  3. Measurement of multijunction cells under close-match conditions

    SciTech Connect (OSTI)

    Wilkinson, V.A.; Goodbody, C.; Williams, W.G.

    1997-12-31

    This paper presents details of a new close-match solar simulator developed for DERA`s Space Power Laboratory for the accurate characterization of multijunction solar cells. The authors present data on the simulator measurements of dual and triple junction cells. The measurements are compared with those made under less ideal spectral conditions.

  4. Low-Cost Batch Solar Water Heater Research and Development Project: results from extended field monitoring. Final report, January 1, 1983-May 15, 1983

    SciTech Connect (OSTI)

    Stickney, B.L.

    1984-02-01

    This report contains the results of a four month field test and evaluation of a 30 gallon inverted batch solar water heater known as the Bottomgainer. It was installed on a residence in Santa Fe and monitored with automatic data recorders including solar radiation meter, dual channel Btu meters, water meter and 16 channel strip chart temperature recorder. Average values of heat gain, heat loss, collection efficiency, solar heating fraction and cash benefits are presented and discussed.

  5. Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells

    Broader source: Energy.gov [DOE]

    The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

  6. Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-07-01

    NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

  7. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report

    SciTech Connect (OSTI)

    Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

  8. Procedures at NREL for Evaluating Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    Moriarty, T.; Emery, K.

    2000-01-01

    The procedures for evaluating the performance of multijunctiion-concentrator cells at the National Renewable Energy Laboratory are described. The accurate measurement of the performance of multijunction cells requires accurate relative-quantum-efficiency-measurements, "matched" reference cells, and a spectrally adjustable solar simulator.

  9. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Vernon, S.M.

    1993-04-01

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  10. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  11. Novel, Low-Cost Nanoparticle Production

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing a modular hybrid plasma reactor and process to manufacture low-cost nanoparticles

  12. Low-Cost Heliostat for Modular Systems - Presentation from SunShot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Heliostat for Modular Systems - Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013 Low-Cost Heliostat for Modular Systems - Presentation from ...

  13. Low-Cost, Lightweight Solar Concentrators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is 40-50% cheaper and 60% lighter than SOA * Project leverages extensive space...

  14. Low-Cost, Lightweight Solar Concentrator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Jet Propulsion Laboratory Project Leader: Dr. Gani Ganapathi gani.b.ganapathi@jpl.nasa.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper,...

  15. Project Profile: Low-Cost Heliostat for Modular Systems

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is developing and demonstrating a novel collector design and low-cost heliostat that will reduce equipment and installation costs while improving or maintaining performance, thereby reaching SunShot Initiative cost and performance targets for concentrating solar power (CSP) collector systems.

  16. Daily Fill Factor Variation as a Diagnostic Probe of Multijunction Concentrator Systems During Outdoor Operation

    SciTech Connect (OSTI)

    McMahon, W. E.; Emery, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

    2007-01-01

    The work presented here is for GaInP2/GaAs tandem cells, but the conclusions are equally valid for GaInP2/GaAs/Ge triple-junction cells. Optimizing a concentrator system which uses multijunction solar cells is challenging because: (a) the conditions are variable, so the solar cells rarely operate under optimal conditions and (b) the conditions are not controlled, so any design problems are difficult to characterize. Any change in the spectral content of direct-beam sunlight as it passes through the concentrator optics is of particular interest, as it can reduce the performance of multijunction cells and is difficult to characterize.

  17. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost models assume a natural gas cost of $5/MMBtu (HHV). Praxair has, in Phases I and II of this program, shown that significant improvements in cost, plant layout, system integration and overall system optimization are achievable. Phase III of the program, submitted in January 2007, was to focus on demonstrating both the technical feasibility and economic viability of the design developed in Phases I and II through a full-scale prototype design, construction, installation, analysis and operation at a hydrogen fueling station. Due to funding limitations, Phase III of the program was not approved by the DOE.

  18. Silicon materials task of the low cost solar array project (Phase III). Effects of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 2: analysis of impurity behavior

    SciTech Connect (OSTI)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-23

    The object of this phase of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study encompassed topics including thermochemical (gettering) treatments, base doping concentration, base doping type (n vs. p), grain boundary-impurity interaction, non-uniformity of impurity distribution, long term effects of impurities, as well as synergic and complexing phenomena. The program approach consists in: (1) the growth of doubly and multiply-doped silicon single crystals containing a baseline boron or phosphorus dopant and specific impurities which produce deep levels in the forbidden band gap; (2) assessment of these crystals by chemical, microstructural, electrical and solar cell tests; (3) correlation of the impurity type and concentration with crystal quality and device performance; and (4) delineation of the role of impurities and processing on subsequent silicon solar cell performance. The overall results reported are based on the assessment of nearly 200 silicon ingots. (WHK)

  19. Stable a-Si:H-Based Multijunction Solar Cells with Guidance from Real-Time Optics: Final Report, 17 July 1998--16 November 2001

    SciTech Connect (OSTI)

    Wronski, C. R.; Collins, R. W.; Pearce, J. M.; Koval, R. J.; Ferlauto, A. S.; Ferreira, G. M.; Chen C.

    2002-08-01

    This report describes the new insights obtained into the growth of hydrogenated silicon (Si:H) films via real-time spectroscopic ellipsometry (RTSE) measurements. Evolutionary phase diagrams were expanded to include the effects of different deposition conditions, including rf power, pressure, and temperature. Detailed studies of degradation kinetics in thin films and corresponding solar cells have been carried out. Both p-i-n and n-i-p solar cells that incorporate Si:H i-layers deposited with and without H2-dilution have been studied. For the first time, direct and reliable correlations have been obtained between the light-induced changes in thin-film materials and the degradation of the corresponding solar cells.

  20. Low Cost Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Durable Seal Low Cost Durable Seal Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 4utc.pdf More Documents & Publications ...

  1. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  2. Optimization of Phase-Engineered a-Si:H-Based Multi-Junction Solar Cells: Final Technical Report, October 2001-July 2005

    SciTech Connect (OSTI)

    Wronski, C. R.; Collins, R. W.; Podraza, N. J.; Vlahos, V.; Pearce, J. M.; Deng, J.; Albert, M.; Ferreira, G. M.; Chen, C.

    2006-08-01

    The scope of the work under this subcontract has involved investigating engineered improvements in the performance and stability of solar cells in a systematic way, which included the following four tasks: (1) Materials research and device development; (2) Process improvement directed by real time diagnostics; (3) Device loss mechanisms; and (4) Characterization strategies for advanced materials Our work has resulted in new and important insights into the deposition of a-Si:H-based materials, as well as into the nature of the Staebler-Wronski Effect (SWE). Presumably, many of these insights will be used by industrial partners to develop more systematic approaches in optimizing solar cells for higher performance and stability. This effort also cleared up several serious misconceptions about the nature of the p-layer in cells and the SWE in materials and cells. Finally, the subcontract identified future directions that should be pursued for greater understanding and improvement.

  3. Commercialization of New Lattice-Matched Multi-Junction Solar Cells Based on Dilute Nitrides: July 8, 2010 - March 7, 2012

    SciTech Connect (OSTI)

    Herb, J.

    2012-04-01

    Final Technical Progress Report for PV Incubator subcontract NAT-0-99013-03. The overall objective of this Incubator subcontract was to complete the work necessary to make commercial ready solar cells using the dilute nitride technology. The specific objectives of this program were aimed at completing the development of a triple-junction solar cell that incorporates a GaInNAs {approx}1eV subcell to the point of commercial readiness, and determining the cell reliability and, if necessary, identifying and eliminating process or material related issues that lead to early-life cell failures. There were three major objectives for Phase 1, each of which focuses on a key element of the solar cell that determines its performance in a commercial CPV system. One objective was to optimize the quality and performance of the key individual components making up the solar cell structure and then to optimize the integration of these components into a complete triple-junction cell. A second objective was to design and test anti-reflective coating that maximizes the light coupled into a 3J cell with a {approx}1 eV bottom cell bandgap. The third objective was to develop Highly Accelerated Life Tests (HALT) protocols and tools for identifying and correcting potential reliability problems. The Phase 2 objectives were a continuation of the work begun in Phase 1 but aimed at optimizing cell performance for commercial requirements. Phase 2 had four primary objectives: (1) develop a glass-matched anti-reflective coating (ARC) and optimize the cell/ARC to give good performance at 60C operating temperature, (2) optimize the cell for good operation at 60C and high concentration, and (3) complete the light biased HALT system and use it to determine what, if any, failures are observed, and (4) determine the reliability limits of the optimized cell.

  4. Project Profile: High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP

    Broader source: Energy.gov [DOE]

    SkyFuel, under the Baseload CSP FOA, is developing an advanced, low-cost CSP collector using higher-concentration, higher-temperature, parabolic trough technology to substantially reduce the cost of baseload utility-scale solar power generation.

  5. Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions

    SciTech Connect (OSTI)

    Duda, A.; Ward, S.; Young, M.

    2012-02-01

    This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

  6. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  7. Deep-level defects introduced by 1 MeV electron radiation in AlInGaP for multijunction space solar cells

    SciTech Connect (OSTI)

    Lee, H.S.; Yamaguchi, M.; Ekins-Daukes, N. J.; Khan, A.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imaizumi, M.; Ohshima, T.; Itoh, H.

    2005-11-01

    Presented in this paper are 1 MeV electron irradiation effects on wide-band-gap (1.97 eV) (Al{sub 0.08}Ga{sub 0.92}){sub 0.52}In{sub 0.48}P diodes and solar cells. The carrier removal rate estimated in p-AlInGaP with electron fluence is about 1 cm{sup -1}, which is lower than that in InP and GaAs. From high-temperature deep-level transient spectroscopy measurements, a deep-level defect center such as majority-carrier (hole) trap H2 (E{sub {nu}}+0.90{+-}0.05 eV) was observed. The changes in carrier concentrations ({delta}p) and trap densities as a function of electron fluence were compared, and as a result the total introduction rate, 0.39 cm{sup -1}, of majority-carrier trap centers (H1 and H2) is different from the carrier removal rate, 1 cm{sup -1}, in p-AlInGaP. From the minority-carrier injection annealing (100 mA/cm{sup 2}), the annealing activation energy of H2 defect is {delta}E=0.60 eV, which is likely to be associated with a vacancy-phosphorus Frenkel pair (V{sub p}-P{sub i}). The recovery of defect concentration and carrier concentration in the irradiated p-AlInGaP by injection relates that a deep-level defect H2 acts as a recombination center as well as compensator center.

  8. Low-cost inertial measurement unit.

    SciTech Connect (OSTI)

    Deyle, Travis Jay

    2005-03-01

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  9. Renewable Low-Cost Carbon Fiber Workshop Agenda | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda PDF icon carbonfiberworkshopagenda.pdf More ...

  10. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive ...

  11. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  12. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

  13. Manufacturing of Monolithic Electrodes from Low-Cost Renewable...

    Office of Scientific and Technical Information (OSTI)

    of Monolithic Electrodes from Low-Cost Renewable Resources Lignin, a low-cost, biomass derived precursor, was selected as an alternative for carbon based free standing...

  14. Low-Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which ...

  15. Low Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a 100 million ...

  16. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final ...

  17. Development of Low Cost Industrially Scalable PCM Capsules for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Industrially Scalable PCM Capsules for Thermal Energy Storage in CSP Plants Development of Low Cost Industrially Scalable PCM Capsules for Thermal Energy Storage in CSP ...

  18. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  19. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-...

  20. Low-Cost Ventilation in Production Housing - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple ...

  1. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect (OSTI)

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  2. Low-cost laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L.; Skidmore, Jay A.

    1999-01-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  3. Low-cost laser diode array

    DOE Patents [OSTI]

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  4. Low Cost High Concentration PV Systems for Utility Power Generation Amonix,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain

  5. Advanced materials development for multi-junction monolithic photovoltaic devices

    SciTech Connect (OSTI)

    Dawson, L.R.; Reno, J.L.

    1996-07-01

    We report results in three areas of research relevant to the fabrication of monolithic multi-junction photovoltaic devices. (1) The use of compliant intervening layers grown between highly mismatched materials, GaAs and GaP (same lattice constant as Si), is shown to increase the structural quality of the GaAs overgrowth. (2) The use of digital alloys applied to the MBE growth of GaAs{sub x}Sb{sub l-x} (a candidate material for a two junction solar cell) provides increased control of the alloy composition without degrading the optical properties. (3) A nitrogen plasma discharge is shown to be an excellent p-type doping source for CdTe and ZnTe, both of which are candidate materials for a two junction solar cell.

  6. Polycrystalline Thin-Film Multijunction Solar Cells

    SciTech Connect (OSTI)

    Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

    2005-11-01

    We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

  7. Low-Cost Heliostat for Modular Systems - Presentation from SunShot

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power (CSP) Program Review 2013 | Department of Energy kutscher.pdf More Documents & Publications Low-Cost Heliostat for Modular Systems - FY13 Q1 High-Temperature Solar Thermoelectric Generators (STEG) SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE)

  8. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  9. Low-Cost Microchannel Heat Exchanger

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALTEX TECHNOLOGIES CORPORATION Low-Cost Microchannel Heat Exchanger DOE Grant DE-EE0004541 2013-2014 Dr. John T. Kelly Altex Technologies Corporation 244 Sobrante Way Sunnyvale, CA 94086 Phone: 408-328-8302 E-mail: john@altextech.com U.S. DOE Advanced Manufacturing Office PEER Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ALTEX TECHNOLOGIES CORPORATION Project Objectives  Define and test low

  10. Low-Cost MHTES Systems for CSP

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  11. Project Profile: High-Concentration, Low-Cost Parabolic Trough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentration, Low-Cost Parabolic Trough System for Baseload CSP Project Profile: High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP SkyFuel logo SkyFuel, under ...

  12. Development and Commercialization of a Novel Low-Cost Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of a Novel Low-Cost Carbon Fiber Development and Commercialization of a Novel Low-Cost Carbon Fiber 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  13. 20% (AM1.5) efficiency GaAs solar cells on sub-mm grain-size poly-Ge and its transition to low-cost substrates

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; O`Quinn, B.C.; Siivola, E.; Keyes, B.; Ahrenkiel, R.

    1997-12-31

    Some of the key material and device issues related to the development of GaAs solar cells on poly-Ge substrates, including the dark-current reduction mechanism with an undoped spacer at the p{sup +}-n depletion layer, are discussed. Device-structure optimization studies that have led the authors to achieve an AM1.5 efficiency of {approximately}20% for a 4-cm{sup 2}-area GaAs cell on sub-mm grain-size poly-Ge and an efficiency of {approximately}21% for a 0.25-cm{sup 2}-area cell are presented. This successful demonstration of high-efficiency GaAs cells on sub-mm grain-size poly-Ge substrates have motivated us to consider the development of high-quality GaAs materials on significantly lower-cost substrates such as glass and moly foils. To date, the authors have achieved a best minority-carrier lifetime of 0.41 nsec in an n-GaAs thin-film on moly. The role of Group-VI dopant in the possible passivation of grain-boundaries in poly-GaAs is discussed. Development of PV-quality GaAs material, with minority-carrier lifetime of 1 to 2 nsec, on los-cost moly foils can significantly impact both the terrestrial and the space PV applications.

  14. High-Efficiency Multijunction Photovoltaics | Center for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high photovoltaic energy conversion efficiencies. This goal requires development of new techniques for the efficient ... design of multijunction cells, yielding a very rich ...

  15. Performance and Reliability of Multijunction III-V Modules for Concentrator Dish and Central Receiver Applications

    SciTech Connect (OSTI)

    Verlinden, P. J.; Lewandowski, A.; Bingham, C.; Kinsey, G. S.; Sherif, R. A.; Laisch, J. B.

    2006-01-01

    Over the last 15 years, Solar Systems have developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for more than 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (>32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m{sup 2} concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm{sup 2}, AM1.5D low AOD, 21C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33 kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  16. Advances in amorphous silicon alloy-based multijunction cells and modules

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.; Banerjee, A.; Glatfelter, T.; Xu, X. )

    1992-12-01

    Multijunction amorphous silicon alloy-based solar cells and modules offer the potential of obtaining high efficiency with long-term stability against light-induced degradation. We have studied the stability of the component cells of the multijunction devices prepared under different deposition conditions. We observe a definite correlation between the microstructure of the intrinsic material and initial and light-degraded performance of the cells. Using suitable deposition conditions and optimum matching of the component cells, we have fabricated double-junction dual-bandgap cells which show stabilized active-area efficiency of 11% after 600 hours of one-sun illumination at 50 [degree]C. Double-junction and triple-junction modules of 900 cm[sup 2] area have been fabricated, and the performance of these panels will be discussed.

  17. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect (OSTI)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

  18. Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

  19. Low-Cost Illumination-Grade LEDs

    SciTech Connect (OSTI)

    Epler, John

    2013-08-31

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

  20. Low-Cost Solar Water Heating Research and Development Roadmap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Versus Electric (% Savings) Zone 1 - Houston, TX 24.9% 38.8% 63.8% 61.4% Zone 1 - Atlanta, GA -2.6% 44.1% 51.7% 57.2% Zone 2 - Chicago, IL -28.3% 35.0% 38.7% 39.9% Zone 3 - ...

  1. Low Cost Solar Water Heating R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... been expressed from the following countries: - Germany, Austria, South Africa, Mexico, Spain Goal Status Installed Cost: bw 1,000 and 3,000 Current installed cost estimated at ...

  2. Low-Cost, Lightweight Solar Concentrators FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Jet Propulsion Laboratory project, funded by SunShot, for the second quarter of fiscal year 2013.

  3. Low-Cost, Lightweight Solar Concentrator (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Jet Propulsion Laboratory (JPL) is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  4. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    SciTech Connect (OSTI)

    Ramesh, Ramamoorthy

    2010-02-04

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  5. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Ramesh, Ramamoorthy

    2011-06-08

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  6. Durable Low Cost Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durable Low Cost Improved Fuel Cell Membranes Durable Low Cost Improved Fuel Cell Membranes Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 1_arkema.pdf More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Durable, Low Cost, Improved Fuel Cell Membranes Novel Materials for High Efficiency Direct Methanol Fuel Cells

  7. Hot Electron Photovoltaics Using Low Cost Materials and Simple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design Lawrence ... Similarly, complex cell designs or designs that feature nano-architectures such as quantum ...

  8. An integrated approach towards efficient, scalable, and low cost...

    Broader source: Energy.gov (indexed) [DOE]

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low ...

  9. An integrated approach towards efficient, scalable, and low cost...

    Broader source: Energy.gov (indexed) [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will ... More Documents & Publications An integrated approach towards efficient, scalable, and low ...

  10. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell ...

  11. An integrated approach towards efficient, scalable, and low cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ... NSFDOE Thermoelectric Partnership: High-Performance ... approach towards efficient, scalable, and low cost ...

  12. Retro-Commissioning Increases Data Center Efficiency at Low Cost...

    Broader source: Energy.gov (indexed) [DOE]

    project at the Department of Energy's Savannah River Site to increase data center energy efficiency at low costs. PDF icon datacentersavannah.pdf More Documents & Publications ...

  13. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details ... reduce the cost of the tooling (machining and materials) required to create ...

  14. Low Cost Exploration, Testing, And Development Of The Chena Geothermal...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Abstract The...

  15. Low Cost Exploration, Testing, and Development of the Chena Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The...

  16. Low Cost Carbon Fiber Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    02_warren_2011_o.pdf More Documents & Publications Low Cost Carbon Fiber Overview Lower Cost, Higher Performance Carbon Fiber Lower Cost Carbon Fiber Precursors

  17. A Low-Cost Continuous Emissions Monitoring System for Mobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition This project describes a novel ...

  18. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Chad Duty, Ph.D. ... bacteria Valuable mass produced nanoparticles Cheap sugar 4 Managed by UT-Battelle ...

  19. Low-Cost Electrochemical Compressor Utilizing Green Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Compressor Utilizing Green Refrigerants for HVAC Applications Low-Cost ... 31, 2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation ...

  20. Low-cost Electromagnetic Heating Technology for Polymer Extrusion...

    Office of Scientific and Technical Information (OSTI)

    Heating Technology for Polymer Extrusion-based Additive Manufacturing Citation Details In-Document Search Title: Low-cost Electromagnetic Heating Technology for Polymer ...

  1. Low-Cost Solutions for Dynamic Window Material | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material ... More Documents & Publications Atmospheric Pressure Deposition for Electrochromic Windows ...

  2. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R.; Catalano, Anthony W.

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  3. Low Cost SiOx-Graphite and Olivine Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Inc. | Department of Energy A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic

  4. State and Local Energy Investment Partnerships: Partnerships for Low Cost Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Local Energy Investment Partnerships Partnerships for Low Cost Clean Energy The Vision 1. Double the deployment of wind, solar, geothermal, and other renewable electricity generation by 2020. 2. Cut in half the energy wasted by our homes and businesses over the next 20 years. - President Barack Obama, 2013 State of the Union Address The Challenge 1. Taxpayer and ratepayer funds alone cannot finance a 20% increase in energy efficiency across all of America's buildings. 2. Nor can diminishing

  5. III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

  6. Efficient, Low-cost Microchannel Heat Exchanger - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Efficient, Low-cost Microchannel Heat Exchanger ... will not only be much more efficient, but will also be manufactured at a much lower cost. ...

  7. low-cost-sorbent | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA ...

  8. Print-based Manufacturing of Integrated, Low Cost, High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a new low-cost, high-efficiency LED architecture made possible by novel large-area ... Related Publications PDF icon 2015 BTO Peer Review Presentation - Print-based ...

  9. Low-Cost Electrochemical Compressor Utilizing Green Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Milestones: 1. Test Novel (low cost) Membrane systems 2. Develop Advanced MEA based on Membranes 3. Design and build prototype ECC system for testing 4. Design and build ...

  10. Bio-oil Upgrading with Novel Low Cost Catalysts Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office (BETO) 2015 Project Peer Review Bio-oil Upgrading with Novel Low Cost Catalysts March 24, 2015 Bio-oil Technology Area Review Jae-Soon Choi Oak Ridge National ...

  11. Low-Cost LED Luminaire for General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    paulfini@cree.com CREE SBTC Low-Cost LED Luminaire for General Illumination 2014 Building Technologies Office Peer Review Paul Fini CREE Santa Barbara Technology Center 2 Project ...

  12. Low-Cost Direct Bonded Aluminum (DBA) Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for mass production and that produces high adhesive strength of the ceramic-metal interfaces. Consider the fabrication and use of low-cost AlN as a potential (and...

  13. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  14. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun

    1999-01-01

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  15. Multijunction photovoltaic device and method of manufacture

    DOE Patents [OSTI]

    Arya, Rejeewa R.; Catalano, Anthony W.; Bennett, Murray

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  16. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings Addthis 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic

  17. Low-Cost Ventilation in Production Housing - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple and cost-effective ventilation strategies for homes. As high-performance homes get more air tight and better insulated, attention to good indoor air quality becomes essential. This Top Innovation profile describes Building America research by Building Science Corporation to develop

  18. Low Cost Injection Mold Creation via Hybrid Additive and Conventional

    Office of Scientific and Technical Information (OSTI)

    Manufacturing (Technical Report) | SciTech Connect Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details In-Document Search Title: Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this

  19. Transforming Ordinary Buildings into Smart Buildings via Low-Cost,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Powering Wireless Sensors and Sensor Networks | Department of Energy Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors and Sensor Networks Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors and Sensor Networks Lead Performer: Case Western Reserve University - Cleveland, OH Partner: Intwine Inc. - Cleveland, OH DOE Funding: $750,000 Cost Share: N/A Project Term: October 2014 - September 2016 Funding

  20. Project Profile: Low-Cost Heliostat Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Heliostat Development Project Profile: Low-Cost Heliostat Development HiTek logo HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of the optimum heliostat size and developing a novel low-cost heliostat design. Approach There are four tasks under this award: Photo of a machine with two round discs connected by intertwined chains. Develop a means to determine the optimum size range of the heliostat, in terms of the applied forces and moments,

  1. An integrated approach towards efficient, scalable, and low cost

    Broader source: Energy.gov (indexed) [DOE]

    thermoelectric waste heat recovery devices for vehicles | Department of Energy Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests PDF icon huxtable.pdf More Documents & Publications An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

  2. Key issues for low-cost FGD installations

    SciTech Connect (OSTI)

    DePriest, W.; Mazurek, J.M.

    1995-12-01

    This paper will discuss various methods for installing low-cost FGD systems. The paper will include a discussion of various types of FGD systems available, both wet and dry, and will compare the relative cost of each type. Important design issues, such as use of spare equipment, materials of construction, etc. will be presented. An overview of various low-cost construction techniques (i.e., modularization) will be included. This paper will draw heavily from Sargent & Lundy`s database of past and current FGD projects together with information we gathered for several Electric Power Research Institute (EPRI) studies on the subject.

  3. Gelatin/graphene systems for low cost energy storage

    SciTech Connect (OSTI)

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore; Neitzert, Heinz C.

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  4. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect (OSTI)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  5. Low Cost Carbon Fiber Research in the LM Materials Program Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM ... More Documents & Publications Low Cost Carbon Fiber Overview FY 2009 Progress Report for ...

  6. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Vehicle ...

  7. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles ...

  8. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 ...

  9. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies ...

  10. Accessing Low-Cost Capital Through Securitization (Poster)

    SciTech Connect (OSTI)

    Mendelsohn, M.

    2014-10-01

    Poster for Solar Power International conference presents information on NREL's effort to open capital markets through securitization via Solar Access to Public Capital (SAPC) working group's efforts.

  11. Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base

    SciTech Connect (OSTI)

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-01

    The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

  12. Pokeberries Provide Boost for Solar Cells

    Broader source: Energy.gov [DOE]

    Red dye from the pokeberry weed makes their low-cost, fiber-based solar cells even more energy efficient.

  13. Low-Cost Phase Change Material for Building Envelopes

    SciTech Connect (OSTI)

    Abhari, Ramin

    2015-08-06

    A low-cost PCM process consisting of conversion of fats and oils to PCM-range paraffins, and subsequent “encapsulation” of the paraffin using conventional plastic compounding/pelletizing equipment was demonstrated. The PCM pellets produced were field-tested in a building envelope application. This involved combining the PCM pellets with cellulose insulation, whereby 33% reduction in peak heat flux and 12% reduction in heat gain was observed (average summertime performance). The selling price of the PCM pellets produced according to this low-cost process is expected to be in the $1.50-$3.00/lb range, compared to current encapsulated PCM price of about $7.00/lb. Whole-building simulations using corresponding PCM thermal analysis data suggest a payback time of 8 to 16 years (at current energy prices) for an attic insulation retrofit project in the Phoenix climate area.

  14. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Savers [EERE]

    Low-Cost Gas Heat Pump for Building Space Heating 2015 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc. Project Summary Timeline: Start date: March 01, 2013 Planned end date: August 31, 2015 Key Milestones: 1. Cycle & System Design: 12/31/2014 2. Breadboard Test Results: 12/31/2014 3. Packaged Prototype Results: 04/01/2015 Budget: Total DOE $ to date: $629,730 Total future DOE $: $273,140 Target

  15. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic layer. Image:

  16. A Flexible, Low Cost, Beam Loss Monitor Evaluation System

    SciTech Connect (OSTI)

    Hoyes, George Garnet; Pimol, Piti; Juthong, Nawin; Attaphibal, Malee

    2007-01-19

    A flexible, low cost, Beam Loss Monitor (BLM) Evaluation System based on Bergoz BLMs has been developed. Monitors can easily be moved to any location for beam loss investigations and/or monitor usefulness evaluations. Different PC pulse counting cards are compared and tested for this application using the display software developed based on LabVIEW. Beam problems uncovered with this system are presented.

  17. Low-Cost Gas Heat Pump fro Building Space Heating

    Office of Environmental Management (EM)

    Low-Cost Gas Heat Pump for Building Space Heating 2014 Building Technologies Office Peer Review Michael Garrabrant mgarrabrant@stonemtntechnologies.com Stone Mountain Technologies, Inc. Project Summary Timeline: Start date: March 01, 2013 Planned end date: February 28, 2015 Key Milestones: 1. Cycle & System Design: 12/31/2014 2. Breadboard Test Results: 06/30/2014 3. Packaged Prototype Results: 02/28/2015 Budget: Total DOE $ to date: $305,396 Total future DOE $: $597,474 Target

  18. Alloy Design and Method for Processing Low-Cost Refractory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispersoid-Reinforced Alloys for Harsh Environments - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Alloy Design and Method for Processing Low-Cost Refractory Dispersoid-Reinforced Alloys for Harsh Environments Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Alloys used in applications such as exhaust valves are increasingly subject to demanding operating environments, such as high temperatures and exposure

  19. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Ghosh, M.; DelCueto, J.: Kampas, F.; Xi, J. )

    1993-02-01

    This report describes results from the first phase of a three-phase contract for the development of stable, high-efficiency, same-band-gap, amorphous silicon (a-Si) multijunction photovoltaic (PV) modules. The program involved improving the properties of individual layers of semiconductor and non-semiconductor materials and small-area single-junction and multijunction devices, as well as the multijunction modules. The semiconductor materials research was performed on a-Si p, i, and n layers, and on microcrystalline silicon n layers. These were deposited using plasma-enhanced chemical vapor deposition. The non-semiconductor materials studied were tin oxide, for use as a transparent-conducting-oxide (TCO), and zinc oxide, for use as a back reflector and as a buffer layer between the TCO and the semiconductor layers. Tin oxide was deposited using atmospheric-pressure chemical vapor deposition. Zinc oxide was deposited using magnetron sputtering. The research indicated that the major challenge in the fabrication of a-Si multijunction PV modules is the contact between the two p-i-n cells. A structure that has low optical absorption but that also facilitates the recombination of electrons from the first p-i-n structure with holes from the second p-i-n structure is required. Non-semiconductor layers and a-Si semiconductor layers were tested without achieving the desired result.

  20. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect (OSTI)

    Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

  1. Final Report- Low Cost High Performance Nanostructured Spectrally Selective Coating

    Broader source: Energy.gov [DOE]

    Solar absorbing coating is a key enabling technology to achieve hightemperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), hightemperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency.

  2. Development of Low Cost Sensors for Hydrogen Safety Applications

    SciTech Connect (OSTI)

    Hoffheins, B.S.; Holmes, W., Jr.; Lauf, R.J.; Maxey, L.C.; Salter, C.; Walker, D.

    1999-04-07

    We are developing rugged and reliable hydrogen safety sensors that can be easily manufactured. Potential applications also require an inexpensive sensor that can be easily deployed. Automotive applications demand low cost, while personnel safety applications emphasize light-weight, battery-operated, and wearable sensors. Our current efforts involve developing and optimizing sensor materials for stability and compatibility with typical thick-film manufacturing processes. We are also tailoring the sensor design and size along with various packaging and communication schemes for optimal acceptance by end users.

  3. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect (OSTI)

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  4. High-Efficiency Solar Cogeneration with Thermophotovoltaic &...

    Broader source: Energy.gov (indexed) [DOE]

    targeted 'Solar Cogeneration' technologies to maximize energy generation & energy efficiency from the building's solar insolation resources. Project presents a novel, low-cost...

  5. Current-matched high-efficiency, multijunction monolithic solar cells

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1993-01-01

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  6. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  7. Low-Cost Self-Cleaning Coatings for CSP Collectors

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  8. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  9. LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION

    SciTech Connect (OSTI)

    Lowes, Ted

    2014-07-31

    During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

  10. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  11. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  12. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen Programs...

  13. PROJECT PROFILE: 2D Materials for Low Cost Epitaxial Growth of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-cost III-V cells will result in a breakthrough in photovoltaic (PV) market by enabling a lower levelized cost of energy. The project will develop low-cost substrates to ...

  14. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  15. R2R Production of Low-Cost Integrated OLED Substrate with Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling R2R Production of Low-Cost Integrated OLED Substrate with ...

  16. Energy Department Announces up to $4 Million to Advance Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low ...

  17. Low Cost Carbon Fiber Research in the LM Materials Program Overview |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2_warren.pdf More Documents & Publications Low Cost Carbon Fiber Overview FY 2009 Progress Report for Lightweighting Materials - 7. Low-Cost Carbon Fiber

  18. Geothermal Brine Brings Low-Cost Power with Big Potential | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with ... The mine's byproduct of geothermal brine allows for an additional revenue stream from ...

  19. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch The Dow ...

  20. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect (OSTI)

    Buonassisi, Tonio

    2013-02-26

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  1. Nx-TEC: Next-Generation Thermionic Solar Energy Conversion | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy melosh.pdf More Documents & Publications Next-Generation Thermionic Solar Energy Conversion - FY13 Q2 Final Report - Technology Enabling Ultra High Concentration Multi-Junction Cells Download the SunShot Initiative 2014 Portfolio

  2. Development of an Advanced, Low-Cost parabolic Trough Collector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon cspreviewmeeting042413...

  3. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  4. Development of a Low-Cost Rotary Steerable Drilling System

    SciTech Connect (OSTI)

    Roney Nazarian

    2012-01-31

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

  5. Testing of a low-cost item monitoring system

    SciTech Connect (OSTI)

    Frank, D.J.; Cunningham, K.R.; Hoover, C.E.; Trujillo, A.A.

    1988-01-01

    Material control is an important element of any security system which seeks to address the insider threat. Sandia has developed Wireless Alarm Transmission of Container Handling (WATCH) which is a remote sensor system that provides a low-cost, convenient way of monitoring item movement. Rockwell International/Rocky Flats Plant (RFP) and Sandia have conducted a long-term evaluation of the WATCH system in an operating production facility. Testing was conducted in a large scale, remote access storage vault for Special Nuclear Materials (SNM). A total of fourteen WATCH units were placed on storage containers in the vault. A schedule was established which provided prearranged movement of monitored containers on a regular basis. The test objectives were to determine (1) the feasibility of using the WATCH system technology to implement material control concepts, (2) the system performance in an active production area, and high radiation environment, (3) the sensitivity settings required for optimum system performance, and (4) the spatial resolution of the transmitter/receiver utilized.

  6. Testing of a low-cost item monitoring system

    SciTech Connect (OSTI)

    Frank, D.J.; Cunningham, K.R.; Hoover, C.E.; Trujillo, A.A.

    1988-01-01

    Material control is an important element of any security system which seeks to address the insider threat. Sandia has developed Wireless Alarm Transmission of Container Handling (WATCH) which is a remote sensory system that provides a low-cost, convenient way of monitoring item movement. Rockwell International/Rocky Flats Plant (RFP) and Sandia have conducted a long-term evaluation of the WATCH system in an operating production facility. Testing was conducted in a large scale, remote access storage vault for Special Nuclear Materials (SNM). A total of fourteen WATCH units were placed on storage containers in the vault. A schedule was established which provided prearranged movement of monitored containers on a regular basis. The test objectives were to determine 1) the feasibility of using the WATCH system technology to implement material control concepts, 2) the system performance in an active production area, and high radiation environment, 3) the sensitivity settings required for optimum system performance, and 4) the spatial resolution of the transmitter/receiver utilized.

  7. Norwich Technologies' Advanced Low-Cost Receivers for Parabolic Troughs

    SciTech Connect (OSTI)

    Stettenheim, Joel; McBride, Troy O.; Brambles, Oliver J.; Cashin, Emil A.

    2013-12-31

    This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.

  8. Low Cost Polymer heat Exchangers for Condensing Boilers

    SciTech Connect (OSTI)

    Butcher, Thomas; Trojanowski, Rebecca; Wei, George; Worek, Michael

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  9. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect (OSTI)

    Thurston, Anthony

    2012-10-31

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASFs battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASFs already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEMs and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  10. PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane

    SciTech Connect (OSTI)

    Hamdan, Monjid

    2013-08-29

    The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

  11. Low-cost exterior insulation process and structure

    SciTech Connect (OSTI)

    Vohra, Arun

    1997-12-01

    The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.

  12. A low-cost float method of harnessing wave energy

    SciTech Connect (OSTI)

    George, M.P.

    1983-12-01

    The author proposes in this paper a low-cost and simple method of harnessing wave energy that should enable coastal regions to be self-sufficient in electric power. The method is eminently applicable to India and such developing countries, being simple and involving a small capital investment. The method was evolved after study of the Indian West Coast fronting the Arabian Sea, and can harness about 50% of the wave energy. A log of wood about 5 metres long and 50 cm. in diameter, having a specific gravity of 0.8 to 0.9, is made to float parallel to the beach and about 50 metres away from it. Its movement is restricted to the vertical plane by means of poles. Two roller chains are attached to the ends of the log which pass over two sprocket free-wheels. When the log is lifted with the crest of the wave, the roller chain moves over the free-wheel. When the trough of the wave reaches the log, its weight is applied to the sprocket wheels through the roller chains. Each sprocket wheel rotates and the rotation is multiplied with a gear wheel. The torque from the high speed spindle of the gear is applied to a small alternating current generator. The AC output from the generator is rectified and used either for charging a battery bank, or connected to the lighting system, or supplied to electrolytic tank for producing hydrogen and other chemicals at the site. A chain of such systems along the coast can supply enough power to light the fishermen's hamlets stretching along the coast.

  13. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities. Process analysis of several leading routes to AB (Purdue's formate-based metathesis route and PNNL's NH{sub 4}BH{sub 4}-based route) indicated the cost to produce first-fill AB to be on the order of $9-10/kg AB, assuming a NaBH{sub 4} cost of $5/kg for a 10,000 metric tons/year sized AB plant. The analysis showed that the dominant cost component for producing first-fill AB is the cost of the NaBH4 raw material. At this AB cost and assuming 2.5 moles hydrogen released per mole of AB, it may be possible to meet DOE's 2010 storage system cost target, but the 2015 target will likely require lower cost AB and demonstrates the importance of having a low-cost route to NaBH{sub 4}. Substantial progress has also been made to define feasible pathways for the regeneration of spent ammonia borane fuel.

  14. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Solar Cell Models Organic photovoltaics (OPVs), or solar cells, have the potential to provide a low-cost and renewable source of environmentally friendly energy. ...

  15. Building America Whole-House Solutions for New Homes: Low-Cost Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Savings at the Community Scale, Fresno, California | Department of Energy Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California Building America Whole-House Solutions for New Homes: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California In this project, U.S. Department of Energy Building America research team IBACOS partnered with builder Wathen Castanos Hybrid Homes to develop a simple and low-cost methodology by which

  16. Low-Cost Wireless Sensors for Building Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless Sensors for Building Applications Low-Cost Wireless Sensors for Building Applications ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors. ORNL's Pooran Joshi shows how the process enables electronics components to be printed on flexible plastic substrates. Credit: Oak Ridge National Lab ORNL researchers are experimenting with additive roll-to-roll manufacturing techniques to develop low-cost wireless sensors.

  17. Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved

    Office of Scientific and Technical Information (OSTI)

    LED Fixture Efficiency and Lifetime (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime Citation Details In-Document Search Title: Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime The overall objective of the program was to demonstrate a 98% or greater reflective, highly diffuse, low-cost

  18. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launch | Department of Energy Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch The Dow Chemical Company - Midland, MI An extrusion process for making carbon fiber uses a novel polyolefin material in place of conventional polyacrylonitrile. Low-cost carbon fiber has widespread application in automobiles, wind turbines, and other industrial applications. This novel process could

  19. Development and Commercialization of a Novel Low-Cost Carbon Fiber |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm048_husman_2012_o.pdf More Documents & Publications Development and Commercialization of a Novel Low-Cost Carbon Fiber Vehicle Technologies Office Merit Review 2014: Development and Commercialization of a Novel Low-Cost Carbon Fiber Low Cost Carbon Fiber Overview

  20. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    SciTech Connect (OSTI)

    Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain???????¢????????????????s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

  1. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx}50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

  2. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. Thomas, Ph.D., President Franklin D. Lomax, Ph.D, CTO & Principal Investigator, and Maxim Lyubovski, Ph.D.

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  3. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To accomplish this cost reduction, BASF developed a higher throughput coating process, ... Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles Low-Cost Production of ...

  4. A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING...

    Broader source: Energy.gov (indexed) [DOE]

    A novel metallurgical process for producing titanium (Ti) components could produce a ... PDF icon A New Method for Low-Cost Production of Titanium Alloys More Documents & ...

  5. Harsh-environment, Low-cost Sensor Technology for Engine and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harsh-environment, Low-cost Sensor Technology for Engine and After-treatment Systems Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  6. Webinar: Low Cost Carbon Fiber Process Soliciation, April 7th, 2016 |

    Energy Savers [EERE]

    Department of Energy Low Cost Carbon Fiber Process Soliciation, April 7th, 2016 Webinar: Low Cost Carbon Fiber Process Soliciation, April 7th, 2016 April 7, 2016 11:00AM to 12:00PM EDT Oak Ridge National Laboratory (ORNL) will be hosting a webinar for the AMO supported Low Cost Carbon Fiber Process Solicitation. ORNL is seeking commercialization partners to license a new method to produce industrial-grade structural carbon fiber and flame-retardant fibers from commercially-available low-cost

  7. Low-Cost Magnesium Sheet Production using the Twin Roll Casting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High ...

  8. Low-Cost, High Efficiency Integration of SSL and Building Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packet Energy Transfer (PET) power-supply design that improved conversion efficiency to ... Lighting Pedestrian Areas Daylighting Digital Dimmer R2R Production of Low-Cost ...

  9. Low-Cost Light-Emitting Diode Luminaire for General Illumination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Light-Emitting Diode Luminaire for General Illumination Presenter: Paul Fini, CREE Santa Barbara Technology Center This project is demonstrating an efficient and stable ...

  10. Building America Case Study: Low-Cost Evaluation of Energy Savings...

    Energy Savers [EERE]

    Low-Cost Evaluation of Energy Savings at the Community Scale Fresno, California PROJECT INFORMATION Project Name: Evaluation of New Construction Pilot Community Location: Fresno, ...

  11. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  12. Develpment of a low Cost Method to Estimate the Seismic Signiture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis ...

  13. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    nnovative M anufacturing and M aterials for Low -Cost Lithium -I on Batteries This presentation does not contain any proprietary, confidential, or otherwise restricted information...

  14. Transpired Solar Collectors: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2000-08-01

    Transpired solar collectors are a reliable, low-cost way to preheat ventilation air in commercial buildings.

  15. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  16. NREL: Photovoltaics Research - John Simon, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interests include development of low-cost III-V solar cells, high-efficiency multi-junction solar cells, III-V semiconductor epitaxy, and development of novel semiconductor...

  17. NREL Staff Recognized for Top Innovations as Lab Celebrates Record...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the development of low-cost III-V solar cells, high-efficiency multi-junction solar cells, III-V semiconductor epitaxy, and novel semiconductor devices. He has submitted...

  18. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    SciTech Connect (OSTI)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

  19. PROJECT PROFILE: 2D Materials for Low Cost Epitaxial Growth of Single Sun

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gallium Arsenide (GaAs) Photovoltaics | Department of Energy 2D Materials for Low Cost Epitaxial Growth of Single Sun Gallium Arsenide (GaAs) Photovoltaics PROJECT PROFILE: 2D Materials for Low Cost Epitaxial Growth of Single Sun Gallium Arsenide (GaAs) Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $125,000 Low-cost III-V cells will result in a breakthrough in photovoltaic (PV)

  20. PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics PROJECT PROFILE: High-Efficiency, Low-Cost, One-Sun, III-V Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $4,000,000 Low-cost III-V photovoltaics have the potential to lower the levelized cost of energy (LCOE) because III-V cells outperform silicon in terms of efficiency and annual energy

  1. PPG Industries Develops a Low-Cost Integrated OLED Substrate | Department

    Energy Savers [EERE]

    of Energy Research & Development » R&D Highlights » PPG Industries Develops a Low-Cost Integrated OLED Substrate PPG Industries Develops a Low-Cost Integrated OLED Substrate With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or

  2. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    SciTech Connect (OSTI)

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  3. Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastics | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Novel Material for Efficient and Low-Cost Separation of Gases for Fuels and Plastics

  4. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  5. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  6. Building America Whole-House Solutions for New Homes: Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this project, U.S. Department of Energy Building America research team IBACOS partnered with builder Wathen Castanos Hybrid Homes to develop a simple and low-cost methodology by ...

  7. Researchers find 3-D printed parts to provide low-cost, custom...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on...

  8. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Oct. 25, 2006. PDF icon 5cwru.pdf More Documents & Publications Fuel Cell Kickoff Meeting Agenda Light Weight, Low Cost PEM Fuel Cell Stacks Fuel Cell Projects Kickoff Meeting

  9. Variable-Speed, Low-Cost Motor for Residential HVAC Systems ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable-Speed, Low-Cost Motor for Residential HVAC Systems Lower-Cost, Variable-Speed ... DynaMotors Inc., with the aid of a grant from DOE's Inventions and Innovation Program, ...

  10. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award DE-EE0006264 Paul Fini, paulfini@cree.com CREE, Inc. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires 2015 Building Technologies Office Peer Review 2 ...

  11. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  12. Vehicle Technologies Office Merit Review 2015: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by 24M Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, structurally...

  13. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report

    Broader source: Energy.gov [DOE]

    This report outlines the final results and findings from the Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles Workshop, held in June 2013 and hosted by the Bioenergy Technologies Office.

  14. The Approach to Low-Cost High-Efficiency OLED Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Approach to Low-Cost High-Efficiency OLED Lighting The Approach to Low-Cost High-Efficiency OLED Lighting Lead Performer: University of California - Los Angeles - Los Angeles, CA Partners: Polyradiant Corp. - Calabasas, CA DOE Total Funding: $612,733 Cost Share: $153,183 Project Term: September 4, 2014 - August 31, 2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop an integrated plastic

  15. Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material | Department of Energy Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica Material Image of porous silica material in alcohol.<br /> Photo credit: Oak Ridge National Lab Image of porous silica material in alcohol. Photo credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partner: VELUX Design and Development Company USA Inc.,

  16. Low-Cost, Robust Ceramic Membranes for Gas Separation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Low-Cost, Robust Ceramic Membranes for Gas Separation Low-Cost, Robust Ceramic Membranes for Gas Separation Innovative Ceramic Membrane Reduces Energy and Cost of Industrial Gas Separation Ceramic membranes offer great potential for industrial gas separation. Without a ceramic membrane, gases must be cooled before separation. Unfortunately, even though ceramic membranes can improve the productivity for many reactions and separations in the chemicals and refining industries, they are

  17. Low cost fuel cell diffusion layer configured for optimized anode water

    Office of Scientific and Technical Information (OSTI)

    management (Patent) | SciTech Connect Patent: Low cost fuel cell diffusion layer configured for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel

  18. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based

    Office of Scientific and Technical Information (OSTI)

    Additive Manufacturing (Technical Report) | SciTech Connect Technical Report: Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing Citation Details In-Document Search Title: Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in

  19. Low-Cost and Lightweight: Strongest titanium alloy aims at improving

    Energy Savers [EERE]

    Innovation | Department of Energy Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple and cost-effective ventilation strategies for homes. As high-performance homes get more air tight and better insulated, attention to good indoor air quality becomes essential. This Top Innovation profile describes Building America research by Building Science Corporation to develop

  20. Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochromic Windows with Increased Energy Savings | Department of Energy Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings ITN Energy Systems is using low-cost, high volume roll-to-roll coating techniques to develop a new low-e film with high visible transmission and high infrared reflectivity.

  1. DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery | Department of Energy 2 Requests for Information on Low-Cost Hydrogen Production and Delivery DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery October 29, 2014 - 12:29pm Addthis The U.S. Department of Energy's Fuel Cell Technologies Office has issued two requests for information (RFIs) seeking feedback from the research community and relevant stakeholders about hydrogen production and hydrogen delivery research, development, and demonstration

  2. A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSUMPTION OF MECHANICAL SYSTEMS | Department of Energy A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING ENERGY CONSUMPTION OF MECHANICAL SYSTEMS A NEW METHOD FOR LOW-COST PRODUCTION OF TITANIUM ALLOYS FOR REDUCING ENERGY CONSUMPTION OF MECHANICAL SYSTEMS The University of Utah - Salt Lake City, UT A novel metallurgical process for producing titanium (Ti) components could produce a ten-fold material usage improvement in aircraft and vehicle manufacturing. This technology

  3. Print-based Manufacturing of Integrated, Low Cost, High Performance SSL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Luminaires | Department of Energy Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Lead Performer: Eaton Corporation - Menomonee Falls, WI Partners: - Heraeus Materials Technology, LLC - Conshohocken, PA - Haiku Tech, Inc - Miami, FL - Eaton Cooper Lighting Innovation Center - Peachtree City, GA DOE Total Funding: $2,468,672 Cost Share: $2,468,676 Project Term: 9/15/2013 -

  4. HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTROCHEMICAL SOLUTION GROWTH METHOD | Department of Energy HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD HIGH-QUALITY, LOW-COST BULK GALLIUM NITRIDE SUBSTRATES GROWN BY THE ELECTROCHEMICAL SOLUTION GROWTH METHOD MEMC Electronic Materials, Inc. - St. Peters, MO Efficient manufacturing of gallium nitride (GaN) could reduce the cost of and improve the output for light-emitting diodes, solid-state lighting, laser displays, and other

  5. R2R Production of Low-Cost Integrated OLED Substrate with Improved

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Conductor and Enhanced Light Outcoupling | Department of Energy R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling R2R Production of Low-Cost Integrated OLED Substrate with Improved Transparent Conductor and Enhanced Light Outcoupling Lead Performer: MicroContinuum, Inc. - Cambridge, MA DOE Total Funding: $1,149,037 Project Term: April 6, 2015 - April 5, 2017 Funding Opportunity: FY2015 Phase II Release 1 SBIR

  6. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect (OSTI)

    Mattos, L.

    2012-03-01

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  7. Development of Low-Cost High Efficiency Commercial Ready Advanced Silicon Solar Cells

    SciTech Connect (OSTI)

    Rohatgi, Ajeet; Zimbardi, Francesco

    2015-01-30

    As a result of the work within this project manufacturing ready devices were developed using 4 different promising Si material technologies with final efficiencies between 20.1% and 21.2%. The starting efficiencies for the FPACE I project were based on best manufactured p-type and n-type cells at the start of the project in 2011. Target efficiencies proposed for the project were 21% for p-type CZ, 20% for p-type cast Si, 21% for n-type and 20% for epi. All Target efficiencies were met or exceeded by the end of the project in 2014. The figure below list displays the 4 highest performing structures for each material with corresponding achieved efficiencies.

  8. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  9. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  10. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  11. Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar

    ScienceCinema (OSTI)

    Ramamoorthy Ramesh:

    2010-09-01

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  12. Development of a Low Cost Ultra Specular Advanced Polymer Film Solar

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. PDF icon ht_dwd_tools.pdf More Documents & Publications A History or Geothermal Energy Research and Development in the United States: Drilling

  13. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect (OSTI)

    Guha, S. )

    1991-12-01

    This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

  14. Cooperative Research between NREL and Solar Junction Corp: Cooperative Research and Development Final Report, CRADA Number CRD-08-306

    SciTech Connect (OSTI)

    Friedman, D.

    2015-03-01

    NREL and Solar Junction Corp. will perform cooperative research on materials and devices that are alternatives to standard approaches with the goal of improving solar cell efficiency while lowering cost. The general purpose of this work is to model the performance of a multi-junction concentrator cell of Solar Junction, Inc. design under normal concentrator operating conditions.

  15. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1994-12-31

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multijunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single- and multijunction modules under prevailing conditions.

  16. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  17. Breakout Session: Solar Securitization: Opportunities and Challenges

    Broader source: Energy.gov [DOE]

    The U.S. solar industry is soaring – deployment has increased tenfold in six years. But despite this growth, low cost solar financing remains a major market barrier to rapid deployment. The...

  18. Current and lattice matched tandem solar cell

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1987-01-01

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga.sub.x In.sub.1-x P (0.505.ltoreq.X.ltoreq.0.515) top cell semiconductor lattice matched to a GaAs bottom cell semiconductor at a low-resistance heterojunction, preferably a p+/n+ heterojunction between the cells. The top and bottom cells are both lattice matched and current matched for high efficiency solar radiation conversion to electrical energy.

  19. Photovoltaic-Reliability R&D Toward a Solar-Powered World (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Granata, J.

    2009-08-01

    Presentation about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

  20. Low-Cost Packaged CHP System with Reduced Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Power Generation, June 2011 | Department of Energy Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Presentation on a 330 kWe Packaged CHP System with Reduced Emissions, given by John Pendray of Cummins Power Generation, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2,

  1. EERE Success Story-Low-Cost Production of Hydrogen and Electricity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low-Cost Production of Hydrogen and Electricity EERE Success Story-Low-Cost Production of Hydrogen and Electricity April 10, 2013 - 12:00am Addthis At an airport in Anchorage, Alaska, EERE provided funds to Bloom Energy in completing a one-year demonstration of two 25-kilowatt fuel cells-providing valuable, real-world data in one of the harshest environments on earth. Each fuel cell showed an impressive peak electrical efficiency of more than 50%. The high operating

  2. EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Potential | Department of Energy Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a $1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than $0.06 per kilowatt hour with ElectraTherm's new plug-and-play technology. Building on this first-of-its-kind success, this

  3. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N; Yu, Z; Jaworski, A J

    2010-01-01

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  4. Producing Solar Cells By Surface Preparation For Accelerated Nucleation Of Microcrystalline Silicon On Heterogeneous Substrates.

    DOE Patents [OSTI]

    Yang, Liyou; Chen, Liangfan

    1998-03-24

    Attractive multi-junction solar cells and single junction solar cells with excellent conversion efficiency can be produced with a microcrystalline tunnel junction, microcrystalline recombination junction or one or more microcrystalline doped layers by special plasma deposition processes which includes plasma etching with only hydrogen or other specified etchants to enhance microcrystalline growth followed by microcrystalline. nucleation with a doped hydrogen-diluted feedstock.

  5. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... comprehensively recording solar irradiance data to accompany its outdoor PV testing. ...

  6. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

    SciTech Connect (OSTI)

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-09-15

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  7. NREL Solar Cell Wins Federal Technology Transfer Prize - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Cell Wins Federal Technology Transfer Prize May 7, 2009 A new class of ultra-light, high-efficiency solar cells developed by the U.S. Department of Energy's National Renewable Energy Laboratory has been awarded a national prize for the commercialization of federally funded research. The Inverted Metamorphic Multijunction (IMM) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The

  8. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid Removal Process

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop a new low-cost and energy efficient NGL recovery process - through a combination of theoretical, bench-scale, and pilot-scale testing - so that it can be offered to the natural gas industry for commercialization.

  9. State-of-the-Art Solar Simulator Reduces Measurement Time and Uncertainty (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    One-Sun Multisource Solar Simulator (OSMSS) brings accurate energy-rating predictions that account for the nonlinear behavior of multijunction photovoltaic devices. The National Renewable Energy Laboratory (NREL) is one of only a few International Organization for Standardization (ISO)-accredited calibration labs in the world for primary and secondary reference cells and modules. As such, it is critical to seek new horizons in developing simulators and measurement methods. Current solar simulators are not well suited for accurately measuring multijunction devices. To set the electrical current to each junction independently, simulators must precisely tune the spectral content with no overlap between the wavelength regions. Current simulators do not have this capability, and the overlaps lead to large measurement uncertainties of {+-}6%. In collaboration with LabSphere, NREL scientists have designed and implemented the One-Sun Multisource Solar Simulator (OSMSS), which enables automatic spectral adjustment with nine independent wavelength regions. This fiber-optic simulator allows researchers and developers to set the current to each junction independently, reducing errors relating to spectral effects. NREL also developed proprietary software that allows this fully automated simulator to rapidly 'build' a spectrum under which all junctions of a multijunction device are current matched and behave as they would under a reference spectrum. The OSMSS will reduce the measurement uncertainty for multijunction devices, while significantly reducing the current-voltage measurement time from several days to minutes. These features will enable highly accurate energy-rating predictions that take into account the nonlinear behavior of multijunction photovoltaic devices.

  10. Process for mounting a protection diode on a vertical multijunction photovoltaic cell structure and photovoltaic cells obtained

    SciTech Connect (OSTI)

    Arnould, J.

    1982-09-07

    In a stack of diodes forming a vertical multijunction photovoltaic cell, an inversely connected diode is firmly secured to this stack with possible insertion of a intermediate wafer made from a conducting material.

  11. Developments in Die Pressing Strategies for Low-Cost Titanium Powders

    SciTech Connect (OSTI)

    Hovanski, Yuri; Weil, K. Scott; Lavender, Curt A.

    2009-05-01

    Recent developments in the production of low-cost titanium powders have rejuvenated interest in manufacturing titanium powder metallurgy components by direct press and sinter techniques. However excessive friction typically observed during titanium powder pressing operations leads to numerous problems ranging from non-homogeneous green densities of the compacted powder to excessive part ejection forces and reduced die life due to wear and galling. An instrumented double-acting die press was developed to both investigate the mechanics of titanium powder pressing (particularly for the new low-cost powder morphologies) and to screen potential lubricants that could reduce frictional effects. As will be discussed, the instrument was used to determine friction coefficients and to evaluate a number of candidate lubricants. These results were then used to optimize the lubricant system to reduce die-wall stresses and improve part density uniformity.

  12. Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aqueous and Nonaqueous Flow Batteries - Joint Center for Energy Storage Research September 16, 2014, Research Highlights Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries Comparison of available design space for aqueous and nonaqueous flow batteries to meet long term stationary storage cost goals. The nonaqueous redox flow battery technology has a potentially wider range of chemistry options but takes on new constraints of active

  13. Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Heat Pump For Building Space Heating Low-Cost Gas Heat Pump For Building Space Heating Credit: Stone Mountain Technologies Credit: Stone Mountain Technologies Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: $903,000 Cost Share: $232,294 Project Term: March 1, 2013 - August 31, 2015 Funding Opportunity: Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies

  14. Low-Cost, High Efficiency Integration of SSL and Building Controls using a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PET Power Distribution System | Department of Energy High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Lead Performer: VoltServer Inc. - East Greenwich, RI DOE Total Funding: $999,122 Project Term: July 28, 2015 - July 27, 2017 Funding Opportunity: FY2015 Phase II Release 2 SBIR Awards PROJECT OBJECTIVE This project will demonstrate a novel

  15. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  16. Researchers find 3-D printed parts to provide low-cost, custom alternatives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for laboratory equipment | Princeton Plasma Physics Lab Researchers find 3-D printed parts to provide low-cost, custom alternatives for laboratory equipment By Raphael Rosen February 26, 2015 Tweet Widget Google Plus One Share on Facebook 3-D printed parts provide the stands for the aluminum globes in PPPL's Planeterrella, a device that simulates Northern Lights. (Photo by Elle Starkman/PPPL Office of Communications) 3-D printed parts provide the stands for the aluminum globes in PPPL's

  17. Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and

    Broader source: Energy.gov (indexed) [DOE]

    Asymmetric Rolling | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm058_warren_2012_o.pdf More Documents & Publications Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and Asymmetric Rolling Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials Materials Characterization Capabilities at the High

  18. Membrane-Electrode Structures for Low Cost Molecular Catalysts in Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells and Other Electrochemical Devices - Energy Innovation Portal Membrane-Electrode Structures for Low Cost Molecular Catalysts in Fuel Cells and Other Electrochemical Devices Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A team of Berkeley Lab researchers has developed a technology to coat electrode surfaces with a homogeneous catalyst that has been immobilized within a polymer layer. The team demonstrated that a 3-D distributed array

  19. Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrates - Energy Innovation Portal Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryCertain fuel cell manufacturing specifications require deposition of a thin ceramic membrane onto a substrate that doesn't shrink over it's lifetime. Pre-firing the substrate improves substrate reliability and may lower its cost. This requires a film that has minimal volume

  20. Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing

    Energy Savers [EERE]

    simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight

  1. Develpment of a low Cost Method to Estimate the Seismic Signiture of a

    Broader source: Energy.gov (indexed) [DOE]

    Geothemal Field from Ambient Seismic Noise Analysis | Department of Energy Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon tibuleac_peer2013.pdf More Documents & Publications Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Integration of Noise and Coda

  2. The Stirling engine as a low cost tool to educate mechanical engineers

    SciTech Connect (OSTI)

    Gros, J.; Munoz, M.; Moreno, F.; Valero, A.

    1995-12-31

    The University of Zaragoza through CIRCE, the New Enterprise foundation, an Opel foundation and the local Government of Aragon have been developed a program to introduce the Stirling Engine as a low cost tool to educate students in mechanical engineering. The promotion of a prize like GNAT Power organized by the magazine Model Engineer in London, has improved the practical education of students in the field of mechanical devices and thermal engines. Two editions of the contest, 1993 and 1994, awarded the greatest power Stirling engine made by only using a little candle of paraffin as a heat source. Four engines were presented in the first edition, with an average power of about 100 mW, and seven engines in the second one, achieving a power of about 230 mW. Presentations in Technical Schools and the University have been carried out. Also low cost tools have been made for measuring an electronic device to draw the real internal pressure volume diagram using a PC. A very didactic software to design classic kinematic alpha, beta and gamma engines plus Ringbom beta and gamma engines has been created. A book is going to be published (in Spanish) explaining the design of small Stirling engines as a way to start with low cost research in thermal engines, a very difficult target with IC engines.

  3. Broad spectrum solar cell

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  4. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1995-10-01

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multifunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single and multijunction modules under prevailing conditions.

  5. Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K

    SciTech Connect (OSTI)

    Kalinovsky, Vitaly S. Kontrosh, Evgeny V. Dmitriev, Pavel A. Pokrovsky, Pavel V. Chekalin, Alexander V. Andreev, Viacheslav M.

    2014-09-26

    The forward dark current density voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

  6. Upside-Down Solar Cell Achieves Record Efficiencies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    The inverted metamorphic multijunction (IMM) solar cell is an exercise in efficient innovation - literally, as the technology boasted the highest demonstrated efficiency for converting sunlight into electrical energy at its debut in 2005. Scientists at the National Renewable Energy Laboratory (NREL) inverted the conventional photovoltaic (PV) structure to revolutionary effect, achieving solar conversion efficiencies of 33.8% and 40.8% under one-sun and concentrated conditions, respectively.

  7. Simulator Developed to Drastically Reduce Time of Multijunction PV Device Efficiency Measurements (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    NREL's new simulator helps speed up research in the race to improve photovoltaic efficiency. Scientists at the National Renewable Energy Laboratory (NREL) needed a quick and accurate method to predict energy generated from multijunction photovoltaic (PV) test devices. This method had to take into account the nonlinear behavior of multijunction PV. NREL achieved this by developing the One-Sun Multi-Source Simulator (OSMSS), which reduces the time for this type of reference spectrum efficiency measurement from hours or days to minutes. The OSMSS is an automated, spectrally adjustable light source that builds a unique simulator spectrum that causes a multijunction PV device to behave as it would under a reference spectrum. This new simulator consists of four light sources separated into nine wavelength bands between 350 and 2,000 nm. The irradiance in each band is adjustable from zero to about 1.5 suns. All bands are recombined via optical fibers and integrating optics to produce a nearly 10 cm x 10 cm uniform spot. The operator simply links the OSMSS to the quantum efficiency data for the test device, and the OSMSS does the rest. The OSMSS can also determine the power as a function of the spectral irradiance (beyond the reference spectra), total irradiance, and temperature. Major components of the system were built to NREL specification by LabSphere, Inc. NREL developed a new, fully automated tool that rapidly builds a spectrum under which all junctions of a multijunction PV device behave as they would under a reference spectrum. Such a spectrum is essential to properly characterize multijunction devices. The OSMSS reduces the time for building spectra for current vs. voltage measurements from hours or days to minutes. This makes it possible to quickly characterize a multijunction device under many different conditions. The OSMSS will be an important tool to help predict the yearly energy output of a multijunction PV device in a particular environment when provided with a range of spectra and temperatures for that location.

  8. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect (OSTI)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  9. A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Grubelich, M.C.; Hartman, J.K.; McCampbell, C.B.; Churchill, J.K.

    1993-12-31

    A conventional NSI (NASA standard initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium subhydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

  10. Bench-Scale Silicone Process for Low-Cost CO2 Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bench-Scale Silicone Process for Low-Cost CO2 Capture Project No.: FE0007502 GE Global Research and their project partners are conducting research on the use of a novel silicone solvent to capture CO2 with a continuous bench-scale system. The project will utilize both computational and experimental methods. Previously measured experimental data from a continuous laboratory-scale CO2 capture system will be used to design this bench-scale system. Data from the bench-scale system, such as kinetics

  11. Low Cost Production of InGaN for Next-Generation Photovoltaic Devices

    SciTech Connect (OSTI)

    Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

    2012-07-09

    The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

  12. Low-cost Manufacturing of Wireless Sensors for Building Monitoring Applications

    Office of Environmental Management (EM)

    ALTEX TECHNOLOGIES CORPORATION Low-Cost Microchannel Heat Exchanger DOE Grant DE-EE0004541 2013-2014 Dr. John T. Kelly Altex Technologies Corporation 244 Sobrante Way Sunnyvale, CA 94086 Phone: 408-328-8302 E-mail: john@altextech.com U.S. DOE Advanced Manufacturing Office PEER Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. ALTEX TECHNOLOGIES CORPORATION Project Objectives  Define and test low

  13. Noise testing of gearboxes and transmissions using low cost digital analysis and control techniques

    SciTech Connect (OSTI)

    Middleton, A.H.

    1986-01-01

    The combination of low cost personal computer, powerful array processor and intelligent data interface make it possible to carry out multichannel noise and vibration analysis at high speed during acceleration of gearbox on a test rig. Order analysis is used to compare noise signatures with preset targets for up to 20 orders of input shaft rotation. Targets are derived by the computer from practical test results. The computer also controls the test sequence and provides for varying the sequence according to the gearbox to be tested. Design considerations for a Quality Audit system are discussed and practical test results presented.

  14. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm010_zaluzec_2010_o.pdf More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium Front End Research and Development AMD 604 Magnesium Front End Development (AMD 603/604/904) Department of Energy

    lm_19_quinn.pdf More Documents & Publications Development of

  15. Game-Changing Advancements in Solar Energy | Department of Energy

    Energy Savers [EERE]

    Game-Changing Advancements in Solar Energy Game-Changing Advancements in Solar Energy Addthis Record-Breaking Solar 1 of 5 Record-Breaking Solar This concentrating photovoltaic (CPV) cell -- which uses a focused lens to magnify light to 418 times the intensity of the sun -- earned an R&D100 Award and set a new world record of 43.5 percent for solar cell conversion efficiency. The technology is based on high-efficiency multijunction research pioneered by the National Renewable Energy

  16. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  17. NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Demonstrates 45.7% Efficiency for Concentrator Solar Cell New design for ultra-efficient III-V multijunction cell pushes the limits of solar conversion December 16, 2014 The Energy Department's National Renewable Energy Laboratory has announced the demonstration of a 45.7 percent conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies achieved across all types

  18. Low temperature pyrotechnic smokes: A potential low cost alternative to nonpyrotechnic smoke for access delay applications

    SciTech Connect (OSTI)

    Greenholt, C.J.

    1995-07-01

    Smokes are frequently used as visual obscurants in access delay applications. A new generation of low temperature pyrotechnic smokes is being developed. Terephthalic Acid (TPA) smoke was developed by the U.S. Army and Sebacic Acid (SA) smoke is being developed by Thiokol Corp. The advantages these smokes offer over traditional pyrotechnic smokes include; low generation temperature (approximately 450{degree}C), lower toxicity, and lower corrosivity. The low generation temperature reduces smoke layering effects and allows the addition of sensory irritants, such as o-Chlorobenzylidene Malononitrile (CS), to the formulation. Some advantages low temperature pyrotechnic smokes offer over nonpyrotechnic smokes include; low cost, simplicity, compactness, light weight, long storage life, and orientation insensitive operation. Low cost permits distribution of multiple units for reduced vulnerability and refill flexibility. Some disadvantages may include the combustibility of the smoke particulate; however, the published lower explosive limit of the mentioned materials is approximately ten times greater than the concentration required for effective obscuration. The TPA smoke cloud contains small quantities of benzene, formaldehyde, and carbon monoxide; no benzene or formaldehyde was identified during preliminary SA smoke analyses performed by Thiokol Corp. Sandia performed tests and analyses on TPA smoke to determine the smoke cloud composition, the quantity of particulate produced per canister, and the relationship between airborne particulate concentration and measured optical density values. Current activities include characterization of SA smoke.

  19. Low Cost Carbon Fibre: Applications, Performance and Cost Models - Chapter 17

    SciTech Connect (OSTI)

    Warren, Charles David; Wheatley, Dr. Alan; Das, Sujit

    2014-01-01

    Weight saving in automotive applications has a major bearing on fuel economy. It is generally accepted that, typically, a 10% weight reduction in an automobile will lead to a 6-8% improvement in fuel economy. In this respect, carbon fibre composites are extremely attractive in their ability to provide superlative mechanical performance per unit weight. That is why they are specified for high-end uses such as Formula 1 racing cars and the latest aircraft (e.g. Boeing 787, Airbus A350 and A380), where they comprise over 50% by weight of the structure However, carbon fibres are expensive and this renders their composites similarly expensive. Research has been carried out at Oak Ridge National Laboratories (ORNL), Tennessee, USA for over a decade with the aim of reducing the cost of carbon fibre such that it becomes a cost-effective option for the automotive industry. Aspects of this research relating to the development of low cost carbon fibre have been reported in Chapter 3 of this publication. In this chapter, the practical industrial applications of low-cost carbon fibre are presented, together with considerations of the performance and cost models which underpin the work.

  20. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  1. Low-cost household paint abatement to reduce children's blood lead levels

    SciTech Connect (OSTI)

    Taha, T.; Kanarek, M.S.; Schultz, B.D.; Murphy, A.

    1999-11-01

    The purpose was to examine the effectiveness of low-cost abatement on children's blood lead levels. Blood lead was analyzed before and after abatement in 37 homes of children under 7 years old with initial blood lead levels of 25--44 {micro}g/dL. Ninety-five percent of homes were built before 1950. Abatement methods used were wet-scraping and repainting deteriorated surfaces and wrapping window wells with aluminum or vinyl. A control group was retrospectively selected. Control children were under 7 years old, had initial blood lead levels of 25--44 {micro}g/dL and a follow-up level at least 28 days afterward, and did not have abatements performed in their homes between blood lead levels. After abatement, statistically significant declines occurred in the intervention children's blood lead levels. The mean decline was 22%, 1 to 6 months after treatment. After adjustment for seasonality and child's age, the mean decline was 6.0 {micro}g/dL, or 18%. The control children's blood levels did not decline significantly. There was a mean decline of 0.25 {micro}g/dL, or 0.39%. After adjustment for seasonality and age, the mean decline for control children was 1.6 {micro}g/dL, or 1.8%. Low-cost abatement and education are effective short-term interim controls.

  2. Low-cost, compact, robust laser-based ultrasound sensors using photo-EMF detection

    SciTech Connect (OSTI)

    Pepper, D.M.; Dunning, G.J.; Chiao, M.P.; O`Meara, T.R.; Mitchell, P.V.

    1996-12-31

    There is a great need in the manufacturing, aerospace, commercial, energy, automotive, microelectronics and DoD communities for diagnostic systems that can improve the efficiency, yield and performance of various materials processes--while reducing cost, labor, scrap, and machine downtime. Laser-based ultrasound (LBU) represents a noncontact, reconfigurable, high-bandwidth ultrasonic inspection and process control technology. LBU enables remote ultrasonic sensing by replacing conventional PZT transducers, squirters, and immersion systems with laser beams. One laser beam generates the ultrasound in an opaque workpiece, while a second laser beam probes the sample to sense minute surface displacements, induced by the ultrasound or via other acoustic emission mechanisms. LBU systems have yet to be fielded commercially, owing primarily to the cost, size, and complexity of the system components. The authors have developed a low-cost, compact sensor which can potentially enable LBU systems to become a reality. The sensor employs a semiconductor crystal (GaAs) using a mechanism called nonsteady-state photo-induced emf. When combined with a laser diode as an optical source, the result is a very compact, low-cost robust sensor, which can function under in-factory conditions, including inspection of rough-cut workpieces which undergo rapid platform motion, such as high-speed, scanning laser welders. Experimental results will be discussed, including the potential for optical fiber delivery.

  3. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  4. solar

    National Nuclear Security Administration (NNSA)

    2%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  5. Energy Department Announces up to $4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources

    Broader source: Energy.gov [DOE]

    In support of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced up to$4 million in new funding to address critical challenges and barriers for low-cost, low-carbon hydrogen production.

  6. Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Jenkins, David [EdgeBio

    2013-03-22

    David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  7. Vehicle Technologies Office Merit Review 2015: Low-cost, High Energy Si/Graphene Anodes for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by XG Sciences at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-cost, high energy Si/graphene...

  8. Vehicle Technologies Office Merit Review 2015: Thick Low-Cost, High-Power Lithium-Ion Electrodes via Aqueous Processing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thick low-cost,...

  9. Final Report - Low Cost, Epitaxial Growth of II-VI Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. ...

  10. Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  11. Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

    SciTech Connect (OSTI)

    Kyoung-Shin Choi

    2013-06-30

    The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

  12. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  13. A simple, low-cost, data logging pendulum built from a computer mouse

    SciTech Connect (OSTI)

    Gintautas, Vadas; Hubler, Alfred

    2009-01-01

    Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible for all students to have hands-on experience with one of the most important simple physical systems.

  14. Low-Cost Substrates for High-Performance Nanorod Array LEDs

    SciTech Connect (OSTI)

    Sands, Timothy; Stach, Eric; Garcia, Edwin

    2009-04-30

    The completed project, entitled Low-Cost Substrates for High-Performance Nanorod LEDs, targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

  15. Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation

    SciTech Connect (OSTI)

    Zeh, C.M.

    1996-08-01

    In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

  16. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  17. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  18. Low-cost, Modular, Building-integrated Photovoltaic-Thermal Collector...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    However, in order to achieve net-zero energy use, solar thermal collectors are often required to produce hot water for domestic and space heating needs or pre-heated ventilation ...

  19. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect (OSTI)

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  20. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

  1. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    SciTech Connect (OSTI)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.

  2. Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 December 1991--31 October 1992

    SciTech Connect (OSTI)

    Ghosh, M.; DelCueto, J.: Kampas, F.; Xi, J.

    1993-02-01

    This report describes results from the first phase of a three-phase contract for the development of stable, high-efficiency, same-band-gap, amorphous silicon (a-Si) multijunction photovoltaic (PV) modules. The program involved improving the properties of individual layers of semiconductor and non-semiconductor materials and small-area single-junction and multijunction devices, as well as the multijunction modules. The semiconductor materials research was performed on a-Si p, i, and n layers, and on microcrystalline silicon n layers. These were deposited using plasma-enhanced chemical vapor deposition. The non-semiconductor materials studied were tin oxide, for use as a transparent-conducting-oxide (TCO), and zinc oxide, for use as a back reflector and as a buffer layer between the TCO and the semiconductor layers. Tin oxide was deposited using atmospheric-pressure chemical vapor deposition. Zinc oxide was deposited using magnetron sputtering. The research indicated that the major challenge in the fabrication of a-Si multijunction PV modules is the contact between the two p-i-n cells. A structure that has low optical absorption but that also facilitates the recombination of electrons from the first p-i-n structure with holes from the second p-i-n structure is required. Non-semiconductor layers and a-Si semiconductor layers were tested without achieving the desired result.

  3. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    SciTech Connect (OSTI)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3??10{sup 4?}S/m and sheet resistance of 3.8 ?/sq (with thickness of 6??m) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100?C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  4. Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation

    SciTech Connect (OSTI)

    Li, Q.

    2011-05-18

    Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

  5. Low-cost, low-weight CNG cylinder development. Final report

    SciTech Connect (OSTI)

    Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

    1999-09-01

    This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

  6. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Properties of a solar alumina-borosilicate sheet glass

    SciTech Connect (OSTI)

    Coyle, R.T.; Lind, M.A.; Shelby, J.E.; Vitko, J.; Shoemaker, A.F.

    1980-01-01

    Solar energy applications place unique requirements on sheet glass including very low solar absorption, outstanding stability of absorption in the outdoor environment, low cost, and elastic formability for making concentrating mirrors. The Solar Energy Research Institute and Corning Glass Works have developed a new solar sheet glass. In evaluations reported the new glass has shown outstanding chemical durability and optical and mechanical properties.

  9. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  10. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  11. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

  12. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  13. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  14. Ranking low cost sorbents for mercury capture from simulated flue gases

    SciTech Connect (OSTI)

    H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti

    2007-12-15

    Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

  15. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    2011-12-05

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  16. Project Profile: Low-Cost Self-Cleaning Reflector Coatings for CSP Collectors

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The Oak Ridge National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing self-cleaning, optically transparent coatings that can be applied to the surfaces of heliostats and collector mirrors in concentrating solar power (CSP) systems. The coatings can help to achieve the SunShot Initiative cost goals by reducing the time and costs associated with cleaning collector and heliostat mirror surfaces and increasing the reliability and efficiency of CSP systems.

  17. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    SciTech Connect (OSTI)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful experimental results with the hybrid polymer/metal H2 membrane, a conventional CO2 capture (single-stage Selexol) and hydrogen purification (PSA) technologies were used in the appropriate cases. In all cases, the integrated system of Advanced Compact coal gasifier, non-catalytic natural gas partial oxidation, and SR2 multicontaminant removal with state-of-the-art auxiliary system provided a 5-25% cost advantage over the base line plants using GEE coal gasifier with conventional Selexol/Claus sulfur removal and recovery. These plants also produce 18-30% less CO2 than with the conventional coal gasification plants.

  18. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum baseline all filament wound vessel. Due to project timing, there was no additional time available to fine tune the design to improve the load transfer between AFP and FW. Further design modifications will likely help pass the extreme temperature cycle test, the remaining test that is critical to the hybrid design.

  19. Progress in solar engineering

    SciTech Connect (OSTI)

    Yogi Goswami, D.

    1987-01-01

    This book presents reviews of various areas of solar energy technology, including wind energy technology and ocean thermal energy conversion (OTEC). It also identifies and suggests needs and future directions of research and development. The subjects covered in this book include solar thermal power technology, solar thermal storage, solar ponds, industrial process heat, solar water heating, active and passive solar cooling methods, low-cost collector development, photovoltaic research and applications, wind energy technology, and OTEC. Also covered are the status of the technology, basic and applied research, design and analysis methods, and performance and operational experiences of various systems. The book will thus be helpful as a review of various solar, wind, and OTEC technologies.

  20. Solar Decathlon 2013: Meet the Teams | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Louisville, Ball State University and University of Kentucky -- is building a low-cost, solar-powered house that can easily be deployed after a disaster. Inspired by a tornado that...

  1. Ultra-High-Efficiency Multijunction Cell and Receiver Module, Phase 1B: High Performance PV Exploring and Accelerating Ultimate Pathways; Final Subcontract Report, 13 May 2005 - 10 December 2008

    SciTech Connect (OSTI)

    King, R. R.

    2010-03-01

    Spectrolab's two High Performance Photovoltaics primary objectives: (1) develop ultra-high-efficiency concentrator multijunction cells and (2) develop a robust concentrator cell receiver package.

  2. Research on stable, high-efficiency amorphous silicon multijunction modules. Final subcontract report, 1 January 1991--31 August 1994

    SciTech Connect (OSTI)

    Guha, S.

    1994-10-01

    The principal objective of this program is to conduct research on semiconductor materials and non-semiconductor materials to enhance the performance of multibandgap, multijunction, large-area amorphous silicon-based alloy modules. The goal for this program is to demonstrate stabilized module efficiency of 12% for multijunction modules of area greater than 900 cm{sup 2}. Double-junction and triple-junction cells are made on Ag/ZnO back reflector deposited on stainless steel substrates. The top cell uses a-Si alloy; a-SiGe alloy is used for the i layer in the middle and the bottom cells. After evaporation of antireflection coating, silver grids and bus bars are put on the top surface, and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a one-square-foot monolithic module.

  3. Research on stable, high-efficiency amorphous silicon multijunction modules. Semiannual subcontract report, 1 March 1993--30 November 1993

    SciTech Connect (OSTI)

    Guha, S.

    1994-03-01

    This report describes the progress made during the first half of Phase III of the R&D program to obtain high-efficiency amorphous silicon alloy multijunction modules. The highlight of the work includes (1) demonstration of the world`s highest initial module efficiency (area of 0.09 m{sup 2}) of 11.4% as confirmed by NREL, and (2) demonstration of stable module efficiency of 9.5% after 1-sun light soaking for 1000 h at 50{degrees}C. In addition, fundamental studies were carried out to improve material properties of the component cells of the multijunction structure and to understand the optical losses associated with the back reflector.

  4. Low-cost flexible packaging for high-power Li-Ion HEV batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Henriksen, G. L.

    2004-06-18

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

  5. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  6. Ultrahigh Efficiency Multiband Solar Cells Final Report forDirector's Innovation Initiative Project DII-2005-1221

    SciTech Connect (OSTI)

    Ager III, Joel W.; Walukiewicz, W.; Yu, Kin Man

    2006-03-29

    The unique properties of the semiconductor ZnTeO were explored and developed to make multiband solar cells. Like a multijunction cell, multiband solar cells use different energy gaps to convert the majority of the solar spectrum to electrical current while minimizing losses due to heating. Unlike a multijunction cell, this is accomplished within a single material in a multiband cell. ZnTe{sub 1-x}O{sub x} films with x up to 2% were synthesized and shown to have the requisite unique band structure (2 conduction bands) for multiband function. Prototype solar cells based on an n-type ZnTe{sub 1-x}O{sub x} multiband top layer and a p-type ZnTe substrate were fabricated. Contacts to the cell and the series resistance of the substrate were identified as challenges for good electrical performance. Both photovoltage and small photocurrents were demonstrated under AMO illumination. A second semiconductor system, GaN{sub x}As{sub 1-y-x}P{sub y}, was shown to have multiband function. This alloy system may have the greatest potential to realize the promise of high efficiency multiband solar cells because of the relatively advanced technology base that exists for the manufacturing of III-V-alloy-based IC and opto-electronic devices (including multijunction solar cells).

  7. PV Optics: A Software Package for Solar Cells and Module Design

    SciTech Connect (OSTI)

    Sopori, B.

    2007-01-01

    PV Optics is a user-friendly software package developed to design and analyze solar cells and modules. It is applicable to a variety of optical structures, including thin and thick cells with light-trapping structures and metal optics. Using a combination of wave and ray optics to include effects of coherence and interference, it can be used to design single-junction and multijunction solar cells and modules. This paper describes some basic applications of PV Optics for crystalline and amorphous Si solar cell design. We present examples to examine the effects on solar cell performance of wafer thickness, antireflection coating thickness, texture height, and metal loss.

  8. Low-cost CuInSe[sub 2] submodule development

    SciTech Connect (OSTI)

    Basol, B.M.; Kapur, V.K.; Halani, A.; Leidholm, C. )

    1992-10-01

    Aim of this project is development and demonstration of processing steps necessary for fabrication of high efficiency CuInSe[sub 2] solar cells and sub-modules by the two-stage technique (also called the selenization method.) During this period, we have optimized the processing parameters of this method and demonstrated CuInSe[sub 2]/CdS/ZnO devices with a 1[endash]4 cm[sup 2] area and up to 12.4% active area efficiency. We have also developed a novel approach for the preparation of Cu/In precursors that improved the stoichiometric and morphological uniformity in these films. We have developed processing steps and tooling for handling up to 1 ft[sup 2] size substrates and as a result of these efforts demonstrated our first monolithically integrated sub-module of 1 ft[sup 2] area. 16 figs, 1 tab, 15 refs.

  9. Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source

    SciTech Connect (OSTI)

    Boucher, Jason; Ritenour, Andrew; Boettcher, Shannon W.

    2013-04-29

    Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source GaAs is an attractive material for thin-film photovoltaic applications, but is not widely used for terrestrial power generation due to the high cost of metal-organic chemical vapor deposition (MOCVD) techniques typically used for growth. Close space vapor transport is an alternative that allows for rapid growth rates of III-V materials, and does not rely on the toxic and pyrophoric precursors used in MOCVD. We characterize CSVT films of GaAs using photoelectrochemical current-voltage and quantum efficiency measurements. Hole diffusion lengths which exceed 1.5 um are extracted from internal quantum efficiency measurements using the Gartner model. Device physics simulations suggest that solar cells based on these films could reach efficiencies exceeding 24 %. To reach this goal, a more complete understanding of the electrical properties and characterization of defects will be necessary, including measurements on complete solid-state devices. Doping of films is achieved by using source material containing the desired impurity (e.g., Te or Zn). We discuss strategies for growing III-V materials on inexpensive substrates that are not lattice-matched to GaAs.

  10. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  11. TJ Solar Cell

    SciTech Connect (OSTI)

    Friedman, Daniel

    2009-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  12. Current- and lattice-matched tandem solar cell

    DOE Patents [OSTI]

    Olson, J.M.

    1985-10-21

    A multijunction (cascade) tandem photovoltaic solar cell device is fabricated of a Ga/sub x/In/sub 1-x/P (0.505 equal to or less than x equal to or less than 0.515) top cell semiconductor lattice-matched to a GaAs bottom cell semiconductor at a low resistance heterojunction, preferably a p/sup +//n/sup +/ heterojunction between the cells. The top and bottom cells are both lattice-matched and current-matched for high efficiency solar radiation conversion to electrical energy.

  13. A New Method of Low Cost Production of Ti Alloys to Reduce Energy Cpnsumption of Mechanical Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zak Fang, PI, University of Utah, U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop a novel low cost method for manufacturing Ti  Demonstrate the mechanical properties of Ti using the new method to be equivalent to that of wrought Ti at a fraction of its cost.  Demonstrate advantages of using Ti (by this technology) in

  14. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    SciTech Connect (OSTI)

    George A. Marchetti

    1999-12-15

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  15. Proceedings of the flat-plate solar array project workshop on low-cost polysilicon for terrestrial photovoltaic solar-cell applications

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    Separate abstracts were prepared for 21 papers in this workshop proceedings. Topics covered include: polysilicon material requirements; economics; process developments in the USA and internationally; and the polysilicon market and forecasts. (LEW)

  16. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  17. High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices

    SciTech Connect (OSTI)

    Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

    2005-01-01

    Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

  18. Finished Prokaryotic Genome Assemblies from a Low-cost Combination of Short and Long Reads (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Yin, Shuangye (Broad Institute)

    2013-02-11

    Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  19. New Whole-House Solutions Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale - Fresno, California

    SciTech Connect (OSTI)

    2014-10-01

    In this project, IBACOS partnered with builder Wathen-Castanos Hybrid Homes to develop a simple and low-cost methodology by which community-scale energy savings can be evaluated based on results at the occupied test house level.Research focused on the builder and trade implementation of a whole-house systems integrated measures package and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

  20. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  1. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    SciTech Connect (OSTI)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel.

  2. Solar Power Generation Development

    SciTech Connect (OSTI)

    Robert L. Johnson Jr.; Gary E. Carver

    2011-10-28

    This project centered on creating a solar cell prototype enabling significant reductions in module cost and increases in module efficiency. Low cost was addressed by using plentiful organic materials that only comprise 16% of the total module cost, and by leveraging building integrated PV concepts that reduce the cost of key module components to zero. High efficiency was addressed by implementing multiband organic PV, low cost spectral splitting, and possibly integrating photovoltaic and photothermal mechanisms. This research has contributed to the design of multiband organic PV, and the sealing of organic PV cells. If one assumes that the aggregate multiband efficiency can reach 12%, projected cost would be $0.97/W. If the sealing technology enables 10 to 20 year lifetimes, the LCOE will match that of domestic coal. The final report describes progress towards these goals.

  3. CX-000268: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Efficiency, Low-Cost, Multijunction Solar Cells Based on Epitaxial Liftoff and Wafer Bonding; National Renewable Energy Laboratory Tracking Number 09-041CX(s) Applied: B3.6Date: 12/28/2009Location(s): IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  4. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    SciTech Connect (OSTI)

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed for highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.

  5. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  6. Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

    SciTech Connect (OSTI)

    Elliott, Jeannine

    2013-08-31

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

  7. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect (OSTI)

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  8. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combining an Earth-abundant chalcopyrite with a silicon layer could significantly boost conversion efficiency above that of single-junction silicon solar cells. A current technological challenge in photovoltaics (PV) is to implement a lattice-matched, optically efficient material to be used in conjunction with silicon for tandem PV cells. III-V materials currently hold the world-record conver- sion efficiencies for both single- and multijunction cells. Researchers at the National Renewable

  9. Microstructure of amorphous-silicon-based solar cell materials by small-angle x-ray scattering. Annual subcontract report, 6 April 1994--5 April 1995

    SciTech Connect (OSTI)

    Williamson, D.L.

    1995-08-01

    The general objective of this research is to provide detailed microstructural information on the amorphous-silicon-based, thin-film materials under development for improved multijunction solar cells. The experimental technique used is small-angle x-ray scattering (SAXS) providing microstructural data on microvoid fractions, sizes, shapes, and their preferred orientations. Other microstructural features such as alloy segregation, hydrogen-rich clusters and alloy short-range order are probed.

  10. Is predictive emission monitoring an acceptable low cost alternative to continuous emission monitoring for complying with enhanced monitoring requirements?

    SciTech Connect (OSTI)

    Jernigan, J.R.

    1995-12-01

    Title VII of the 1990 Clean Air Act Amendments (the {open_quotes}Act{close_quotes}) expanded and clarified the Environmental Protection Agency`s (EPA) enforcement capabilities under the Act. Section 702 of the 1990 Amendments clarified EPA`s ability to require sources to provide information. Additionally, Section 702(b) required EPA to promulgate rules on enhanced monitoring and compliance certifications by adding a new section 114(a)(3) of the Act which states in part: {open_quotes}The Administrator shall in the case of any person which is the owner or operator of a major stationary source, and any in the case of any other person, require enhanced monitoring and submission of compliance certifications. Compliance certifications shall include (A) identification of the applicable requirement that is the basis of the certification, (B) the method used for determining the compliance status of the source, (C) the compliance status, (D) whether compliance is continuous or intermittent, (E) such other facts as the Administrator may require...{close_quotes} The 1990 Amendments contained several other changes that either relate directly to section 114(a)(3) or provide additional indications of the intent behind the new section. First, section 504(b) of the Amendments permits the Administrator to promulgate appropriate tests methods and monitoring requirements for determining compliance. That section states that {open_quotes}continuous emissions monitoring need not be required if alternative methods are available that provide sufficiently reliable and timely information for determining compliance.{close_quotes} This paper will describe Predictive Emission Systems (PEMS) and how the applications of PEMS may be a low cost, accurate, and acceptable alternative to Continuous Emission Monitoring Systems (CEMS) for complying with Enhanced Monitoring requirements.

  11. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  12. Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells

    SciTech Connect (OSTI)

    Kopach, V. R.; Kirichenko, M. V. Khrypunov, G. S.; Zaitsev, R. V.

    2010-06-15

    It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 {mu}m thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 {mu}m thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

  13. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    SciTech Connect (OSTI)

    Dameron, Arrelaine

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  14. High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system

    SciTech Connect (OSTI)

    Uzu, Hisashi E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi; Nakano, Kunihiro; Meguro, Tomomi; Yamamoto, Kenji; Hernández, José Luis; Kim, Hui-Seon; Park, Nam-Gyu E-mail: npark@skku.edu

    2015-01-05

    We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.

  15. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Brayton Energy project, funded by SunShot, for the fist quarter of fiscal year 2013.

  16. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  17. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    SciTech Connect (OSTI)

    Spalding, Mark A

    2014-08-27

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

  18. NREL-Led Efforts Help Bring Financing to Solar Projects - Continuum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magazine | NREL A photo of utility-scale photovoltaics in a desert location. The Solar Access to Public Capital working group, coordinated by NREL, intends to connect low-cost financing sources with solar projects such as this facility near Tucson, Arizona. NREL engineers also evaluate the expected performance and risks of proposed solar projects to help the projects gain financing. Photo from Arizona Public Service Company NREL-Led Efforts Help Bring Financing to Solar Projects NREL is

  19. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  20. NREL Measures IMM Solar Cell Performance for CPV (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    New measurement capability supports the development of high-efficiency solar cells for concentrating photovoltaic (CPV) application. NREL scientists recently completed a set of measurements on the performance of an inverted metamorphic multijunction (IMM) solar cell as a function of concentration and cell operating temperature. The triple-junction cell had subcell bandgaps of 1.81, 1.40, and 1.00. Much of the work focused on developing and validating the measurement techniques (i.e., the spectral response of the three subcells was measured at five temperatures, and those data were used to properly adjust the solar simulators at each temperature). Multijunction concentrator solar cells are typically evaluated under flash illumination at 25 C, but this condition significantly underestimates the thermal load on the cell in an actual real-world module, where the steady-state concentrated illumination can raise the operating temperature to as high as 100 C. The NREL-developed measurement technique addresses this issue. This work demonstrated that the IMM cell has better temperature coefficients than its traditional upright, germanium-based, lattice-matched counterpart and will thus perform better in actual CPV applications. This new measurement capability will support NREL's development of IMM cells that are optimally designed for operation at temperatures relevant to actual systems operation.

  1. Low-cost spray-processed Ag{sub 1−x}Cu{sub x}InS{sub 2} nano-films: Structural and functional investigation within the Lattice Compatibility Theory framework

    SciTech Connect (OSTI)

    Gherouel, D.; Yumak, A.; Znaidi, M.; Bouzidi, A.; Boubaker, K.; Yacoubi, N.; Amlouk, M.

    2015-08-15

    Highlights: • Cu{sub x}Ag{sub 1−x}InS{sub 2} with a minimal lattice mismatch between absorbers and buffers. • The lattice compatibility for understanding silver–copper kinetics. • Controlled and enhanced spray pyrolisis method as a low-cost synthesis protocol. - Abstract: This work deals with some structural and optical investigations about Cu{sub x}Ag{sub 1−x}InS{sub 2} alloys sprayed films and the beneficial effect of copper incorporation in AgInS{sub 2} ternary matrices. The main purpose of this work is to obtain the band gap energy E{sub g} as well as different lattice parameters. The studied properties led to reaching minimum of lattice mismatch between absorber and buffer layers within solar cell devices. As a principal and original finding, the lattice compatibility between both silver and copper indium disulfide structures has been proposed as a guide for understanding kinetics of these materials crystallization.

  2. Nanocrystal Solar Cells

    SciTech Connect (OSTI)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  3. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    SciTech Connect (OSTI)

    Fortmann, C.M.; Hegedus, S.S. )

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  4. Current flow and potential efficiency of solar cells based on GaAs and GaSb p-n junctions

    SciTech Connect (OSTI)

    Andreev, V. M.; Evstropov, V. V.; Kalinovsky, V. S. Lantratov, V. M.; Khvostikov, V. P.

    2009-05-15

    Dependence of the efficiency of single-junction and multijunction solar cells on the mechanisms of current flow in photoactive p-n junctions, specifically on the form of the dark current-voltage characteristic J-V, has been studied. The resistanceless J-V{sub j} characteristic (with the series resistance disregarded) of a multijunction solar cell has the same shape as the characteristic of a single-junction cell: both feature a set of exponential portions. This made it possible to develop a unified analytical method for calculating the efficiency of singlejunction and multijunction solar cells. The equation relating the efficiency to the photogenerated current at each portion of the J-V{sub j} characteristic is derived. For p-n junctions in GaAs and GaSb, the following characteristics were measured: the dark J-V characteristic, the dependence of the open-circuit voltage on the illumination intensity P-V{sub OC}, and the dependence of the luminescence intensity on the forward current L-J. Calculated dependences of potential efficiency (under idealized condition for equality to unity of external quantum yield) on the photogenerated current for single-junction GaAs and GaSb solar cells and a GaAs/GaSb tandem are plotted. The form of these dependences corresponds to the shape of J-V{sub j} characteristics: there are the diffusion- and recombination-related portions; in some cases, the tunneling-trapping portion is also observed. At low degrees of concentration of solar radiation (C < 10), an appreciable contribution to photogenerated current is made by recombination component. It is an increase in this component in the case of irradiation with 6.78-MeV protons or 1-MeV electrons that brings about a decrease in the efficiency of conversion of unconcentrated solar radiation.

  5. Boston solar retrofits: studies of solar access and economics

    SciTech Connect (OSTI)

    Shapiro, M.

    1980-11-01

    Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

  6. Solar Systems Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    technology it has developed for concentrating sunlight by a factor of 500 onto multi-junction PV cells, using parabolic dishes. Went into receivership in September 2009....

  7. GaNPAs Solar Cells that Can Be Lattice-Matched to Silicon

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; McMahon, W. E.; Ptak, A. J.; Kibbler, A. E.; Olson, J. M.; Kurtz, S.; Kramer, C.; Young, M.; Duda, A.; Reedy, R. C.; Keyes, B. M.; Dippo, P.; Metzger, W. K.

    2003-05-01

    III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We have proposed the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct bandgaps in the range of 1.5 to 2.0 eV. We have demonstrated the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and shown improvements in material quality by reducing carbon and hydrogen impurities through optimization of growth conditions. We have achieved quantum efficiencies (QE) in these cells as high as 60% and PL lifetimes as high as 3.0 ns.

  8. Solar collection

    SciTech Connect (OSTI)

    Cole, S.L.

    1984-08-01

    This report contains summaries and pictures of projects funded by the Appropriate Technology Small Grants Program which include the following solar technologies: solar dish; photovoltaics; passive solar building and solar hot water system; Trombe wall; hot air panel; hybrid solar heating system; solar grain dryer; solar greenhouse; solar hot water workshops; and solar workshops.

  9. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  10. Community Shared Solar with Solarize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Shared Solar with Solarize Community Shared Solar with Solarize

  11. Solar synthesis of advanced materials: A solar industrial program initiative

    SciTech Connect (OSTI)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  12. Big and Small Ideas: How to Lower Solar Financing Costs | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy DOE hosted the "Big & Small Ideas: How to Lower Solar Financing Costs" breakout session during the SunShot Grand Challenge Summit and Technology Forum. This session explored a range of solutions for making scalable, low-cost financing more available to the growing solar energy market. The intent was to generate new ideas, build connections, and accelerate innovation to effectively lower the cost of capital for large and small solar installations. Finance ideas were

  13. TJ Solar Cell (GaInP/GaAs/Ge Ultrahigh-Efficiency Solar Cells

    SciTech Connect (OSTI)

    Friedman, Daniel

    2002-04-17

    This talk will discuss recent developments in III-V multijunction photovoltaic technology which have led to the highest-efficiency solar cells ever demonstrated. The relationship between the materials science of III-V semiconductors and the achievement of record solar cell efficiencies will be emphasized. For instance, epitaxially-grown GAInP has been found to form a spontaneously-ordered GaP/InP (111) superlattice. This ordering affects the band gap of the material, which in turn affects the design of solar cells which incorporate GaInP. For the next generation of ultrahigh-efficiency III-V solar cells, we need a new semiconductor which is lattice-matched to GaAs, has a band gap of 1 eV, and has long minority-carrier diffusion lengths. Out of a number of candidate materials, the recently-discovered alloy GaInNAs appears to have the greatest promise. This material satisfies the first two criteria, but has to date shown very low diffusion lengths, a problem which is our current focus in the development of these next-generation cells.

  14. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect (OSTI)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  15. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; Garca, Ivn

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  16. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOE Patents [OSTI]

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  17. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Schubert, William K. (Albuquerque, NM); Gee, James M. (Albuquerque, NM)

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  18. High Efficiency Solar Integrated Roof Membrane Product

    SciTech Connect (OSTI)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  19. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  20. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...