Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Daylighting control performance of a thin-film ceramic electrochromic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Daylighting control performance of a thin-film ceramic electrochromic window: Field study results Title Daylighting control performance of a thin-film ceramic electrochromic...

2

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

DOE Green Energy (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

3

A direct thin-film path towards low-cost large-area III-V ...  

A direct thin-film path towards low-cost large-area III-V ... depending on the surface energy constraints of the nucleation ... scaling all times in ...

4

Low Cost Fabrication of Thin-Film Ceramic Membranes for ...  

For Industry; For Researchers; Success Stories; About Us; ... Inexpensive Production of High Density Thin Ceramic Films on Rigid or Porous Substrates, ...

5

Mixed nanostructured Ti-W oxides films for efficient electrochromic windows  

Science Conference Proceedings (OSTI)

With the aim to enhance the electrochromic (EC) efficiency and electrochemical stability of electrochromic devices (ECD), mixed nanostructured TiO2/WO3 films were prepared by an electrochemical deposition method with the purpose ...

Nguyen Nang Dinh; Dang Hai Ninh; Tran Thi Thao; Truong Vo-Van

2012-01-01T23:59:59.000Z

6

Electrochromic-photovoltaic film for light-sensitive control of optical transmittance  

DOE Patents (OSTI)

A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

Branz, H.M.; Crandall, R.S.; Tracy, C.E.

1994-12-27T23:59:59.000Z

7

Electrochromic-photovoltaic film for light-sensitive control of optical transmittance  

DOE Patents (OSTI)

A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

Branz, Howard M. (Boulder, CO); Crandall, Richard S. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1994-01-01T23:59:59.000Z

8

Low-Cost Solutions for Dynamic Window Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

9

Low-Cost Solutions for Dynamic Window Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

10

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

11

Engineering the electrochromism and ion conduction of layer-by-layer assembled films  

E-Print Network (OSTI)

This work applies the processing technique of layer-by-layer (LBL) assembly to the creation and development of new electrochemically active materials. Elements of the thin-film electrochromic cell were chosen as a particular ...

DeLongchamp, Dean M. (Dean Michael), 1975-

2003-01-01T23:59:59.000Z

12

Thin-Film Lithium-Based Electrochromic Devices - Energy ...  

Results have shown strong anodic electrochromic activity as well as high charge capacity for battery ... oxide (616) for a battery device (600), or the ...

13

Program on Technology Innovation: Development of Flexible Electrochromic Films  

Science Conference Proceedings (OSTI)

Even with today's energy-efficient low-emissivity (low-E) coatings, more than 4 quads of energy are lost through windows each year, costing building owners over 40 billion. Electrochromic windows that allow active control of transmitted light and solar heating offer a pathway to improved window performance that maintains optimal occupant comfort while minimizing the energy footprint. This report reviews the benefits of electrochromic window technology to help meet these goals and the opportunity for new ...

2011-04-01T23:59:59.000Z

14

Low-cost metal substrates for films with aligned grain structures  

DOE Green Energy (OSTI)

Polycrystalline metal substrates that possess a significant amount of in-plane and out-of-plane crystallographic texture have recently been developed for high-temperature superconducting film applications. These substrates enable the virtual elimination of large angle grain boundaries in subsequent epitaxial films, having been successfully utilized in various oxide thin film architectures. This paper describes the characteristics of these substrates, and briefly discusses their potential applicability in polycrystalline thin-film photovoltaic applications.

Norton, D.P.; Budai, J.D.; Goyal, A.; Lowndes, D.H.; Kroeger, D.M.; Christen, D.K.; Paranthaman, M.; Specht, E.D.

1996-06-01T23:59:59.000Z

15

Low-Cost Nano-Patterning Process Makes Millions of Holes in Silver Film, Boosting Light-Capturing Qualities of Solar Cells (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers have demonstrated a simple, low-cost way to pattern nano-sized holes in thin silver films in order to trap light waves and boost the transmission of photons into usable energy.

Not Available

2011-02-01T23:59:59.000Z

16

CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building  

SciTech Connect

Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh Universitys approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

2010-01-01T23:59:59.000Z

17

Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213  

DOE Green Energy (OSTI)

UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

Bhattacharya, R.

2011-02-01T23:59:59.000Z

18

Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012  

DOE Green Energy (OSTI)

This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

Mattos, L.

2012-03-01T23:59:59.000Z

19

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

Cogan, S.F.; Rauh, R.D.

1990-07-03T23:59:59.000Z

20

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

1990-01-01T23:59:59.000Z

22

Electrochromic device  

DOE Patents (OSTI)

An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

Schwendemanm, Irina G. (Wexford, PA); Polcyn, Adam D. (Pittsburgh, PA); Finley, James J. (Pittsburgh, PA); Boykin, Cheri M. (Kingsport, TN); Knowles, Julianna M. (Apollo, PA)

2011-03-15T23:59:59.000Z

23

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

24

Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators  

DOE Green Energy (OSTI)

The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

1995-03-01T23:59:59.000Z

25

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network (OSTI)

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

26

Old Electrochromic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

27

Thin films of silicon on low-cost substrates. Quarterly report No. 5, January 1-March 31, 1978  

DOE Green Energy (OSTI)

Parametric studies of silicon deposition were conducted employing the horizontal Energy Beam system. Chemical equilibrium calculations pertaining to the Energy Beam deposition conditions were performed. These calculations indicated that the reaction efficiency for hydrogen reduction of silicon tetrachloride is over 95% for any chlorosilane concentration at the Energy Beam temperature of 4300/sup 0/K. Because lower temperatures exist near the substrate surfaces, the kinetics of establishing the low temperature equilibrium will determine obtainable material efficiencies. From deposition experiments, the material efficiency was found to be strongly dependent on input chlorosilane concentrations. The highest material efficiency and growth rate obtained concurrently to date were 70% and 10 ..mu..m/min using the horizontal Energy Beam system. The Thermal Expansion Shear Separation (TESS) process for producing self supporting silicon films was further investigated.

Sarma, K.R.; Gurtler, R.W.; Baghdadi, A.; Cota, M.

1978-01-01T23:59:59.000Z

28

Thin films of gallium arsenide on low-cost substrates. Quarterly technical progress report No. 8 and topical report No. 3, April 2-July 1, 1978  

DOE Green Energy (OSTI)

The seventh quarter of work on the contract is summarized. The metalorganic chemical vapor deposition (MO-CVD) technique has been applied to the growth of thin films of GaAs and GaAlAs on inexpensive polycrystalline or amorphous substrate materials (primarily glasses and metals) for use in fabrication of large-area low-cost photovoltaic device structures. Trimethylgallium (TMG), arsine (AsH/sub 3/), and trimethylaluminum (TMAl) are mixed in appropriate concentrations at room temperature in the gaseous state and pyrolyzed at the substrate, which is heated in a vertical reactor chamber to temperatures of 725 to 750/sup 0/C, to produce the desired film composition and properties. The technical activities during the quarter were concentrated on (1) a continuing evaluation of various graphite materials as possible substrates for MO-CVD growith of the polycrystalline GaAs solar cells; (2) attempts to improve the quality (especially the grain size) of polycrystalline GaAs films on Mo sheet and Mo/glass substrates by using HCl vapor during the MO-CVD growith process; (3) further studies of the transport properties of polycrystalline GaAs films, wth emphasis on n-type films; (4) continuing investigations of the properties of p-n junctions in polycrystalline GaAs, with emphasis on the formation and properties of p/sup +//n/n/sup +/ deposited structures; and (5) assembling apparatus and establishing a suitable technique for producing TiO/sub 2/ layers for use as AR coatings on GaAs cells. Progress is reported. (WHK)

Ruth, R.P.; Dapkus, P.D.; Dupuis, R.D.; Johnson, R.E.; Manasevit, H.M.; Moudy, L.A.; Yang, J.J.; Yingling, R.D.

1978-07-01T23:59:59.000Z

29

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

to Electrochromic Windows Attachment 12: Analysis of VisualMarket Electrochromic Windows Attachment 17: Summary ofof the Electrochromic Windows Attachment 4: An Assessment of

2006-01-01T23:59:59.000Z

30

Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films  

DOE Green Energy (OSTI)

Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal.

Benson, D. K.; Tracy, C. E.; Lee, S-H. (National Renewable Energy Laboratory); Hishmeh, G. A.; Haberman, D. P. (DCH Technologies, Valencia, CA); Ciszek, P. A. (Evergreen Solar, Waltham, MA)

1998-10-20T23:59:59.000Z

31

Electrochromic optical switching device  

DOE Patents (OSTI)

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

Lampert, C.M.; Visco, S.J.

1992-08-25T23:59:59.000Z

32

Electrochromic optical switching device  

DOE Patents (OSTI)

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

1992-01-01T23:59:59.000Z

33

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

34

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

35

Electrochromic devices  

DOE Patents (OSTI)

An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

Allemand, Pierre M. (Tucson, AZ); Grimes, Randall F. (Ann Arbor, MI); Ingle, Andrew R. (Tucson, AZ); Cronin, John P. (Tucson, AZ); Kennedy, Steve R. (Tuscon, AZ); Agrawal, Anoop (Tucson, AZ); Boulton, Jonathan M. (Tucson, AZ)

2001-01-01T23:59:59.000Z

36

Subject Responses to Electrochromic Windows  

E-Print Network (OSTI)

large-area electrochromic windows in commercial buildings,of electrochromic windows: a pilot study, Building andceramic electrochromic window: field study results, Energy

Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

2006-01-01T23:59:59.000Z

37

Synthesis and characterization of GaN thin films deposited on different substrates using a low-cost electrochemical deposition technique  

Science Conference Proceedings (OSTI)

Gallium nitride GaN thin films were deposited on three different substrates; Si (111), Si (100) and ITO coated glass using electrochemical deposition technique at 20 Degree-Sign C. A mixture of gallium nitrate, ammonium nitrate was used as electrolyte. The deposited films were investigated at room temperature by a series of material characterization techniques, namely; scanning electron microscopy (SEM), EDX and X-ray diffraction (XRD). SEM images and EDX results indicated that the growth of GaN films varies according to the substrates. XRD analyses showed the presence of hexagonal wurtzite and cubic zinc blende GaN phases with the crystallite size around 18-29 nm.

Al-Heuseen, K.; Hashim, M. R. [Al-Balqa Applied University, Ajloun University College (Jordan); School of Physics, Universiti Sains Malaysia, 11800-Penang (Malaysia)

2012-09-06T23:59:59.000Z

38

Low Cost Nanomaterials for PV Devices  

Impact: Low-cost solution for solar energy (Expand to lighting, batteries, etc) Low-cost Nanomaterials for PV Devices . Title: Slide 1 Author: Donna ...

39

New electrochromic mirror systems  

New electrochromic mirror systems ... recorded using a fiber optic spectrometer (Ocean Optics). ... transmittance modulation of infrared light could lead

40

Lithium-Based Electrochromic Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Based Electrochromic Mirrors Title Lithium-Based Electrochromic Mirrors Publication Type Conference Paper LBNL Report Number LBNL-52870 Year of Publication 2003 Authors...

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advancement of Electrochromic Windows  

E-Print Network (OSTI)

Early-Market Electrochromic Windows. LBNL-59950. 17. Summaryof Daylight through Windows. http://www.lrc.rpi.edu/Occupants Control of Window Blinds in Private Offices.

2006-01-01T23:59:59.000Z

42

n&k of electrochromics  

NLE Websites -- All DOE Office Websites (Extended Search)

Constants of Electrochromic Materials and Transparent Conductors Constants of Electrochromic Materials and Transparent Conductors (280-2500 nm) In the following optical constants are summarized in tables. Most important representatives of different classes of electrochromic materials are listed together with the two most commonly used transparent conductors in devices. When reporting optical constants of intercalated materials the inserted amount of Li+ is given in terms of volumetric charge density. Unlike in the case of crystalline bulk material optical constants of amorphous thin films are not universal and are largely influenced by deposition conditions. However, reported results are carefully selected out of an extensive collection of experimental data and represent best performing examples of their kind as reported in detail.

43

Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors ...  

These energy saving devices have advantages over traditional absorbing electrochromics for radiant energy control ... time * Low material and ...

44

Low Cost Hydrogen Production Platform  

DOE Green Energy (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

45

Electrochromic nanocomposite of silica/polyaniline prepared from a water-in-oil microemulsion solution  

Science Conference Proceedings (OSTI)

A composite nanoparticle of silica/polyaniline was synthesized from a microemulsion and it was tested as an electrochromic film. The compositions for the stable microemulsion system was selected as 65.4 wt% cyclohexane, 30.4 wt% surfactant and 4.2 wt% ... Keywords: electrochromic, inorganic-organic hybrid, nanoparticle, operation life time, polyaniline, silica

Taejin Hwang; Heung Yeol Lee; Hohyeong Kim; Gyuntak Kim

2010-11-01T23:59:59.000Z

46

A low cost high flux solar simulator  

E-Print Network (OSTI)

A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

Codd, Daniel S.

47

Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancement of Electrochromic Windows Advancement of Electrochromic Windows Title Advancement of Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59821 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Date Published 04/2006 Other Numbers CEC-500-2006-052 Keywords commercial buildings, daylight, daylighting controls, Electrochromic windows, energy efficiency, human factors, peak demand, switchable windows, visual comfort Abstract This guide provides consumer-oriented information about switchable electrochromic (EC) windows. Electrochromic windows change tint with a small applied voltage, providing building owners and occupants with the option to have clear or tinted windows at any time, irrespective of whether it's sunny or cloudy. EC windows can be manually or automatically controlled based on daylight, solar heat gain, glare, view, energy-efficiency, peak electricity demand response, or other criteria. Window controls can be integrated with other building systems, such as lighting and heating/cooling mechanical systems, to optimize interior environmental conditions, occupant comfort, and energy-efficiency.

48

Low-Cost Nano-Patterning Process Makes Millions of Holes in Silver...  

NLE Websites -- All DOE Office Websites (Extended Search)

solar cells. NREL researchers have demonstrated a simple, low-cost way to pattern nano-sized holes in thin silver films in order to trap light waves and boost the...

49

Electrochromic sun control coverings for windows  

DOE Green Energy (OSTI)

The 2 billion square meters (m{sup 2}) of building windows in the United States cause a national energy drain almost as large as the energy supply of the Alaskan oil pipeline. Unlike the pipeline, the drain of energy through windows will continue well into the 21st century. A part of this energy drain is due to unwanted sun gain through windows. This is a problem throughout the country in commercial buildings because they generally require air conditioning even in cold climates. New commercial windows create an additional 1600 MW demand for peak electric power in the United States each year. Sun control films, widely used in new windows and as retrofits to old windows, help to mitigate this problem. However, conventional, static solar control films also block sunlight when it is wanted for warmth and daylighting. New electrochromic, switchable, sun-gain-control films now under development will provide more nearly optimal and automatic sun control for added comfort, decreased building operating expense, and greater energy saving. Switchable, electrochromic films can be deposited on polymers at high speeds by plasma enhanced chemical vapor deposition (PECVD) in a process that may be suitable for roll coating. This paper describes the electrochromic coatings and the PECVD processes, and speculates about their adaptability to high-speed roll coating. 8 refs., 3 figs.

Benson, D K; Tracy, C E

1990-04-01T23:59:59.000Z

50

A low-cost approach to fabrication of multinary compounds for energy-related applications  

DOE Green Energy (OSTI)

Non-vacuum electrodeposition and electroless deposition techniques with a potential to prepare large-area uniform precursor films using low-cost source materials and low-cost capital equipment are very attractive for the growth of compound materials for superconductors and photovoltaic applications. In the first part, a low-cost electrodeposition (ED) method will be discussed for fabrication of high-temperature Tl-oxide-based superconductors. In the second part, electrodeposition and electroless deposition of semiconductor Cu-In-Ga-Se thin films will be discussed.

Bhattacharya, R.N.; Deb, S.K.

2000-01-03T23:59:59.000Z

51

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

52

Low-Cost Illumination-Grade LEDs  

SciTech Connect

Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

Epler, John

2013-08-31T23:59:59.000Z

53

Low-Cost Installation of Concentrating Photovoltaic  

E-Print Network (OSTI)

Low-Cost Installation of Concentrating Photovoltaic Renewable Energy Research Renewable Energy Research http://www.energy.ca.gov/research/renewabl e/index.html August 2011 The Issue Several factors inhibit the potential growth of the California photovoltaic market: high installation costs, expenses

54

Low-cost nanosecond electronic coincidence detector  

E-Print Network (OSTI)

We present a simple and low-cost implementation of a fast electronic coincidence detector based on PECL logic with a TTL-compatible interface. The detector has negligible dead time and the coincidence window is adjustable with a minimum width of 1 ns. Coincidence measurements of two independent sources of Bose-Einstein distributed photocounts are presented using different coincidence window widths.

Kim, T; Gorelik, P V; Wong, F N C; Kim, Taehyun; Fiorentino, Marco; Gorelik, Pavel V.; Wong, Franco N. C.

2005-01-01T23:59:59.000Z

55

Low-cost inertial measurement unit.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

56

Development of Low Cost Sensors for Hydrogen Safety Applications  

SciTech Connect

We are developing rugged and reliable hydrogen safety sensors that can be easily manufactured. Potential applications also require an inexpensive sensor that can be easily deployed. Automotive applications demand low cost, while personnel safety applications emphasize light-weight, battery-operated, and wearable sensors. Our current efforts involve developing and optimizing sensor materials for stability and compatibility with typical thick-film manufacturing processes. We are also tailoring the sensor design and size along with various packaging and communication schemes for optimal acceptance by end users.

Hoffheins, B.S.; Holmes, W., Jr.; Lauf, R.J.; Maxey, L.C.; Salter, C.; Walker, D.

1999-04-07T23:59:59.000Z

57

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

58

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

59

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

This attachment, Advancement of Electrochromic Windows:attachments to the Advancement of Electrochromic Windows:attachment to the final report for the Advancement of Electrochromic Windows

2006-01-01T23:59:59.000Z

60

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

62

Electrochromic Salts, Solutions, and Devices  

DOE Patents (OSTI)

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-11-11T23:59:59.000Z

63

Electrochromic salts, solutions, and devices  

DOE Patents (OSTI)

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

2006-06-20T23:59:59.000Z

64

Electrochromic Salts, Solutions, and Devices  

DOE Patents (OSTI)

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-10-14T23:59:59.000Z

65

Electrochromic window with high reflectivity modulation  

DOE Patents (OSTI)

A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

2000-01-01T23:59:59.000Z

66

Electrochromically switched, gas-reservoir metal hydride devices with  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Title Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Publication Type Journal Article LBNL Report Number LBNL-1089E Year of Publication 2008 Authors Anders, André, Jonathan L. Slack, and Thomas J. Richardson Journal Thin Solid Films Volume 1 Date Published 08/2003 Call Number LBNL-1089E Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9% silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

67

Properties of low cost, high volume glasses  

DOE Green Energy (OSTI)

The properties of new and weathered samples of low cost, high volume glasses have been studied to determine their usefulness for solar energy applications. Glasses of varying compositions produced by float, drawn, rolled fusion, and twin ground techniques were examined. Spectral transmittance and reflectance were measured and solar weighted values calculated. Laser raytrace techniques were used to evaluate surface parallelism and bulk homogeneity. Compositional changes were examined with scanning electron microscopy, x-ray fluorescence, and Auger electron spectroscopy. These techniques were used in conjunction with ellipsometry to study the surface effects associated with weathering.

Lind, M. A.; Hartman, J. S.; Buckwalter, C. Q.

1979-01-01T23:59:59.000Z

68

Electrochromic Glazings: Animation Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Glazings Glazings Animation Simulation Parameters The Electrochromic Glazing Office Animation is created using an image compositing method whereby separate images of the office generated with only one source of illumination are added together in variable percentages to come up with the final image. This method assumes that the sources of illumination do not change position through the animation sequence. Although the sun does move approximately 5 degrees during the span of this 20 minute animation sequence, because this movement is not the focus of the simulation and does not significantly change the intensity of the solar exposure, it is ignored. This method takes advantage of the principal of the scalability of light to avoid the significant time involved in calculating separate Radiance renderings for each combination of sky condition (direct sun versus no direct sun) and electrochromic glazing transmission.

69

BT::Electrochromic Windows Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer spacer Resources spacer Industry Contacts | CA Utility Contacts | R&D Organizations | Technical Reports | References | Acknowledgements | Project Team spacer Industry Contacts As of 2006, SAGE Electrochromics, Inc. is the only manufacturer in the U.S. selling electrochromic-coated glass units for building applications: Lou Podbelski SAGE Electrochromics, Inc. One Sage Way Faribault, MN 55021 (507) 331-4935 http://www.sage-ec.com/ SAGE's first market entry was to provide electrochromic coated glass to Velux for their switchable electrochromic skylight product line: electric venting skylights, fixed skylights, and fixed curb-mounted skylights in various rectangular sizes. They now market to a variety of window and curtain wall suppliers; contact SAGE for current supplier information.

70

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Heliostat Development to Low-Cost Heliostat Development to someone by E-mail Share SunShot Initiative: Low-Cost Heliostat Development on Facebook Tweet about SunShot Initiative: Low-Cost Heliostat Development on Twitter Bookmark SunShot Initiative: Low-Cost Heliostat Development on Google Bookmark SunShot Initiative: Low-Cost Heliostat Development on Delicious Rank SunShot Initiative: Low-Cost Heliostat Development on Digg Find More places to share SunShot Initiative: Low-Cost Heliostat Development on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

71

SunShot Initiative: Low-Cost Solar Thermal Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

72

SunShot Initiative: Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost, Lightweight Solar Concentrators to someone by E-mail Share SunShot Initiative: Low-Cost, Lightweight Solar Concentrators on Facebook Tweet about SunShot Initiative:...

73

NETL: Syngas Processing Systems - Low-cost, Environmental Friendly...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost, Environmental Friendly Thermal Storage for CO2 Sequestration Project Number: DE-SC00008425 Creare, Inc. has designed a compact, low-cost, reversible Combined Thermal and...

74

The potential for low-cost airlines in Asia  

E-Print Network (OSTI)

The purpose of this thesis is to assess the potential for low-cost airlines in Asia. Low-cost airlines have been very successful in North America and Europe and have significantly impacted the airline industry and its ...

Dietlin, Philipp, 1979-

2004-01-01T23:59:59.000Z

75

A HIGH PERFORMANCE/LOW COST ACCELERATOR CONTROL SYSTEM  

E-Print Network (OSTI)

LOW COST ACCELERATOR CONTROL SYSTEM S. Hagyary, J. Glat H.LOW COST ACCELERATOR CONTROL SYSTEM S. Magyary, J. Glatz, H.a high performance computer control system tailored to the

Magyary, S.

2010-01-01T23:59:59.000Z

76

Low Cost Titanium Powder Development for Additive Manufacturing ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Cost Affordable Titanium IV. Presentation Title, Low Cost Titanium Powder...

77

Hot Electron Photovoltaics Using Low Cost Materials and Simple ...  

Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design Lawrence Berkeley National Laboratory. Contact LBL About This Technology

78

Low-Cost Manufacturing of Fuel Cell Bipolar Plates by ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Emerging Material Forming Technologies. Presentation Title, Low-Cost...

79

Electrochromic Windows: Advanced Processing Technology  

SciTech Connect

This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

SAGE Electrochromics, Inc

2006-12-13T23:59:59.000Z

80

Circofer -- Low cost approach to DRI production  

SciTech Connect

Lurgi's Circofer Process for reducing fine ores with coal in a Circulating Fluidized Bed (CFB) is a direct approach by using a widely applied and proven reactor in commercializing a state of the art technology. The technology is in response to the demand for a direct reduction process of the future by making possible: the use of low cost ore fines and inexpensive primary energy, fine coal; production of a high grade product used as feedstock by mini mills with the additional advantage of dilution of contaminants introduced by scrap; low environmental impact; and low specific investment costs due to the closed energy circuit. With the incorporation of the latest developments in CFB technology, Circofer offers excellent heat and mass transfer conditions and, consequently, improved gas and energy utilization. High gas conversions using recycle gas have a positive influence on the process economics whereby no export gas is produced. Sticking, accretion and reoxidation problems, which have plagued all previous attempts at developing direct reduction processes using fine ore and coal as a reductant, are avoided, essentially by operating with defined amounts of excess carbon and separation of the reduction and gasifying zones.

Weber, P.; Bresser, W.; Hirsch, M. (Lurgi Metallurgie GmbH, Frankfurt (Germany))

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low Cost Processing: Plasma, Microwave, Laser, Melting and Casting  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Cost Affordable Titanium IV: Low Cost Processing: Plasma, ... obtained by using microwave energy as the consolidation method of Mg-Ti alloys.

82

Research and Development of Low-cost Titanium Alloys for ...  

Science Conference Proceedings (OSTI)

Therefore, low-cost elements such as Fe, Mn, Cr, O, and N are gaining attention in titanium alloy design for biomedical applications. For biomedical applications...

83

Low-Cost Printable Wireless Sensors for Buildings Applications  

Low-Cost Printable Wireless Sensors for Buildings Applications Note: The technology described above is an early stage opportunity. Licensing rights to this ...

84

Very Low Cost Manufacturing of Titanium Alloy Components  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Cost-Affordable Titanium III. Presentation Title, Very Low Cost Manufacturing...

85

Low Cost Materials and Processing - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... Cost-Affordable Titanium III: Low Cost Materials and Processing Sponsored by: The Minerals, Metals and Materials Society, TMS Structural...

86

Low-Cost Prosthetics within Reach with Recycled Materials  

Science Conference Proceedings (OSTI)

Apr 19, 2010 ... Prohibitive costs aside, the design of standard prosthetic arms does ... A more recent computer rendering of the team's low-cost prosthetic arm.

87

Development of Low-cost Functional Geopolymeric Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Low-cost Functional Geopolymeric Materials. Author(s), Mazen Alshaaer, Rushdi Yousef, Bassam El-Eswed, Hani Khoury,...

88

New Concept of Ultra Low Cost Chemically Bonded Ceramic ...  

Science Conference Proceedings (OSTI)

Presentation Title, New Concept of Ultra Low Cost Chemically Bonded Ceramic Materials Fabricated From Traditional Fillers and Wastes. Author(s), Henry A.

89

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration,...

90

Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor  

A University of Colorado research group led by Fernando Mancilla-David has developed a low cost irradiance sensor using a network modeled on a neural ...

91

Low Cost: Additive Manufacturing and Metal Injection molding  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The production of low cost titanium products from synthesized titanium powders, sponge, and other particulates has the potential to enable a...

92

Five Low Cost Methods to Improve Energy Efficiency on ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Energy Conservation in Metals. Presentation Title, Five Low Cost Methods to...

93

ESS 2012 Peer Review - Low Cost and Highly Selective Composite...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey...

94

Available Technologies: Low-cost, Efficient, Flexible Solar ...  

3D solar cell of nanopillars. ... Layered Nanocrystal Photovoltaic Cells, IB-2511 . Hot Electron Photovoltaics Using Low Cost Materials and Simple Cel ...

95

Manufacturing Demonstration Facility Low-Cost Carbon Fiber Available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Carbon Fiber Available to US Manufacturers for Market Development and Demonstration Oak Ridge National Laboratory (ORNL) is making available market development quantities...

96

High Volume Method of Making Low Cost, Lightweight Solar Materials  

ORNL 2010-G00644/jcn UT-B ID 201002380 High Volume Method of Making Low Cost, Lightweight Solar Materials Technology Summary A critical challenge for ...

97

Low Cost TiO2 Nanoparticles - Energy Innovation Portal  

Solar Photovoltaic Advanced Materials Low Cost TiO2 Nanoparticles Sandia National Laboratories. Contact SNL About This Technology Publications: Market ...

98

High Temperature Stainless Steel Alloy with Low Cost Manganese  

High Temperature Stainless Steel Alloy with Low Cost Manganese ... Power industry components such as boiler tubing and piping, pressure vessels, chemical

99

Design of small, low-cost, underwater fin manipulator.  

E-Print Network (OSTI)

??This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater (more)

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

100

Electrochromic Glazings: How they Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How they Work How they Work Electrochromic glazings have great potential to improve the energy efficiency and occupant comfort afforded by architectural windows. These smart windows can dynamically control light transmission by windows in buildings, automobiles, and aircraft. Electrochromic glazings are the most significant members of a family of chromogenic light-control technologies that includes large-area dispersed liquid crystals, dispersed particle windows, and photochromic and thermochromic materials. Electrochromic devices represent the most versatile window technology of this type, exhibiting the best combination of switching properties for chromogenic window applications. Electrochromic glazings typically have a change in visible light transmission from 10% to 70%, moderately fast switching times, and low dc power consumption. These glazings have memory, so they only need power to make a change in transmission. Electrochromic technology can be coupled with smart control systems to give constant lighting levels, blending artificial lighting with daylighting for improved building energy efficiency. Energy simulations of office buildings indicate that smart windows with lighting controls in arid climates can provide 30-40% energy savings over conventional windows. Savings are realized in cooling, lighting, and peak utility electric loads. Other benefits include smaller heating, ventilating, and air-conditioning (HVAC) systems and greater thermal and visual comfort.

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

102

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

103

IQ-Station: a low cost portable immersive environment  

Science Conference Proceedings (OSTI)

The emergence of inexpensive 3D-TVs, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive systems. A low cost system (here dubbed an IQ-station), fashioned from commercial ...

William R. Sherman; Patrick O'Leary; Eric T. Whiting; Shane Grover; Eric A. Wernert

2010-11-01T23:59:59.000Z

104

Low Cost Fabrication of Thin-Film Ceramic Membranes for ...  

Unlike electrochemical vapor deposition, which is inherently a capital intensive batch process, the Berkeley Lab method is inexpensive and scalable.

105

Development of Low-cost Hydrogen Sensors  

DOE Green Energy (OSTI)

This research was aimed at understanding and improving the speed and reproducibility of our resistive hydrogen sensor, along with complementary efforts in manufacturability and further design improvements. Maskworks were designed to allow for the printing and firing of multi-sensor layouts (15 per substrate) and a large batch of these sensors was produced using standard thick-film manufacturing lines. Piece-to-piece variations of both the as-made resistance and the response of these sensors to hydrogen were within acceptable tolerances, and the sensor design has now been released for commercial prototyping. Automated testing was begun in order to develop long-term performance data. Dynamic response of selected sensors was measured before and after exposures to methane, hydrogen sulfide, and carbon monoxide, in order to assess the effects of interference gases and surface poisoning. As expected, H{sub 2}S degrades the sensor somewhat, whereas CH{sub 4} and CO do not create significant interference when air is present.

Lauf, R.J.

2001-09-25T23:59:59.000Z

106

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

Electrochromic Windows. California Energy Commission, PIER.Electrochromic Windows. California Energy Commission, PIER.managed by the California Energy Commission (Commission),

2006-01-01T23:59:59.000Z

107

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

T. Wilmert. 2004. Window Systems for High Performanceof electrochromic windows: a pilot study, Building andfor an Electrochromic Window Wall Attached are curtainwall

2006-01-01T23:59:59.000Z

108

Low cost private education in India : challenges and way forward  

E-Print Network (OSTI)

The Low Cost Private School phenomenon has gained momentum and increased visibility in recent years as researchers have begun to map and record the existence of millions of private schools that cater to the education needs ...

Garg, Nupur, M.B.A. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

109

Low Cost Solar Water Heating R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office...

110

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

111

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

112

Low Cost Aqueous Electrolyte Based Energy Storage: Materials and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Low Cost Aqueous Electrolyte Based Energy Storage: Materials and ... Deployment of New High Temperature Alloys for Power Generation Systems Designing ... Materials Metrology for a Hydrogen Distribution Infrastructure.

113

Low-cost electromagnetic tagging : design and implementation  

E-Print Network (OSTI)

Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

Fletcher, Richard R. (Richard Ribon)

2002-01-01T23:59:59.000Z

114

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for precursor...

115

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network (OSTI)

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

116

Development and performance of a miniature, low cost mass spectrometer  

E-Print Network (OSTI)

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01T23:59:59.000Z

117

Development of a low-cost underwater manipulator.  

E-Print Network (OSTI)

??This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive (more)

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

118

Development of a low-cost underwater manipulator  

E-Print Network (OSTI)

This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive or limited in functionality. ...

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

119

Design of small, low-cost, underwater fin manipulator  

E-Print Network (OSTI)

This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater servos commercially available. The design involves modifying a commercially ...

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

120

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low Cost Fabrication of Oxide Dispersion Strengthened Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Oxide Dispersion Low Cost Fabrication of Oxide Dispersion Strengthened Materials Background To obtain significant increases in the efficiency of coal fired power plants, steam pressure and temperature must be increased beyond current technology to advanced ultra-supercritical (A-USC) conditions -temperatures and pressures up to 760 degrees Celsius (°C) and 35 megapascals (MPa). The upper bounds of operating pressure and temperature are limited by the properties of the current set

122

Low Cost Production of InGaN for Next-Generation Photovoltaic Devices  

SciTech Connect

The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

2012-07-09T23:59:59.000Z

123

Available Technologies: Electrochromic Windows with Multiple ...  

Berkeley Lab researchers led by Andr Anders and Cesar Clavero have improved the properties of electrochromic windows with a novel design called the switchable ...

124

BT::Advancement of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagram showing a zoned window wall Diagram showing a zoned window wall Electrochromic windows in a bleached state (left) or colored state (right). This website provides...

125

LITHIUM-BASED ELECTROCHROMIC MIRRORS  

NLE Websites -- All DOE Office Websites (Extended Search)

870 870 rd Presented at the 203 Meeting of the Electrochemical Society, April 28-30, 2003 in Paris, France and published in the Proceedings. Lithium-Based Electrochromic Mirrors Thomas J. Richardson and Jonathan L. Slack Lawrence Berkeley National Laboratory April 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson* and Jonathan L. Slack Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

126

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

127

Low cost performance evaluation of passive solar buildings  

DOE Green Energy (OSTI)

An approach to low-cost instrumentation and performance evaluation of passive solar heated buildings is presented. Beginning with a statement of the need for a low-cost approach, a minimum list of measured quantities necessary to compute a set of recommended performance factors is developed. Conflicts and confusion surrounding the definition of various performance factors are discussed and suggestions are made for dealing with this situation. Available instrumentation and data processing equipment is presented. The recommended system would monitor approximately ten variables and compute numerous performance factors on site at a projected system cost of less than $3,000 per installation.

Palmiter, L.S.; Hamilton, L.B.; Holtz, M.J.

1979-10-01T23:59:59.000Z

128

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

129

Low-cost appliance state sensing for energy disaggregation  

Science Conference Proceedings (OSTI)

Reliable detection of appliance state change is a barrier to the scalability of Non Intrusive Load Monitoring (NILM) beyond a small number of sufficiently distinct and large loads. We advocate a hybrid approach where a NILM algorithm is assisted by ultra-low-cost ... Keywords: appliance state change, energy disaggregation, sensor

Tianji Wu; Mani Srivastava

2012-11-01T23:59:59.000Z

130

Development of a Low-Cost Tide Gauge  

Science Conference Proceedings (OSTI)

A low-cost tide gauge was developed and field tested to demonstrate a technology that would enable more cost-effective and greater sampling of spatially variable water levels and ocean surface waves. The gauge was designed to be adaptable to ...

Mark F. Giardina; Marshall D. Earle; John C. Cranford; Daniel A. Osiecki

2000-04-01T23:59:59.000Z

131

A review of electrochromic window performance factors  

SciTech Connect

The performance factors which will influence the market acceptance of electrochromic windows are reviewed. A set of data representing the optical properties of existing and foreseeable electrochromic window devices was generated. The issue of reflective versus absorbing electrochromics was explored. This data was used in the DOE 2.1 building energy model to calculate the expected energy savings compared to conventional glazings. The effects of several different control strategies were tested. Significant energy and peak electric demand benefits were obtained for some electrochromic types. Use of predictive control algorithms to optimize cooling control may result in greater energy savings. Initial economic results considering annual savings, cooling equipment cost savings, and electrochromic window costs are presented. Calculations of thermal and visual comfort show additional benefits from electrochromics but more work is needed to quantify their importance. The design freedom and aesthetic possibilities of these dynamic glazings should provide additional market benefits, but their impact is difficult to assess at this time. Ultimately, a full assessment of the market viability of electrochromics must consider the impacts of all of these issues.

Selkowitz, S.E.; Rubin, M.; Lee, E.S.; Sullivan, R.; Finlayson, E.; Hopkins, D.

1994-04-01T23:59:59.000Z

132

Photovoltaic Powering And Control System For Electrochromic Windows  

DOE Patents (OSTI)

A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

Schulz, Stephen C. (Tewksbury, MA); Michalski, Lech A. (Pennington, NJ); Volltrauer, Hermann N. (Englishtown, NJ); Van Dine, John E. (Faribault, MN)

2000-04-25T23:59:59.000Z

133

Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators  

SciTech Connect

REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houstons innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to todays superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

None

2012-01-01T23:59:59.000Z

134

Low-cost flywheel demonstration program. Final report  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

135

Handheld and low-cost digital holographic microscopy  

E-Print Network (OSTI)

This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

2012-01-01T23:59:59.000Z

136

Low-cost hydrogen sensors: Technology maturation progress  

SciTech Connect

The authors are developing a low-cost, solid-state hydrogen sensor to support the long-term goals of the Department of Energy (DOE) Hydrogen Program to encourage acceptance and commercialization of renewable energy-based technologies. Development of efficient production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen leaks to protect people and equipment. The solid-state hydrogen sensor, developed at Oak Ridge National Laboratory (ORNL), is potentially well-suited to meet cost and performance objectives for many of these applications. Under a cooperative research and development Agreement and license agreement, they are teaming with a private company, DCH Technology, Inc., to develop the sensor for specific market applications related to the use of hydrogen as an energy vector. This report describes the current efforts to optimize materials and sensor performance to reach the goals of low-cost fabrication and suitability for relevant application areas.

Hoffheins, B.S.; Rogers, J.E.; Lauf, R.J.; Egert, C.M. [Oak Ridge National Lab., TN (United States); Haberman, D.P. [DCH Technology, Inc., Sherman Oaks, CA (United States)

1998-04-01T23:59:59.000Z

137

EPRI Family of Low-Cost Multifunction Switchgear Systems  

Science Conference Proceedings (OSTI)

This project is to develop a family of low-cost solid-state switchgear systems for a range of distribution applications. These devices will be designed for use in switchgear replacements and for new installations. Additional benefits will come from other functionality (besides interrupting current) to be built into the switchgear systems. The switchgear systems will be useful in current distribution system infrastructure and, as a part of ADA, in migration to the distribution system of the future. The re...

2006-12-11T23:59:59.000Z

138

Low Cost Solar Water Heating R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

139

Low cost high performance generator technology program. Addendum report  

DOE Green Energy (OSTI)

The results of a system weight, efficiency, and size analysis which was performed on the 500 W(e) low cost high performance generator (LCHPG) are presented. The analysis was performed in an attempt to improve system efficiency and specific power over those presented in June 1975, System Design Study Report TES-SNSO-3-25. Heat source volume, configuration, and safety as related to the 500 W(e) LCHPG are also discussed. (RCK)

Not Available

1975-09-01T23:59:59.000Z

140

An Automated Home Made Low Cost Vibrating Sample Magnetometer  

E-Print Network (OSTI)

The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10-2 emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software

Kundu, S

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Efficient Electrochromic Windows Incorporating Ionic Liquids  

SciTech Connect

One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

2008-11-30T23:59:59.000Z

142

Photochromic, electrochromic, photoelectrochromic and photovoltaic devices  

DOE Patents (OSTI)

A light activated photoelectrochromic device is formed of a two-component system formed of a photoactive charge carrier generating material and electrochromic material (plus an elecrolyte). Light interacts with a semiconductive material to generate hole-electron charge carriers which cause a redox reaction in the electrochromic material. One device is formed of hydrated nickel oxide as the electrochromic layer and polycrystalline titanium dioxide as the charge generating material. The materials may be formed as discrete layers or mixed together. Because of the direct charge transfer between the layers, a circuit to apply a voltage to drive the electrochromic reaction is not required, although one can be used to enhance the reaction. The hydrated nickel oxide-titanium dioxide materials can also be used to form a photovoltaic device for generating electricity.

Kostecki, Robert (Lafayette, CA); McLarnon, Frank R. (Orinda, CA)

2000-01-01T23:59:59.000Z

143

A Review of Electrochromic Window Performance Factors  

E-Print Network (OSTI)

0.30. The electrochromic windows were controlled to maintainSelkowitz, Solar Energy Mater. 22 (1991) 1. 2. Windows andDaylighting Group, Window 3.1, A PC Program for Analyzing

Selkowitz Ed, S.E.

2010-01-01T23:59:59.000Z

144

Life and stability testing of packaged low-cost energy storage materials  

DOE Green Energy (OSTI)

A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage-like containers called Chubs is discussed. The results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications have been drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a ..delta..T of 30/sup 0/F can be used for the packaged material.

Frysinger, G.R.

1980-07-01T23:59:59.000Z

145

Low-cost solar collector test and evaluation. Final report  

DOE Green Energy (OSTI)

Project was to test and evaluate a highly efficient low cost solar collector and to make this technology available to the average homeowner. The basic collector design was for use in mass production, so approximately forty collector panels were made for testing and to make it simple to be hand built. The collectors performed better than expected and written and visual material was prepared to make construction easier for a first time builder. Publicity was generated to make public aware of benefits with stories by Associated Press and in publications like Popular Science.

Benjamin, C.M.

146

CX-008670: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-008670: Categorical Exclusion Determination ITN Energy Systems - Low-cost Electrochromic Film on Plastic for Net-zero Energy Building...

147

CX-009891: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-009891: Categorical Exclusion Determination ITN Energy Systems - Low-cost Electrochromic Film on Plastic for Net-Zero Energy Building...

148

Chameleon Optics Inc | Open Energy Information  

Open Energy Info (EERE)

Name Chameleon Optics Inc Place Philadelphia, Pennsylvania Zip PA 19104 Sector Wind energy Product Has invented low-cost, proprietary Electrochromic Window Film. References...

149

NETL: Mercury Emissions Control Technologies - Assessment Of Low Cost Novel  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Of Low Cost Novel Mercury Sorbents Assessment Of Low Cost Novel Mercury Sorbents Project Summary: Apogee Scientific Inc. will assess up to a dozen carbon-based and other sorbents that are expected to remove more than 90 percent of mercury and cost 40 to 75 percent less than commercial sorbents because they feature inexpensive precursors and simple activation steps. Six to 12 sorbents will undergo fixed-bed adsorption tests with the most promising three to six being further evaluated by injecting them into a pilot-scale electrostatic precipitator and baghouse. Commercial flue gas desulfurization activated carbon will provide the baseline for comparisons. A portable pilot system will be constructed and would accommodate a slipstream ESP or baghouse at minimal cost. Tests will be conducted at Wisconsin Electric's Valley power plant in Milwaukee, WI, and Midwest Generation's Powerton Station in Pekin, IL. The project team consists of URS Radian, Austin, TX; the Electric Power Research Institute, Palo Alto, CA; the Illinois State Geological Survey, Champaign, IL; ADA Environmental Solutions, Littleton, CO; and Physical Sciences Inc., Andover, MA.

150

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

151

Glass for low-cost photovoltaic solar arrays  

DOE Green Energy (OSTI)

In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

Bouquet, F.L.

1980-02-01T23:59:59.000Z

152

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

153

Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

B. Wilding; D. Bramwell

1999-01-01T23:59:59.000Z

154

Development of low cost concentrating solar collectors. Final report  

DOE Green Energy (OSTI)

A low cost concentrating collector has been developed that has the following features: (1) Material cost per 4 foot by 8 foot panel of $175 or $225 at retail prices depending on which of the two versions are used. (2) Low weight of 159 pounds per panel when liquid-filled or approximately 5 pounds per square foot to result in minor additional roof stress. (3) A concentration factor of 1.72 to reduce the necessary storage volume for winter heating and obtain adequate temperature for future air conditioning.(4) High efficiency when mounted parallel to the roof to reduce wind damage, roof stresses, and blend better with architectural features of a house.

Batzer, D.

1982-01-31T23:59:59.000Z

155

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

156

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Heliostat Development Cost Heliostat Development HiTek logo Photo of a machine with two round discs connected by intertwined chains. A staged-chain drive unit eliminates destructive coupling loads from severe wind conditions and greatly reduces cumulative fatigue damage. HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of the optimum heliostat size and developing a novel low-cost heliostat design. Approach There are four tasks under this award: Develop a means to determine the optimum size range of the heliostat, in terms of the applied forces and moments, manufacturing learning curve effects, O&M, and optical efficiency. The outcome of this task will be a spreadsheet analysis tool for parametrically determining heliostat costs that are appropriately allocated into categories with inputs for a specific design.

157

Low cost bare-plate solar air collector  

DOE Green Energy (OSTI)

The purpose of this project was to develop a low cost, bare-plate collector, determine its performance for a variety of climatic conditions, analyze the economics of this type of solar collector and evaluate specific applications. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60% or greater with air preheat temperature uses up to 20/sup 0/F for one of the prototypes. The economic analyses indicated that an installed cost of between $5 and $10 per square foot would make this type of solar system economically viable. For the materials of construction and the type of fabrication and installation perceived, these costs for the bare-plate solar collector are believed to be attainable. Specific applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

Maag, W.L.; Wenzler, C.J.; Rom, F.E.; VanArsdale, D.R.

1980-09-01T23:59:59.000Z

158

Adapting fair information practices to low cost RFID systems  

E-Print Network (OSTI)

Abstract. Within the coming years, low cost radio frequency identification (RFID) systems are expected to become commonplace throughout the business-to-business and business-to-consumer marketplace. Much of the work to date on these systems pertains to systems engineering and electronic product code issues. This paper discusses ways to ensure personal privacy, and presents policies and technologies that could limit abuse. Introduction to RFID Automatic Identification (Auto-ID) describes a wide class of technologies used for automatically identifying objects, individuals, and locations. Typical Auto-ID systems assign a code to a product model or type. This code can then be automatically read and manipulated by an information processing system. The Universal Product Code (UPC) / European Article Number (EAN) bar code present on most consumer

Simson L. Garfinkel

2002-01-01T23:59:59.000Z

159

Low-Cost Solar Water Heating Research and Development Roadmap  

DOE Green Energy (OSTI)

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

160

Low-Cost Substrates for High-Performance Nanorod Array LEDs  

SciTech Connect

The completed project, entitled ??Low-Cost Substrates for High-Performance Nanorod LEDs,? targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: ? Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. ? Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. ? Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. ? Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

Sands, Timothy; Stach, Eric; Garcia, Edwin

2009-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

State-of-the-art low-cost solar reflector materials  

SciTech Connect

Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.

Kennedy, C; Jorgensen, G

1994-11-01T23:59:59.000Z

162

SunShot Initiative: Next-Generation Low-Cost Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Low-Cost Next-Generation Low-Cost Reflector to someone by E-mail Share SunShot Initiative: Next-Generation Low-Cost Reflector on Facebook Tweet about SunShot Initiative: Next-Generation Low-Cost Reflector on Twitter Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Google Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Delicious Rank SunShot Initiative: Next-Generation Low-Cost Reflector on Digg Find More places to share SunShot Initiative: Next-Generation Low-Cost Reflector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

163

SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP to someone by E-mail Share SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough System for...

164

The Development of low cost LiFePO4-based high power lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of low cost LiFePO4-based high power lithium-ion batteries Title The Development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal...

165

Measuring cycling kinematics using a low-cost, flashing LED, multi-camera approach  

E-Print Network (OSTI)

In this thesis a low cost motion capture approach is presented and applied to measure cyclists' kinematics. The motion capture system consists of low cost hardware and custom developed software. Based on still-frame, ...

Gilbertson, Matthew (Matthew W.)

2008-01-01T23:59:59.000Z

166

SunShot Initiative: Advanced Low-Cost Receivers for Parabolic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Low-Cost Receivers for Parabolic Troughs to someone by E-mail Share SunShot Initiative: Advanced Low-Cost Receivers for Parabolic Troughs on Facebook Tweet about SunShot...

167

Radiometric compensation for a low-cost immersive projection system Julien DEHOS  

E-Print Network (OSTI)

Radiometric compensation for a low-cost immersive projection system Julien DEHOS Eric ZEGHERS Catopsys is a low-cost projection system aiming at making mixed reality (virtual, augmented or diminished the optical axis of P. the home by developing a low-cost immersive projection system. This system is composed

Paris-Sud XI, Université de

168

Low cost sprayed CdTe solar cell research. First quarterly progress report, 15 August-14 November 1979  

DOE Green Energy (OSTI)

During the first quarter of this contract, facilities for the spray pyrolysis deposition of CdTe thin films using a process anolagous to that used to spray deposit device-quality films of CdS were prepared. A Te salt, ..beta..-(CH/sub 3/)/sub 2/TeI/sub 2/, suitable for use in the spray process was synthesized. The facilities were shown to function properly by the successful spraying of good quality CdS thin films. A number of initial spray experiments were conducted utilizing the ..beta..-(CH/sub 3/)/sub 2/TeI/sub 2/ and other inorganic tellurium-bearing compounds which also show great promise in producing low-cost sprayed CdTe solar cells. Initial chemical tests of these films indicated the presence of both Cd and Te, and x-ray diffraction analysis is presently underway to determine the actual concentration of CdTe.

Sienkiewicz, P.; Lis, S.; Serreze, H.B.; Entine, G.

1979-12-01T23:59:59.000Z

169

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network (OSTI)

to energy-efficient windows Andr Anders, Jonathan L. Slack,to electrochromic windows for vehicles and buildings [1].in conventional electrochromic windows because of its high

Anders, Andre

2008-01-01T23:59:59.000Z

170

Development of a Low-Cost Rotary Steerable Drilling System  

DOE Green Energy (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

171

Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development  

Science Conference Proceedings (OSTI)

PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

Scott Benton; Abhinav Bhandari

2012-09-30T23:59:59.000Z

172

Low-Cost High-Pressure Hydrogen Generator  

DOE Green Energy (OSTI)

Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

Cropley, Cecelia C.; Norman, Timothy J.

2008-04-02T23:59:59.000Z

173

Reducing residential cooling requirements through the use of electrochromic windows  

Science Conference Proceedings (OSTI)

This paper presents the results of a study investigating the energy performance of electrochromic windows in a prototypical residential building under a variety of state switching control strategies. We used the DOE-2.1E energy simulation program to analyze the annual cooling energy and peak demand as a function of glazing type, size, and electrochromic control strategy. A single-story ranch-style home located in the cooling-dominated locations of Miami, FL and Phoenix, AZ was simulated. Electrochromic control strategies analyzed were based on incident total solar radiation, space cooling load, and outside air temperature. Our results show that an electrochromic material with a high reflectance in the colored state provides the best performance for all control strategies. On the other hand, electrochromic switching using space cooling load provides the best performance for all the electrochromic materials. The performance of the incident total solar radiation control strategy varies as a function of the values of solar radiation which trigger the bleached and colored states of the electrochromic (setpoint range); i.e., required cooling decreases as the setpoint range decreases; also, performance differences among electrochromics increases. The setpoint range of outside air temperature control of electrochromics must relate to the ambient weather conditions prevalent in a particular location. If the setpoint range is too large, electrochromic cooling performance is very poor. Electrochromics compare favorably to conventional low-E clear glazings that have high solar heat gain coefficients that are used with overhangs. However, low-E tinted glazings with low solar heat gain coefficients can outperform certain electrochromics. Overhangs should be considered as a design option for electrochromics whose state properties do not change significantly between bleached and colored states.

Sullivan, R.; Rubin, M.; Selkowitz, S.

1995-05-01T23:59:59.000Z

174

Low-cost CdZnTe devices for cascade cell application  

DOE Green Energy (OSTI)

This report describes a research program to develop a low-cost technique for producing Cd{sub 1-x}Zn{sub x}Te devices for cascade solar cell applications. The technique involves a two-stage process for fabricating such devices with a band gap of about 1.7 eV and a transparent contact layer of low-resistivity ZnTe. In the first stage, thin films of Cd, Zn, and Te are deposited in stacked layers as Cd{sub 1-x}An{sub x}Te. The second stage involves hearing and reacting the layers to form the compound. At first, electrodeposition was used for depositing the layers to successfully fabricate Dc{sub 1-x}Zn{sub x}Te thin-film devices. These films were also intrinsically doped with copper. For the first time, transparent ZnTe films of low resistivity were obtained in a two-stage process; preliminary solar cells using films with low Zn content were demonstrated. A second phase of the project involved growing films with higher Zn content (>15%). Such films were grown on CdS-coated substrates for fabricating devices. The effects of the solar-cell processing steps on the Cd{sub 1-x}Zn{sub x}Te and CdS/Cd{sub 1-x}Zn{sub x}Te interfaces were studied; results showed that the nature of the interface depended on the stoichiometry of the Cd{sub 1-x}Zn{sub x}Te thin film. A sharp interface was observed for the CdS/CdTe structures, but the interface became highly diffused as the Zn content in the absorber layer increased above 15%. The interaction between the CdS window layer and the Cd{sub 1-x}Zn{sub x}Te absorber layer was found to result from an exchange reaction between Zn in the absorber layer and the thin CdS film. 14 refs., 10 figs.

Basol, B.M.; Kapur, V.K. (International Solar Electric Technology, Inglewood, CA (USA))

1990-11-01T23:59:59.000Z

175

GISAXS view of induced morphological changes in nanostructured CeVO4 thin films  

Science Conference Proceedings (OSTI)

Nanostructured CeVO4 films, designed for applications in electrochemical cells and electrochromic devices, were obtained on glass substrates by the sol-gel process. An analysis of morphological modifications in these films, induced by ultrasonication, ...

Magdy Lu?i? Lav?evi?; Aleksandra Turkovi?; Pavo Dub?ek; Zorica Crnjak Orel; Bojan Orel; Sigrid Bernstorff

2011-01-01T23:59:59.000Z

176

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007  

DOE Green Energy (OSTI)

Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

Tucker, R.

2008-04-01T23:59:59.000Z

177

Low Cost Geothermal Separators BLISS Boundary Layer Inline Separator Scrubber  

DOE Green Energy (OSTI)

A new compact, low cost, and high performance separator is being developed to help reduce the installed and O and M cost of geothermal power generation. This device has been given the acronym ''BLISS'' that stands for ''Boundary Layer Inline Separator Scrubber''. The device is the first of a series of separators, and in the case of injectates, scrubbers to address the cost-reduction needs of the industry. The BLISS is a multi-positional centrifugal separator primarily designed to be simply installed between pipe supports, in a horizontal position. This lower profile reduces the height safety concern for workers, and significantly reduces the total installation cost. The vessel can demand as little as one-quarter (25%) the amount of steel traditionally required to fabricate many large vertical separators. The compact nature and high separating efficiency of this device are directly attributable to a high centrifugal force coupled with boundary layer control. The pseudo isokinetic flow design imparts a self-cleaning and scale resistant feature. This polishing separator is designed to remove moderate amounts of liquid and entrained solids.

Jung, Douglas; Wai, King

2000-05-26T23:59:59.000Z

178

Process for Low Cost Domestic Production of LIB Cathode Materials  

DOE Green Energy (OSTI)

The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASFs battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASFs already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEMs and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

Thurston, Anthony

2012-10-31T23:59:59.000Z

179

Low cost fault detection system for railcars and tracks  

E-Print Network (OSTI)

A "low cost fault detection system" that identifies wheel flats and defective tracks is explored here. This is achieved with the conjunction of sensors, microcontrollers and Radio Frequency (RF) transceivers. The objective of the proposed research is to identify faults plaguing railcars and to be able to clearly distinguish the faults of a railcar from the inherent faults in the track. The focus of the research though, is mainly to identify wheel flats and defective tracks. The thesis has been written with the premise that the results from the simulation software GENSYS are close to the real time data that would have been obtained from an actual railcar. Based on the results of GENSYS, a suitable algorithm is written that helps segregate a fault in a railcar from a defect in a track. The above code is implemented using hardware including microcontrollers, accelerometers, RF transceivers and a real time monitor. An enclosure houses the system completely, so that it is ready for application in a real environment. This also involves selection of suitable hardware so that there is a uniform source of power supply that reduces the cost and assists in building a robust system.

Vengalathur, Sriram T.

2003-08-01T23:59:59.000Z

180

Low-cost flexible packaging materials for batteries.  

DOE Green Energy (OSTI)

Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.

Jansen, A. N.; Amine, K.; Newman, A. E.; Vissers, D. R.; Henriksen, G. L.; Chemical Engineering

2002-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Novel Low-Cost Sodium-Zinc Chloride Battery  

Science Conference Proceedings (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280C and 240C. At 280C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

182

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

The invention relates to a low-cost process for insulating walls comprising: (a) stacking bags filled with insulating material next to the exterior surface of a wall until the wall is covered, the stack of bags thus formed having fasteners to attach to a wire mesh (e.g., straps looped between the bags and fastened to the wall); (b) stretching a wire mesh (e.g., chicken wire or stucco netting) over the stack of bags, covering the side of the bags which is not adjacent to the wall; (c) fastening the wire mesh to stationary objects; (d) attaching the wire mesh to said fasteners on said stack of bags; and (e) applying a cemetitious material (e.g., stucco) to the wire mesh and allowing it to harden. Stacking the bags against the wall is preferably preceded by laying a base on the ground at the foot of the wall using a material such as cement or crushed stone wrapped in a non-woven fabric (e.g., geosynthetic felt). It is also preferred to erect stationary corner posts at the ends of the wall to be insulated, the top ends of the posts being tied to each other and/or tied or otherwise anchored to the wall. The invention also includes the structure made by this process. The structure comprises a stack of bags of insulating material next to the exterior wall of a building, said stack of bags of insulating material being attached to said wall and having a covering of cementitious material on the side not adjacent to said wall.

Vohra, Arun

1997-12-01T23:59:59.000Z

183

A DESIGN GUIDE FOR EARLY-MARKET ELECTROCHROMIC WINDOWS  

NLE Websites -- All DOE Office Websites (Extended Search)

EARLY-MARKET ELECTROCHROMIC WINDOWS PIER FINAL PROJECT REPORT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: Lawrence Berkeley...

184

Nano-rods wo??- δ for electrochromic smart windows applications.  

E-Print Network (OSTI)

?? Tungsten oxide is a good electrochromic material which has been used in the construction of smart windows through visible modulation. These smart materials can (more)

Sibuyi, Praise

2006-01-01T23:59:59.000Z

185

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar | Open  

Open Energy Info (EERE)

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Cost Financing with Clean Renewable Energy Bonds Agency/Company /Organization: National Renewable Energy Laboratory Partner: United States Department of Energy Sector: Energy Topics: Finance Resource Type: Webinar, Training materials, Lessons learned/best practices Website: www.nrel.gov/applying_technologies/state_local_activities/webinar_2009 Low-Cost Financing with Clean Renewable Energy Bonds Screenshot References: Low-Cost Financing with Clean Renewable Energy Bonds[1] Logo: Low-Cost Financing with Clean Renewable Energy Bonds Sponsored by the U.S. Department of Energy Technical Assistance Project for state and local officials, this Webinar described the elements of clean

186

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network (OSTI)

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low cost incipient fault detection of inverter-fed driven motors. Basically, low order inverter harmonics contributions to fault diagnosis, a motor drive embedded condition monitoring method, analysis of motor fault signatures in noisy line current, and a few specific applications of proposed methods are studied in detail. First, the effects of inverter harmonics on motor current fault signatures are analyzed in detail. The introduced fault signatures due to harmonics provide additional information about the motor faults and enhance the reliability of fault decisions. It is theoretically and experimentally shown that the extended fault signatures caused by the inverter harmonics are similar and comparable to those generated by the fundamental harmonic on the line current. In the next chapter, the reference frame theory is proposed as a powerful toolbox to find the exact magnitude and phase quantities of specific fault signatures in real time. The faulty motors are experimentally tested both offline, using data acquisition system, and online, employing the TMS320F2812 DSP to prove the effectiveness of the proposed tool. In addition to reference frame theory, another digital signal processor (DSP)-based phasesensitive motor fault signature detection is presented in the following chapter. This method has a powerful line current noise suppression capability while detecting the fault signatures. It is experimentally shown that the proposed method can determine the normalized magnitude and phase information of the fault signatures even in the presence of significant noise. Finally, a signal processing based fault diagnosis scheme for on-board diagnosis of rotor asymmetry at start-up and idle mode is presented. It is quite challenging to obtain these regular test conditions for long enough time during daily vehicle operations. In addition, automobile vibrations cause a non-uniform air-gap motor operation which directly affects the inductances of electric motor and results quite noisy current spectrum. The proposed method overcomes the challenges like aforementioned ones simply by testing the rotor asymmetry at zero speed.

Akin, Bilal

2007-08-01T23:59:59.000Z

187

Durable, Low-cost, Improved Fuel Cell Membranes  

Science Conference Proceedings (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkemas approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are packaged in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkemas approach lies in the decoupling of ion conductivity from the other requirements. Kynar PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

188

Low-Cost Precursors to Novel Hydrogen Storage Materials  

DOE Green Energy (OSTI)

From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities

Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

2010-12-31T23:59:59.000Z

189

Low-Cost, High-Power Laser for Analytical and Other ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Low-Cost, High-Power Laser for Analytical and Other Applications. ...

190

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program...

191

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

192

Production of a Low-Cost DMD Wire Feedstock by Direct ...  

Science Conference Proceedings (OSTI)

Presentation Title, Production of a Low-Cost DMD Wire Feedstock by Direct Consolidation of Ti Sponge. Author(s), Kevin F. Dring, Martin Lefstad, Ola Jensrud.

193

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

194

Ampulse Raises $8 Million to Develop Low-Cost Solar Cells I  

Low-Cost Solar Cells In November 2009 Ampulse ... For consumers the benefits of using this appliance will vary depending on family size and hot

195

Density Functional Theory Study of Copper Oxide as Low-cost ...  

Science Conference Proceedings (OSTI)

Density Functional Theory Study of Copper Oxide as Low-cost Photovoltaic Material Dye-sensitized Solar Cells with Anodized Aluminum Alloy-based Counter-...

196

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Sequestration Program is...

197

An Alternative Low-Cost Process for Deposition of MCrAlY Bond ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications. Author(s), Ying...

198

Thin film ion conducting coating  

DOE Patents (OSTI)

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

199

Research and Development of a Low Cost Solar Collector  

Science Conference Proceedings (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

200

Low-Cost Hydrogen Distributed Production System Development  

DOE Green Energy (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Novel Low Cost, High Reliability Wind Turbine Drivetrain  

SciTech Connect

Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain???????¢????????????????s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

2012-09-13T23:59:59.000Z

202

Research and Development of a Low Cost Solar Collector  

SciTech Connect

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

203

Low cost solar energy collection for cooling applications  

DOE Green Energy (OSTI)

Solar energy collector designs utilizing thinfilm polymeric materials in the absorber and glazing are now under development at Brookhaven National Laboratory. The objective is dramatic cost reduction consistent with acceptable performance and life. Originally intended for low temperature applications (< 100/sup 0/F), these collectors now appear capable of high temperature applications including desiccant and absorption cooling (150/sup 0/ to 200/sup 0/ F). The performance and economics of the thin-film collector are compared with those of conventional flat-plate designs in cooling applications.

Wilhelm, W.G.

1981-06-01T23:59:59.000Z

204

Large scale production task: low cost silicon solar array project. Final technical report  

DOE Green Energy (OSTI)

Several design concepts were evaluated and compared with respect to potential for low cost and automation, protection against weathering, potential for array efficiency as a function of weight and area, potential for design flexibility and exposure to electrical breakdown or leakage to ground. This evaluation program narrowed attention to design concepts involving glass as the primary structural and weather resistant component of the module. The leading specific design structure consisted of the solar cell circuit embedded in polyvinyl butyrate by lamination between a glass front surface and a polyester film rear surface. Preliminary evaluation of this structure in high humidity and thermal cycle was promising, and extensive field experience with similar structures in architectural and automotive applications was favorable. The specific design proposed was comprised of 120 two-inch diameter cells in a series-parallel configuration. The laminate was mounted in an aluminum frame with a neoprene gasket providing the requisite mechanical strength with flexibility. The resulting module size of 15 by 46 inches permits three modules to be neatly fitted into the 46 inch square subarray specified by JPL. The design as modified to accommodate subsequent experience is shown. Performance and environmental test results are presented and discussed.

Not Available

1978-09-01T23:59:59.000Z

205

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

DOE Green Energy (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

2001-09-30T23:59:59.000Z

206

Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules  

DOE Green Energy (OSTI)

The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

Stuart Hellring; Jiping Shao; James Poole

2011-12-05T23:59:59.000Z

207

Available Technologies: Indium Phosphide Polycrystalline Films on ...  

Hot Electron Photovoltaics Using Low Cost Materials and Simple Design, IB-2195. Thinner Film Silicon Solar Cells, IB-2564. REFERENCE NUMBER: IB-3173, IB-3238.

208

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

209

Atmospheric Pressure Deposition for Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

210

Atmospheric Pressure Deposition for Electrochromic Windows  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmospheric Pressure Deposition Atmospheric Pressure Deposition for Electrochromic Windows TDM - Karma Sawyer Robert C. Tenent National Renewable Energy Laboratory robert.tenent@nrel.gov 303-384-6775 4/4/2013 Insulating Glass Unit (IGU) Glass Transparent Conductor (TC) Active Electrode Counter Electrode Ion Conductor 2 | Building Technologies Office eere.energy.gov Purpose and Objectives * Expense - Current market price of $50-$100/ft 2 - Projections indicate under $20/ft 2 needed - A new production paradigm is required * Aesthetics - Architects hesitant to adopt "smurf glass"

211

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

212

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

213

Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)  

SciTech Connect

This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

Narumanchi, S.

2013-07-01T23:59:59.000Z

214

Low Cost High Performance Generator Technology Program. Volume 5. Heat Pipe Topical  

DOE Green Energy (OSTI)

Research progress towards the development of a heat pipe for use in the Low Cost High Performance Thermoelectric Generator Program is reported for the period May 15, 1975 through June 1975. (TFD)

Not Available

1975-07-01T23:59:59.000Z

215

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergyOffice of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical...

216

Evaluation of a Low-Cost Salmon Production Facility, 1986 Annual Report.  

DOE Green Energy (OSTI)

This fiscal year 1986 study sponsored by the Bonneville Power Administration evaluates the presently existing, low-cost salmon production facility operated and maintained by the Clatsop Economic Development Committee's Fisheries Project.

Hill, James M.

1986-12-01T23:59:59.000Z

217

Evaluation of a Low-Cost Salmon Production Facility, 1985 Annual Report.  

DOE Green Energy (OSTI)

This fiscal year 1985 study sponsored by the Bonneville Power Administration evaluates the presently existing low-cost salmon production facility operated and maintained by the Clatsop Economic Development Committee Fisheries Project.

Hickerson, Andrew W.; Hill, James M.

1985-12-01T23:59:59.000Z

218

Low-Cost Zero-Emission Primary Magnesium Production by Solid ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Solid Oxide Membrane (SOM) Electrolysis is a new low-cost process for direct extraction of magnesium oxide to pure magnesium and oxygen gas. .... Grain Refinement of AZ91 Alloy by Addition of Ceramic Particles.

219

No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common...  

NLE Websites -- All DOE Office Websites (Extended Search)

No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common Areas Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

220

Evaluation of a Low-Cost Salmon Production Facility, 1984 Annual Report.  

DOE Green Energy (OSTI)

This fiscal year 1984 study sponsored by the Bonneville Power Administration evaluates the presently existing low-cost salmon production facility operated and maintained by the Clatsop Economic Development Committee's Fisheries Project.

Hickerson, Andrew W.; Hill, James M.

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Design and testing of components for a low cost laser cutter  

E-Print Network (OSTI)

The main goal of this thesis is to document the design and testing of various components for use in a low cost laser cutting mechanism for hobbyists and recreational designers. Different electronics were used to assess the ...

Ramos, Joshua D

2011-01-01T23:59:59.000Z

222

Low-Cost Continuous Production of Carbon Fiber-Reinforced Aluminum Composites .  

E-Print Network (OSTI)

??The research conducted in this study was concerned with the development of low-cost continuous production of carbon fiber/aluminum composites. Two coatings, alumina and zirconia, were (more)

Durkin, Craig Raymond

2007-01-01T23:59:59.000Z

223

ORNL makes low-cost carbon fiber available to American manufacturers...  

NLE Websites -- All DOE Office Websites (Extended Search)

material for prototyping of composite applications are invited to come and talk to us." ORNL is accepting proposals from companies that want to try out the low-cost carbon fiber to...

224

ESS 2012 Peer Review - Low Cost, High Performance and Long Life...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has...

225

NETL: A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO2 Capture Project No.: DE-FE0000469 TDA Research (TDA) is testing and validating the technical and economic...

226

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

227

Low cost monitoring system to diagnose problematic rail bed : case study of Mud Pumping Site  

E-Print Network (OSTI)

This thesis describes the development of low cost sensors and wireless sensor network (WSN) platform aimed at characterizing problematic rail beds (subgrade). The instrumentations are installed at a busy high-speed Northeast ...

Aw, Eng Sew, 1978-

2007-01-01T23:59:59.000Z

228

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

229

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

DOE Green Energy (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

230

Embedded Checker Architectures for Cyclic and Low-Cost Arithmetic Codes  

Science Conference Proceedings (OSTI)

Code checkers that monitor the outputs of a system can detect both permanent and transient faults. We present two novel architectures of embedded self-testing checkers for low-cost and cyclic arithmetic codes, one based on code word generators and adders, ... Keywords: built-in self-test, code checkers, code word accumulators, code word generators, cyclic arithmetic codes, embedded checkers, low-cost arithmetic codes, on-line test, totally self-checking checkers

Albrecht P. Stroele; Steffen Tarnick

2000-08-01T23:59:59.000Z

231

Evaluation criteria and test methods for electrochromic windows  

SciTech Connect

Report summarizes the test methods used for evaluating electrochromic (EC) windows, and summarizes what is known about degradation of their performance, and recommends methods and procedures for advancing EC windows for buildings applications. 77 refs., 13 figs., 6 tabs.

Czanderna, A.W. (Solar Energy Research Inst., Golden, CO (USA)); Lampert, C.M. (Lawrence Berkeley Lab., CA (USA))

1990-07-01T23:59:59.000Z

232

Effects of Overhangs on the Performance of Electrochromic Windows  

E-Print Network (OSTI)

for a view 1.5 m from the window looking at the side wall.potential for switchable windows. In Proceedings of thelarge-area electrochromic windows in commercial buildings.

Tavil, Aslihan; Lee, Eleanor S.

2005-01-01T23:59:59.000Z

233

Nutritionally Enhanced Edible Oil and Oilseed ProcessingChapter 13 Low-Cost Oil-Processing Techniques  

Science Conference Proceedings (OSTI)

Nutritionally Enhanced Edible Oil and Oilseed Processing Chapter 13 Low-Cost Oil-Processing Techniques Processing eChapters Processing Press Downloadable pdf of Chapter 13 Low-Cost Oil-Processing Techniques from t

234

Lighting energy savings potential of split-pane electrochromic windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting energy savings potential of split-pane electrochromic windows Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort Title Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort Publication Type Journal Article LBNL Report Number LBNL-6152E Year of Publication 2013 Authors Fernandes, Luis L., Eleanor S. Lee, and Gregory J. Ward Journal Energy and Buildings Volume 61 Pagination 8-20 Abstract A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62% and 53%, respectively without and with overhang)lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48% and 37%, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

235

Direct Thin Film Path to Low Cost, Large Area III-V ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; ... ...

236

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

1999-01-01T23:59:59.000Z

237

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

238

High efficiency low cost thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

Sopori, B.L.

1999-04-27T23:59:59.000Z

239

Direct Thin Film Path to Low Cost, Large Area III-V Photovoltaics  

A team of Berkeley Lab researchers has invented the first vapor-liquid-solid (VLS) growth technology yielding III-V photovoltaics. The photovoltaics ...

240

Technology Advancements to Lower Costs of Electrochromic Window Glazing  

DOE Green Energy (OSTI)

An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated than would be expected, as it has been determined in the past that there are a number of interactions between the new material and the layers beneath, which have an important effect on the behavior of the device. The effects of these interactions needed to be understood in order for this task to be successful. Tasks 4 and 5 were devoted to production of devices using the novel technology developed in the previous tasks. In addition, characterization tests were required to ensure the devices would perform adequately as replacements for the existing technology. Each of these tasks has been achieved successfully. In task 2, a series of potential materials were surveyed, and ranked in order of desirability. Prototype device structures were produced and characterized in order to do this. This satisfied the requirements for Task 2. From the results of this relatively extensive survey, the number of candidate materials was reduced to one or two. Small devices were made in order to test the functionality of such samples, and a series of optimization experiments were carried out with encouraging results. Devices were fabricated, and some room temperature cycling carried out showing that there are no fundamental problems with this technology. This series of achievements satisfied the requirements for Tasks 3 and 4. The results obtained from Task 3 naturally led to scale-up of the process, so a large cathode was obtained and installed in a spare slot in the production coater, and a series of large devices fabricated. In particular, devices with dimensions of 60-inch x 34-inch were produced, using processes which are fully compatible with mass production. Testing followed, satisfying the requirements for Task 5. As can be seen from this discussion, all the requirements of the project have therefore been successfully achieved. The devices produced using the newly developed technology showed excellent optical properties, often exceeding the performance of the existing technology, equivalent durability results, and promise a significantly simplified manufacturing approach, the

Mark Burdis; Neil Sbar

2008-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block February 20, 2010 - 6:21pm Addthis An innovative pilot program in Minneapolis, Minnesota, focuses on rallying whole communities around energy efficiency, one neighborhood at a time. Through the program, area residents cash in on a home energy-efficiency upgrade that saves them roughly $130 on their annual energy bill. All they have to contribute is a little time and a small initial payment. "The most effective way to get people involved is for people to tell each other, neighbor to neighbor," says Lola Schoenrich, who signed up after reading about the program in her neighborhood newsletter. She even volunteered to go door-to-door on her block handing out registration

242

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block February 20, 2010 - 6:21pm Addthis An innovative pilot program in Minneapolis, Minnesota, focuses on rallying whole communities around energy efficiency, one neighborhood at a time. Through the program, area residents cash in on a home energy-efficiency upgrade that saves them roughly $130 on their annual energy bill. All they have to contribute is a little time and a small initial payment. "The most effective way to get people involved is for people to tell each other, neighbor to neighbor," says Lola Schoenrich, who signed up after reading about the program in her neighborhood newsletter. She even volunteered to go door-to-door on her block handing out registration

243

Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C  

NLE Websites -- All DOE Office Websites (Extended Search)

Mainstream Engineering Develops a Low-Cost Energy-Saving Device Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » January 2013 Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Mainstream is achieving its goal to commercialize practical and

244

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

245

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.

246

Daylighting performance of electrochromic glazing system  

NLE Websites -- All DOE Office Websites (Extended Search)

52E 52E Lighting energy savings potential of split- pane electrochromic windows controlled for daylighting with visual comfort L.L. Fernandes Lawrence Berkeley National Laboratory E.S. Lee Lawrence Berkeley National Laboratory G. Ward Anyhere Software Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division February 2013 Published in Energy and Buildings 61 (2013) 8-20 10.1016/j.enbuild.2012.10.057 ! DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

247

A Design Guide for Early-Market Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

248

Design of a low-cost thermoacoustic electricity generator and its experimental verification  

SciTech Connect

This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER

2010-01-01T23:59:59.000Z

249

Low-Cost Ash-Derived Construction Materials: State-of-the-Art Assessment  

Science Conference Proceedings (OSTI)

Existing technologies have been successfully applied in the manufacturing of construction materials that incorporate coal combustion byproducts. This report describes an extensive literature review on coal ash use in low-cost building materials, including information on technical and economic feasibility.

1992-04-01T23:59:59.000Z

250

Low-Cost Solar Array (LSA) Project. Project quarterly report No. 9, April--June 1978  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period April through June 1978 is described. It includes reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations activities, and manufacturing techniques, plus the steps taken to integrate these efforts.

Not Available

1978-01-01T23:59:59.000Z

251

LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS  

E-Print Network (OSTI)

be manufactured having cement replacement with Illinois coal ashes and their blends in the range of 0 to 60LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS Investigators technology for high-volume applications of Illinois coal combustion by-products generated by using both

Wisconsin-Milwaukee, University of

252

Low-cost site-assembled solar collector designs for use with heat pumps  

DOE Green Energy (OSTI)

Four low cost solar collector designs have been produced for use in solar assisted heat pump systems. Three principles guided the design: the use of air as the heat transfer medium, the use of on-site easy-to-install construction rather than modularized prefabricated construction, and the collection of solar energy at reduced temperatures.

Andrews, J W; Wilhelm, W

1977-05-01T23:59:59.000Z

253

A low cost system for implementing FADCs in imaging atmospheric ^Cerenkov astronomy  

E-Print Network (OSTI)

A low cost system for implementing FADCs in imaging atmospheric ^Cerenkov astronomy M. D. Roberts. The success of early imaging cameras in ground based ^Cerenkov as- tronomy has led to demand for increased a ^Cerenkov imaging camera. A further bene t of this system is that it reduces the amount of data recorded

Adelaide, University of

254

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and 1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies 2.1 M, 33-month program...

255

A low-cost 3 projector display system for pain reduction and improved patient recovery times  

Science Conference Proceedings (OSTI)

Medical procedures are often associated with discomfort, pain and anxiety. Previous studies have shown that one way to reduce pain during treatment is to watch nature scenes and listen to nature sounds or escape into immersive virtual environments. This ... Keywords: head-mounted displays, immersive virtual environments, low-cost 3 projector display system, pain reduction, restorative virtual environments

Eric Fassbender; Paulo de Souza

2012-11-01T23:59:59.000Z

256

Electronic shepherd - a low-cost, low-bandwidth, wireless network system  

Science Conference Proceedings (OSTI)

This paper reports a new novel low-cost, wireless communication network system, called the "Electronic Shepherd" (ES). The system is innovative in the way that it supports flock behavior, meaning that a flock leader monitors the state of the other elements ... Keywords: GPRS, GPS, animal tracking, cost-effective communication, low-power equipment, rural computing, short-range communication, wireless network

Bjrn Thorstensen; Tore Syversen; Trond-Are Bjrnvold; Tron Walseth

2004-06-01T23:59:59.000Z

257

Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions  

E-Print Network (OSTI)

papers cited are available through the Sandia National Laboratories website: www.sandia.gov/Renewable_Energy/wind_energy-year experimental study of low- cost composite materials for wind turbine blades. Wind turbines are subjected to 109 in and potential interactions between failure modes. Wind turbine design codes typically assume a Miner's rule

258

DOE Offers $72 Million Conditional Loan Guarantee to SAGE Electrochromics |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

72 Million Conditional Loan Guarantee to SAGE 72 Million Conditional Loan Guarantee to SAGE Electrochromics DOE Offers $72 Million Conditional Loan Guarantee to SAGE Electrochromics March 5, 2010 - 12:00am Addthis Washington DC --- Energy Secretary Steven Chu today announced the Department of Energy has offered a conditional commitment for a $72 million loan guarantee to SAGE Electrochromics, based in Faribault, Minnesota. The deal will support the financing of the construction and operation of a 250,000 square foot, high volume manufacturing facility to produce SageGlass®, an energy-saving window technology for commercial use. This new facility will be built next to SAGE's existing production facility, enabling the company to expand production and lower costs. "This investment will help cut utility bills, reduce carbon pollution, and

259

A Design Guide for Early-Market Electrochromic Windows  

SciTech Connect

Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

2006-05-01T23:59:59.000Z

260

Design goals and challenges for a photovoltaic-powered electrochromic window covering  

DOE Green Energy (OSTI)

An estimated 1.0%-1.5% of the total cooling energy need in U.S. buildings, and 10%-30% of the peak electric utility power demand, is caused by unwanted solar heat-gain through windows. A large fraction of the approximately two billion square meters of building windows in the United States could benefit from the use of some solar gain control strategy. If a cost-effective, retrofit, electrochromic (EC) window covering were available, this energy savings potential could be realized in a relatively short time. A {open_quotes}glue on{close_quotes}, retrofit EC window treatment, similar to conventional static solar-gain control .films, could accelerate the application of this new technology in buildings. However, the costs of electrical wiring for each retrofitted window could dominate the economics of the retrofit decision and slow market acceptance of EC-windows. By incorporating a photovoltaic (PV) power source into the EC window retrofit, this wiring cost could be reduced or eliminated, and the installation of the EC window treatment could be greatly simplified. In this paper, we suggest the use of an integrated, photovoltaic-powered electrochromic (PV-EC) window treatment that can be applied to an existing window in much the same way that conventional, static, solar-gain control films are now applied. This concept is the subject of a new three-year research and development (R&D) project at our laboratory. We present our design concepts and rationale and identify some of the technical challenges involved.

Benson, D.K.; Branz, H.M.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: News Release - Ultra-low Cost Well Monitoring Could Save Thousands of  

NLE Websites -- All DOE Office Websites (Extended Search)

January 19, 2005 January 19, 2005 Ultra-low Cost Well Monitoring Could Save Thousands of Marginal Oil Wells DOE-funded Project in California Tested Successfully TULSA, OKLA. - A new, ultra-low cost method for monitoring marginal oil wells promises to help rescue thousands of U.S. wells from an early demise. Developed with funding from the Department of Energy (DOE) and project-managed by DOE's National Energy Technology Laboratory, this novel, inexpensive, monitoring-system prototype helps improve the efficiency of rod-pumped oil wells. The ultimate payoff for such an approach could be the recovery of millions of barrels of oil otherwise permanently lost while the United States watches its oil production continue to slide. MORE INFO Marginal Expense Oil Well Wireless Surveillance MEOWS -Phase II final technical report [PDF-294KB]

262

NREL: News Feature - Super-Efficient Cells Key to Low-Cost Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Super-Efficient Cells Key to Low-Cost Solar Power Super-Efficient Cells Key to Low-Cost Solar Power February 16, 2011 This photo shows eight Amonix 7700 solar power generators, those in front tilted horizontally, those in the rear tilted near vertically. Each is a huge rectangle divided into hundreds of squares holding cells and lenses. Enlarge image The Amonix 7700 Concentrated Photovoltaic (CPV) Solar Power Generators are showcasing reliability and undergoing validation-of-performance measurements at the SolarTAC facility in Aurora, Colo. Credit: Dennis Schroeder In this photo, a man in an orange safety vest and hardhat is using a laptop, with large concentrated photovoltaic generators in the background. Enlarge image A technician at SolarTAC in Aurora, CO, enters some numbers into a laptop as he monitors validation of the Amonix 7700 Solar Power Generators.

263

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost open-path Instrument for Low Cost open-path Instrument for monItorIng atmospherIC Carbon DIoxIDe at sequestratIon sItes Background Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere may lead to the curtailment of CO 2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO 2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO 2 concentration above the background level in the air near the ground. Although measurement of CO 2 concentration can be performed, it is

264

NETL: News Release - Innovative Technology Shows Promise for Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2, 2005 June 2, 2005 Innovative Technology Shows Promise for Low-Cost Mercury Control Patented DOE Process Licensed to Industry for Commercial Development WASHINGTON, DC - Close on the heels of the U.S. Environmental Protection Agency's March 15 release of its Clean Air Mercury Rule, the U.S. Department of Energy has issued a license to private industry to commercially develop a promising low-cost, DOE-patented mercury control technology. MORE INFO Technical Report on the Thief Process [PDF-374KB] DOE's National Energy Technology Laboratory issued the license on a technology called the Thief Process to Mobotec USA, Inc., of Walnut Creek, Calif. Mobotec, a leader in developing cost-effective combustion improvement and multi-pollutant reduction technologies for industrial and

265

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

266

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

267

Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

1980-04-01T23:59:59.000Z

268

Sensors-00997-2005 Low-Cost Surface Mount LED Gas Sensor  

E-Print Network (OSTI)

INTRODUCTION EDs are being used far more commonly as light sources in optical chemical sensors due to the low-cost, low-power consumption, reliability and ever increasing range of devices and wavelengths available. The increased interest in LED sources has had a major impact on low-cost component based chemical sensors, where the main goal is to achieve analytical performance without the expense of more conventional instrumentation [1-5]. Typically a photodiode is used for detection, providing good sensitivity and a significant reduction in system cost. Usually the photodiode is operated at Vbias=0V and hence itself can be considered as a lowpower sensor, however, in addition to the detector, a good quality operational amplifier and mid-to-high resolution ADC are required to complete the device. These additional components not only increase system complexity and cost, but also add to the power requirements, which is of particular importance in battery-powered s

Sensor Films Results; Roderick L. Shepherd; William S. Yerazunis; Senior Member; King Tong Lau; Dermot Diamond

2005-01-01T23:59:59.000Z

269

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

270

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

271

VibroTactor: low-cost placement-aware technique using vibration echoes on mobile devices  

Science Conference Proceedings (OSTI)

In this paper, we present a low-cost placement-aware technique, called VibroTactor, which allows mobile devices to determine where they are placed (e.g., in a pocket, on a phone holder, on the bed, or on the desk). This is achieved by filtering and analyzing ... Keywords: context-aware, pattern recognition, placement detection, pseudo sensor, sensor repurposing, vibration echoes

Sungjae Hwang; Kwangyun Wohn

2013-03-01T23:59:59.000Z

272

EPRI Family of Multi-Functional Low-Cost Solid-State Switchgear: Requirements Definition Phase  

Science Conference Proceedings (OSTI)

This report describes the findings of the research performed to assess the requirements for a next generation solid-state breakers ("all solid-state" as well as "hybrid" designs), identify the application areas, and evaluate the economic and technical considerations for different technologies and design options for a family of low-cost solid-state switchgears. The report outlines a research roadmap for design and development of the proposed technology and identifies the key functionalities and criteria t...

2005-12-22T23:59:59.000Z

273

Novel and Low Cost Temperature Sensors for Lines, Transformers, and Cables  

Science Conference Proceedings (OSTI)

This document reports on an investigation into the performance of fiber optic sensing (e.g., in conductors, transformers, and cables) to determine change in fiber characteristics with regards to sensor-aging effects and performance accuracy with time. The project began in 2002 with a rigorous analysis of temperature sensors for both point and distributed systems across a conductor / transformer winding. Key requirements that must be met are low cost, reliable performance, and good aging characteristics (...

2002-12-16T23:59:59.000Z

274

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

275

Reclaiming lost capability in power plant coal conversions: an innovative, low-cost approach  

Science Conference Proceedings (OSTI)

Some of the capability lost during coal conversion can be recovered for midrange/peaking power generation through low cost, turbine cycle and economizer modifications. The additional output can be realized by shutting off adjacent high pressure feedwater heaters (as specified by turbogenerator manufacturers) and simultaneously increasing heat input to the economizer. The supplemental economizer heat input makes up for heat lost to the feedwater when extraction steam is shut off. Several options for applying this novel approach to capability recovery are described. The reclaimed capability is realized at somewhat lower efficiency but at low cost, compared to the overall cost of a coal conversion. Rather than return converted units to up to 100% oil or gas firing during periods of high system demand, the proposed method allows the continued comsumption of coal for the base-load portion of the plant's output. The development of the low NO/sub x/ Slagging Combustor will allow even the added economizer heat input to be supplied by relatively low cost coal. Following a brief review of factors affecting boiler capability in coal conversions and current approaches to coal conversion in this country and overseas, the results of a preliminary study that apply the proposed novel concept to a West Coast power plant are described.

Miliaras, E.S.; Kelleher, P.J.; Fujimura, K.S.

1983-01-01T23:59:59.000Z

276

Electrochromic materials, devices and process of making  

DOE Patents (OSTI)

Thin films of transition metal compositions formed with magnesium that are metals, alloys, hydrides or mixtures of alloys, metals and/or hydrides exhibit reversible color changes on application of electric current or hydrogen. Thin films of these materials are suitable for optical switching elements, thin film displays, sun roofs, rear-view mirrors and architectural glass.

Richardson, Thomas J. (Oakland, CA)

2003-11-11T23:59:59.000Z

277

A Compact, Low-Cost GPS Drifter for Use in the Oceanic Nearshore Zone, Lakes, and Estuaries  

Science Conference Proceedings (OSTI)

The design of small, compact, low-cost GPS drifters that utilize off the shelf components is described. The drifters are intended for use in confined or nearshore environments over time scales of up to several days and are a low-cost ...

D. Johnson; R. Stocker; R. Head; J. Imberger; C. Pattiaratchi

2003-12-01T23:59:59.000Z

278

VillageNet: A low-cost, IEEE 802.11-based mesh network for connecting rural areas  

Science Conference Proceedings (OSTI)

VillageNet is a new wireless mesh networking technology that provides low-cost broadband Internet access for wide regions. It targets the rural market around the world, where large populations live but paying capacities are low. VillageNet offers a low-cost, ...

Partha Dutta; Sharad Jaiswal; Rajeev Rastogi

2007-08-01T23:59:59.000Z

279

Energy Performance Analysis of Electrochromic Windows in New York  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Performance Analysis of Electrochromic Windows in New York Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Title Energy Performance Analysis of Electrochromic Windows in New York Commercial Office Buildings Publication Type Report LBNL Report Number LBNL-50096 Year of Publication 2002 Authors Lee, Eleanor S., L. Zhou, Mehry Yazdanian, Vorapat Inkarojrit, Jonathan L. Slack, Michael D. Rubin, and Stephen E. Selkowitz Call Number LBNL-50096 Abstract A DOE-2.1E energy simulation analysis of a switchable electrochromic (EC) glazing with daylighting controls has been conducted for prototypical office buildings in New York (NY). The modeling included four types of office buildings: old and New vintages and large (10,405 m2, 112,000 ft2) and small (502m2, 5400 ft2) buildings. Five commercially available, base case windows with and without interior shades were modeled. Window area varied from 0 to 60% of the exterior floor-to-floor wall area. The electric lighting had either no controls or continuous daylighting controls. The prototypes were modeled in New York City or Buffalo.

280

Effects of Overhangs on the Performance of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Overhangs on the Performance of Electrochromic Windows Effects of Overhangs on the Performance of Electrochromic Windows Title Effects of Overhangs on the Performance of Electrochromic Windows Publication Type Journal Article LBNL Report Number LBNL-61137 Year of Publication 2006 Authors Tavil, Aslihan, and Eleanor S. Lee Journal Architectural Science Review Call Number LBNL-61137 Abstract In this study, various facade designs with overhangs combined with electrochromic (EC) window control strategies were modeled for a typical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) for south-facing private offices were computed and compared to determine which combinations of fa?ade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Application issues for large-area electrochromic windows in commercial buildings  

E-Print Network (OSTI)

building application; energy-efficiency * Corresponding author. E-mail: ESLee@lbl.gov Introduction Electrochromics are a multi-layer coating

Lee, Eleanor S.; DiBartolomeo, D.L.

2000-01-01T23:59:59.000Z

282

THIN FILM LITHIUM-BASED BATTERIES AND ELECTROCHROMIC DEVICES ...  

Building Energy Efficiency; Electricity Transmission; ... Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; ...

283

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

Contiguous Platinum Monolayer Oxygen Reduction Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Co-PIs: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Brookhaven National Laboratory Yang Shao-Horn Massachusetts Institute of Technology Rachel O'Malley, David Thompsett, Sarah Ball, Graham Hard Johnson Matthey Fuel Cells Radoslav Adzic Brookhaven National Laboratory DOE Projects Kickoff Meeting September 30 , 2009 2 Project Overview Project Overview 1. Objectives: Objectives: Developing high performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer Pt monolayer on stable, inexpensive metal or alloy nanorods, nanowires, nanobars and

284

NETL: Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Project No.: DE-FE0013687 GE global is constructing and operating a continuous, bench-scale CO2 capture system that employs a phase-changing silicone solvent . Experimental data obtained at the laboratory scale in a previous ARPA-E funded project, including mass transfer and kinetic information, is being used to determine process scalability and perform a techno-economic assessment of the commercial scale process. The manufacturability of the solvent is being examined to obtain the material needed for bench-scale testing. Data obtained from the bench-scale system will include mass transfer parameters, kinetic parameters, heat transfer parameters, solvent stability, effects of flue gas contaminants, and recommended operating conditions. Other data such as absorption/desorption isotherms and solvent regeneration energy will be determined in laboratory testing. The solvent manufacturing cost, the bench-scale engineering data, and the laboratory property data will be used to complete the techno-economic assessment and to develop a scale-up strategy for commercialization.

285

NETL: News Release - New, Low-Cost Approach to 4-D Imaging of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2005 7, 2005 New, Low-Cost Approach to 4-D Imaging of CO2 Flood Yields Breakthrough DOE-Funded Kansas Research to Bolster Economics of Marginal EOR Projects TULSA, OK - - U.S. Department of Energy-funded research has yielded a breakthrough in high-resolution subsurface imaging with the first low-cost depiction of CO2 movement through a thin, shallow oil reservoir. The University of Kansas Center for Research project combines the time-lapse approach of 4-D seismic, which is essentially a series of three-dimensional images recorded over time, with a carefully selected application of the higher-resolution imaging of other advanced seismic technologies. The first-of-its-kind project is being implemented for a landmark CO2 flood pilot project underway in the Hall-Gurney oilfield, near Russell, Kan. That pilot-itself the first CO2 flood in Kansas-also is funded by DOE. Both projects are managed by the Office of Fossil Energy's National Energy Technology Laboratory as part of its Enhanced Oil Recovery (EOR) program.

286

NETL: IEP - Bench-Scale Silicone Process for Low-Cost CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Silicone Process for Low-Cost CO2 Capture Bench-Scale Silicone Process for Low-Cost CO2 Capture Project No.: FE0007502 GE Global Research and their project partners are conducting research on the use of a novel silicone solvent to capture CO2 with a continuous bench-scale system. The project will utilize both computational and experimental methods. Previously measured experimental data from a continuous laboratory-scale CO2 capture system will be used to design this bench-scale system. Data from the bench-scale system, such as kinetics and mass transfer information, will be used to determine scale-up effects and needed design parameters to develop a scale-up strategy, update cost of electricity (COE) calculations and perform a technical and economic feasibility study. A manufacturing plan for the aminosilicone solvent and a price model will be used for optimization. The final objective of the program is to demonstrate, at the bench-scale, a process that achieves 90 percent CO2 capture efficiency with less than a 35 percent increase in the COE. Development of this scalable bench-scale process combined with a rigorous process model and thorough manufacturability analysis for the solvent, will enable a practical technology path to later development at larger scales and commercialization. The technology will eventually be retrofittable to coal-based power plants.

287

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

288

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

289

Effective, low-cost HVAC controls upgrade in a small bank building  

Science Conference Proceedings (OSTI)

This report summarizes the measured results from a field study of the performance of a low-cost controls retrofit in a small bank building in Knoxville, TN. The retrofit consisted of a simple upgrade of heating and cooling system controls and new operating strategies. The project was undertaken to better understand how commercial energy use measurement studies should be performed and to demonstrate the effectiveness of a low-cost controls retrofit in a small commercial building. This report describes the details of the project, including building and building system characteristics, the HVAC control changes made, energy end use patterns, and the heating and cooling energy savings achieved. An improved control strategy involving thermostat setback/setup and on/off control was devised around a single replacement programmable thermostat. The strategy allowed thermostat setback/setup control of the primary HVAC system in the building and provided on/off (time-of-day) control for the two secondary systems. The energy efficiency improvements provided a 33% reduction in heating and a 21% reduction in cooling energy consumptions. Simple payback for the retrofit, including installation cost, was under 1 year. In addition to reducing the energy needs of the building, the replacement electronic thermostat provided improved interior comfort. 9 refs., 12 figs., 3 tabs.

Sharp, T.R.; MacDonald, J.M.

1990-01-01T23:59:59.000Z

290

Production of low-cost hydrogen. Final report, September 1989--August 1993  

DOE Green Energy (OSTI)

Significant technical progress has been made over the last decade to develop efficient processes for upgrading coal resources to distillable hydrocarbons which may be used to displace petroleum-derived fuels. While several different direct coal liquefaction routes are under investigation, each of them have in common the need for large quantities of hydrogen to convert the aromatic coal matrix to liquid products in the normal distillation range, and for hydrotreating to improve liquid product quality. In fact, it has been estimated that the production, recovery, and efficient use of hydrogen accounts for over 50 percent of the capital cost of the liquefaction facility. For this reason, improved methods for producing low-cost hydrogen are essential to the operating economics of the liquefaction process. This Final Report provides an assessment of the application of the MTCI indirect gasification technology for the production of low-cost hydrogen from coal feedstocks. The MTCI gasification technology is unique in that it overcomes many of the problems and issues associated with direct and other indirectly heated coal gasification systems. Although the MTCI technology can be utilized for producing hydrogen from almost any carbonaceous feedstock (fossil, biomass and waste), this report presents the results of an experimental program sponsored by the Department of Energy, Morgantown Energy Research Center, to demonstrate the production of hydrogen from coal, mild gasification chars, and liquefaction bottoms.

Not Available

1993-06-01T23:59:59.000Z

291

Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome ( 7th Annual SFAF Meeting, 2012)  

Science Conference Proceedings (OSTI)

David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Jenkins, David [EdgeBio

2012-06-01T23:59:59.000Z

292

Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis  

E-Print Network (OSTI)

An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the ...

Berrada Sounni, Amine

2010-01-01T23:59:59.000Z

293

Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head  

E-Print Network (OSTI)

This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

Ramirez, Aaron Eduardo

2010-01-01T23:59:59.000Z

294

Low-cost carriers in Japan : challenges and paths to success - using a corporate simulation model for empirical analysis  

E-Print Network (OSTI)

This paper analyzes the causes behind the sluggishness of new airlines, low cost carriers (LCCs), in Japan. The object is to identify and to recommend innovative policy changes and ideas for the industry, by analyzing the ...

Shiotani, Sayaka

2013-01-01T23:59:59.000Z

295

Layered Vanadium and Molybdenum Oxides: Batteries and Electrochromics  

DOE Green Energy (OSTI)

The layered oxides of vanadium and molybdenum have been studied for close to 40 years as possible cathode materials for lithium batteries or electrochromic systems. The highly distorted metal octahedra naturally lead to the formation of a wide range of layer structures, which can intercalate lithium levels exceeding 300 Ah/kg. They have found continuing success in medical devices, such as pacemakers, but many challenges remain in their application in long-lived rechargeable devices. Their high-energy storage capability remains an encouragement to researchers to resolve the stability concerns of vanadium dissolution and the tendency of lithium and vanadium to mix changing the crystal structure on cycling the lithium in and out. Nanomorphologies have enabled higher reactivities to be obtained for both vanadium and molybdenum oxides, and with the latter show promise for electrochromic displays.

Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S.

2009-01-01T23:59:59.000Z

296

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents (OSTI)

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

1995-01-24T23:59:59.000Z

297

Stand-alone photovoltaic (PV) powered electrochromic window  

DOE Patents (OSTI)

A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

1995-01-01T23:59:59.000Z

298

NETL: News Release - Four Industry Teams Begin Quest for Low-Cost,  

NLE Websites -- All DOE Office Websites (Extended Search)

August 8, 2001 August 8, 2001 Four Industry Teams Begin Quest for Low-Cost, Breakthrough Fuel Cell Could Broaden Market Acceptance of "Cutting Edge" Technology Cited in President's Climate Change Policy PITTSBURGH, PA - Four new government-industry projects have been selected as the vanguards of a $500 million, 10-year effort to produce breakthrough fuel cells that will shatter current cost barriers and move the advanced, low-polluting technology into mainstream energy markets. - Technician Examining Planar Fuel Cell Assembly Future fuel cells could be mass- produced from flat, ceramic plates. This configuration is called a "planar" fuel cell. Secretary of Energy Spencer Abraham today announced that the U.S. Department of Energy has selected proposals from Honeywell, Inc., Torrence,

299

A simple, low-cost, data logging pendulum built from a computer mouse  

SciTech Connect

Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible for all students to have hands-on experience with one of the most important simple physical systems.

Gintautas, Vadas [Los Alamos National Laboratory; Hubler, Alfred [UIUC

2009-01-01T23:59:59.000Z

300

ESS 2012 Peer Review - Low Cost, Manufacturable High Voltage Power Module for ESS - Brandon Passmore, APEI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 Design and Development of a Low Cost, Manufacturable High Voltage Power Module for Energy Storage Systems Phase I SBIR September 27, 2012 Brandon Passmore, PhD Sr. Electronics Packaging Research Engineer Email: bpassmo@apei.net Acknowledgements * I would like to thank Dr. Imre Gyuk of the DOE Energy Storage Systems Program and Dr. Stan Atcitty for technical support * I would also like to thank 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh  

SciTech Connect

Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

2009-09-14T23:59:59.000Z

302

Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation  

SciTech Connect

In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

Zeh, C.M.

1996-08-01T23:59:59.000Z

303

Evaluation of low cost residual gas analyzers for ultrahigh vacuum applications  

DOE Green Energy (OSTI)

In recent years several low cost computer controlled residual gas analyzers (RGAs) have been introduced into the market place. It would be very useful to know the performance characteristics of these RGAs in order to make an informed selection for UHV applications. The UHV applications include extreme sensitivity helium leak detection and monitoring of the residual gas spectra in UHV systems. In this article, the sensitivity and linearity data for nitrogen, hydrogen, and helium are presented in the pressure range 10{sup {minus}8}---10{sup {minus}1} Pa. Further, the relationships between focus voltage and ion currents, relative sensitivity, and fragmentation factor are also included. A direct comparison method is used in obtaining this data. Spinning rotor and extractor gauges are the transfer standard gauges used in Jefferson Lab's vacuum calibration facility, with which all the reported measurements here were carried out.

M. Rao; D. Dong

1996-10-01T23:59:59.000Z

304

Thermal Engineering of Lignin for Low-cost Production of Carbon Fiber  

Science Conference Proceedings (OSTI)

Lignin, a sustainable, renewable resource material, is being evaluated for the low cost production of carbon fiber for automotive and other applications. We previously reported the successful production of carbon fiber from a solvent extracted lignin [1] and from other lignins [2]. However, it was found that the lignin fiber, produced by the melt spinning of the solvent extracted lignin, was difficult to stabilize (i.e., render infusible) and thus carbonize. The long stabilization time, due to the fiber s low Tg, led to the conclusion that thermal engineering of a lignin feedstock could ultimately raise the Tg of the lignin and thereby of the spun fiber. This would permit a higher temperature of stabilization, which would reduce stabilization time as well as overall processing times. The thermally-engineered lignins were evaluated in terms of their rheological properties, melt spinning ability, morphology, stabilization and carbonization properties, and ultimately mechanical properties of the carbon fibers obtained.

Baker, Darren A [ORNL; Baker, Frederick S [ORNL; Gallego, Nidia C [ORNL

2009-01-01T23:59:59.000Z

305

Low cost alternative of high speed visible light camera for tokamak experiments  

SciTech Connect

We present design, analysis, and performance evaluation of a new, low cost and high speed visible-light camera diagnostic system for tokamak experiments. The system is based on the camera Casio EX-F1, with the overall price of approximately a thousand USD. The achieved temporal resolution is up to 40 kHz. This new diagnostic was successfully implemented and tested at the university tokamak GOLEM (R = 0.4 m, a = 0.085 m, B{sub T} < 0.5 T, I{sub p} < 4 kA). One possible application of this new diagnostic at GOLEM is discussed in detail. This application is tomographic reconstruction for estimation of plasma position and emissivity.

Odstrcil, T.; Grover, O.; Svoboda, V. [Czech Technical University in Prague, FNSPE, Brehova 7, CZ-115 19 Praha 1 (Czech Republic); Odstrcil, M.; Duran, I.; Mlynar, J. [Czech Technical University in Prague, FNSPE, Brehova 7, CZ-115 19 Praha 1 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Association Euratom-IPP.CR, Za Slovankou 3, CZ-182 00 Praha 8 (Czech Republic)

2012-10-15T23:59:59.000Z

306

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeings new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

307

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for precursor development (lignins, polymers) Belt conveyance for processing precursor in web format Multiple flow regimens in oxidation ovens Low-temperature furnace up to 1,000°C High-temperature furnace up to 2,000°C Flexible posttreatment for various resin systems Winding and packaging Carbon fiber is a strong, stiff, lightweight enabling material for improved performance in many applications. However, its use in cost-sensitive, high-volume industrial applications such as automobiles, wind energy, oil and gas, and infrastructure is limited because of today's relatively high price. Current methods for manufacturing carbon fiber

308

Low-Cost Silicon Solar Array Project quarterly report-2, July 1976--September 1976  

DOE Green Energy (OSTI)

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LCSSAP) was established in January 1975. The project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance objectives include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-three contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 42 kW of state-of-the-art modules have been delivered; contracts have been issued and design development has begun for 130 kW of moderately advanced modules. Efforts of the LCSSA Project are organized into an Analysis and Integration Task, four Technology Development Tasks--covering the areas of Silicon Material, Large Area Silicon Sheet, Encapsulation, and Automated Array Assembly--and a Large Scale Procurement Task, an Engineering Task, and an Operations Task. Research findings are discussed, and project planning is outlined.

Not Available

1976-01-01T23:59:59.000Z

309

Low-Cost Silicon Solar Array Project quarterly report-2, July 1976--September 1976  

SciTech Connect

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LCSSAP) was established in January 1975. The project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance objectives include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-three contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 42 kW of state-of-the-art modules have been delivered; contracts have been issued and design development has begun for 130 kW of moderately advanced modules. Efforts of the LCSSA Project are organized into an Analysis and Integration Task, four Technology Development Tasks--covering the areas of Silicon Material, Large Area Silicon Sheet, Encapsulation, and Automated Array Assembly--and a Large Scale Procurement Task, an Engineering Task, and an Operations Task. Research findings are discussed, and project planning is outlined.

1976-01-01T23:59:59.000Z

310

Low-Cost Silicon Solar Array Project. Quarterly report 3, October 1976--December 1976  

SciTech Connect

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LSSA) was established in January 1975. The activities and progress of the LSSA Project during the months of October, November, and December 1976 are described. The Project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance goals include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-seven contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 58 kW of state-of-the-art modules have been delivered; design development is under way for a second block of moderately advanced modules, and planning for subsequent module procurements has begun.

1976-01-01T23:59:59.000Z

311

Low-Cost Silicon Solar Array Project. Quarterly report 3, October 1976--December 1976  

DOE Green Energy (OSTI)

The potential for future widespread use of photovoltaic systems for the generation of electric power was the motivation for the establishment, in January 1975, of the Photovoltaic Conversion Program by ERDA's Division of Solar Energy. The Program's activities are planned to develop and to promote the use of photovoltaic systems to such an extent that the private sector will produce and utilize cost-competitive photovoltaic systems. As part of the ERDA Program, the Low-Cost Silicon Solar Array Project (LSSA) was established in January 1975. The activities and progress of the LSSA Project during the months of October, November, and December 1976 are described. The Project objective is to develop the national capability to produce low-cost, long-life photovoltaic arrays at a rate greater than 500 megawatts per year and a price of less than $500 per kilowatt peak by 1986. The array performance goals include an efficiency greater than 10% and an operating lifetime in excess of 20 years. The approach is to reduce the cost of solar cell arrays by improving solar array manufacturing technology and by increasing solar array production capacity and quantity. Forty-seven contracts have been awarded to date, to industrial firms and university and independent laboratories for experimental work, process development and analysis, technology assessment, and the production of solar-array modules. Approximately 58 kW of state-of-the-art modules have been delivered; design development is under way for a second block of moderately advanced modules, and planning for subsequent module procurements has begun.

Not Available

1976-01-01T23:59:59.000Z

312

Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders  

SciTech Connect

The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.

Dr. David M. Bowden; Dr. William H. Peter

2012-03-31T23:59:59.000Z

313

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

314

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

Science Conference Proceedings (OSTI)

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

315

NETL: News Release - Colorado Company Pursues Low-Cost, Low-Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

10, 2007 10, 2007 Colorado Company Pursues Low-Cost, Low-Impact Technology to Develop Nation's Oil Shale Resources DOE-Funded Research Targets America's Largest Potential Source of Oil WASHINGTON, DC - A U.S. Department of Energy-funded project has successfully demonstrated the viability of a new technology that could prove to be the key to unlocking America's largest potential source of oil. If ongoing research continues to confirm the technology's effectiveness, its application offers the potential to dramatically reduce costs and environmental impacts in the extraction of oil from oil shale. America holds more than three-fourths of the world's estimated 2.6 trillion barrels of oil-in-place of oil shale resources. As much as 1.1 trillion barrels of oil equivalent is believed to be recoverable in the richest single deposit - the Green River formation of Colorado, Utah, and Wyoming. That volume is almost 50 percent greater than the combined proved reserves of conventional oil in the entire Middle East.

316

Low cost/low intensity 50 MeV proton irradiation facility  

SciTech Connect

Protons have been proposed as one of the most useful particles for radiation therapy, but have found limited use due to the cost and scarcity of medium energy proton accelerators. However, the highly successful program on the Harvard Cyclotron has increased interest in expanding the number of treatment facilities. In order to demonstrate that high intensity proton accelerators are not required and to gain experience with treating patients using protons, a low cost and low intensity source of 50 MeV protons was developed at Argonne. Although the beam penetration is limited to 22 mm, the beam is capable of treating a major fraction of the ocular melanoma tumors treated at the Harvard Cyclotron. This beam operates parasitically with the Rapid Cycling Synchrotron at Argonne using a source of 50 MeV H/sup 0/ atoms which are produced by stripping in the gas of the 50 MeV H/sup -/ linear accelerator. A stripping fraction of about 3 to 5 x 10/sup -5/ is observed and yields a 0.4 namp beam of protons. Results on the properties and operation of this parasitic beam are presented. 5 refs., 3 figs.

Kramer, S.L.; Martin, R.L.

1985-01-01T23:59:59.000Z

317

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

SciTech Connect

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

318

Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites  

SciTech Connect

A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

Singh, M.; Levine, S.R.

1995-07-01T23:59:59.000Z

319

Low-cost, low-weight CNG cylinder development. Final report  

DOE Green Energy (OSTI)

This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

1999-09-01T23:59:59.000Z

320

Low-cost silicon solar array project. First annual report, January 1975--March 1976  

DOE Green Energy (OSTI)

The Low-Cost Silicon Solar Array Project (LSSA) was established to greatly reduce the price of solar arrays by the improvement of manufacturing technology, by adaptation of mass production techniques, and by helping achievement of user acceptance. The Project's approach includes the development of technology, its transfer by industry to commercial practice, the evaluation of the economics involved, and the stimulation of market growth. The activities and progress of the LSSA Project during its first year are described in this document which covers all Project activities, with primary emphasis on the technical plans and accomplishments. The development of manufacturing technology is now and will continue to be performed principally by industries and universities. To date, 24 contractors are working on new silicon-refinement processes, silicon-sheet-growth techniques, encapsulants, and automated-assembly studies. Nine more contractors have been selected to perform additional technology investigations and their contracts are being negotiated. Additional contracts will be issued in the future as promising ideas appear. (WDM)

Not Available

1976-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime  

SciTech Connect

The overall objective of the program was to demonstrate a 98% or greater reflective, highly diffuse, low-cost composite material that significantly improves luminaire efficiency, is able to withstand 50,000 hours or greater luminaire operation under expected LED system thermal and environmental operating extremes and meets the cost targets required to be an effective commercial solution for the Solid State Lighting industry. This project met most of the goals defined and contributed to the understanding of high reflectance, white coatings. Research under this program increased the understanding of coatings development using particle size reduction techniques and preparation of coating solutions with a broad range of particle types. The research explored scale-up of coating systems and generated understanding of processing required for high volume manufacturing applications. The work demonstrated how coating formulation and application technique can translate to material durability and LED system lifetime. The research also demonstrated improvements in lighting efficiency to be gained using high reflectance white coatings.

Teather, Eric

2013-02-15T23:59:59.000Z

322

Method for producing low-cost, high volume hydrogen from hydrocarbon sources  

DOE Patents (OSTI)

A method is described for the conversion of naturally-occurring or biomass-derived lower to higher hydrocarbon (C{sub x}H{sub y},where x may vary from 1--3 and y may vary from 4--8) to low-cost, high-volume hydrogen. In one embodiment, methane, the major component of natural gas, is reacted in a single reaction zone of a mixed-conducting ceramic membrane reactor to form hydrogen via simultaneous partial oxidation and water gas shift reactions at temperatures required for thermal excitations of the mixed-conducting membranes. The hydrogen is produced by catalytically reacting the hydrocarbon with oxygen to form synthesis gas (a mixture of carbon monoxide and hydrogen), followed by a water gas shift (WGS) reaction with steam, wherein both reactions occur in a single reaction zone having a multi-functional catalyst or a combination of catalysts. The hydrogen is separated from other reaction products by membrane-assisted transport or by pressure-swing adsorption technique. Membrane-assisted transport may occur via proton transfer or molecular sieving mechanisms.

Bose, Arun C.; Balachandran, Uthamalinga; Kleerfisch, Mark S.; Udovich, Carl A.; Stiegel, Gary J.

1997-12-01T23:59:59.000Z

323

An Exploratory Initiative for Improving Low-Cost Housing in Texas  

E-Print Network (OSTI)

In 1996 the Real Estate Center at Texas A&M University released a report indicating that the population of Texas would double in the next 30 years and that a majority of the 18 million new Texans would be have low to very-low incomes. In order to house that many low income persons, it is apparent that a significant number of affordable housing units must be built in a relatively short time frame. Based on these predictions, our interdisciplinary team made a proposal in the Texas Engineering Experiment Station (TEES) Strategic Initiatives Program to explore technologies related to the production of affordable housing. The purpose of the work is to identify opportunities for research into systems, materials, and processes that might contribute to the development of a low-cost housing industry in Texas that could meet state housing needs and might create export possibilities. The proposal was funded by the Texas Engineering Experiment Station, the Center for Housing and Urban Development, and the College of Architecture Research Fund. This report summarizes the results of the effort.

McKittrick, T. L.; Haberl, J. S.; Graham, C. W.; Claridge, D. E.; Swain, W. B.

2000-01-01T23:59:59.000Z

324

Sensing from the basement: a feasibility study of unobtrusive and low-cost home activity recognition  

E-Print Network (OSTI)

The home deployment of sensor-based systems offers many opportunities, particularly in the area of using sensor-based systems to support aging in place by monitoring an elders activities of daily living. But existing approaches to home activity recognition are typically expensive, difficult to install, or intrude into the living space. This paper considers the feasibility of a new approach that reaches into the home via the existing infrastructure. Specifically, we deploy a small number of low-cost sensors at critical locations in a homes water distribution infrastructure. Based on water usage patterns, we can then infer activities in the home. To examine the feasibility of this approach, we deployed real sensors into a real home for six weeks. Among other findings, we show that a model built on microphone-based sensors that are placed away from systematic noise sources can identify 100 % of clothes washer usage, 95 % of dishwasher usage, 94 % of showers, 88 % of toilet flushes, 73 % of bathroom sink activity lasting ten seconds or longer, and 81 % of kitchen sink activity lasting ten seconds or longer. While there are clear limits to what activities can be detected when analyzing water usage, our new approach represents a sweet spot in the tradeoff between what information is collected at what cost.

James Fogarty

2006-01-01T23:59:59.000Z

325

Low-cost photovoltaic inverters incorporating application-specific integrated circuits  

SciTech Connect

The positive impact of designing a power conditioner control system for photovoltaic applications with an application-specific integrated circuit (ASIC) as the main control element was demonstrated with detailed computer simulations in Phase I of a two phase Small Business Innovative Research Grant issued by the US Department of Energy. Completion of the design, building and testing of three prototypes using different power semiconductors was successfully accomplished in Phase II. The power rating for the residential utility intertied Sunverters Model 753-4-200 is 5 kW. A stand-alone inverter suitable for operation from a photovoltaic array with or without a battery for energy storage was also developed in this effort. A much needed intermediate power level 50-kW three-phase power conditioner, Sunverter Model 759-4-200, was the third product to evolve from the research and development. All designs take advantage of the ASIC and a complementary microprocessor sampled-data control system. The ASIC-controlled power conditioners provide the high reliability, high efficiency, and low cost needed for photovoltaic applications. They cover the power range from the residential level to utility-sized installations.

O`Sullivan, G.A. [Abacus Controls, Inc., Somerville, NJ (United States); O`Sullivan, J.A. [Washington Univ., St. Louis, MO (United States)

1993-10-01T23:59:59.000Z

326

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

DOE Green Energy (OSTI)

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

327

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

SciTech Connect

Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-04-01T23:59:59.000Z

328

Design, construction and testing of a high-vacuum anneal chamber for in-situ crystallisation of silicon thin-film solar cells.  

E-Print Network (OSTI)

??Thin-film solar cells on glass substrates are likely to have a bright future due to the potentially low costs and the short energy payback times. (more)

Weber, Jrgen Wolfgang

2006-01-01T23:59:59.000Z

329

Monitored Energy Performance of Electrochromic Windows Controlled for  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitored Energy Performance of Electrochromic Windows Controlled for Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort Title Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort Publication Type Conference Paper LBNL Report Number LBNL-58912 Year of Publication 2005 Authors Lee, Eleanor S., Dennis L. DiBartolomeo, Joseph H. Klems, Mehry Yazdanian, and Stephen E. Selkowitz Conference Name 2006 ASHRAE Annual Meeting Date Published 06/2006 Conference Location Quebec City, Canada Call Number LBNL-58912 Abstract A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10-15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0-3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44-11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

330

Solar cells with low cost substrates and process of making same  

SciTech Connect

A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

Mitchell, Kim W. (Indian Hills, CO)

1984-01-01T23:59:59.000Z

331

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

332

Ranking low cost sorbents for mercury capture from simulated flue gases  

Science Conference Proceedings (OSTI)

Coal fired utility boilers are the largest anthropogenic source of mercury release to the atmosphere, and mercury abatement legislation is already in place in the USA. The present study aimed to rank low cost mercury sorbents (char and activated carbon from the pyrolysis of scrap tire rubber and two coal fly ashes from UK power plants) against Norit Darco HgTM for mercury retention by using a novel bench-scale reactor. In this scheme, a fixed sorbent bed was tested for mercury capture efficiency from a simulated flue gas stream. Experiments with a gas stream of only mercury and nitrogen showed that while the coal ashes were the most effective in mercury capture, char from the pyrolysis of scrap tire rubber was as effective as the commercial sorbent Norit Darco HgTM. Tests conducted at 150{sup o}C, with a simulated flue gas mix that included N{sub 2}, NO, NO{sub 2}, CO{sub 2}, O{sub 2}, SO{sub 2} and HCl, showed that all the sorbents captured approximately 100% of the mercury in the gas stream. The introduction of NO and NO{sub 2} was found to significantly improve the mercury capture, possibly by reactions between NOx and the mercury. Since the sorbents' efficiency decreased with increasing test temperature, physical sorption could be the initial step in the mercury capture process. As the sorbents were only exposed to 64 ng of mercury in the gas stream, the mercury loadings on the samples were significantly less than their equilibrium capacities. The larger capacities of the activated carbons due to their more microporous structure were therefore not utilized. Although the sorbents have been characterized by BET surface area analysis and XRD analysis, further analysis is needed in order to obtain a more conclusive correlation of how the characteristics of the different sorbents correlate with the observed variations in mercury capture ability. 34 refs., 8 figs., 6 tabs.

H. Revata Seneviratne; Cedric Charpenteau; Anthe George; Marcos Millan; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

333

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

334

Investigation of low-cost LNG vehicle fuel tank concepts. Final report  

DOE Green Energy (OSTI)

The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-02-01T23:59:59.000Z

335

A novel low-cost, limited-resource approach to autonomous multi-robot exploration and mapping  

Science Conference Proceedings (OSTI)

Mobile robots are becoming more heavily used in environments where human involvement is limited, impossible, or dangerous. These robots perform some of the more laborious human tasks on Earth and throughout the solar system, simultaneously saving resources ... Keywords: Distributed robots, Low-cost SLAM, Mobile robots, Multi-robot team, Planetary exploration

Christopher M. Gifford; Russell Webb; James Bley; Daniel Leung; Mark Calnon; Joseph Makarewicz; Bryan Banz; Arvin Agah

2010-02-01T23:59:59.000Z

336

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network (OSTI)

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

337

A fast-developing and low-cost characterization and test environment for a double axis resonating micromirror  

Science Conference Proceedings (OSTI)

Testing and characterization of micro-electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) can be very challenging due to the multi-domain nature of these devices. Nowadays high volume, high-cost, and accurate measuring ... Keywords: Fast-developing, Low-cost characterization, MOEMS, Microelectromechanical systems (MEMS), Micromirror, Testing

Francesco Battini; Emilio Volpi; Eleonora Marchetti; Tommaso Cecchini; Francesco Sechi; Luca Fanucci; Ulrich Hofmann

2010-11-01T23:59:59.000Z

338

The Impact of Overhang Designs on the Performance of Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Overhang Designs on the Performance of Electrochromic Windows The Impact of Overhang Designs on the Performance of Electrochromic Windows Title The Impact of Overhang Designs on the Performance of Electrochromic Windows Publication Type Conference Paper LBNL Report Number LBNL-57020 Year of Publication 2005 Authors Tavil, Aslihan, and Eleanor S. Lee Conference Name ISES 2005 Solar World Congress Date Published 08/2005 Conference Location Orlando, FL Call Number LBNL-57020 Abstract In this study, various facade designs with overhangs combined with electrochromic window control strategies were modeled with a prototypical commercial office building in a hot and cold climate using the DOE 2.1E building energy simulation program. Annual total energy use (ATE), peak electric demand (PED), average daylight illuminance (DI), and daylight glare index (DGI) were computed and compared to determine which combinations of fa?ade design and control strategies yielded the greatest energy efficiency, daylight amenity, and visual comfort.

339

Preliminary Assessment of the Energy-Saving Potential of Electrochromic Windows in Residential Buildings  

Science Conference Proceedings (OSTI)

Electrochromic windows provide variable tinting that can help control glare and solar heat gain. We used BEopt software to evaluate their performance in prototypical energy models of a single-family home.

Roberts, D. R.

2009-12-01T23:59:59.000Z

340

Novel CdTe Cell Fabrication Process with Potential for Low Cost and High Throughput  

DOE Green Energy (OSTI)

There are several production disadvantages inherent in the conventional SnO(2)/CdS/CdTe manufacturing processes. In this paper, we report a novel manufacturing process for fabrication of polycrystalline Cd(2)SnO(4)/Zn(2)/SnO(4)/CdS/CdTe thin-film solar cells that yielded a CdS/CdTe device with an NREL-confirmed efficiency of 14.0%.

Wu, X.; Sheldon, P.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

342

ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes  

SciTech Connect

By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.

David P. Norton; Stephen Pearton; Fan Ren

2007-09-30T23:59:59.000Z

343

Low-cost flexible packaging for high-power Li-Ion HEV batteries.  

DOE Green Energy (OSTI)

Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL), in collaboration with several industrial partners, is working on low-cost flexible packaging as an alternative to the packaging currently being used for lithium-ion batteries [1,2]. This program is funded by the FreedomCAR & Vehicle Technologies Office of the U.S. Department of Energy. (It was originally funded under the Partnership for a New Generation of Vehicles, or PNGV, Program, which had as one of its mandates to develop a power-assist hybrid electric vehicle with triple the fuel economy of a typical sedan.) The goal in this packaging effort is to reduce the cost associated with the packaging of each cell several-fold to less than $1 per cell ({approx} 50 cells are required per battery, 1 battery per vehicle), while maintaining the integrity of the cell contents for a 15-year lifetime. Even though the battery chemistry of main interest is the lithium-ion system, the methodology used to develop the most appropriate laminate structure will be very similar for other battery chemistries.

Jansen, A. N.; Amine, K.; Henriksen, G. L.

2004-06-18T23:59:59.000Z

344

Low Cost High Performance Generator Technology Program. Volume 5. Heat pipe topical, appendices  

SciTech Connect

Work performed by Dynatherm Corporation for Teledyne Isotopes during a program entitled ''Heat Pipe Fabrication, Associated Technical Support and Reporting'' is reported. The program was initiated on November 29, 1972; the main objectives were accomplished with the delivery of the heat pipes for the HPG. Life testing of selected heat pipe specimens is continuing to and beyond the present date. The program consisted of the following tasks: Heat Pipe Development of Process Definition; Prototype Heat Pipes for Fin Segment Test; HPG Heat Pipe Fabrication and Testing; Controlled Heat Pipe Life Test; and Heat Pipe Film Coefficient Determination. (TFD)

1975-07-01T23:59:59.000Z

345

Low Cost High Performance Generator Technology Program. Volume 5. Heat pipe topical, appendices  

DOE Green Energy (OSTI)

Work performed by Dynatherm Corporation for Teledyne Isotopes during a program entitled ''Heat Pipe Fabrication, Associated Technical Support and Reporting'' is reported. The program was initiated on November 29, 1972; the main objectives were accomplished with the delivery of the heat pipes for the HPG. Life testing of selected heat pipe specimens is continuing to and beyond the present date. The program consisted of the following tasks: Heat Pipe Development of Process Definition; Prototype Heat Pipes for Fin Segment Test; HPG Heat Pipe Fabrication and Testing; Controlled Heat Pipe Life Test; and Heat Pipe Film Coefficient Determination. (TFD)

Not Available

1975-07-01T23:59:59.000Z

346

MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL  

SciTech Connect

Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

DR. DEVIN MACKENZIE

2011-12-13T23:59:59.000Z

347

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

348

NETL: IEP – Post-Combustion CO2 Emissions Control - A Low-Energy, Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents Project No.: FG02-06ER84592 SBIR Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus AIL Research, Inc. (AIL) is in the second phase of a small business initiative research (SBIR) project that is assessing the economic and technical feasibility of a carbon dioxide (CO2) stripper that uses an internally heated contactor. The project will determine whether the construction of the internally heated contactor is compatible with the operating conditions of a monoethanolamine stripper and an advanced scrubber (e.g., one that uses a mixture of potassium carbonate and piperazine) and it will also determine the maintenance procedures required

349

ESS 2012 Peer Review - Low Cost, High Performance and Long Life Flow Battery Electrodes - Tom Stepien, Primus Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

With ARPA-E we optimized With ARPA-E we optimized * Adhesion * Current density * Duration * Catalytic coatings * Voltaic performance Goals * Cost-effectiveness * High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has enabled Primus Power to create an innovative and technically advanced electrode Electrode Zinc Plating This, combined with our other advances has enabled us to create a unique flow battery system with ...  Low cost electrodes  Long life  High efficiency  Flexibility For...  Ubiquitous  Dispatchable  Cost effective ... grid-scale electrical energy storage to: * Accelerate renewable

350

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

351

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Monitoring Speaker(s): Igor Paprotny Date: November 12, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Lara Gundel Air-microfluidic devices that monitor particles suspended in air, as opposed to liquids, can dramatically reduce the size and cost of future air-quality sensors. The use of microelectromechanical systems (MEMS) technologies and wafer-scale integration permits the inclusion of many different sensors onto a small footprint. Benefits of air-microfluidics are many. For example, air-microfluidic lab-on-a-chip devices can be used as portable sensors for tracking individual exposure to airborne pollutants. Such sensors will enable linking exposure and biometric information to

352

ESS 2012 Peer Review - Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries - Fei Wang, EIC Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey Street, Norwood, MA 02062. www.eiclabs.com Identification of the Problem and Technical Approach Redox flow batteries (RFB) hold great promise for large scale electrochemical energy storage. A critical component of RFB is the membrane which separates anode and cathode compartments. The current state-of-the-art membrane, NAFION is too expensive, lacks selectivity, permitting leakage between anode and cathode electrolyte compartments. EIC is developing a novel bilayer, interpenetrating network membrane. Thin Nafion layer for anode side protection providing oxidative stability. The bulk part of the membrane consists of a block

353

Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling  

SciTech Connect

GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulationif its not kept to a low level, it could ultimately lead the insulation to fail. GEs low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

None

2012-02-24T23:59:59.000Z

354

Testing the normality of the gravitational wave data with a low cost recursive estimate of the kurtosis  

E-Print Network (OSTI)

We propose a monitoring indicator of the normality of the output of a gravitational wave detector. This indicator is based on the estimation of the kurtosis (i.e., the 4th order statistical moment normalized by the variance squared) of the data selected in a time sliding window. We show how a low cost (because recursive) implementation of such estimation is possible and we illustrate the validity of the presented approach with a few examples using simulated random noises.

E. Chassande-Mottin

2002-12-02T23:59:59.000Z

355

The development of low cost LiFePO4-based high power lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

356

Multi-layer electrode for high contrast electrochromic devices  

DOE Patents (OSTI)

An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.

Schwendeman, Irina G. (Wexford, PA); Finley, James J. (Pittsburgh, PA); Polcyn, Adam D. (Pittsburgh, PA); Boykin, Cheri M. (Wexford, PA)

2011-11-01T23:59:59.000Z

357

Low-cost CuInSe[sub 2] submodule development  

DOE Green Energy (OSTI)

Aim of this project is development and demonstration of processing steps necessary for fabrication of high efficiency CuInSe[sub 2] solar cells and sub-modules by the two-stage technique (also called the selenization method.) During this period, we have optimized the processing parameters of this method and demonstrated CuInSe[sub 2]/CdS/ZnO devices with a 1[endash]4 cm[sup 2] area and up to 12.4% active area efficiency. We have also developed a novel approach for the preparation of Cu/In precursors that improved the stoichiometric and morphological uniformity in these films. We have developed processing steps and tooling for handling up to 1 ft[sup 2] size substrates and as a result of these efforts demonstrated our first monolithically integrated sub-module of 1 ft[sup 2] area. 16 figs, 1 tab, 15 refs.

Basol, B.M.; Kapur, V.K.; Halani, A.; Leidholm, C. (International Solar Electric Technology, Inglewood, CA (United States))

1992-10-01T23:59:59.000Z

358

Low-cost process for P-N junction-type solar cell  

DOE Green Energy (OSTI)

Spray pyrolysis of CuInS/sub 2/ was studied. The concentrations of copper and sulfur in the spray solutions were increased so as to increase the copper content of the films to the stoichiometric level. Although Auger analysis indicates that this was successful, x ray microanalysis has identified the growth of copper-rich crystals on the surfaces of the deposit. Heat treatment in H/sub 2/S did not improve the stoichiometry. The copper-rich crystals were also found on a sample sprayed from a solution with no excess copper. Heterojunctions of glass/SnO/sub 2/(Sb)/CdS/CdTe/carbon(Cu)/Ag-In were prepared with a number of methods used to restrict the junction. The various devices failed to exhibit a diode characteristic or a photo-response. Work on this project is being directed toward understanding the type of junction and how it is formed.

Mooney, J.B.; Cubicciotti, D.D.; Bates, C.W. Jr.

1980-03-01T23:59:59.000Z

359

The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process  

Science Conference Proceedings (OSTI)

The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

2008-06-24T23:59:59.000Z

360

The energy performance of electrochromic windows in heating-dominated geographic locations  

Science Conference Proceedings (OSTI)

This paper presents the results of a study investigating the energy performance of electrochromic windows in heating-dominated geographic locations under a variety of state-switching control strategies. The authors used the DOE-2.1E energy simulation program to analyze the annual heating, cooling and lighting energy use and performance as a function of glazing type, size, and electrochromic control strategy. They simulated a prototypical commercial office building module located in Madison, Wisconsin. Control strategies analyzed were based on daylight illuminance, incident total solar radiation, and space cooling load. The results show that overall energy performance is best if the electrochromic is left in its clear or bleached state during the heating season, but controlled during the cooling season using daylight illuminance as a control strategy. Even in such heating dominated locations as madison, there is still a well-defined cooling season when electrochromic switching will be beneficial. However, having the electrochromic remain in its bleached state during the winter season may result in glare and visual comfort problems for occupants much in the same way as conventional glazings.

Sullivan, R.; Lee, E.S.; Rubin, M.; Selkowitz, S.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Develop safe, low-cost method of manufacturing rechargeable, high conductivity lithium batteries. Final report  

DOE Green Energy (OSTI)

The focus of much of this work is the rechargeable lithium battery, because of its high energy density, and the use of solid polymer electrolytes (SPE`s) for ease of fabrication and lightness of weight. The classical solid polymer electrolyte is based on the use of salts such as lithium triflate dissolved in poly(ethylene oxide) (PEO) or poly(propylene oxide). This specific polymer electrolyte has severe limitations. Poly(ethylene oxide) is a microcrystalline polymer at 25 C, and ion migration occurs only in the 20--30% of the material that is amorphous. Useable conductivities (10{sup {minus}5} S/cm) can be achieved only when the material is heated above 80 C. Two approaches to generate higher electrolyte conductivities at ambient temperatures are being developed. In the first, organic solvents are added to the polymer to plasticize it and dissolve the microcrystallites. This increases the conductivity but raises the possibility of fires if the battery casing ruptures during high charge or discharge conditions or when the device is punctured by impact. The alternative is to design new polymers that are good solid electrolyte media but which are completely amorphous and have low glass transition temperatures. Such a polymer is MEEP (poly[bis(methoxyethoxy)phosphazene]), first synthesized in the author`s laboratories. The main objective was to develop crosslinking methods for MEEP which could be used on a mass production scale to produce thin film rechargeable lithium batteries. A further objective was to assemble working energy storage devices to investigate the feasibility that this system could be developed commercially.

Allcock, H.R.

1997-12-01T23:59:59.000Z

362

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

DOE Green Energy (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

363

The development of low cost LiFePO4-based high power lithium-ion batteries  

DOE Green Energy (OSTI)

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

364

The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks.  

E-Print Network (OSTI)

electrolyte reservoirs for increased long-term baseline stability, and larger integral batteries allowing operation for in excess of 3 months without intervention. In this case sensors were sealed with rubber O-rings on the bottom of the enclosure behind a... The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks. M. I. Mead1*, O.A.M. Popoola1, G. B. Stewart1, P. Landshoff3, M. Calleja2, M. Hayes2, J. J. Baldovi1, T. F. Hodgson1, M. W. McLeod1, J. Dicks4...

Mead, M I; Popoola, O A M; Stewart, G B; Landshoff, P; Calleja, M; Hayes, M; Baldovi, J J; Hodgson, T F; McLeod, M W; Dicks, J; Lewis, A; Cohen, J; Baron, R; Saffell, J R; Jones, R L

365

Design and engineering of low-cost centimeter-scale repeatable and accurate kinematic fixtures for nanomanufacturing equipment using magnetic preload and potting  

E-Print Network (OSTI)

This paper introduces a low-cost, centimeter-scale kinematic coupling fixture for use in nanomanufacturing equipment. The fixture uses magnetic circuit design techniques to optimize the magnetic preload required to achieve ...

Watral, Adrienne

2011-01-01T23:59:59.000Z

366

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

367

Finished Prokaryotic Genome Assemblies from a Low-cost Combination of Short and Long Reads (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)  

Science Conference Proceedings (OSTI)

Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Yin, Shuangye (Broad Institute)

2012-06-01T23:59:59.000Z

368

Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH/sub 4/. Low cost silicon solar array project, Task I. Quarterly progress report, July 1976--October 1976  

DOE Green Energy (OSTI)

The study of a process for the low cost production of silane included laboratory investigations of the kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst. The hydrogenation of SiCl/sub 4/ to form HSiCl/sub 3/ and the direct synthesis of H/sub 2/SiCl/sub 2/ from HCl gas and metallurigical silicon metal were also studied. The purification of SiH/sub 4/ using activated carbon adsorbent was studied along with a process for storing SiH/sub 4/ adsorbed on carbon. The latter makes possible a higher volumetric efficiency than the current practice of compressed gas storage. The mini-plant designed to produce ten pounds per day of SiH/sub 4/ is nearly complete, a detailed description of the unit and its essential design features are given.

Breneman, W.C.; Mui, J.Y.P.

1976-10-15T23:59:59.000Z

369

Evaluation of integrated wall systems incorporating electrochromic windows [Final report  

SciTech Connect

Billions of dollars are spent annually in the U.S. on energy lost through the use of inefficient windows. Even wall systems with advanced static glazings and moveable shading devices are not optimal because they can't effectively respond to changing solar conditions. Electrochromic (EC) smart windows can dynamically control the amount of solar light and heat entering a building. The energy saving performance of fully dynamic wall systems containing EC windows was compared with that of static systems using the DOE 2.1E building simulation program. Total costs for different scenarios were computed. SAGE demonstrated the capability to produce double pane EC windows in which the transmittance repeatedly varied between 2-58%. Relative impact of EC glazings in buildings compared to static is 10-20% energy savings across all climatic regions investigated. Significant life cycle cost savings are predicted for SAGE's EC windows when compared to conventional solar control windows over an estimated product lifetime of 20 years.

Sbar, Neil L.

2001-03-30T23:59:59.000Z

370

Evaluation of integrated wall systems incorporating electrochromic windows [Final report  

DOE Green Energy (OSTI)

Billions of dollars are spent annually in the U.S. on energy lost through the use of inefficient windows. Even wall systems with advanced static glazings and moveable shading devices are not optimal because they can't effectively respond to changing solar conditions. Electrochromic (EC) smart windows can dynamically control the amount of solar light and heat entering a building. The energy saving performance of fully dynamic wall systems containing EC windows was compared with that of static systems using the DOE 2.1E building simulation program. Total costs for different scenarios were computed. SAGE demonstrated the capability to produce double pane EC windows in which the transmittance repeatedly varied between 2-58%. Relative impact of EC glazings in buildings compared to static is 10-20% energy savings across all climatic regions investigated. Significant life cycle cost savings are predicted for SAGE's EC windows when compared to conventional solar control windows over an estimated product lifetime of 20 years.

Sbar, Neil L.

2001-03-30T23:59:59.000Z

371

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

372

Development of standardized, low-cost AC PV systems. Phase I annual report, 7 September 1995--7 November 1996  

DOE Green Energy (OSTI)

The objectives of this two-year program are to improve the reliability and safety and reduce the cost of installed grid-connected PV systems by creating standardized, pre-engineered components and an enhanced, low-cost, 250-Watt micro inverter. These advances will be combined with the new, large area Solarex MSX-240 PV module resulting in standard, modular AC PV {open_quotes}building blocks{close_quotes} used to create utility-interactive PV systems as small as one module to many thousands of modules to suit virtually any application. AC PV building blocks will be developed to meet the requirements of the U.S., Japanese and European markets.

Strong, S.J.; Wohlgemuth, J.H.; Kaelin, M.

1997-06-01T23:59:59.000Z

373

4th Responsive Space Conference RS4-2006-3003 Low-Cost Responsive Exploitation of Space by  

E-Print Network (OSTI)

This paper addresses advantages and educational values of ultra-small satellite development. In particular, the space-based techniques in designing and manufacturing the HAUSAT (Hankuk Aviation University SATellite) ultra-small satellite series, being developed by SSRL (Space System Research Lab.) of Hankuk Aviation University, are highlighted. These ultra-small satellites can be utilized as a space technology test bed. HAUSAT-2 is intended to be a verification platform for the Koreas first spaceborne star tracker and a GPS receiver. New technologies for ultra-small satellites, such as solar cell laydown, plug-andplay type Bus Electronics Unit (BEU), attitude control method, and energy balance analysis of body-mounted solar panels, were implemented on HAUSAT-1 and 2. Engineering skills and technologies obtained by the process of programs such as these will be an enabler for the responsive space that will leverage the low cost, high efficiency ultra-small satellites. 1

Hausat- Nano Satellite; Young-keun Chang; Suk-jin Kang; Byoung-young Moon; Byung-hun Lee; Byung-hun Lee

2006-01-01T23:59:59.000Z

374

Research and development of low cost processes for integrated solar arrays. Final report, April 15, 1974--January 14, 1976  

DOE Green Energy (OSTI)

Results of a program to study process routes leading to a low cost large area integrated silicon solar array manufacture for terrestrial applications are reported. Potential processes for the production of solar-grade silicon are evaluated from thermodynamic, economic, and technical feasibility points of view. Upgrading of the present arc-furnace process is found most favorable. Experimental studies of the Si/SiF/sub 4/ transport and purification process show considerable impurity removal and reasonable transport rates. Silicon deformation experiments indicate production of silicon sheet by rolling at 1350/sup 0/C is feasible. Significant recrystallization by strain-anneal technique has been observed. Experimental recrystallization studies using an electron beam line source are discussed. A maximum recrystallization velocity of approximately 9 m/hr is calculated for silicon sheet. A comparative process rating technique based on detailed cost analysis is presented.

Graham, C.D.; Kulkarni, S.; Louis, E.

1976-05-01T23:59:59.000Z

375

Modelling, simulation and analysis of low-cost direct torque control of PMSM using hall-effect sensors  

E-Print Network (OSTI)

This thesis focuses on the development of a novel Direct Torque Control (DTC) scheme for permanent magnet (PM) synchronous motors (surface and interior types) in the constant torque region with the help of cost-effective hall-effect sensors. This method requires no DC-link sensing, which is a mandatory matter in the conventional DTC drives, therefore it reduces the cost of a conventional DTC of a permanent magnet (PM) synchronous motor and also removes common problems including; resistance change effect, low speed and integration drift. Conventional DTC drives require at least one DC-link voltage sensor (or two on the motor terminals) and two current sensors because of the necessary estimation of position, speed, torque, and stator flux in the stationary reference frame. Unlike the conventional DTC drive, the proposed method uses the rotor reference frame because the rotor position is provided by the three hall-effect sensors and does not require expensive voltage sensors. Moreover, the proposed algorithm takes the acceleration and deceleration of the motor and torque disturbances into account to improve the speed and torque responses. The basic theory of operation for the proposed topology is presented. A mathematical model for the proposed DTC of the PMSM topology is developed. A simulation program written in MATLAB/SIMULINK?® is used to verify the basic operation (performance) of the proposed topology. The mathematical model is capable of simulating the steady-state, as well as dynamic response even under heavy load conditions (e.g. transient load torque at ramp up). It is believed that the proposed system offers a reliable and low-cost solution for the emerging market of DTC for PMSM drives. Finally the proposed drive, considering the constant torque region operation, is applied to the agitation part of a laundry washing machine (operating in constant torque region) for speed performance comparison with the current low-cost agitation cycle speed control technique used by washing machine companies around the world.

Ozturk, Salih Baris

2005-12-01T23:59:59.000Z

376

Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers  

SciTech Connect

A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

2008-05-15T23:59:59.000Z

377

Solid-state electrochromic switchable window glazings, FY 1984 progress report  

SciTech Connect

Multilayer, solid-state electrochromic coatings have been prepared and characterized. The electrochromic activity is based on hydrogen-ion insertion into a microcrystalline tungsten oxide (H/sub x/WO/sub y/) layer from a hydrated microcrystalline magnesium fluoride layer. The coatings typically consist of four layers deposited sequentially onto glass: transparent conductor (tin-doped indium oxide, ITO) 330 nm; electrochromic material (H/sub x/WO/sub y/) 500 nm; hydrated fast-ion conductor/electron current blocking layer (MgF/sub 2/) 100 nm; and transparent conductor (gold) 13 nm. Solar-weighted and photopic-weighted optical properties are reported for individual layers and complete multilayer coatings. The electrooptic response of complete solid-state coatings is also reported. Maximum transmittance through the four layer coatings with gold conductive layers was limited to 32% solar and 56% visible. Replacing the gold conductive layer with a tin-doped indium oxide layer increased the maximum transmittance to 59% solar and 64% visible but impaired the electrochromic response. Large area coatings were fabricated (700 cm/sup 2/) and shown to operate in the same manner as the 12 cm/sup 2/ test specimens. Preliminary analyses were made of possible production costs and possible energy savings benefits which would be derived from optimal use of such switchable window coatings.

Benson, D.K.; Tracy, C.E.; Ruth, M.R.

1986-04-01T23:59:59.000Z

378

Establishment of the feasibility of a process capable of low cost, high volume production of silane (Phase I), and the pyrolysis of silane to semiconductor-grade silicon (Phase II). Low Cost Silicon Solar Array Project, Task I. Quarterly progress report, April--June 1977  

DOE Green Energy (OSTI)

The purpose of this program is to establish the practicality of a process for the high volume, low cost production of silane and its subsequent pyrolysis into a semi-conductive grade silicon metal. A small process develop unit for producing silane from dichlorosilane (DCS) using a tertiary amine functional ion exchange resin as a catalyst for a redistribution reaction has been operated successfully on what is now a routine basis. High quality silane has been produced in good yield and limiting equipment size has been identified. The silane gas product is essentially free of foreign compounds (to 5 ppM detection limit) and produces a silicon epitaxial film with a resistivity of 20 ohm cm and very strong ''N'' type character. Epi film quality was very good. The overall yield of silane was 92% of theory. The production rate, limited by the 2.66 cm diameter distillation column, was 112 g/hr. Design of a silicon tetrachloride (STC) hydrogenation reactor used to convert co-product STC to trichlorosilane has been completed and fabrication and installation are underway, as is a modification of the silane unit to permit use of trichlorosilane as feed, producing STC and silane. The production of silicon by the pyrolysis of silane is currently being accomplished in a free space reactor. The free space reactor product is a very fine powder which is then consolidated by melting. The melt is cast into rods. Analysis of the product from earlier experiments indicated that metal or graphite liners in the reaction chamber region resulted in product contamination. A quartz liner is currently being evaluated in the reaction chamber. Other identified contamination sources are air borne particles and contamination during melting and/or casting.

Breneman, W.C.; Farrier, E.G.; Mui, J.Y.P.; Rexer, J.

1977-10-01T23:59:59.000Z

379

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

380

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Quarterly progress report, April--June 1978. Low cost silicon solar array project  

DOE Green Energy (OSTI)

The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the feasibility and cost of manufacturing semiconductor grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and in a free space reactor. The process design program is to provide JPL with engineering and economic parameters for an experimental unit sized for 25 metric tons of silicon per year and a product-cost estimate for silicon produced on a scale of 100 metric tons per year. The purpose of the capacitive fluid-bed heating program is to explore the feasibility of using electrical capacitive heating to control the fluidized silicon-bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model was developed for use in the design of a fluid-bed pyrolysis scheme. Progress is reported in each of these areas. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH/sub 4/. Low cost silicon solar array project, Task I. Quarterly progress report, October 1, 1976--December 31, 1976  

DOE Green Energy (OSTI)

In the study of a process for the low cost, high volume production of silane (SiH/sub 4/) via redistribution of chlorohydrosilanes, the longevity and nature of the amine functional ion exchange resin catalyst was investigated. A modest decline in catalyst activity appears to be the result of loss of amine function during the initiallizing period. Long term activity remains quite high. In preparation for additional studies, deuterium labeled trichlorosilane is being prepared. The nominally 5 kg/day silane-from-dichlorosilane mini-plant has been constructed, leak tested and conditioned for start up. Approval for operation from a Pre-start Up Safety Review Team has been received in conjunction with an approved flameless method for venting silane. Laboratory studies of the hydrogenation of silicon tetrachloride co-product of the silane process are continuing along with the design of a mini-plant scale unit capable of pressurized operation. Preliminary design of a maxi-plant to integrate the entire process is also underway.

Breneman, W.C.; Mui, J.Y.P.

1977-01-01T23:59:59.000Z

382

Low cost sprayed CdTe solar cell research. Second quarterly report, November 15, 1979-February 14, 1980  

DOE Green Energy (OSTI)

A comprehensive series of experiments was performed with the aim of optimizing parameters in the chemical spray deposition (CSD) of CdTe thin films. Two approaches have shown great promise. X-ray diffraction analysis has shown that CdTe can be produced from solutions containing CdCl/sub 2/ and (NH/sub 4/)TeO/sub 4/ with either hydrazine dihydrochloride or oxalic acid as the reducing agent. Films produced from the oxalic acid experiments have yielded encouraging infrared scans, and as a result this approach has received the most effort. In addition, good quality, photoconductive, CdS films have been produced via traditional methods and characterized using optical and electrical measurements. Overall film uniformity for both CdS and CdTe has been improved by the installation of a stainless steel, gravity fed, spray nozzle and mechanical linkage.

Sienkiewicz, P.; Lis, S.; Serreze, H.B.; Entine, G.

1980-03-01T23:59:59.000Z

383

Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H{sub 2}/CO{sub 2} Separation in WGS Reactors  

SciTech Connect

The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H{sub 2} separation and Cellulose Acetate membranes for CO{sub 2} separation. Cu-Ni-Ce/alumina, Fe-Ni-Ce/alumina granular WGS catalysts incorporating metal oxide nanoparticles into alumina support were prepared using sol-gel/oil-drop methods. The catalysts were characterized by Powder X-ray Diffractometer (PXRD), Scanning Electron Microscope (SEM), Differential Thermal Analyzer (DTA), Thermal Gravitational Analyzer (TGA), and Brunauer, Emmett and Teller (BET) techniques. TGA shows sharp weight loss at approximately 215°C and DTA shows dehydration of metal hydroxides between 200°C and 250°C. The PXRD spectra show an increase in crystallinity as a result of heating to 1000°C, and indicating a fine dispersion of the metal oxide nanoparticles in alumina supports during the sol-gel synthesis and calcination at 450°C. BET analysis indicated a mesoporous structure of the granules with high surface area. A gas-phase dynamic flow reactor is used to optimize the reaction temperatures. A gas-phase batch reactor was used to obtain kinetic data and the parameters for maximum CO conversion. In Cu-Ni-Ce/alumina category, Cu(0%)Ni(10%)Ce(11%) was found to be the best WGS catalyst among six Low Temperature Shift (LTS) catalysts with optimum temperatures between 200-300?°C, while Ni(5%)Cu(5%)Ce(11%) was found to be the best among four High Temperature Shift (HTS) catalysts with optimum temperature between 350-400°C. In the Fe-Ni-Ce/alumina category catalysts, Fe(8%)Ni(0%)Ce(8%)/alumina and Fe(6%)Ni(2%)Ce(8%)/alumina catalysts showed optimum WGS reaction temperature below 150°C. All Ni(8-x%)Fe(x%)Ce(8%) had lower WGS reaction efficiencies compared to Ni(8-x%)Cu(x%)Ce(8%). Metal (Nb or Ta)/ceramic membranes for hydrogen separation from the WGS reaction gas products have been prepared using a) sputtering and b) aluminothermic techniques. A polyvinyl-glass permeability tester was used with a gas chromatograph (GC) for H{sub 2}/CO permeability testing. Nb films showed a higher permeability than Ta at a given disk porosity. The aluminothermically deposited membranes have higher H{sub 2} permeability compared to the sputtered films, and Nb-film coated disks showed lower H{sub 2} permeability than Ta-film. A three-stage prototype stainless steel reactor with integrated housing for 1) WGS reaction catalysts, 2) H{sub 2}/CO{sub 2} separation metal/ceramic or metal/asbestos membranes, and 3) CO/CO{sub 2} separation cellulose acetate /filter-paper membranes has been designed and tested to have capabilities to perform WGS reactions at temperatures up to 400°C and withstand gas pressures up to 15 bars. The cracking of ceramic disks and gas leaks were successfully prevented by replacing ceramic disks with asbestos sheets that can easily withstand 400°C. Kinetic studies of H{sub 2} and CO permeabilities were performed through the single and double layer Nb and Ta membranes. Cellulose acetate (CA) films with 25% triethyl citrate (TEC) as plasticizer were prepared for H{sub 2}/CO/CO{sub 2} gas separation with varying thickness of the films by acetone solutions at different concentrations and by dip-coating onto filter papers. The AFM analysis of the CA membrane showed that the uniform coating had fewer and smaller pores as the film thickness increased, and corroborated by gas permeability studies. The CO{sub 2} permeability has decreased faster than CO permeability with the CA/TEC membrane thickness, and findings support that the CA membrane could be used to entrap CO{sub 2}. Several CA/TEC membranes were also staked to increase the separation efficiency. Positron Lifetime Spectroscopy (PLS) was used to estimate the micro-porosity (pore size and concentration) and fractional free volume changes of CA/TEC films, and used to understand the variations observed in the CO{sub 2}/CO permeabilities.

Naidu Seetala; Upali Siriwardane

2011-06-30T23:59:59.000Z

384

A survey of potential low-cost concentrator concepts for use in low-temperature water detoxification  

DOE Green Energy (OSTI)

Several different concentrator concepts have been considered for use in the detoxification of chemically contaminated water. The reactions of interest are predominantly photocatalytic in nature and are driven by low concentrations (between 1 and 50 suns) of UV radiation in the 300- to 385-nm wavelength range. Optical performance characteristics of these concentrators are thus somewhat different compared to concentrators developed for industrial process heat and electrical energy production. Relaxed optical tolerances might lead to reductions in concentrator cost that, when integrated into overall field system cost, could make the solar-driven process competitive with current UV lamp technology. Aspects of the concentrator system that might realize cost reductions include the concentrating element, the support structure, the tracking and drive system, the manufacturing processes, and the installation procedures. Several ideals have been resurrected from earlier research in the Solar Thermal Program where the need for more stringent optical performance requirements led to a decline or even an end to further investigation. In light of this new application, the most promising of these ideas are presented, including a description and a discussion of the cost and performance trade-offs. In addition, the results of recent investigate research on several of these concepts will be presented. The concepts include a low-cost parabolic trough, the inflatable line-focus concentrator, and the holographic concentrator. 16 refs., 5 figs.

Wendelin, T.

1991-12-01T23:59:59.000Z

385

A Low Cost Immobilization Agent From an Invasive Marine Alga: Caulerpa racemosa var. cylindracea Biomass In Bovine Serum Albumin Immobilization  

E-Print Network (OSTI)

Objectives: Caulerpa racemosa var. cylindracea is a marine green alga which has been widely invading sublittoral ecosystem of the Mediterranean Sea since 1991. Inasmuch as there is no eradication method related to this species so far, use of the dried biomass of C.racemosa for immobilization of bovine serum albumin was studied in the present study. Materials and Methods: Caulerpa racemosa var. cylindracea was collected from Seferihisar ?zmir by SCUBA diving. Immobilization studies were done by using batch technique under different conditions concerning the determination of optimum temperature, ionic strength, pH and adsorbent dosage. Results: Optimum pH, ionic strength, temperature and amount of adsorbent dosage was found as 7 (pH), 50 mM, 25 0 C and 10 mg, respectively. Conclusion: According to results of this paper, dried and powdered form of Caulerpa racemosa var. cylindracea might be used in some biomolecule immobilization studies as a low cost immobilization agent. This paper proposes an alternative application of biomass of Caulerpa racemosa var. cylindracea after a possible eradication method which will be carried out in future.

Serum Albuminine; Ynelik D?k; Maliyetli Immobilizasyon Ajan?; Sevilay Cengiz; Levent Cavas; M. Kadir Yurdakoc; Levent Cavas

2008-01-01T23:59:59.000Z

386

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

387

Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles  

DOE Green Energy (OSTI)

The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

Kraft, E.H.

2002-07-22T23:59:59.000Z

388

Energy and visual comfort performance of electrochromic windowswith overhangs  

SciTech Connect

DOE-2 building energy simulations were conducted to determine if there were practical architectural and control strategy solutions that would enable electrochromic (EC) windows to significantly improve visual comfort without eroding energy-efficiency benefits. EC windows were combined with overhangs since opaque overhangs provide protection from direct sun which EC windows are unable to do alone. The window wall was divided into an upper and lower aperture so that various combinations of overhang position and control strategies could be considered. The overhang was positioned either at the top of the upper window aperture or between the upper and lower apertures. Overhang depth was varied. EC control strategies were fully bleached at all times, modulated based on incident vertical solar radiation limits, or modulated to meet the design work plane illuminance with daylight. The EC performance was compared to a state-of-the-art spectrally selective low-e window with the same divided window wall, window size, and overhang as the EC configuration. The reference window was also combined with an interior shade which was manually deployed to control glare and direct sun. Both systems had the same daylighting control system to dim the electric lighting. Results were given for south-facing private offices in a typical commercial building. In hot and cold climates such as Houston and Chicago, EC windows with overhangs can significantly reduce the average annual daylight glare index (DGI) and deliver significant annual energy use savings if the window area is large. Total primary annual energy use was increased by 2-5% for moderate-area windows in either climate but decreased by 10% in Chicago and 5% in Houston for large-area windows. Peak electric demand can be reduced by 7-8% for moderate-area windows and by 14-16% for large-area windows in either climate. Energy and peak demand reductions can be significantly greater if the reference case does not have exterior shading or state-of-the-art glass.

Lee, E.S.; Tavil, A.

2005-11-03T23:59:59.000Z

389

Metal current collect protected by oxide film  

DOE Patents (OSTI)

Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-05-25T23:59:59.000Z

390

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low Cost Silicon Solar Array Project. Quarterly progress report, January--March 1978  

DOE Green Energy (OSTI)

The purpose of the silane production program is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production program is to establish the viability and economic feasibility of manufacturing semiconductor-grade polycrystalline silicon through the pyrolysis of silane. The silane-to-silicon conversion is to be investigated in a fluid bed reactor and a free space reactor. The purpose of the process design program is to provide JPL with engineering and economic parameters for an experimental facility capable of producing 25 metric tons of silicon per year by the pyrolysis of silane gas. An ancillary purpose is to estimate the cost of silicon produced by the same process on a scale of 1000 metric tons per year. The capacitive fluid-bed heating program is exploring the feasibility of utilizing electrical capacitive heating to control the fluidized silicon bed temperature during the heterogeneous decomposition of silane. In addition, a theoretical fluid-bed silicon deposition model is being developed to be used in a design of a fluid-bed pyrolysis process scheme. Research progress is described in detail. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

391

Feasibility of low-cost, high-volume production of silane and pyrolysis of silane to semiconductor-grade silicon. Low cost silicon solar array project. Quarterly progress report for July--September 1978  

DOE Green Energy (OSTI)

The project is divided into four tasks: silane production, silicon production, process design, and fluid-bed pyrolysis R and D. The purpose of the silane production task is to determine the feasibility and practicality of high-volume, low-cost production of silane (SiH/sub 4/) as an intermediate for obtaining solar-grade silicon metal. The process is based on the synthesis of SiH/sub 4/ by the catalytic disproportionation of chlorosilanes resulting from the reaction of hydrogen, metallurgical silicon, and silicon tetrachloride. The goal is to demonstrate the feasibility of a silane production cost of under $4.00/kg at a production rate of 1000 MT/year. The objective of the silicon production task is to establish the feasibility and cost of manufacturing semi-conductor grade polycrystalline silicon through the pyrolysis of silane (SiH/sub 4/). The silane-to-silicon conversion is to be investigated in a fluid bed reactor and in a free-space reactor. The process design task is to provide JPL with engineering and economic parameters for an experimental unit sized for 25 metric tons of silicon per year and a product-cost estimate for silicon produced on a scale of 1000 metric tons per year. The purpose of fluid-bed pyrolysis task is to explore the feasibility of using electrical capacitive heating to control the fluidized silicon-bed temperature during the heterogeneous decomposition of silane and to further explore the behavior of a fluid bed. These basic studies will form part of the information necessary to assess technical feasibility of the fluid-bed pyrolysis of silane. Status of these tasks are reported. (WHK)

Breneman, W.C.; Farrier, E.G.; Morihara, H.

1978-01-01T23:59:59.000Z

392

Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price  

SciTech Connect

The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

Burdis, Mark; Sbar, Neil

2012-06-30T23:59:59.000Z

393

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

DOE Green Energy (OSTI)

Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9 percent silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

Anders, Andre; Slack, Jonathan L.; Richardson, Thomas J.

2008-05-05T23:59:59.000Z

394

The energy-savings potential of electrochromic windows in the UScommercial buildings sector  

SciTech Connect

Switchable electrochromic (EC) windows have been projected to significantly reduce the energy use of buildings nationwide. This study quantifies the potential impact of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader database of energy use and peak demand savings for perimeter zones than that given in previous LBNL simulation studies. The DOE-2.1E building simulation program was used to predict the annual energy use of a three-story prototypical commercial office building located in five US climates and 16 California climate zones. The energy performance of an electrochromic window controlled to maintain daylight illuminance at a prescribed setpoint level is compared to conventional and the best available commercial windows as well as windows defined by the ASHRAE 90.1-1999 and California Title 24-2005 Prescriptive Standards. Perimeter zone energy use and peak demand savings data by orientation, window size, and climate are given for windows with interior shading, attached shading, and horizon obstructions (to simulate an urban environment). Perimeter zone primary energy use is reduced by 10-20% in east, south, and west zones in most climates if the commercial building has a large window-to-wall area ratio of 0.60 compared to a spectrally selective low-e window with daylighting controls and no interior or exterior shading. Peak demand for the same condition is reduced by 20-30%. The emerging electrochromic window with daylighting controls is projected to save approximately 91.5-97.3 10{sup 12} Btu in the year 2030 compared to a spectrally selective low-E window with manually-controlled interior shades and no daylighting controls if it reaches a 40% market penetration level in that year.

Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

2004-04-30T23:59:59.000Z

395

CargoNet: a low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asychronous monitoring of exceptional events  

Science Conference Proceedings (OSTI)

This paper describes CargoNet, a system of low-cost, micropower active sensor tags that seeks to bridge the current gap between wireless sensor networks and radio-frequency identification (RFID). CargoNet was aimed at applications in environmental monitoring ... Keywords: active RFID, micropower sensing, power management

Mateusz Malinowski; Matthew Moskwa; Mark Feldmeier; Mathew Laibowitz; Joseph A. Paradiso

2007-11-01T23:59:59.000Z

396

X-ray absorption spectroscopy studies of electrochemically deposited thin oxide films.  

DOE Green Energy (OSTI)

We have utilized ''in situ'' X-ray Absorption Fine Structure Spectroscopy to investigate the structure and composition of thin oxide films of nickel and iron that have been prepared by electrodeposition on a graphite substrate from aqueous solutions. The films are generally disordered. Structural information has been obtained from the analysis of the data. We also present initial findings on the local structure of heavy metal ions, e.g. Sr and Ce, incorporated into the electrodeposited nickel oxide films. Our results are of importance in a number of technological applications, among them, batteries, fuel cells, electrochromic and ferroelectric materials, corrosion protection, as well as environmental speciation and remediation.

Balasubramanian, M.

1998-06-02T23:59:59.000Z

397

Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications  

DOE Green Energy (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkemas approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkemas approach lies in the decoupling of ion conductivity from the other requirements. Kynar (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60C under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45V/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which in principle could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80C, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120C without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council protocols. M41 MEAs shown sizeable advantages over PFSA MEAs in the Open Circuit Voltage Hold test, Relative Humidity Cycling test and the Voltage Cycling test. The main known limitation of the M41 family is its ability to function well at low RH.

Michel Foure, Scott Gaboury, Jim Goldbach, David Mountz and Jung Yi (no longer with company)

2008-01-31T23:59:59.000Z

398

Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report  

SciTech Connect

The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

Meyer, Howard, S.; Lu, Yingzhong

2012-08-10T23:59:59.000Z

399

Phase I of the Automated Array Assembly Task of the Low Cost Silicon Solar Array Project. Technical quarterly report No. 2. Motorola report No. 2258/2  

SciTech Connect

Phase I of the Automated Array Assembly Task, LCSSAP, is concerned with a comprehensive assessment of the improvements in existing technology that may be needed in order to develop, by 1985, an industrial capability for low cost, mass production of very durable silicon solar photovoltaic modules and arrays. Both experimental, literature, and theoretical sources are being utilized to evaluate efficient solar cell design criteria and individual and synergistic process effects on the cost effective production and encapsulation of such efficient solar cells.

Coleman, M.

1976-07-01T23:59:59.000Z

400

Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting  

DOE Green Energy (OSTI)

Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low-Cost Solar Array Project. Progress report 12, January-April 1979 and proceedings of the 12th Project Integration Meeting  

DOE Green Energy (OSTI)

This report describes progress made by the Low-Cost Solar Array Project during the period January through April 1979. It includes reports on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. It includes a report on, and copies of viewgraphs presented at the Project Integration Meeting held April 4-5, 1979.

Not Available

1979-01-01T23:59:59.000Z

402

Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239  

DOE Green Energy (OSTI)

In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.

Stradins, P.

2011-10-01T23:59:59.000Z

403

LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin  

E-Print Network (OSTI)

of NiF2 was prepared by stirring excess NiF2· 4H2O in deionized water overnight, followed by filtration to remove suspended solids. The deposition solution was made up by mixing 10 mL of saturated NiF2 with 20 m

404

Electrochemical Preparation of Molybdenum Trioxide Thin Films: Effect of Sintering on Electrochromic and  

E-Print Network (OSTI)

of Texas at Austin, Austin, Texas 78712 Joseph T. Hupp Department of Chemistry, Center for Nanofabrication in these materials for use in energy storage systemsisfueled,inpart,bythedesiretomaximizeenergy stored per unit mass that the component particle size and chemical structure greatly determine the resulting energy density and power

405

A LOW-COST PROCESS FOR THE SYNTHESIS OF NANOSIZE YTTRIA-STABILIZED ZIRCONIA (YSZ) BY MOLECULAR DECOMPOSITION  

DOE Green Energy (OSTI)

This report summarizes the results of work done during the performance period on this project, between October 1, 2002 and December 31, 2003, with a three month no-cost extension. The principal objective of this work was to develop a low-cost process for the synthesis of sinterable, fine powder of YSZ. The process is based on molecular decomposition (MD) wherein very fine particles of YSZ are formed by: (1) Mixing raw materials in a powder form, (2) Synthesizing compound containing YSZ and a fugitive constituent by a conventional process, and (3) Selectively leaching (decomposing) the fugitive constituent, thus leaving behind insoluble YSZ of a very fine particle size. While there are many possible compounds, which can be used as precursors, the one selected for the present work was Y-doped Na{sub 2}ZrO{sub 3}, where the fugitive constituent is Na{sub 2}O. It can be readily demonstrated that the potential cost of the MD process for the synthesis of very fine (or nanosize) YSZ is considerably lower than the commonly used processes, namely chemical co-precipitation and combustion synthesis. Based on the materials cost alone, for a 100 kg batch, the cost of YSZ made by chemical co-precipitation is >$50/kg, while that of the MD process should be <$10/kg. Significant progress was made during the performance period on this project. The highlights of the progress are given here in a bullet form. (1) From the two selected precursors listed in Phase I proposal, namely Y-doped BaZrO{sub 3} and Y-doped Na{sub 2}ZrO{sub 3}, selection of Y-doped Na{sub 2}ZrO{sub 3} was made for the synthesis of nanosize (or fine) YSZ. This was based on the potential cost of the precursor, the need to use only water for leaching, and the short time required for the process. (2) For the synthesis of calcia-stabilized zirconia (CSZ), which has the potential for use in place of YSZ in the anode of SOFC, Ca-doped Na{sub 2}ZrO{sub 3} was demonstrated as a suitable precursor. (3) Synthesis of Y-doped Na{sub 2}ZrO{sub 3} and Ca-doped Na{sub 2}ZrO{sub 3} was achieved using a conventional calcination process. The corresponding surface area was {approx}1 to 2 m{sup 2}/g. (4) By leaching with water, nanosize (very fine) YSZ and CSZ powders were synthesized. The corresponding surface area was {approx}65 m{sup 2}/g. This demonstrates the MD concept, namely macroscopic precursor {yields} leaching {yields} very fine (nanosize) product. (5) Crystallite size was determined by TEM ({approx}5 nm). (6) Anode-supported cells, with YSZ and CSZ made by the MD process, were successfully made by a conventional pressing and sintering process. (7) Single cells were made with as-synthesized YSZ and CSZ as a constituent in anode support. (8) A single cell (LSM + YSZ cathode) was tested at 800 C with H{sub 2}/air, with maximum power density of {approx}1.2 W/cm{sup 2}. (9) Dense samples of both YSZ and CSZ made by the MD process were fabricated. (10) Preliminary cost analysis, based on materials cost only, showed that the cost of YSZ powder made by the MD process should be considerably lower than that made by either chemical co-precipitation or combustion synthesis. For an anode-supported cell design, for an assumed power density of 0.5 W/cm{sup 2}, the cost of YSZ made by the MD process is estimated to be {approx}$5/kW. By contrast, the cost per kW for chemical co-precipitation or combustion synthesis is {approx}$70/kW and {approx}$23/kW, respectively. Efforts are currently underway to fabricate 5 cm x 5 cm active anode-supported cells with YSZ made by the MD process.

Anil V. Virkar

2004-05-06T23:59:59.000Z

406

Photovoltaic-integrated electrochromic device for smart-window applications - preprint  

DOE Green Energy (OSTI)

Three different, innovative approaches have been taken to develop photovoltaic (PV) integrated electrochromic (EC) devices for smart-window applications. These are (1) a stand-alone, side-by-side PV-powered EC window; (2) a monolithically integrated PV-EC device; and, (3) a novel photoelectrochromic device based on dye-sensitized TiO{sub 2} solar cells. The compatibility of PV-EC devices has been analyzed and the potential for large energy savings for building applications has been suggested.

Deb, S.

2000-05-16T23:59:59.000Z

407

Phase I of the Automated Array Assembly Task of the Low Cost Silicon Solar Array Project. Motorola report No. 2258/1. Technical quarterly report No. 1  

DOE Green Energy (OSTI)

Phase I of the Automated Array Assembly Task, LCSSAP, is concerned with a comprehensive assessment of the improvements in existing technology that may be needed in order to develop, by 1985, an industrial capability for low cost, mass production of very durable silicon solar photovoltaic modules and arrays. Design criteria for efficient solar cells are discussed, emphasis being given to front metal surface pattern and texture etched front surfaces. A generalized processing matrix, containing competing methods for solar cell manufacturing steps, is outlined. The steps in this processing matrix are discussed and characterized according to immediate and potential usefulness. Representative steps have been chosen for empirical evaluation.

Coleman, M.

1976-04-01T23:59:59.000Z

408

Recent technological advances in thin film solar cells  

DOE Green Energy (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

409

Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979  

DOE Green Energy (OSTI)

The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility, and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.

Not Available

1979-06-01T23:59:59.000Z

410

Switchable mirrors based on nickel-magnesium films  

DOE Green Energy (OSTI)

A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

2001-01-16T23:59:59.000Z

411

Development of a Low-Cost 3-10 kW Tubular SOFC Power System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Norman Bessette Acumentrics Corporation 20 Southwest Park Westwood, MA 02090 Phone: (781) 461-8251; Email: nbessette@acumentrics.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-03NT41838 Project Start Date: April 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives The goal of the project is to develop a low-cost 3-10 kW solid oxide fuel cell (SOFC) power generator capable of meeting multiple market applications. This is accomplished by: Improving cell power and stability * Cost reduction of cell manufacturing

412

Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991  

DOE Green Energy (OSTI)

Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

1991-11-01T23:59:59.000Z

413

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001  

SciTech Connect

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

2001-10-01T23:59:59.000Z

414

Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report  

SciTech Connect

The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

Mac Donald, Philip Elsworth; Buongiorno, Jacopo

2002-10-01T23:59:59.000Z

415

Focused R&D For Electrochromic Smart Windowsa: Significant Performance and Yield Enhancements  

SciTech Connect

There is a need to improve the energy efficiency of building envelopes as they are the primary factor governing the heating, cooling, lighting and ventilation requirements of buildings--influencing 53% of building energy use. In particular, windows contribute significantly to the overall energy performance of building envelopes, thus there is a need to develop advanced energy efficient window and glazing systems. Electrochromic (EC) windows represent the next generation of advanced glazing technology that will (1) reduce the energy consumed in buildings, (2) improve the overall comfort of the building occupants, and (3) improve the thermal performance of the building envelope. ''Switchable'' EC windows provide, on demand, dynamic control of visible light, solar heat gain, and glare without blocking the view. As exterior light levels change, the window's performance can be electronically adjusted to suit conditions. A schematic illustrating how SageGlass{reg_sign} electrochromic windows work is shown in Figure I.1. SageGlass{reg_sign} EC glazings offer the potential to save cooling and lighting costs, with the added benefit of improving thermal and visual comfort. Control over solar heat gain will also result in the use of smaller HVAC equipment. If a step change in the energy efficiency and performance of buildings is to be achieved, there is a clear need to bring EC technology to the marketplace. This project addresses accelerating the widespread introduction of EC windows in buildings and thus maximizing total energy savings in the U.S. and worldwide. We report on R&D activities to improve the optical performance needed to broadly penetrate the full range of architectural markets. Also, processing enhancements have been implemented to reduce manufacturing costs. Finally, tests are being conducted to demonstrate the durability of the EC device and the dual pane insulating glass unit (IGU) to be at least equal to that of conventional windows.

Mark Burdis; Neil Sbar

2003-01-31T23:59:59.000Z

416

LOW COST BIOHEATING OIL APPLICATION.  

SciTech Connect

The report describes primarily the results of combustion tests carried out with a soy methyl ester (SME) that can be considered as a biofuel that does not quite meet the ASTM D 6751-02 specifications for biodiesel. The tests were performed in a residential boiler and a commercial boiler. Blends of the SME in distillate fuel (home heating fuel or equivalently, ASTM No.2 fuel oil) were tested in both the boilers. Similar tests had been conducted in a previous project with ASTM biodiesel blends and hence provided a comparison. Blends of the SME in ASTM No.6 oil (residual oil) were also tested in the commercial boiler using a different burner. Physical properties of the blends (in both the petroleum based fuels) were also measured. It was found that the SME blends in the distillate burned, not surprisingly, similarly to biodiesel blends. Reductions in NOx with blending of the SME were the most significant finding as before with biodiesel blends. The blends in No.6 oil also showed reductions in NOx in the commercial boiler combustion tests, though levels with No.6 blends are higher than with No.2 blends as expected. A significant conclusion from the physical property tests was that even the blending of 10% SME with the No.6 oil caused a significant reduction in viscosity, which suggests a potential direction of application of such blends.

KRISHNA,C.R.

2003-05-01T23:59:59.000Z

417

Low Cost Solar Water Heater  

SciTech Connect

This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

William Bostic

2005-12-16T23:59:59.000Z

418

Overview and Low Cost Processing  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The major reason that there is not more widespread use of titanium and its alloys is the high cost. Developments in reducing the cost of titanium...

419

Low-Cost Surge Counter  

Science Conference Proceedings (OSTI)

... feeding a capacitor or a battery will begin to fail; the other level is 2000 ... The anode gate resistor R, stabilizes the turn-on of the SCS and prevents ...

2013-05-17T23:59:59.000Z

420

Low Cost Emergency VAR Compensator  

Science Conference Proceedings (OSTI)

The barriers to commercialization of the Capacitor Bank Group Shorting (CAPS) concept were investigated in this study. Also, the application of mechanically switched CAPS systems was examined from the technical and cost points of view. In addition, a semiconductor (thyristor) switched or controlled CAPS arrangement was studied. Although only three utilities were surveyed in the market assessment part of the study, it was concluded that if there is a need for additional shunt compensation systems or a nee...

2000-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low cost Image Transmission System  

SciTech Connect

Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

Skogmo, D.

1994-06-01T23:59:59.000Z

422

Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H{sub 2}/CO{sub 2} Separation in WGS Reactors  

DOE Green Energy (OSTI)

Cellulose acetate (CA) films with 25% triethyl citrate (TEC) as plasticizer were prepared for H{sub 2}/CO/CO{sub 2} gas separation with varying thickness of the films by acetone solutions at different concentrations and by dip-coating onto filter papers. The AFM analysis of the CA membrane showed that the uniform coating had fewer and smaller pores as the film thickness increased, and corroborated by gas permeability studies. The CO{sub 2} permeability has decreased faster than CO permeability with the CA/TEC membrane thickness, and findings support that the CA membrane could be used to entrap CO{sub 2}. Several CA/TEC membranes were also staked to increase the separation efficiency. Positron Lifetime Spectroscopy (PLS) was used to estimate the micro-porosity (pore size and concentration) and fractional free volume changes of CA/TEC films, and used to understand the variations observed in the CO{sub 2}/CO permeabilities.

Naidu Seetala; Upali Siriwardane

2011-06-30T23:59:59.000Z

423

Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report  

DOE Green Energy (OSTI)

This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R. [Utility Power Group, Chatsworth, CA (US)

1998-06-01T23:59:59.000Z

424

Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas  

DOE Green Energy (OSTI)

This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

2008-05-31T23:59:59.000Z

425

Low Cost Solar Array Project. Task I. Silicon material. Gaseous melt replenishment system. Fifth quarterly progress report, 17 April-17 July 1980  

DOE Green Energy (OSTI)

The objective of this program is to develop an improved silicon production reactor with periodic batch delivery of product to either a casting or shotting process or through a liquid silicon transfer system directly to a crystal growth system. Progress is reported. The processes and equipment are scaled such that a modest investment can make available to the Czochralski crystal grower a low cost source of silicon. In addition, the smaller scale of operation means that the systems can be put into operation without large capital investments, guarantees of markets, etc. The chemical reactions are those in commercial usage now: deposition from a hydrogen - chlorosilane mixture. The major innovation is in reactor design which allows a high productivity of silicon. The reactor has been conservatively sized on the basis of epitaxial deposition rates. The conclusion of this calculation is that a reasonably sized system can produce rapidly enough to keep pace with either 10cm or 12cm diameter Czochralski crystal growth operating in a semi-continuous mode. (WHK)

Jewett, D.N.; Bates, H.E.; Hill, D.M.

1980-01-01T23:59:59.000Z

426

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

Science Conference Proceedings (OSTI)

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the sun is not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USFs PCMs remain stable at temperatures from 600 to 1,000C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

427

Evaluation of selected chemical processes for production of low-cost silicon. First quarterly progress report, October 9--December 15, 1975  

DOE Green Energy (OSTI)

The objective of this program is to evaluate, in the light of the latest available information and modern technology, the prospect for low cost solar silicon production by two processes which have yielded semiconductor-grade silicon commercially in the past, but whose development was curtailed by unfavorable market conditions in the early semiconductor industry. These processes are (1) zinc reduction of silicon tetrachloride and (2) thermal dissociation (or hydrogen reduction) of silicon tetraiodide. This report includes analyses of available thermodynamic data on both processes and predictions of equilibrium product yields over accessible ranges of process conditions. A parallel program of experimental work has been carried out to test the thermodynamic predictions and to evaluate process operability at several critical points. Preliminary results indicate that acceptable process yields and product structure can be obtained by zinc reduction of silicon tetrachloride in a fluidized-bed of seed particles when the zinc is fed to the bed as a vapor. Preliminary experimental results on the iodination of silicon dioxide/carbon mixtures confirm the thermodynamic predictions that temperatures in excess of 1400 C will produce potentially acceptable yields of silicon tetraiodide. (auth)

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1976-01-08T23:59:59.000Z

428

Development of a low-temperature, low-cost, black liquid solar collector. Final report, September 12, 1977-October 31, 1978  

DOE Green Energy (OSTI)

Battelle's Columbus Laboratories (BCL) has developed an efficient, low-cost, low-temperature, nonconcentrating, liquid-heating solar collector suitable for use as a thermal energy source for heat pumps or other heating applications. The collector incorporates a black liquid heat transfer medium permitting solar radiation to be absorbed directly by the liquid. Based on detailed measurements of the spectral absorption properties on many black liquids, and on the results of computer analysis of collector performance, it has been shown that the black liquid collector concept has the potential of significantly improved performance compared with an unglazed (i.e., swimming pool type) black-absorber collector of comparable cost.On the other hand, it has the potential of significant cost savings compared with the single-glazed collector of comparable performance. Experimental data obtained on two black liquid collectors constructed during this project closely match the predicted curves obtained from a theoretical computer analysis. Results of the systems analysis studies have shown that the black liquid collector, when used as a heat source for a solar-assisted heat pump, has comparable performance to that of a single-glazed conventional collector but at considerably lower cost. Another important result is that currently available heat pump systems are not ideally matched or compatible with a solar-assisted system. A solar-assisted system will require design of heat pumps which can take advantage of the higher system coefficient of performance (COP) possible with a heat source at elevated temperatures.

Landstrom, D K; Talbert, S G; Stickford, Jr, G H; Fischer, R D; Hess, R E

1978-10-01T23:59:59.000Z

429

Evaluation of selected chemical processes for production of low-cost silicon. Third quarterly progress report, April 1, 1976--June 30, 1976  

DOE Green Energy (OSTI)

Based on the decision to concentrate on the fluidized-bed reduction of silicon tetrachloride as a candidate process for production of low-cost solar-grade silicon, work during the current quarter was directed toward: (1) evaluation of the economic effects of operating at Zn/SiCl/sub 4/ feed ratios other than the stoichiometric 2/1; (2) design, construction, and exploratory operation of the ''miniplant'' designed to ultimately yield over 200 g hr/sup -1/ silicon for runs of 4 to 6 hr duration. It was concluded that no significant economic advantages exist in operating at Zn/SiCl/sub 4/ ratios on either side of the stoichiometric 2/1. Further, if advantages in reaction kinetics, or in product form or quality can be obtained by off-stoichiometry operation, these advantages might be obtained at only a modest increase in product cost. During the current quarter, design criteria for the miniplant were established, equipment was designed and constructed, and a number of shakedown runs were made which led to equipment modifications for improved operability.

Blocher, J.M. Jr.; Browning, M.F.; Wilson, W.J.; Carmichael, D.C.

1976-07-06T23:59:59.000Z

430

Theoretical models of electrochromic and environmental effects on bacterio-chlorophylls and -pheophytins in reaction centers  

Science Conference Proceedings (OSTI)

The primary charge separation in photosynthetic reaction centers (RC) is carried out by an array of (bacterio)chlorophylls arranged in close proximity. The recent x-ray structures of the RC complexes from Rhodopseudomonas viridis and Rhodobacter sphaeroides reveal two possible electron pathways for purple bacteria, only one of which is active. We have calculated the effects of hydrogen bonding and chemical modification (enolization) by nearby residues upon the optical spectra, reduction potentials, unpaired spin density distributions and charge densities of bacterio-chlorophylls (BChl) and -pheophytins (BPh). In addition, we have calculated the effect of generating the primary cation and anion products on the spectra of the accessory BChl and BPh pigments in the RC. At the present levels of refinement, x-ray structures of Rb. sphaerides, which contains BChls a, reveal a molecular architecture analogous to that of R. viridis, which is comprised of BChls b. Similar electrochromic shifts are thus predicted for the two species. 28 refs., 4 figs., 4 tabs.

Hanson, L.K.; Thompson, M.A.; Zerner, M.C.; Fajer, J.

1987-01-01T23:59:59.000Z

431

Monitored Energy Performance of Electrochromic Windows Controlledfor Daylight and Visual Comfort  

SciTech Connect

A 20-month field study was conducted to measure the energy performance of south-facing large-area tungsten-oxide absorptive electrochromic (EC) windows with a broad switching range in a private office setting. The EC windows were controlled by a variety of means to bring in daylight while minimizing window glare. For some cases, a Venetian blind was coupled with the EC window to block direct sun. Some tests also involved dividing the EC window wall into zones where the upper EC zone was controlled to admit daylight while the lower zone was controlled to prevent glare yet permit view. If visual comfort requirements are addressed by EC control and Venetian blinds, a 2-zone EC window configuration provided average daily lighting energy savings of 10 {+-} 15% compared to the reference case with fully lowered Venetian blinds. Cooling load reductions were 0 {+-} 3%. If the reference case assumes no daylighting controls, lighting energy savings would be 44 {+-} 11%. Peak demand reductions due to window cooling load, given a critical demand-response mode, were 19-26% maximum on clear sunny days. Peak demand reductions in lighting energy use were 0% or 72-100% compared to a reference case with and without daylighting controls, respectively. Lighting energy use was found to be very sensitive to how glare and sun is controlled. Additional research should be conducted to fine-tune EC control for visual comfort based on solar conditions so as to increase lighting energy savings.

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

2005-09-23T23:59:59.000Z

432

Switchable Mirrors Based on Nickel-Magnesium Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Switchable Mirrors Based on Nickel-Magnesium Films Switchable Mirrors Based on Nickel-Magnesium Films Title Switchable Mirrors Based on Nickel-Magnesium Films Publication Type Journal Article LBNL Report Number LBNL-47180 Year of Publication 2001 Authors Richardson, Thomas J., Jonathan L. Slack, Robert D. Armitage, Robert Kostecki, Baker Farangis, and Michael D. Rubin Journal Applied Physics Letters Volume 78 Pagination 3047 Call Number LBNL-47180 Abstract An electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin, magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on cathodic polarization in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.

433

Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report  

DOE Green Energy (OSTI)

The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

1982-02-01T23:59:59.000Z

434

Silicon Film[trademark] photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report describes work on a project to develop an advanced low-cost manufacturing process for a new utility-scale flatplate module based on thin active layers of polycrystalline silicon on a low-cost substrate. This is called the Silicon-Film[trademark] process. This new power module is based on a new large solar cell that is 675 cm[sup 2] in area. Eighteen of these solar cells form a 170-W module. Twelve ofthese modules form a 2-kW array. The program has three components: (1) development of a Silicon-Film[trademark] wafer machine that can manufacture wafer 675 cm[sup 2] in size with a total product cost reductionof 70%; (2) development of an advanced solar cell manufacturing process that will turn the Silicon-Film[trademark] wafer into a 14%-efficient solar cell; and (3) development of an advanced module design based on these large-area, efficient silicon solar cells with an average power of 170 watts. The completion of these three tasks will lead to a new power module designed for utility and other power applications with asubstantially lower cost.

Bottenberg, W.R.; Hall, R.B.; Jackson, E.L.; Lampo, S.; Mulligan, W.E.; Barnett, A.M. (AstroPower, Inc., Newark, DE (United States))

1993-04-01T23:59:59.000Z

435

NREL Core Program (NCPV), Session: Film Silicon (Presentation)  

DOE Green Energy (OSTI)

This project supports the Solar America Initiative by: R and D that contributes to goal of grid parity by 2015; research to fill the industry R and D pipeline for next-generation low-cost scalable products; development of industry collaborative research; and improvement of NREL tools and capabilities for film silicon research. The project addresses both parts of film silicon roadmap: (1) amorphous-silicon-based thin film PV--amorphous and nanocrystalline materials, present '2nd generation' technology, 4% of world PV sales in 2007; (2) advanced R and D toward film crystal silicon--definition, large-grained or single-crystal silicon < 100 {micro}m thick; 3-8 year horizon; and goal of reaching 15% cells at area costs approaching thin films.

Branz, H. M.

2008-04-01T23:59:59.000Z

436

Thermoplastic film prevents proppant flowback  

Science Conference Proceedings (OSTI)

Thermoplastic film added to proppants is effective and economical for preventing proppant flowback after an hydraulic fracturing treatment. Most other methods, such as resin-coated proppant and fiber, for controlling proppant flowback have drawbacks that added to treatment costs by requiring long downtime, costly additives, or frequent equipment replacement. Thermoplastic film does not react chemically with fracturing fluids. After the proppant is placed in the fracture, the film strips intertwine with the proppant grains or at higher temperatures, the strips become adhesive and shrink forming consolidated clusters that hold open the newly created fractures and prevent proppant from flowing back. The low cost of the film means that the strips can be used throughout the fracturing job or in selected stages. The strips are compatible with fracturing fluid chemistry, including breakers and crosslinkers, and can be used in wells with a wide range of bottom hole temperatures. The end result is a well that can be brought back on-line in a short time with little proppant flowback. This paper reviews the cost benefits and performance of these proppants.

Nguyen, P.D.; Weaver, J.D.; Parker, M.A.; King, D.G. [Halliburton Energy Services, Duncan, OK (United States)

1996-02-05T23:59:59.000Z

437

Silicon-film{trademark} on ceramic solar cells. Final report  

DOE Green Energy (OSTI)

The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M. [AstroPower, Inc., Newark, DE (United States)

1993-02-01T23:59:59.000Z

438

Light-trapped, interconnected, silicon-film {trademark} modules. Annual subcontract report, 18 November 1994--18 November 1995  

SciTech Connect

This report describes the first year of work performed by AstroPower, Inc., of Newark, Delaware, under the Thin-Film PV Partnership Program. The work led to the development of a new barrier-coated substrate that has enabled high-quality thin-layer polycrystalline silicon to be grown on a low-cost substrate. High diffusion lengths were measured after external phosphorous gettering. This led to a confirmed efficiency for a 0.57cm{sup 2}, thin-layer solar cell grown on a low-cost substrate.

Hall, R.B.; Rand, J.A.; Cotter, J.E.; Ford, D.H. [AstroPower, Inc., Newark, DE (United States)

1996-03-01T23:59:59.000Z

439

Low-cost CuInSe{sub 2} submodule development. Final subcontract report, 9 July 1990--31 January 1992  

DOE Green Energy (OSTI)

Aim of this project is development and demonstration of processing steps necessary for fabrication of high efficiency CuInSe{sub 2} solar cells and sub-modules by the two-stage technique (also called the selenization method.) During this period, we have optimized the processing parameters of this method and demonstrated CuInSe{sub 2}/CdS/ZnO devices with a 1{endash}4 cm{sup 2} area and up to 12.4% active area efficiency. We have also developed a novel approach for the preparation of Cu/In precursors that improved the stoichiometric and morphological uniformity in these films. We have developed processing steps and tooling for handling up to 1 ft{sup 2} size substrates and as a result of these efforts demonstrated our first monolithically integrated sub-module of 1 ft{sup 2} area. 16 figs, 1 tab, 15 refs.

Basol, B.M.; Kapur, V.K.; Halani, A.; Leidholm, C. [International Solar Electric Technology, Inglewood, CA (United States)

1992-10-01T23:59:59.000Z

440

Analysis and evaluation in the production process and equipment area of the low-cost solar-array project. Quarterly report, July-October, 1980  

DOE Green Energy (OSTI)

The attributes of the various metallization processes have been investigated which express themselves in economic results. It has been shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add-on price in the range of $6.- to 12.-/m/sup 2/, or 4 to 8 cents/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6.- to 12.-/m/sup 2/ range. The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost-effective. Vacuum deposition of the strike/barrier layer can be competitive with electroless plating.

Wolf, M.; Goldman, H.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochromic film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Graphene-Polypyrrole Nanocomposite as a Highly Efficient and Low Cost Electrically Switched Ion Exchanger for Removing ClO4- from Wastewater  

Science Conference Proceedings (OSTI)

Perchlorate (ClO4-) contamination is now recognized as a widespread concern affecting many water utilities. In this report, graphene is employed as the scaffold to synthesize novel graphene-polypyrrole nanocomposite, which is demonstrated as excellent electrically switched ion exchanger for perchlorate removal. Scanning electron microscopy (SEM) and electrochemical measurements showed that the 3D nanostructured graphene/Ppy nanocomposite exhibited the significantly improved uptake capacity for ClO4- compared with Ppy film. X-ray photoelectron spectroscopy (XPS) confirmed the uptake and release process of ClO4- in graphene/Ppy nanocomposite. In addition, the presence of graphene substrate resulted in high stability of graphene/Ppy nanocomposite during potential cycling. The present work provides a promising method for large scale water treatment.

Zhang, Sheng; Shao, Yuyan; Liu, Jun; Aksay, Iihan A.; Lin, Yuehe

2011-10-10T23:59:59.000Z

442

(Investigation of low-cost solar cells based on Cu/sub 2/O). Third quarterly progress report, November 1, 1979-January 31, 1980  

DOE Green Energy (OSTI)

Efforts this quarter concentrated on completion and check-out of the MBE system, deposition of ZnS films, analysis of the internal photoresponse for Cu-Cu/sub 2/O cells, and fabrication and characterization of Cu-Cu/sub 2/O solar cells. In-doped ZnS films with very good optical quality and finite conductivity were obtained by co-depositing In and ZnS. Analysis of the internal photoresponse indicated that minority carrier diffusion lengths on the order of 10 ..mu..m are being achieved with the present Cu/sub 2/O growth procedure. Active area values of J/sub PH/ = 8.52 mA/cm/sup 2/ and AM1 Efficiency = 1.76% were achieved for Cu-Cu/sub 2/O cells. These devices appear to have an MIS structure, or fixed charge at the interface. In particular, analysis of I-V data indicates that the current-voltage characteristics for applied voltages greater than 0.3 V are characterized by n approx. = 1 and J/sub 0/ approx. = 2 x 10/sup -9/ mA/cm/sup 2/, which implies an effective barrier height of 0.94 eV compared to the theoretical value of 0.7 eV for a Cu/Cu/sub 2/O Schottky barrier. Another very significant achievement this past quarter was the development of a surface preparation procedure which results in a nearly perfect stochiometry at the surface.

Olsen, L.C.

1980-03-12T23:59:59.000Z

443

An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings - Simulated Results Using EnergyPlus  

SciTech Connect

The Department of Energys (DOE) Building Technologies Program (BTP) has had an active research program in supporting the development of electrochromic (EC) windows. Electrochromic glazings used in these windows have the capability of varying the transmittance of light and heat in response to an applied voltage. This dynamic property allows these windows to reduce lighting, cooling, and heating energy in buildings where they are employed. The exploratory analysis described in this report examined three different variants of EC glazings, characterized by the amount of visible light and solar heat gain (as measured by the solar heat gain coefficients [SHGC] in their clear or transparent states). For these EC glazings, the dynamic range of the SHGCs between their dark (or tinted) state and the clear state were: (0.22 - 0.70, termed high SHGC); (0.16 - 0.39, termed low SHGC); and (0.13 - 0.19; termed very low SHGC). These glazings are compared to conventional (static) glazing that meets the ASHRAE Standard 90.1-2004 energy standard for five different locations in the U.S. All analysis used the EnergyPlus building energy simulation program for modeling EC windows and alternative control strategies. The simulations were conducted for a small and a medium office building, where engineering specifications were taken from the set of Commercial Building Benchmark building models developed by BTP. On the basis of these simulations, total source-level savings in these buildings were estimated to range between 2 to 7%, depending on the amount of window area and building location.

Belzer, David B.

2010-08-01T23:59:59.000Z

444

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proj Proj ect Title: ITN Energy Systems - Low-cost Electrochrom ic Film on Plastic for Net-zero Energy Buildi ng Location: *- Multiple States - Colorado, Michigan Proposed Action or Project Description: American Recovery and Reinvestment Act: D Funding will support development of electrochromic (EC) film man ufacturing process at in-lab and pi lot-scale, EC film sample ana lysis, and updating of commercializati on impact evalu ati on. Proposed w ork consists of (1) testi ng and optimizing in-lab EC film man ufacturing process, (2) scaling process to pil ot-scale and testing and optim izing pilot-scale process, and (3) analyzi ng EC fi lm samples prod uced. This w ork w ill be perform ed at ITN Energy System's facility in Littleton, CO. Proposed work also consists of updating the commercializati

445

Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report  

DOE Green Energy (OSTI)

During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

1984-02-01T23:59:59.000Z

446

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

Science Conference Proceedings (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

447

Printing Highly-aligned Single-crystalline Organic Electronic Thin Films |  

NLE Websites -- All DOE Office Websites (Extended Search)

Printing Highly-aligned Single-crystalline Organic Electronic Thin Films Printing Highly-aligned Single-crystalline Organic Electronic Thin Films Monday, September 23, 2013 Organic semiconductor materials have some intriguing advantages compared to their inorganic counterparts: low-cost and versatile manufacturing (e.g. roll-to-roll printing), material abundance and new form factors (e.g. flexible, transparent and stretchable). However, solution-processed organic devices are usually made and optimized with poorly scalable fabrication using lab-based techniques such as spin coating or dip coating. A better route for organic-electronics fabrication is printing, which can potentially realize large-area, high-throughput, low-cost fabrication on an industrial scale. Fluence image FLUENCE: fluid-enhanced crystal engineering. Solution shearing (a) using a

448

Thin film transistors on plastic substrates with reflective coatings for radiation protection  

DOE Patents (OSTI)

Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, M