Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient...  

Energy Savers (EERE)

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites AMO Announces Funding Opportunity for...

2

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

3

Low-Cost Titanium Alloy Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Titanium Alloy Production Low-Cost Titanium Alloy Production titaniumalloyproduction.pdf More Documents & Publications Low Cost Titanium Propulsion Applications Low Cost...

4

Gelatin/graphene systems for low cost energy storage  

SciTech Connect

In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

5

Low-Cost, Lightweight Solar Concentrator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Low-Cost, Lightweight Solar Concentrators - FY13 Q1 Low-Cost Light Weigh Thin Film Solar Concentrators Low-Cost, Lightweight Solar Concentrators FY13...

6

Low Cost Carbon Fiber Overview | Department of Energy  

Energy Savers (EERE)

Low Cost Carbon Fiber Overview Low Cost Carbon Fiber Overview 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

7

Low Cost Carbon Fiber Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost Carbon Fiber Overview Low Cost Carbon Fiber Overview 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

8

Low-cost, Rapid DNA Sequencing Technique - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Low-cost, Rapid DNA Sequencing Technique Oak Ridge National Laboratory Contact ORNL About This...

9

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar | Open  

Open Energy Info (EERE)

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Cost Financing with Clean Renewable Energy Bonds Agency/Company /Organization: National Renewable Energy Laboratory Partner: United States Department of Energy Sector: Energy Topics: Finance Resource Type: Webinar, Training materials, Lessons learned/best practices Website: www.nrel.gov/applying_technologies/state_local_activities/webinar_2009 Low-Cost Financing with Clean Renewable Energy Bonds Screenshot References: Low-Cost Financing with Clean Renewable Energy Bonds[1] Logo: Low-Cost Financing with Clean Renewable Energy Bonds Sponsored by the U.S. Department of Energy Technical Assistance Project for state and local officials, this Webinar described the elements of clean

10

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block February 20, 2010 - 6:21pm Addthis An innovative pilot program in Minneapolis, Minnesota, focuses on rallying whole communities around energy efficiency, one neighborhood at a time. Through the program, area residents cash in on a home energy-efficiency upgrade that saves them roughly $130 on their annual energy bill. All they have to contribute is a little time and a small initial payment. "The most effective way to get people involved is for people to tell each other, neighbor to neighbor," says Lola Schoenrich, who signed up after reading about the program in her neighborhood newsletter. She even volunteered to go door-to-door on her block handing out registration

11

Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block Low-Cost Energy Efficiency Goes Block-to-Block February 20, 2010 - 6:21pm Addthis An innovative pilot program in Minneapolis, Minnesota, focuses on rallying whole communities around energy efficiency, one neighborhood at a time. Through the program, area residents cash in on a home energy-efficiency upgrade that saves them roughly $130 on their annual energy bill. All they have to contribute is a little time and a small initial payment. "The most effective way to get people involved is for people to tell each other, neighbor to neighbor," says Lola Schoenrich, who signed up after reading about the program in her neighborhood newsletter. She even volunteered to go door-to-door on her block handing out registration

12

Low-cost Appliance State Sensing for Energy Disaggregation.  

E-Print Network (OSTI)

??Fine-grained per appliance electrical energy consumption data is crucial to electrical energy conservation. However, energy meters are installed at few central points in buildings, providing… (more)

Wu, Tianji

2012-01-01T23:59:59.000Z

13

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

14

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

15

High Performance, Low Cost Hydrogen Generation from Renewable Energy  

SciTech Connect

Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

Ayers, Katherine [Proton OnSite] [Proton OnSite; Dalton, Luke [Proton OnSite] [Proton OnSite; Roemer, Andy [Proton OnSite] [Proton OnSite; Carter, Blake [Proton OnSite] [Proton OnSite; Niedzwiecki, Mike [Proton OnSite] [Proton OnSite; Manco, Judith [Proton OnSite] [Proton OnSite; Anderson, Everett [Proton OnSite] [Proton OnSite; Capuano, Chris [Proton OnSite] [Proton OnSite; Wang, Chao-Yang [Penn State University] [Penn State University; Zhao, Wei [Penn State University] [Penn State University

2014-02-05T23:59:59.000Z

16

Low-Cost Financing with Clean Renewable Energy Bonds  

Energy.gov (U.S. Department of Energy (DOE))

Contains information from the TAP Webcast on June 24, 2009 on clean renewable energy bonds from Claire Kreycik on feed-in tariffs, an economic resource for developing renewable energy.

17

A Low Cost Energy Management Program at Engelhard Industries Division  

E-Print Network (OSTI)

in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

Brown, T. S.; Michalek, R.; Reiter, S.

1982-01-01T23:59:59.000Z

18

Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes  

SciTech Connect

We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

2014-01-27T23:59:59.000Z

19

Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C  

NLE Websites -- All DOE Office Websites (Extended Search)

Mainstream Engineering Develops a Low-Cost Energy-Saving Device Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » January 2013 Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Mainstream is achieving its goal to commercialize practical and

20

An Analysis of Energy Reductions from the Use of Daylighting in Low-Cost Housing  

E-Print Network (OSTI)

to preserving natural resources and contribute to a solution for the world’s energy shortage problem. 1 .2 . OBJECTIVES The primary objective of this research is to evaluate the effectiveness of several daylighting design strategies applied to low... AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Rungchareonrat, N.

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers (EERE)

Low Cost Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

22

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for precursor development (lignins, polymers) Belt conveyance for processing precursor in web format Multiple flow regimens in oxidation ovens Low-temperature furnace up to 1,000°C High-temperature furnace up to 2,000°C Flexible posttreatment for various resin systems Winding and packaging Carbon fiber is a strong, stiff, lightweight enabling material for improved performance in many applications. However, its use in cost-sensitive, high-volume industrial applications such as automobiles, wind energy, oil and gas, and infrastructure is limited because of today's relatively high price. Current methods for manufacturing carbon fiber

23

A New Method of Low Cost Production of Ti Alloys to Reduce Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information. Project Objective Develop a novel low cost method for manufacturing Ti Demonstrate the mechanical properties of Ti using the...

24

A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System  

E-Print Network (OSTI)

A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System Travis Mc://www.funginstitute.berkeley.edu/sites/default/ les/EnergyStorageSystem.pdf May 3, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664 of existing systems. Energy storage is a viable method for increasing the e ciency of a broad range of systems

Sekhon, Jasjeet S.

25

NETL: IEP – Post-Combustion CO2 Emissions Control - A Low-Energy, Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents Project No.: FG02-06ER84592 SBIR Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus AIL Research, Inc. (AIL) is in the second phase of a small business initiative research (SBIR) project that is assessing the economic and technical feasibility of a carbon dioxide (CO2) stripper that uses an internally heated contactor. The project will determine whether the construction of the internally heated contactor is compatible with the operating conditions of a monoethanolamine stripper and an advanced scrubber (e.g., one that uses a mixture of potassium carbonate and piperazine) and it will also determine the maintenance procedures required

26

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

SciTech Connect

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

27

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

28

Capping the Brown Energy Consumption of Internet Services at Low Cost  

E-Print Network (OSTI)

energy" (produced via carbon-intensive means) relative to renewable or "green" energy. This paper their brown energy consumption and lever- age green energy, while respecting their SLAs and minimizing energy-intensive energy as "brown" energy, in contrast with "green" or renewable energy.) We argue that placing caps

29

Analysis of novel, above-ground thermal energy storage concept utilizing low-cost, solid medium .  

E-Print Network (OSTI)

??Clean energy power plants cannot effectively match peak demands without utilizing energy storage technologies. Currently, several solutions address short term demand cycles, but little work… (more)

Barineau, Mark Michael

2010-01-01T23:59:59.000Z

30

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

31

Analysis of novel, above-ground thermal energy storage concept utilizing low-cost, solid medium  

E-Print Network (OSTI)

Clean energy power plants cannot effectively match peak demands without utilizing energy storage technologies. Currently, several solutions address short term demand cycles, but little work has been done to address seasonal ...

Barineau, Mark Michael

2010-01-01T23:59:59.000Z

32

Building America Case Study: Low-Cost Evaluation of Energy Savings...  

Energy Savers (EERE)

which community-scale energy savings can be evaluated based on results at the occupied test house level. To perform this evaluation, the research team collected data on...

33

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

34

Solar Water Heating with Low-Cost Plastic Systems (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

buildings consumed over 392,000 billion Btu of site- buildings consumed over 392,000 billion Btu of site- delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. [1] Earlier data indicate that about 10% of this is used to heat water. [2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514. Federal facilities having financial difficulty meeting the EISA mandate and executive order (e.g., facilities with natural

35

Low Cost, Durable Seal  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects.

36

2012 ARPA-E Energy Innovation Summit: Profiling Sheetak: Low Cost - Solid State Cooling  

ScienceCinema (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. A few videos were selected for showing during the Summit to attendees. These 'performer videos' highlight innovative research that is ongoing and related to the main topics of the Summit's sessions. Featured in this video are David Marcus, Founder of General Compression, and Eric Ingersoll, CEO of General Compression. Himanshu Pokharna, Vice President of Sheetak Uttam Ghoshal, President and CEO of Sheetak.

None Available

2012-03-21T23:59:59.000Z

37

Low-Cost Alternative Renewable Energy Bioethanol Production from Palm Oil in Malaysian Context  

Science Journals Connector (OSTI)

Many are looking to renewable energy and in particular biofuels as at least ... and has been the case with sugarcane in Brazil for more than three decades, developing countries ... , with its booming economy and ...

Ravindra Pogaku; Tapan Kumar Biswas; Rahmath Abdulla

2013-01-01T23:59:59.000Z

38

A low cost time-energy correlation apparatus for positronium annihilation  

Science Journals Connector (OSTI)

A two parameter correlation system to measure the energy of a thermalizing ortho-positronium as function of its age was constructed. The Doppler broadening of the 2 ? annihilation line due the quenching ofo-Ps is...

B. Van Waeyenberge; C. Dauwe…

1996-11-01T23:59:59.000Z

39

Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY  

E-Print Network (OSTI)

This paper, Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions, is provided to assist utility regulators, gas and electric utilities, and others in meeting the National Action Plan for Energy Efficiency’s goal of achieving all cost-effective energy efficiency by 2025. This paper summarizes the scale and economic value of energy efficiency for reducing carbon emissions and discusses the barriers to achieving the potential for cost-effective energy efficiency. It also reviews current regional, state, and local approaches for including energy efficiency in climate policy, using these approaches to inform a set of recommendations for leveraging energy efficiency within state climate policy. The paper does not capture federal climate policy options or recommendations, discussion of tradable energy efficiency credits, or emissions impacts of specific energy efficiency measures or programs. The intended audience for the paper is any stakeholder interested in learning more about how to advance energy efficiency as a low-cost resource to reduce carbon emissions. All stakeholders, including state policy-makers, public utility commissions, city councils, and utilities, can use this paper to understand the key issues and terminology, as well as the approaches that are being used to reduce carbon emissions by advancing energy efficiency policies and programs. Energy Efficiency as a Low-Cost

unknown authors

40

DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE  

SciTech Connect

In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Large two-dimensional electronic systems: Self-consistent energies and densities at low cost  

Science Journals Connector (OSTI)

We derive a self-consistent local variant of the Thomas-Fermi approximation for (quasi-) two-dimensional (2D) systems by localizing the Hartree term. The scheme results in an explicit orbital-free representation of the electron density and energy in terms of the external potential, the number of electrons, and the chemical potential determined upon normalization. We test the method over a variety 2D nanostructures by comparing to the Kohn-Sham 2D local-density approximation (LDA) calculations up to 600 electrons. Accurate results are obtained in view of the negligible computational cost. We also assess a local upper bound for the Hartree energy.

E. Räsänen; S. Pittalis; G. Bekçio?lu; I. Makkonen

2013-01-31T23:59:59.000Z

42

Project Profile: Low-Cost Metal Hydride Thermal Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE))

The Savannah River National Laboratory (SRNL), under the National Laboratory R&D competitive funding opportunity, is collaborating with Curtin University (CU) to evaluate new metal hydride materials for thermal energy storage (TES) that meet the SunShot cost and performance targets for TES systems.

43

New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes  

SciTech Connect

This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

Agrawal, Rakesh

2013-11-21T23:59:59.000Z

44

High Performance, Low Cost Hydrogen Generation from Renewable Energy - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dr. Katherine Ayers (Primary Contact), Andy Roemer Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Dave Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE000276 Subcontractors: * Entegris, Inc., Chaska, MN * The Electrochemical Engine Center at Penn State, University Park, PA * Oak Ridge National Laboratory, Oak Ridge, TN Project Start Date: September 1, 2009

45

Building America Whole-House Solutions for New Homes: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California  

Energy.gov (U.S. Department of Energy (DOE))

In this project, U.S. Department of Energy Building America research team IBACOS partnered with builder Wathen Castanos Hybrid Homes in Fresno, California, to develop a simple and low-cost methodology by which community-scale energy savings can be evaluated based on results at the occupied test house level.

46

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

47

Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report  

SciTech Connect

The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

Meyer, Howard, S.; Lu, Yingzhong

2012-08-10T23:59:59.000Z

48

Low-Cost Production of Hydrogen and Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Bloom Energy is testing the potential to produce low-cost hydrogen and electricity simultaneously from natural gas.

49

MIT- Electrochemical Energy Laboratory | Open Energy Information  

Open Energy Info (EERE)

MIT- Electrochemical Energy Laboratory MIT- Electrochemical Energy Laboratory Jump to: navigation, search Name MIT- Electrochemical Energy Laboratory Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

51

Contribution to solving the energy crisis: Simulating the prospects for low cost energy through silicon solar cells  

Science Journals Connector (OSTI)

PECAN (Photovoltaic Energy Conversion Analysis) is a highly interactive decision analysis and support system. It simulates the prospects for widespread use of solar cells for the generation of electrical power. PECAN consists of a set of integrated APL ...

Alexander Kran

1978-03-01T23:59:59.000Z

52

Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

has been has been actively involved in the development of advanced batteries since the late 1960s when it initiated R&D on high-temperature lithium sulfur batteries. In the early 1970s, the US Department of Energy (DOE) established its first independent battery test facility at Argonne and named it the National Battery Test Laboratory (NBTL), for the purpose of conducting independent evaluations on advanced battery technologies that were potential candidates for use in battery-powered electric vehicles. NBTL incorporated a well equipped post-test analysis laboratory that was instrumental in helping to identify life-limiting mechanisms with several candidate battery technologies. Even in these early days of the battery program, Argonne was internationally

53

Low-Cost "Vacuum Desiccator"  

Science Journals Connector (OSTI)

Low-Cost "Vacuum Desiccator" ... Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. ... Cost-Effective Teacher ...

Frederick Sweet

2004-10-01T23:59:59.000Z

54

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,”

Wang, Hainan

2013-01-01T23:59:59.000Z

55

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

56

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Heliostat Development to Low-Cost Heliostat Development to someone by E-mail Share SunShot Initiative: Low-Cost Heliostat Development on Facebook Tweet about SunShot Initiative: Low-Cost Heliostat Development on Twitter Bookmark SunShot Initiative: Low-Cost Heliostat Development on Google Bookmark SunShot Initiative: Low-Cost Heliostat Development on Delicious Rank SunShot Initiative: Low-Cost Heliostat Development on Digg Find More places to share SunShot Initiative: Low-Cost Heliostat Development on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

57

SunShot Initiative: Low-Cost Solar Thermal Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

58

Flue-Gas Carbon Capture on Carbonaceous Sorbents:? Toward a Low-Cost Multifunctional Carbon Filter for “Green” Energy Producers  

Science Journals Connector (OSTI)

Mr. Ian Andrews and Mr. Nick Rahn (PacifiCorp Energy), Mr. Robert Matius and Mr. Eldon Lindt (Xcel Energy), Mr. George Farthing (Babcock & Wilcox Company), and anonymous journal reviewers contributed helpful comments that enhanced this work. ...

Maciej Radosz; Xudong Hu; Kaspars Krutkramelis; Youqing Shen

2008-04-29T23:59:59.000Z

59

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

and carbon nanotubes,” Advanced Energy Materials, vol. 1,carbon nanotubes supercapacitors: Improving both energy andcarbon nanotubes for enhanced electrochemical energy

Wang, Hainan

2013-01-01T23:59:59.000Z

60

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites  

Energy.gov (U.S. Department of Energy (DOE))

A new Advanced Composite Manufacturing Institute, one of six National Network for Manufacturing Innovation Institutes to launch in 2014, will receive up to $70 million over five years in Energy Department funding.

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low-Cost, Highly Transparent, Flexible, Low-Emission Coating Film to Enable Electrochromic Windows with Increased Energy Savings  

Energy.gov (U.S. Department of Energy (DOE))

Lead Performer: ITN Energy Systems - Littleton, CO Partners: -- Electric Power Research Institute - Palo Alto, CA -- Colorado School of Mines - Golden, CO -- Stanford Linear Accelerator - Menlo Park, CA -- Lawrence Berkeley National Laboratory - Berkeley, CA

62

Building America Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California (Fact Sheet)  

SciTech Connect

A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory.). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the community scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

Not Available

2014-10-01T23:59:59.000Z

63

CO2 Capture Using Electric Fields: Low-Cost Electrochromic Film on Plastic for Net-Zero Energy Building  

SciTech Connect

Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University’s approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize the energy needed for the process.

None

2010-01-01T23:59:59.000Z

64

Low Cost SiOx-Graphite and Olivine Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replace graphite anode with an alternative material that meets the requirement for low cost and high energy. Continue development of binders for the cathode and alternative anode...

65

High Performance, Low Cost Hydrogen Generation from Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance, Low Cost Hydrogen Generation from Renewable Energy 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

66

An Analysis of Low Cost, Energy Efficient, Housing for Low-income Residents of How and Humid Climates  

E-Print Network (OSTI)

the implementation of cost-effective construction of low-income housing using volunteer labor. The research uses a case study approach where a base-line energy use is established using a comparative Princeton Score Keeping Method (PRISM) analysis and measurements...

Kootin-Sanwu, Victor

67

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

68

Electrochemical Energy Storage Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

69

Electrochem Inc | Open Energy Information  

Open Energy Info (EERE)

Electrochem Inc Electrochem Inc Jump to: navigation, search Name Electrochem Inc Address 400 W. Cummings Park Place Woburn, Massachusetts Zip 01801 Sector Hydrogen Product Fuel cell hardware and testing equipment Website http://fuelcell.com/ Coordinates 42.4964246°, -71.1263367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4964246,"lon":-71.1263367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer  

SciTech Connect

HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

None

2011-12-05T23:59:59.000Z

71

A Novel Low-Cost Sodium-Zinc Chloride Battery  

SciTech Connect

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

72

High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost  

SciTech Connect

GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

None

2010-10-01T23:59:59.000Z

73

Retro-Commissioning Increases Data Center Efficiency at Low Cost  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet discusses a success story detailing a retro-commissioning project at the Department of Energy's Savannah River Site to increase data center energy efficiency at low costs.

74

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

75

J.M. Tarascon, et al. , Electrochemical energy storage  

E-Print Network (OSTI)

opportunities for Electrochemical Energy Storage (EES) Mass storage (MW): Which technology? Compressed air #12J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils

Canet, Léonie

76

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

77

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Managed by UT-Battelle for the Department of Energy Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This...

78

Dow Offers Low-Cost Ethylenimine  

Science Journals Connector (OSTI)

New process paves way to commercialization of highly reactive cyclic compound at low cost ... Behind the imine's substantially lower price tag is a new, low-cost commercial process developed by Dow. ...

1963-06-24T23:59:59.000Z

79

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

80

SunShot Initiative: Next-Generation Low-Cost Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Low-Cost Next-Generation Low-Cost Reflector to someone by E-mail Share SunShot Initiative: Next-Generation Low-Cost Reflector on Facebook Tweet about SunShot Initiative: Next-Generation Low-Cost Reflector on Twitter Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Google Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Delicious Rank SunShot Initiative: Next-Generation Low-Cost Reflector on Digg Find More places to share SunShot Initiative: Next-Generation Low-Cost Reflector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Laser Inertial Fusion-based Energy (LIFE) - Developing Manufacturing Technology for low cost and high volume fusion fuel is critical to our future energy needs  

Science Journals Connector (OSTI)

At the heart of the LIFE power plant is a fuel capsule containing a tiny amount of solid deuterium-tritium (DT) which is compressed to high density by lasers, and then a short-pulse laser beam delivers energy to ...

K. Carlisle; R. R. Miles

2010-01-01T23:59:59.000Z

82

Low Cost Titanium ? Propulsion Applications | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Applications Low Cost Titanium Propulsion Applications 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

83

Renewable Low-Cost Carbon Fiber Workshop Agenda | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda carbonfiberworkshopagenda.pdf More...

84

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

85

BUSINESS PLAN NIRMAL: LOW COST WATER PURIFICATION  

E-Print Network (OSTI)

NIRMAL #12;BUSINESS PLAN 2 NIRMAL: LOW COST WATER PURIFICATION I. Executive summary Nearly one the water. Hence we intend to address the issue by providing a low cost water purification system using billion people all over the world do not have access to safe drinking water.It is estimated that around 37

Mlllet, Dylan B.

86

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

87

ESS 2012 Peer Review - Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries - Fei Wang, EIC Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey Street, Norwood, MA 02062. www.eiclabs.com Identification of the Problem and Technical Approach Redox flow batteries (RFB) hold great promise for large scale electrochemical energy storage. A critical component of RFB is the membrane which separates anode and cathode compartments. The current state-of-the-art membrane, NAFION is too expensive, lacks selectivity, permitting leakage between anode and cathode electrolyte compartments. EIC is developing a novel bilayer, interpenetrating network membrane. Thin Nafion layer for anode side protection providing oxidative stability. The bulk part of the membrane consists of a block

88

Low Cost Hydrogen Production Platform  

SciTech Connect

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

89

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Engineering * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Engineering Electrochemical Energy Storage Argonne researcher Panagiotis Prezas examines a lithium-ion battery cell at the Battery Test Facility. Capabilities In support of and as part of the applied research and development (R&D) area, the Argonne's Electrochemical Energy Storage department (EES) has established and employs a variety of engineering R&D capabilities. These capabilities include electrode modeling, engineering, & fabrication; electrode/electrolyte interface modeling; cell modeling & engineering; cell, module, and battery design modeling; and cell, module, and battery cost modeling. Additionally, EES is developing new capabilities in the

90

An Evaluation of the Sustainability and Scalability of Business Models that Support Low-cost Assisted Home Energy Assessments Using A Cost Benefit Analysis.  

E-Print Network (OSTI)

??Energy costs and forecasted climate change have recently prompted organizations withinthe residential building sector and homeowners alike to increase their attention towards reducingresidential energy consumption.… (more)

Hinsey, Jason

2012-01-01T23:59:59.000Z

91

Low-Cost Solutions for Dynamic Window Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

92

Low-Cost Solutions for Dynamic Window Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

93

Low-Cost, Lightweight Solar Concentrators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective...

94

Building low-cost music controllers  

Science Journals Connector (OSTI)

This paper presents our work on building low-cost music controllers intended for educational and creative use. The main idea was to build an electronic music controller, including sensors and a sensor interface, on a “10 euro” budget. We ...

Alexander Refsum Jensenius; Rodolphe Koehly; Marcelo M. Wanderley

2005-09-01T23:59:59.000Z

95

Explorations in Low-Cost Compliant Robotics  

E-Print Network (OSTI)

This thesis presents the findings of exploratory research in low-cost compliant robotics. The most heavily leveraged trade-off is that of mechanical precision for computational power, with the hope that the price of future ...

Kumpf, Adam

2007-01-30T23:59:59.000Z

96

Explorations in low-cost compliant robotics  

E-Print Network (OSTI)

This thesis presents the findings of exploratory research in low-cost compliant robotics. The most heavily leveraged trade-off is that of mechanical precision for computational power, with the hope that the price of future ...

Kumpf, Adam (Adam A.)

2007-01-01T23:59:59.000Z

97

Giner Electrochemicals Inc | Open Energy Information  

Open Energy Info (EERE)

Giner Electrochemicals Inc Giner Electrochemicals Inc Jump to: navigation, search Name Giner Electrochemicals Inc Place Newton, Massachusetts Zip 2466 Product Specializes in the development of fuel cell technologies and products. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents  

Science Journals Connector (OSTI)

The cost of utilizing kinetic energy of river stream, tidal and ocean current is considered to be higher than that of wind power generation because of difficulties in construction and maintenance of devices installed in seawater. As a solution to the problem, the authors propose a new concept of water stream turbine. The main idea is in the manner of supporting turbine. Although it is similar to a vertical axis turbine, the direction of turbine axis is not firmly fixed and its tilt angle is passively adjustable to the stream velocity. Since it does not have to keep the turbine axis in upright position, required structural strength and weight of the device will be reduced significantly. This paper describes the application ranging from the small hydro power in river streams to large application of tidal and ocean current turbine. In the large capacity plant for tidal stream and ocean current, the main mechanism of turbine axis support is the same as that of the wind turbine authors proposed in the previous paper. It leads to the further opportunity of cost reduction. The sample design of a multi-megawatt ocean current turbine shows the possibility of high economic performance of the concept. The results show that the cost of energy in the concept can be comparable to a land based wind turbine.

Hiromichi Akimoto; Kenji Tanaka; Kiyoshi Uzawa

2013-01-01T23:59:59.000Z

99

Low Cost Solar Water Heating R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

100

Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dr. Katherine Ayers (Primary Contact), Chris Capuano Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Contract Number: DE-SC0001338 Subcontractors: * 3M, Minneapolis, MN * University of Wyoming, Laramie, WY Project Start Date: June 19, 2010 (Phase 1) Project End Date: August 18, 2013 (with Phase 2 continuation) Fiscal Year (FY) 2012 Project Objectives Demonstrate optimal membrane electrode assembly * (MEA) efficiency through: Refinement of catalyst compositions based on -

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber (CF) with at least 650 ksi tensile strength. Development of Low-Cost, High...

102

Thermal conductor for high-energy electrochemical cells  

DOE Patents (OSTI)

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

103

Low-cost flywheel demonstration program. Final report  

SciTech Connect

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

104

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers (EERE)

Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

105

Development of an Advanced, Low-Cost parabolic Trough Collector...  

Office of Environmental Management (EM)

Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation This...

106

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Low Cost...

107

Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

108

Advanced Low-Cost Receivers for Parabolic Troughs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receivers for Parabolic Troughs Advanced Low-Cost Receivers for Parabolic Troughs This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded...

109

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Low Cost PM Technology for Particle Reinforced...

110

Low-Cost Wireless Sensors for Building Monitoring Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Wireless Sensors for Building Monitoring Applications Low-Cost Wireless Sensors for Building Monitoring Applications Lead Performer: Oak Ridge National Laboratory - Oak...

111

Low-Cost Solutions for Dynamic Window Material | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer...

112

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials 2010 DOE Vehicle Technologies and Hydrogen...

113

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

114

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

115

A Low-Cost Continuous Emissions Monitoring System for Mobile...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition A Low-Cost Continuous Emissions...

116

Low-Cost Constant Temperature Heating Block  

Science Journals Connector (OSTI)

Low-Cost Constant Temperature Heating Block ... Secondary school and undergraduate laboratories can build many units for the cost of a commercially comparable one while simultaneously putting to practice several electronic principles taught in most instrumental analysis courses. ... Cost-Effective Teacher ...

Charles G. Shevlin; Ward Coppersmith; Christopher Fish; Stanley Vlock; William Vellema

1997-08-01T23:59:59.000Z

117

Low-cost inertial measurement unit.  

SciTech Connect

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

118

www.praxair.com Low Cost Hydrogen  

E-Print Network (OSTI)

www.praxair.com Low Cost Hydrogen Production Platform Cooperative Agreement: DE-FC36-01GO11004 Timothy M. Aaron Team Praxair - Tonawanda, NY Boothroyd-Dewhurst - Wakefield, RI Diversified Manufacturing (Hot Components Only) Praxair HGS Comparison 1/4 Capacity 1/6 Physical Plant Size Lower H2 Cost

119

An electrochemical system for efficiently harvesting low-grade heat energy  

E-Print Network (OSTI)

Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

Lee, Seok Woo

120

Zero-Net Power, Low-Cost Sensor Platform  

SciTech Connect

Numerous national studies and working groups have identified very low-power, low-cost sensors as a critical technology for increasing energy efficiency, reducing waste, and optimizing processes. This research addressed that need by developing an ultra low-power, low-cost sensor platform based on microsensor (MS) arrays that includes MS sensors, very low-power electronics, signal processing, and two-way data communications, all integrated into a single package. MSs were developed to measure carbon dioxide and room occupancy. Advances were made in developing a coating for detecting carbon dioxide and sensing thermal energy with MSs with a low power electrical readout. In addition, robust algorithms were developed for communications within buildings over power lines and an integrated platform was realized that included gas sensing, temperature, humidity, and room occupancy with on-board communications.

Hardy, J.E.

2005-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low-Cost, Abundant Energy: Paradise Lost?  

Science Journals Connector (OSTI)

...that oil make up for the natural...in total consumption for selected...unquestioned reserve pool for U.S...One way to reduce dependency...reduction in consumption. Price increases...admonitions to reduce driving speeds...rates of consumption, achievement...processing water may limit...

Hans H. Landsberg

1974-04-19T23:59:59.000Z

122

Low-Cost, Abundant Energy: Paradise Lost?  

Science Journals Connector (OSTI)

...Report for 1973 of RFF. 19...g4 half the per capita sup...summer of 1973, d oil and...supply. Sunda3 day closings of...Countries (OPEC), and rV...The steep 1973 increase in...condensate production in 1960 to...bar-rels per day by now-substantially...

Hans H. Landsberg

1974-04-19T23:59:59.000Z

123

Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage  

E-Print Network (OSTI)

Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy February 2013 Keywords: Polyaniline nanocomposite film Electropolymerization Electrochromism a b s t r a c films for electrochromic displays and electrochemical energy storage devices applications were

Guo, John Zhanhu

124

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

optimization and scale up for energy cells To be completed June-13 June-13 Optimized low cost andor safer electrolyte for energy cells On schedule June-13 Cathode coated stack...

125

Low-Cost Manufacturable Microchannel Systems for Passive  

E-Print Network (OSTI)

for use in fuel cell systems need development in order to achieve cost targets. Low-cost, highLow-Cost Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 LowLow--CostCost;2 Project objective: Create a low cost and passive PEM water management system Project objective

126

A low cost adaptive optics system using a membrane mirror  

Science Journals Connector (OSTI)

A low cost adaptive optics system constructed almost entirely of commercially available components is presented.

Paterson, Carl; Munro, I; Dainty, J

2000-01-01T23:59:59.000Z

127

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

128

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

129

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

130

Low-Cost Illumination-Grade LEDs  

SciTech Connect

Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

Epler, John

2013-08-31T23:59:59.000Z

131

Low-Cost Spectral Sensor Development Description.  

SciTech Connect

Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

Armijo, Kenneth Miguel; Yellowhair, Julius

2014-11-01T23:59:59.000Z

132

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied R&D Applied R&D * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Applied R&D Lithium-ion Battery Research Argonne National Laboratory's battery research aims to lower the cost and increase the lifetime and safety of high-power lithium-ion batteries for transportation and other applications. Argonne's Electrochemical Energy Storage (EES) Department leads the applied battery R&D program for the U.S. Department of Energy's (DOE's) Vehicle Technologies Program in the Office of Energy Efficiency and Renewable Energy (EERE). This $10 million/year program involves five other DOE laboratories. The program is currently focused on overcoming barriers for lithium-ion (Li-ion) batteries for use in plug-in hybrid electric vehicles (PHEVs),

133

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Solar Receiver for Use in a Supercritical CO 2 Recompression Cycle Brayton Energy, LLC Award Number: DE-EE0005799 | November 30, 2012 | Sullivan * Numerical Modeling is...

134

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas.

135

Advanced Low-Cost Receivers for Parabolic Troughs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost Receivers for Parabolic Troughs Advanced Low-Cost Receivers for Parabolic Troughs This presentation was delivered at the SunShot Concentrating Solar Power (CSP)...

136

Low Cost Gigabit Rate Transmit/Receive Chip Set  

E-Print Network (OSTI)

1 H Low Cost Gigabit Rate Transmit/Receive Chip Set Technical Data Features · Transparent, Extended Ribbon Cable Replacement · Implemented in a Low Cost Aluminum M-Quad 80 Package · High-Speed Serial Rate

California at Santa Cruz, University of

137

Low Cost Gigabit Rate Transmit/Receive Chip Set  

E-Print Network (OSTI)

1 H Low Cost Gigabit Rate Transmit/Receive Chip Set Technical Data Fea t ures . Transparent, Extended Ribbon Cable Rep l acemen t . Implemented in a Low Cost Aluminum M­Quad 80 Package . High

California at Santa Cruz, University of

138

The era of plentiful, low-cost petroleum is  

E-Print Network (OSTI)

The era of plentiful, low-cost petroleum is approaching an end. Without massive mitigation of plentiful, low-cost petroleum is approaching an end. The good news is that commercially viable mitigation

Laughlin, Robert B.

139

Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and...

140

Low-Cost Packaged Combined Heat and Power System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The potential for low-cost airlines in Asia  

E-Print Network (OSTI)

The purpose of this thesis is to assess the potential for low-cost airlines in Asia. Low-cost airlines have been very successful in North America and Europe and have significantly impacted the airline industry and its ...

Dietlin, Philipp, 1979-

2004-01-01T23:59:59.000Z

142

Developing a Low-Cost Robot Colony  

E-Print Network (OSTI)

Taking inspiration from nature, we have developed a colony of small, low-cost robots. We have created a robotic base which is inexpensive and utilizes simple sensors, yet has the capabilities required to form a colony. To overcome computational limitations, we have developed custom sensors and algorithms that enable the robots to communicate, localize relative to one another, and sense the environment around them. Using these noisy sensors and simple local rules, the Colony as a whole is able to exhibit more complex global behaviors. We present our work developing an autonomous robot colony and algorithms for efficient communication, localization, and robot behaviors. We also highlight recent developments that enable our Colony to recharge autonomously.

Felix Duvallet; James Kong; Eugene Marinelli; Kevin Woo; Austin Buchan; Brian Coltin; Christopher Mar; Bradford Neuman

143

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

144

True Performance Metrics in Electrochemical Energy Storage  

Science Journals Connector (OSTI)

...capacitance. An extreme case would be the use of a carbon aerogel with 90% porosity. The volumetric energy of such an electrode will...material used in a micrometer-thin film on a chip or a nanotube coating on a smart fabric is negligible. These systems may show a...

Y. Gogotsi; P. Simon

2011-11-18T23:59:59.000Z

145

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

146

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

147

Characterization Studies of Materials and Devices used for Electrochemical Energy Storage  

E-Print Network (OSTI)

solar and wind energy requires some form of energy storage,solar cells, fuel cells, redox flow batteries and electrochemical energy storage.energy generation and storage technologies. Dye Sensitized Solar

Membreno, Daniel Eduardo

2014-01-01T23:59:59.000Z

148

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

149

Low Cost PEM Fuel Cell Metal Bipolar Plates  

SciTech Connect

Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

Wang, Conghua [TreadStone Technologies, Inc.

2013-05-30T23:59:59.000Z

150

Progress toward low-cost titanium  

SciTech Connect

Although titanium has impressive mechanical and corrosion properties, designers and engineers simply do not think of it as a cost-effective, viable alternative to aluminum and steel. Moreover, the history and use of titanium have been solidly wedded to the aerospace industry. This explains why titanium's price rises and falls cyclically with the demand for civilian and military aircraft. Although the titanium industry is temporarily depressed, developing prospects may offer reason for optimism: several non-aerospace industries are interested in using titanium. Unfortunately, the decision makers in these industries are more than cautious, remembering titanium's reputation for down today, up tomorrow seesaw prices. The US Army and Navy are two of the new and potentially large customers for titanium. Lessons from the recent conflict in Panama and the Gulf War have spurred interest in the development of lighter, more efficient, more maneuverable vehicles and artillery. Other promising nonmilitary, non-aerospace applications include suspension springs and engine parts for cars and trucks, marine and offshore oil-rig components that currently are made of stainless steels and nickel-base alloys, and piping and reactor parts for the pulp-and-paper and chemical processing industries. Existing markets, such as tubing for shell-and-tube heat exchangers, are expected to grow. For the future, the Bureau of Mines - in cooperation with the US Army Tank/Automotive Command, Warren, Michigan, and other government and industry organizations - is planning a comprehensive, five-year program on low-cost titanium that will consist of several projects that seek not only to further reduce costs, but to improve ballistic protection and other mechanical and wear properties.

Turner, P.C.; Hansen, J.S. (Bureau of Mines, Albany, OR (United States))

1993-01-01T23:59:59.000Z

151

Low Cost SiOx-Graphite and Olivine Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sotowa (Showa-Denko) Objective Synthesize and evaluate doped manganese phosphate as low cost cathode material Replace graphite anode with an alternative material that meets the...

152

Project Profile: Low-Cost, Lightweight Solar Concentrators |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost, Lightweight Solar Concentrators Project Profile: Low-Cost, Lightweight Solar Concentrators JPL logo The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot...

153

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Energy Savers (EERE)

High cost of carbon fiber CF largest cost component of high pressure storage tanks. Inadequate supply base for low cost carbon fibers Timeline Barriers * ORNL:...

154

Adaptive PCCI with Variable Orifice Injector for Low Cost High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Low Cost High Efficiency Clean Diesels Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit,...

155

A Low Cost Spectrographic Attachment for an Echelle Spectrometer  

Science Journals Connector (OSTI)

The report describes a simple, low cost photographic attachment for an echelle spectrometer. The crossed dispersion prism/echelle grating system provides a high resolution spectrum...

Brackett, John M; Mitchell, Joel C; Vickers, Thomas J

1983-01-01T23:59:59.000Z

156

Low Cost Carbon Fiber from Renewable Resources | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from Renewable Resources Low Cost Carbon Fiber from Renewable Resources 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

157

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers (EERE)

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

158

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

159

Process for Low Cost Domestic Production of LIB Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- EV) Use BASF's existing assets and low cost production process. Validate that cost and quality targets are met via coin cells, pouch cells and 18650 cells. ...

160

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development and Commercialization of a Novel Low-Cost Carbon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Commercialization of a Novel Low-Cost Carbon Fiber 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

162

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

163

Low Cost Exploration, Testing, and Development of the Chena Geothermal...  

Open Energy Info (EERE)

Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensivelyexplored, tested, and...

164

An integrated approach towards efficient, scalable, and low cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low...

165

Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Low-Cost, Lightweight Solar Concentrators FY13 Q2 Low-Cost, Lightweight Solar Concentrator Low-Cost Light Weigh Thin Film Solar Concentrators...

166

ELECTROCHEMICAL ENERGY STORAGE DEVICES Arlin Alvarado Hernandez, Guanglian Li, Sylvia Nguyen, Fouche Smith,  

E-Print Network (OSTI)

ELECTROCHEMICAL ENERGY STORAGE DEVICES By Arlin Alvarado Hernandez, Guanglian Li, Sylvia Nguyen 55455-0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;Electrochemical Energy Storage Devices Arlin Alvarado Hernandez University of Puerto Rico Guanglian Li Texas A & M University

167

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network (OSTI)

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

168

Low-Cost Thermocouple Signal-Conditioning Module  

Science Journals Connector (OSTI)

Low-Cost Thermocouple Signal-Conditioning Module ... In this article we present a signal-conditioning module, based on the AD594C chip (Analog Devices, Inc.), which can be easily built at low cost and overcomes the drawbacks associated with thermocouple use. ... Cost-Effective Teacher ...

Michael F. Cunningham; Marcelo K. Lenzi; Fabricio M. Silva; Enrique L. Lima; José Carlos Pinto

2005-01-01T23:59:59.000Z

169

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

170

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Development Technology Development Khalil Amine, Argonne Distinguished Fellow, Senior Materials Scientist, Group Leader phone: 630/252-3838, fax: 630/972-4451, e-mail: amine@anl.gov Ph.D. (Material Science, with high honor): University of Bordeaux 1, France Fluorine chemistry, carbon chemistry, intercalation chemistry, fuel cell polymer chemistry, and advanced electrochemical devices and battery materials Ali Abouimrane, Materials Scientist phone: 630/252-3729, e-mail: abouimrane@anl.gov Ph.D., Physical Chemistry, Hassan II University, Morocco Works on the synthesis, characterization and optimization of electrode and electrolyte materials for high energy/power lithium and sodium batteries to be utilized in PHEV, EV and smart grid applications Ilias Belharouak, Chemist/Materials Scientist

171

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

172

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

SciTech Connect

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

173

Low Cost Carbon Fiber.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Production Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief Background The automotive industry has long been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able to achieve requisite levels of strength and stiffness with significantly less overall vehicle weight. These potential large reductions in vehicle weight, in turn, afford the

174

Project Profile: Low-Cost Heliostat Development | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Heliostat Development Project Profile: Low-Cost Heliostat Development HiTek logo HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of...

175

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

176

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

177

Development of a low-cost underwater manipulator  

E-Print Network (OSTI)

This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive or limited in functionality. ...

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

178

Development, Production and Implementation of Low Cost Rubber Bearings  

Science Journals Connector (OSTI)

The investigations and the results discussed in this chapter are related to development, production and implementation of low cost rubber isolators. In addition to production of isolators, one of the main objecti...

Mihail Garevski

2010-01-01T23:59:59.000Z

179

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network (OSTI)

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

180

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Titanium Automotive Components edm2@chrysler.com February 28, 2008 Ti-6Al-4V + 10% TiC Etched Unetched RMI RMI Ti- MMC USAMP AMD 310 - Low Cost PM Technology for Particle...

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Design of small, low-cost, underwater fin manipulator  

E-Print Network (OSTI)

This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater servos commercially available. The design involves modifying a commercially ...

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

182

Low-Cost High-Performance Scientific Visualization  

Science Journals Connector (OSTI)

The authors discuss the development of a low-cost stereoscopic visualization system using commonly available components. The system is used to improve understanding about the field-line structure and associated dynamics, confinement, and geometry of ...

Samuel T. Jones; Scott E. Parker; Charlson C. Kim

2001-07-01T23:59:59.000Z

183

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, M. L. Santella, and G. Muralidharan Oak Ridge National Laboratory (ORNL) This presentation does not...

184

Development and performance of a miniature, low cost mass spectrometer  

E-Print Network (OSTI)

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01T23:59:59.000Z

185

Low Cost Fabrication of Oxide Dispersion Strengthened Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Oxide Dispersion Low Cost Fabrication of Oxide Dispersion Strengthened Materials Background To obtain significant increases in the efficiency of coal fired power plants, steam pressure and temperature must be increased beyond current technology to advanced ultra-supercritical (A-USC) conditions -temperatures and pressures up to 760 degrees Celsius (°C) and 35 megapascals (MPa). The upper bounds of operating pressure and temperature are limited by the properties of the current set

186

Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold  

DOE Patents (OSTI)

A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

Farmer, Joseph Collin; Stadermann, Michael

2014-07-15T23:59:59.000Z

187

Low cost impulse compatible wideband antenna  

DOE Patents (OSTI)

An antenna apparatus and method for building the antenna is disclosed. Impulse signals travel through a feed point of the antenna with respect to a ground plane. A geometric fin structure is connected to the feed point, and through a termination resistance to the ground plane. A geometric ridge structure connected to the ground is positioned with respect to the fin in order to receive and radiate electromagnetic energy from the impulse signal at a predetermined impedance and over a predetermined set of frequencies. The fin and ridge can be either a wire or a planar surface. The fin and ridge may be disposed within a radiation cavity such as a horn. The radiation cavity is constructed of stamped and etched metal sheets bent and then soldered together. The fin and ridge are also formed from metal sheets or wires. The fin is attached to the feed point and then to the cavity through a termination resistance. The ridge is attached to the cavity and disposed with respect to the fin in order to achieve a particular set of antenna characteristics.

Rosenbury, Erwin T. (Livermore, CA); Burke, Gerald J. (Livermore, CA); Nelson, Scott D. (Tracy, CA); Stever, Robert D. (Lathrop, CA); Governo, George K. (Livermore, CA); Mullenhoff, Donald J. (Livermore, CA)

2002-01-01T23:59:59.000Z

188

The development of low cost LiFePO4-based high power lithium-ion batteries  

SciTech Connect

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

189

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM)  

Science Journals Connector (OSTI)

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM) ... His research group is engaged in a wide range of interdisciplinary research projects at the intersection between interfacial and transport phenomena, material science, and biology for sustainable energy conversion, storage, and efficiency technologies. ... Of these, carbon capture was phased out in the early stages of the project to concentrate available resources on the electrochemical pseudocapacitor and organic solar cell themes. ...

Jordan C. Aguirre; Amy Ferreira; Hong Ding; Samson A. Jenekhe; Nikos Kopidakis; Mark Asta; Laurent Pilon; Yves Rubin; Sarah H. Tolbert; Benjamin J. Schwartz; Bruce Dunn; Vidvuds Ozolins

2014-07-09T23:59:59.000Z

190

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

191

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

192

Low-cost hadron colliders at Fermilab: A discussion paper  

SciTech Connect

New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

Foster, G.W.; Malamud, E.

1996-06-21T23:59:59.000Z

193

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane  

SciTech Connect

The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm²); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

Hamdan, Monjid [Giner, Inc.] [Giner, Inc.

2013-08-29T23:59:59.000Z

194

Electrochemical NOx Sensors for Monitoring Diesel Emissions  

Energy.gov (U.S. Department of Energy (DOE))

A unique electrochemical sensing strategy correlating the level of NOx with an impedance-based signal shows promise for sensitivity, stability, and accuracy while incorporating single-cell structures and simple electronics into low-cost designs

195

Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994  

SciTech Connect

The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

Kinoshita, K. [ed.

1995-09-01T23:59:59.000Z

196

Electrochemical corrosion rate probes for high temperature energy applications  

SciTech Connect

Electrochemical corrosion rate (ECR) probes were constructed and exposed along with mass loss coupons in a N2/O2/CO2/H2O environment to determine ECR probe operating characteristics. Temperatures ranged from 450 to 800 C and both ECR probes and mass loss coupons were coated with ash. Results are presented in terms of the probe response to temperature, the measured zero baseline, and the quantitative nature of the probes. The effect of Stern-Geary constant and the choice of electrochemical technique used to measure the corrosion rate are also discussed. ECR probe corrosion rates were a function of time, temperature, and process environment and were found to be quantitative for some test conditions. Measured Stern-Geary constants averaged 0.0141 V/decade and the linear polarization technique was found to be more quantitative than the electrochemical noise technique.

Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, M.S. (InterCorr International Inc.); Eden, D.A. (InterCorr International Inc.)

2004-01-01T23:59:59.000Z

197

Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979  

SciTech Connect

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

1980-04-01T23:59:59.000Z

198

Low-cost and durable catalyst support for fuel cells: graphite...  

NLE Websites -- All DOE Office Websites (Extended Search)

cost and durable catalyst support for fuel cells: graphite submicronparticles. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles. Abstract: Low-cost...

199

Low-Cost Carbon-Fiber Integration / Users Facility and Commercializati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile Precursors Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile...

200

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sponsored by Nanotechnology Seminar Program Fulfilling a Dream: Low Cost  

E-Print Network (OSTI)

fabricated electrodeposited CZTSe and CZTS solar cell with 7.3% record high power conversion efficiency for electrodeposition. Since the solar cell devices with world record efficiency contain both Se and S in the absorber for the development of low cost Cu2ZnSn(Se,S)4 thin film solar cells with even higher efficiency. BIOGRAPHY Lili

Fisher, Frank

202

DEVELOPMENT OF LOW COST SENSORS FOR HYDROGEN SAFETY APPLICATIONS  

E-Print Network (OSTI)

production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen materials and fabrication methods, which have obvious cost advantages. The response to hydrogenDEVELOPMENT OF LOW COST SENSORS FOR HYDROGEN SAFETY APPLICATIONS Barbara S. Hoffheins, L. Curt

203

Low cost highly reliable telemetry module for space applications  

Science Journals Connector (OSTI)

In this paper we demonstrate a low cost highly reliable telemetry module design suitable for low orbit satellites based on commercial or industrial components. The proposed telemetry module configuration employs on shelf components to achieve 3 Kg weight, ... Keywords: highly reliable design, low orbit satellite, space application, telemetry module

Aladin S. Abdelaziz; Ahmed M. Mahmoud

2006-12-01T23:59:59.000Z

204

A New, Simple, "universal", Low Cost LED Driver and Controller  

E-Print Network (OSTI)

A New, Simple, "universal", Low Cost LED Driver and Controller Akram M. Fayaz Sup´elec Department:daniel.sadarnac@supelec.fr Abstract--In this paper a new LED driver and its controller are conceived realized and experimentally approach the average current through the LED is directly regulated. The proposed driver is built around

Paris-Sud XI, Université de

205

Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud  

E-Print Network (OSTI)

Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open and maintain. #12;Cloud Computing · Distributed or Cloud computing allows for the use of virtual computers Web Services (AWS) · EC2 ­ Amazon Elastic Compute Cloud "a web service that provides resizable compute

206

NETL: News Release - Innovative Technology Shows Promise for Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2, 2005 June 2, 2005 Innovative Technology Shows Promise for Low-Cost Mercury Control Patented DOE Process Licensed to Industry for Commercial Development WASHINGTON, DC - Close on the heels of the U.S. Environmental Protection Agency's March 15 release of its Clean Air Mercury Rule, the U.S. Department of Energy has issued a license to private industry to commercially develop a promising low-cost, DOE-patented mercury control technology. MORE INFO Technical Report on the Thief Process [PDF-374KB] DOE's National Energy Technology Laboratory issued the license on a technology called the Thief Process to Mobotec USA, Inc., of Walnut Creek, Calif. Mobotec, a leader in developing cost-effective combustion improvement and multi-pollutant reduction technologies for industrial and

207

NETL: News Release - Ultra-low Cost Well Monitoring Could Save Thousands of  

NLE Websites -- All DOE Office Websites (Extended Search)

January 19, 2005 January 19, 2005 Ultra-low Cost Well Monitoring Could Save Thousands of Marginal Oil Wells DOE-funded Project in California Tested Successfully TULSA, OKLA. - A new, ultra-low cost method for monitoring marginal oil wells promises to help rescue thousands of U.S. wells from an early demise. Developed with funding from the Department of Energy (DOE) and project-managed by DOE's National Energy Technology Laboratory, this novel, inexpensive, monitoring-system prototype helps improve the efficiency of rod-pumped oil wells. The ultimate payoff for such an approach could be the recovery of millions of barrels of oil otherwise permanently lost while the United States watches its oil production continue to slide. MORE INFO Marginal Expense Oil Well Wireless Surveillance MEOWS -Phase II final technical report [PDF-294KB]

208

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Analysis and Diagnostics Laboratory Electrochemical Analysis and Diagnostics Laboratory Ira Bloom, Inorganic Chemist and Manager/Group Leader phone 630/252-4516, fax: 630/252-4176, e-mail: ira.bloom@anl.gov Ph.D., Inorganic Chemistry, University of Chicago Battery and fuel cell evaluation and testing Javier Bareño, Assistant Materials Scientist (630) 252-5856, fax: 630/972-4528, e-mail: bareno@anl.gov John K. Basco, Engineering Specialist Sr. phone: 630/252-7627, fax: 630/252-4418, e-mail: jkbasco@anl.gov Testing and evaluation of advanced battery systems Testing and evaluation of advanced hydrogen fuel cell systems Panos D. Prezas, Engineering Specialist phone: 630/252-3360, fax: 630/972-4422, e-mail: Prezas@anl.gov BS, Electrical Engineering, Illinois Institute of Technology Battery and fuel cell analysis for HEV/PHEV applications

209

Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint  

SciTech Connect

This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

2014-08-01T23:59:59.000Z

210

PPG Industries Develops a Low-Cost Integrated OLED Substrate  

Energy.gov (U.S. Department of Energy (DOE))

With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

211

An Automated Home Made Low Cost Vibrating Sample Magnetometer  

Science Journals Connector (OSTI)

The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10 ?2 ? emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software.

S. Kundu; T. K. Nath

2011-01-01T23:59:59.000Z

212

An Automated Home Made Low Cost Vibrating Sample Magnetometer  

E-Print Network (OSTI)

The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10-2 emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software

Kundu, S

2011-01-01T23:59:59.000Z

213

Rock glacier monitoring with low-cost GPS  

E-Print Network (OSTI)

moving stations on rock glacier Low-cost L1 GPS receivers (blox) Power source: solar panels Local data Rock glacier GPS antennaGPS antenna Solar panelSolar panel Box incl.Box incl. -GPS receiverData logger Instruments Solar panelSolar panel (24W, 12V, 50x50cm)(24W, 12V, 50x50cm) Costs per station: 2

214

Building America Top Innovations Hall of Fame Profile Â… Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

215

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

216

A low-cost CW-pumped supercontinuum source  

Science Journals Connector (OSTI)

In order to resolve the conflict of high performance and high cost for a continuous wave (CW)-pumped supercontinuum (SC) source under low-power pumping conditions (less than ~20 W), a cascaded-fiber configuration of a short photonic crystal fiber (PCF) and a short low-cost conventional fiber is proposed to replace long high-cost PCFs. By cascading a 60 m low-cost conventional nonlinear fiber with a 90 m PCF pumped by a 24 W CW fiber laser, a higher-quality SC with a 10 dB bandwidth of 230 nm and a 5 dB bandwidth of 176 nm is demonstrated. This SC also has a maximum output power of 13.9 W. Both the spectral performance and the output power properties for this SC source are superior to those for the SC from the 200 m high-cost PCF, and these results demonstrate the effectiveness of the method in realizing a low-cost, high-quality SC source.

C Y Guo; S C Ruan; P G Yan; H F Wei; Z C Chen; D Q Ouyang; H Q Lin; X J Hu

2013-01-01T23:59:59.000Z

217

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,”challenges facing electrical energy storage,” MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

218

FY 2011 Annual Progress Report for Energy Storage R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electrochemical performances. Future work will examine the effect that the ion- exchange media has on the structure and electrochemical performance. For low cost processing, we...

219

TAS-2013-0043 1 Abstract--Fuel cells are electrochemical energy converters  

E-Print Network (OSTI)

of the perfectly direct current relies upon a fuel cell fed by hydrogen. The main advantages to be taken from fuelTAS-2013-0043 1 Abstract--Fuel cells are electrochemical energy converters which allow generation. Fuel cells are then by essence low voltage sources , so that for most practical applications

Boyer, Edmond

220

CONTROLLED PART-TO-SUBSTRATE MICRO-ASSEMBLY VIA ELECTROCHEMICAL MODULATION OF SURFACE ENERGY  

E-Print Network (OSTI)

the hydro- phobicity of the binding sites between micro-parts and substrates. Active assembly sites consistCONTROLLED PART-TO-SUBSTRATE MICRO-ASSEMBLY VIA ELECTROCHEMICAL MODULATION OF SURFACE ENERGY-2500, USA ABSTRACT A process designed for repeated parallel micro- assembly has been achieved by controlling

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Low Cost Components: Advanced High Power & High Energy Battery Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

222

Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-01stephenson.pdf More Documents & Publications Development of...

223

High Performance, Low Cost Hydrogen Generation from Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

224

Low-Cost Titanium Powder for Feedstock | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

"Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08smith4.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting...

225

A low?cost electronic solar energy control  

Science Journals Connector (OSTI)

A simple inexpensive differential thermostat circuit for use with a solar heating system is described.

Richard A. Blade; Charles T. Small

1978-01-01T23:59:59.000Z

226

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

227

Neutron Energy Response and Background of Electrochemically Etched Nuclear Track Detectors: Study of Various CR-39 Materials  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Article Neutron Energy Response and Background of Electrochemically Etched Nuclear Track Detectors: Study of Various CR-39...experiments. Results are presented for the energy dependence of the response of the various......

M. Luszik-Bhadra; W.G. Alberts; E. Piesch

1990-08-01T23:59:59.000Z

228

A low cost ECL-bus multiplexer: bus switch  

Science Journals Connector (OSTI)

A fast low cost ECL differential bus multiplexer, Bus Switch (BS), has been constructed as a single CAMAC unit. It has been designed with two strobed 16-bit latches to capture and hold two 16-bit input ECL data words. Its design has foreseen the possibility of connecting 16-bit differential ECL outputs of many BS modules to the same bus. Its simplicity and flexibility make it a useful element for all kind of acquisition systems. It will be used, for example, in the first level trigger of the L3 experiment at LEP.

F. Cesaroni; E. Gennari; S. Gentile; P. Pacchiarotti

1987-01-01T23:59:59.000Z

229

Low cost, large area silicon detectors for calorimetry  

SciTech Connect

Trapezoidal detectors with 28 cm{sup 2} active area have been fabricated on >2500 {Omega}cm, 4 in. diameter n-type silicon wafers. Instead of the commonly used ion implantation method, low-cost, high volume solid state diffusion technology along with phosphosilicate-glass and TCA gettering was adopted for boron and phosphorus doping. Typically the diode dark current was 15 {mu}A {at} 100 volts. Efforts are being made to obtain a finished device yield of 80% to meet the $2/cm{sup 2} price goal of SSC semiconductor detector group. 20 refs., 4 figs.

Korde, R. (International Radiation Detectors, Torrance, CA (USA)); Furuno, K.; Hwang, H.; Brau, J.E. (Oregon Univ., Eugene, OR (USA)); Bugg, W.M. (Tennessee Univ., Knoxville, TN (USA))

1990-01-01T23:59:59.000Z

230

Low-cost options for upgrading light straight run naphtha  

SciTech Connect

Of the many alternatives available for gasoline pool octane improvement, light straight run naphtha isomerization is among the most attractive. Recent catalyst and process developments have improved the cost effectiveness and flexibility of the Penex process for achieving octane improvement. Two new commercial catalysts have been developed, the first obtains maximum once-through octane on desulfurized feeds in new or revamped units, the second allows operation at feed sulfur levels above 100 ppm. New process developments permit low cost product recycle to achieve maximum octane. An isomerization unit may be designed for once-through operation initially with postponed investment for recycle operation.

Schmidt, R.J.; Weiszmann, J.A.

1985-01-01T23:59:59.000Z

231

Low-Cost Hydrogen Distributed Production System Development  

SciTech Connect

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

232

Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993  

SciTech Connect

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

233

Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991  

SciTech Connect

The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

Kinoshita, K. [ed.

1992-06-01T23:59:59.000Z

234

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

235

NETL: Mercury Emissions Control Technologies - Assessment Of Low Cost Novel  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Of Low Cost Novel Mercury Sorbents Assessment Of Low Cost Novel Mercury Sorbents Project Summary: Apogee Scientific Inc. will assess up to a dozen carbon-based and other sorbents that are expected to remove more than 90 percent of mercury and cost 40 to 75 percent less than commercial sorbents because they feature inexpensive precursors and simple activation steps. Six to 12 sorbents will undergo fixed-bed adsorption tests with the most promising three to six being further evaluated by injecting them into a pilot-scale electrostatic precipitator and baghouse. Commercial flue gas desulfurization activated carbon will provide the baseline for comparisons. A portable pilot system will be constructed and would accommodate a slipstream ESP or baghouse at minimal cost. Tests will be conducted at Wisconsin Electric's Valley power plant in Milwaukee, WI, and Midwest Generation's Powerton Station in Pekin, IL. The project team consists of URS Radian, Austin, TX; the Electric Power Research Institute, Palo Alto, CA; the Illinois State Geological Survey, Champaign, IL; ADA Environmental Solutions, Littleton, CO; and Physical Sciences Inc., Andover, MA.

236

Teaching auscultation visually with low cost system, is it feasible?  

Science Journals Connector (OSTI)

Cardiac auscultation can generate important information in the diagnosis of diseases. The sounds that the cardiac system provides are understood in the frequency range of human hearing but in a region of low sensitivity. This project aims to build a low cost didactic software/hardware set for teaching cardiac auscultation technique in Brazilian universities. The frequencies of interest to describe the human cardiac cycle were found in the range of 20 Hz to 1 kHz which includes low frequencies where available low-cost transducers usually have large errors. To create the system an optimization of the geometry of the chestpiece is being programmed with finite element simulations; meanwhile digital filters for specific frequencies of interest and an interface based on MATLAB are being developed. There were needed filters for the gallops (20 to 70 Hz) heart beats (20 to 100 Hz) ejection murmurs (100 to 500 Hz) mitral stenosis (30 to 80 Hz) and regurgitations (200 to 900 Hz). The FEM simulation of a chestpiece demonstrates high signaling levels on the desired frequency range which can be used with the filters to obtain specific information. Furthermore the ideal signal recording equipments will be defined implemented and tested.

2014-01-01T23:59:59.000Z

237

Low-cost fiber-optic chemochromic hydrogen detector  

SciTech Connect

The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

1998-08-01T23:59:59.000Z

238

The development of low cost LiFePO4-based high power lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

239

Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992  

SciTech Connect

This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

240

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network (OSTI)

High-resolution modeling of the western North American power system demonstrates low-cost and low energy Carbon emissions a b s t r a c t Decarbonizing electricity production is central to reducing of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear

Kammen, Daniel M.

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Categorical Exclusion Determinations: California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-003690: Categorical Exclusion Determination Solar Upgrade CX(s) Applied: A9, B5.1 Date: 09/07/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 3, 2010 CX-003769: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Santa Clara, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy

242

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 10360 of 31,917 results. 51 - 10360 of 31,917 results. Download CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003766-categorical-exclusion-determination Download CX-003769: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Santa Clara, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003769-categorical-exclusion-determination

243

Low-Cost U.S. Manufacturing of Power Electronics for Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles 2010 DOE Vehicle...

244

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Development of High Volume Warm Forming of Low Cost Magnesium Sheet edm2@chrysler.com February 28, 2008 Development of High-Volume Warm Forming of Low- Cost Magnesium Sheet...

245

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy Savers (EERE)

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen...

246

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of...

247

Advanced Low-Cost Receivers for Parabolic Troughs - FY13 Q2 ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost Receivers for Parabolic Troughs - FY13 Q2 Advanced Low-Cost Receivers for Parabolic Troughs - FY13 Q2 This document summarizes the progress of this Norwich...

248

A New Low-Cost Measurement Platform for Urea Quality Monitoring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A New Low-Cost Measurement Platform for Urea Quality Monitoring A New Low-Cost Measurement Platform for Urea Quality Monitoring This technique can use specifications for urea...

249

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system for a CHP project less than 1 megawatt (MW) in size. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions More Documents & Publications Low-Cost...

250

Geothermal Brine Brings Low-Cost Power with Big Potential | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm,...

251

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Presentation from the U.S. DOE Office of...

252

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium...

253

An Exploratory Initiative for Improving Low-Cost Housing in Texas  

E-Print Network (OSTI)

Affairs in its "State of Texas Low-Income Housing Plan and Annual Report." However, as the results from the Delphi study and the T.S.A. survey show, no one issue will solve the low-cost housing problem in Texas. True and lasting progress will depend... variety of disciplines related to affordable housing including Architecture firms, Building Contractors and Planning Firms, Building Code Committees, Engineering Firms, and a variety of other specific technical areas of focus such as Solar Energy and air...

McKittrick, T. L.; Haberl, J. S.; Graham, C. W.; Claridge, D. E.; Swain, W. B.

2000-01-01T23:59:59.000Z

254

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

255

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Heliostat Development Cost Heliostat Development HiTek logo Photo of a machine with two round discs connected by intertwined chains. A staged-chain drive unit eliminates destructive coupling loads from severe wind conditions and greatly reduces cumulative fatigue damage. HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of the optimum heliostat size and developing a novel low-cost heliostat design. Approach There are four tasks under this award: Develop a means to determine the optimum size range of the heliostat, in terms of the applied forces and moments, manufacturing learning curve effects, O&M, and optical efficiency. The outcome of this task will be a spreadsheet analysis tool for parametrically determining heliostat costs that are appropriately allocated into categories with inputs for a specific design.

256

Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

B. Wilding; D. Bramwell

1999-01-01T23:59:59.000Z

257

LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION  

SciTech Connect

During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

Lowes, Ted

2014-07-31T23:59:59.000Z

258

NETL: News Release - New, Low-Cost Approach to 4-D Imaging of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2005 7, 2005 New, Low-Cost Approach to 4-D Imaging of CO2 Flood Yields Breakthrough DOE-Funded Kansas Research to Bolster Economics of Marginal EOR Projects TULSA, OK - - U.S. Department of Energy-funded research has yielded a breakthrough in high-resolution subsurface imaging with the first low-cost depiction of CO2 movement through a thin, shallow oil reservoir. The University of Kansas Center for Research project combines the time-lapse approach of 4-D seismic, which is essentially a series of three-dimensional images recorded over time, with a carefully selected application of the higher-resolution imaging of other advanced seismic technologies. The first-of-its-kind project is being implemented for a landmark CO2 flood pilot project underway in the Hall-Gurney oilfield, near Russell, Kan. That pilot-itself the first CO2 flood in Kansas-also is funded by DOE. Both projects are managed by the Office of Fossil Energy's National Energy Technology Laboratory as part of its Enhanced Oil Recovery (EOR) program.

259

LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction  

E-Print Network (OSTI)

for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from symbols, and light trucks by large. Greenhouse Gas Emissions Intensity (kg/mi), urban driving cycleLowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross

Edwards, Paul N.

260

From nanoscience to solutions in electrochemical energy storage  

Science Journals Connector (OSTI)

Electrical energy storage is a challenging and pivotal piece of the global energy challenge—the “currency” of the energy economy. The opportunity that nanostructures present for advances in storage recognized two decades ago has been substantially bolstered by profound advances in nanoscale science and technology so that a next generation energy storage technology is in sight. The authors present a perspective on the science issues and technology challenges accompanying this vision focused primarily on the issues as exemplified by lithium ion batteries and made amenable to science through precision heterogeneous nanostructures. The authors address the synthesis and characterization of heterogeneous nanostructures architectural designs and recent results as well as the scientific and technological challenges of integrating dense arrays of nanostructures for a viable technology.

Alexander C. Kozen; Sang Bok Lee

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Electrochemically driven phase transformation in energy storage compounds  

E-Print Network (OSTI)

Nanoscale lithium transition metal phosphate olivines have become commercially important as positive electrode materials in a new generation of lithium-ion batteries. Not surprisingly, many energy storage compounds undergo ...

Gao, Yuhua

2011-01-01T23:59:59.000Z

262

Hybridizing Energy Conversion and Storage in a Mechanical-to-Electrochemical Process for Self-Charging Power Cell  

E-Print Network (OSTI)

Hybridizing Energy Conversion and Storage in a Mechanical-to- Electrochemical Process for Self-charging power cell, mechanical energy, piezoelectricity, lithium ion battery, electrochemistry Energy conversion physical units achieving the conversions from mechanical energy to electricity and then from electric

Wang, Zhong L.

263

Development of a Low-Cost Rotary Steerable Drilling System  

SciTech Connect

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

264

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy is utilizing its current commercialization channels to market the new hybrid fuel cell technologies. Distribution partners LOGAN Energy, Pfister Energy, and PPL Energy Plus...

265

ESS 2012 Peer Review - Low Cost, Manufacturable High Voltage Power Module for ESS - Brandon Passmore, APEI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 W. Research Center Blvd. * Fayetteville, AR 72701 * (479) 443-5759 Design and Development of a Low Cost, Manufacturable High Voltage Power Module for Energy Storage Systems Phase I SBIR September 27, 2012 Brandon Passmore, PhD Sr. Electronics Packaging Research Engineer Email: bpassmo@apei.net Acknowledgements * I would like to thank Dr. Imre Gyuk of the DOE Energy Storage Systems Program and Dr. Stan Atcitty for technical support * I would also like to thank 2 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

266

NETL: News Release - Four Industry Teams Begin Quest for Low-Cost,  

NLE Websites -- All DOE Office Websites (Extended Search)

August 8, 2001 August 8, 2001 Four Industry Teams Begin Quest for Low-Cost, Breakthrough Fuel Cell Could Broaden Market Acceptance of "Cutting Edge" Technology Cited in President's Climate Change Policy PITTSBURGH, PA - Four new government-industry projects have been selected as the vanguards of a $500 million, 10-year effort to produce breakthrough fuel cells that will shatter current cost barriers and move the advanced, low-polluting technology into mainstream energy markets. - Technician Examining Planar Fuel Cell Assembly Future fuel cells could be mass- produced from flat, ceramic plates. This configuration is called a "planar" fuel cell. Secretary of Energy Spencer Abraham today announced that the U.S. Department of Energy has selected proposals from Honeywell, Inc., Torrence,

267

LEP3: a low-cost, high-luminosity Higgs factory  

E-Print Network (OSTI)

The discovery of a relatively light Higgs opens up the possibility of circular e+e- Higgs factories. LEP3 is such a machine with emphasis on low cost, since it re-uses most of the LHC infrastructure, including the tunnel, cryogenics, and the two general-purpose LHC experiments Atlas and CMS, with some modifications. The energy reach of LEP3 is 240GeV in the centre of mass, close to the ZH production maximum. Alternative tunnel diameters and locations are possible, including a Higgs factory housed in the UNK tunnel, UNK-L, and a machine located in a new 80 km tunnel in the Geneva region, TLEP, than can further house a very high energy pp collider. The design merits further consideration and a detailed study should be performed, so that LEP3 can be one more option available to the community for the next step in High Energy Physics.

M. Koratzinos

2014-11-11T23:59:59.000Z

268

Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures  

SciTech Connect

The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

Kyoung-Shin Choi

2013-06-30T23:59:59.000Z

269

In Charge of the World: Electrochemical Energy Storage  

Science Journals Connector (OSTI)

In a Perspective in this issue, Ding et al. provide a survey of the current understanding of vanadium RFBs from materials to stacks (Ding, C.; Zhang, H.; Li, X.; Liu, T.; Xing, F. Vanadium Flow Battery for Energy Storage: Prospects and Challenges. ... Rychcik, M.; Skyllas-Kazacos, M.Characteristics of a New All-Vanadium Redox Flow Battery J. Power Sources 1988, 22, 59– 67 ... Characteristics of a new all-vanadium redox flow battery ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2013-04-18T23:59:59.000Z

270

NETL: Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent Project No.: DE-FE0013687 GE global is constructing and operating a continuous, bench-scale CO2 capture system that employs a phase-changing silicone solvent . Experimental data obtained at the laboratory scale in a previous ARPA-E funded project, including mass transfer and kinetic information, is being used to determine process scalability and perform a techno-economic assessment of the commercial scale process. The manufacturability of the solvent is being examined to obtain the material needed for bench-scale testing. Data obtained from the bench-scale system will include mass transfer parameters, kinetic parameters, heat transfer parameters, solvent stability, effects of flue gas contaminants, and recommended operating conditions. Other data such as absorption/desorption isotherms and solvent regeneration energy will be determined in laboratory testing. The solvent manufacturing cost, the bench-scale engineering data, and the laboratory property data will be used to complete the techno-economic assessment and to develop a scale-up strategy for commercialization.

271

ESS 2012 Peer Review - Low Cost, High Performance and Long Life Flow Battery Electrodes - Tom Stepien, Primus Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

With ARPA-E we optimized With ARPA-E we optimized * Adhesion * Current density * Duration * Catalytic coatings * Voltaic performance Goals * Cost-effectiveness * High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has enabled Primus Power to create an innovative and technically advanced electrode Electrode Zinc Plating This, combined with our other advances has enabled us to create a unique flow battery system with ...  Low cost electrodes  Long life  High efficiency  Flexibility For...  Ubiquitous  Dispatchable  Cost effective ... grid-scale electrical energy storage to: * Accelerate renewable

272

Creating systems that effectively convert energy, such as efficient solar cells and electrochemical batteries, has been a  

E-Print Network (OSTI)

SEMTE abstract Creating systems that effectively convert energy, such as efficient solar cells stimuli, the solar energy from sunlight, and the mechanical motion is commonplace, indeed fundamental and electrochemical batteries, has been a longstanding scientific pursuit, especially given the global energy

Reisslein, Martin

273

Argonne Chemical Sciences & Engineering - People - Electrochemical Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Research Materials Research Michael M. Thackeray, Materials Scientist and Group Leader phone: 630/252-9184, fax: 630/252-4176, e-mail: thackeray@anl.gov Ph.D., Chemistry, University of Cape Town, South Africa Energy materials Solid state electrochemistry Structural design of battery electrode/electrolyte materials Ionic and electronic transport phenomena in solids - phase transitions Surface phenomena - electrode/electrolyte interactions Fikile R. Brushett, Argonne Scholar- DPF phone: 630/252-5123, e-mail: brushett@anl.gov Christopher S. Johnson, Chemist phone: 630/252-4787, fax: 630/252-4176, e-mail: cjohnson@anl.gov Ph.D., Inorganic Chemistry, Northwestern University Synchrotron spectroelectrochemical studies Synthesis and characterization of advanced lithium battery electrodes

274

Electrochemical Energy Storage Technologies and the Automotive Industry  

ScienceCinema (OSTI)

The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

Mark Verbrugge

2010-01-08T23:59:59.000Z

275

Special issue to “ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore”  

Science Journals Connector (OSTI)

The Symposium F on “Nanostructured Materials for Electrochemical Energy Systems: Lithium Batteries, Supercapacitors and Fuel Cells” provided an excellent opportunity for interdisciplinary ... (cathodes and anodes...

Palani Balaya; San Ping Jiang; Atsuo Yamada…

2010-10-01T23:59:59.000Z

276

Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

277

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORK Identify suitable graphite materials for anodes that meet the requirement for low cost and long cycle life. Fabricate half cells (Ligraphite) and Li-ion (graphiteolivine)...

278

Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Solar Photovoltaic Find More Like This Return to Search Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar Arrays Lawrence Berkeley National Laboratory...

279

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2011 Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2011 Cummins Power Generation, in collaboration...

280

Low-Cost and Low-Electromagnetic-Interference Packaging of Optical Transceiver Modules  

Science Journals Connector (OSTI)

The low-cost and low-electromagnetic-interference (EMI) packaging of optical transceiver modules employing housings of plastic composites are developed and fabricated. Optical...

Cheng, Wood-Hi; Hung, Wen-Chi; Lee, Chien-Hui; Hwang, Gan-Lin; Jou, Wern-Shiang; Wu, Tzong-Lin

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low Cost Carbon Fiber Research in the LM Materials Program Overview...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies...

282

Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications CX-009154: Categorical Exclusion Determination Low Cost Carbon Fiber Research in the LM Materials Program Overview Carbon Fiber Technology...

283

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

284

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

285

Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics  

E-Print Network (OSTI)

Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

Pan, Heng

2009-01-01T23:59:59.000Z

286

Design of low cost, passive solar/earth contact housing using an embankment wall concept. Final report  

SciTech Connect

The basis of the grant proposal was to research, design, and develop a system for constructing an attractive, low cost passive solar/earth contact dwelling. In achieving all of these goals the grant was considered to be highly successful. The energy savings potential of the dwelling was very impressive. The amount of back-up heat required makes the house as efficient as any for the mid-west climate. This makes the idea more marketable with each increase in utility costs.

McGuire, S.

1982-05-01T23:59:59.000Z

287

ESS 2012 Peer Review - Electrical Energy Storage R&D at PNNL - Vincent Sprenkle, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL Electrical Energy Storage (EES) PNNL Electrical Energy Storage (EES) R&D strategy Crosscutting science Advanced diagnostic study, NMR, TEM, etc. Electrochemical study * Mass/charge transport * Electrochemical * Flow, thermal, ... * Basic chemistry * Materials structure * Physical properties * Electrochemical activity * Reaction kinetics * Performance Computer Modeling Technology Transfer EES Technologies Novel redox flow batteries Next gen Na-batteries Low cost, long life Li-ion, New concepts, emerging technologies Grid Analytics * Roles of storage in US grids * Value, locations, targets Cost Analysis * Cost and performance requirements Academic/National Lab/Industrial Collaborations Next Generation Redox Flow Batteries Developed next generation redox flow battery (RFB) that can demonstrate substantial

288

Durable, Low-cost, Improved Fuel Cell Membranes  

SciTech Connect

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

289

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network (OSTI)

resistant material for contact with s Low-cost seals Low-cost electrolyte Specific power is low Thermal

Cairns, Elton J.

2012-01-01T23:59:59.000Z

290

Low-cost evacuated-tube solar collector appendices. Final report  

SciTech Connect

A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

Beecher, D.T.

1980-05-31T23:59:59.000Z

291

Low Cost PEM Fuel Cell Metal Bipolar Plates  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

292

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

293

Low-cost, high-power mechanical impact transducers for sonar and acoustic through-wall surveillance applications  

E-Print Network (OSTI)

A new concept is presented for mechanical acoustic transmitters and matched resonant receivers. The lightweight, compact, and low-cost transmitters produce high-power acoustic pulses at one or more discrete frequencies with very little input power. The transducer systems are well suited for coupling acoustic pulse energy into dense media, such as walls and water. Applications of the impact transducers are discussed, including detection and tracking of humans through walls and long-duration underwater surveillance by a low-cost network of autonomous, self-recharging, battery-operated sonobuoys. A conceptual design of a sonobuoy surveillance network for harbors and littoral waters is presented. An impact-transmitter and matched-receiver system that detected human motion through thick walls with only rudimentary signal processing is described, and results are presented. Signal processing methods for increasing the signal-to-noise ratio by several tens of dB are discussed.

Felber, Franklin

2014-01-01T23:59:59.000Z

294

Research and Development of a Low Cost Solar Collector  

SciTech Connect

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

295

Modular Process Equipment for Low Cost Manufacturing of High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5142012 - 2012 DOE AMR Proj ID ES128 Energy & Environmental Solutions Alternative Energy Products 15 Capacity Retention Comparison for 3.3 mAhcm 2 Cells 3D CuGraphite vs....

296

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT  

E-Print Network (OSTI)

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT Chau Nguyen Viet, Ian Marshall Computer.marshall@kent.ac.uk Keywords: obstacle-avoidance, robot vision. Abstract: This paper presents a vision-based obstacle avoidance algorithm for a small indoor mobile robot built from low-cost, and off-the-shelf electronics. The obstacle

Marshall, Ian W.

297

Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA)  

Energy.gov (U.S. Department of Energy (DOE))

These slides, presented at the 2014 DOE Annual Merit Review and Peer Evaluation Meeting, provide an overview of and accomplishments for a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber.

298

Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs  

E-Print Network (OSTI)

Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs D. Jung, E. J for the development of a low-cost Unmanned Aerial Vehicle (UAV) test-bed for educational purposes. The objective) and graduate students (secondarily) in UAV research. The complete design and development of all hardware

Tsiotras, Panagiotis

299

UNIVERSITY of CALIFORNIA ATTITUDE ESTIMATION FOR A LOW-COST UAV  

E-Print Network (OSTI)

UNIVERSITY of CALIFORNIA SANTA CRUZ ATTITUDE ESTIMATION FOR A LOW-COST UAV A thesis submitted of Physics #12;Copyright c by Gregory M. Horn 2009 #12;Abstract Attitude Estimation for a Low-Cost UAV by Gregory M. Horn Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) are a rapidly growing

Belanger, David P.

300

From Low-Cost Depth Sensors to CAD: Cross-Domain 3D Shape Retrieval via  

E-Print Network (OSTI)

applications for 3D shape retrieval, such as high-quality 3D scanning, manipulation and printing. NoteFrom Low-Cost Depth Sensors to CAD: Cross-Domain 3D Shape Retrieval via Regression Tree Fields Yan@us.ibm.com Abstract. The recent advances of low-cost and mobile depth sensors dramatically extend the potential of 3D

Chang, Shih-Fu

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis,  

E-Print Network (OSTI)

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis, Kevin Lichy of the project was to design and build a low cost autonomous vehicle control system for a ground vehicle, University of Idaho Electrical and Computer Engineering Dept. Moscow, ID 83844-1023 Abstract ­ Autonomous

Idaho, University of

302

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network (OSTI)

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

303

Building Green Cloud Services at Low Cost Josep Ll. Berral  

E-Print Network (OSTI)

at a relatively low additional cost compared to existing services. Keywords-datacenter; renewable energy; green sources of renewable ("green") energy such as solar and wind into datacenters. In particular, several advantage of green energy produced on- site [7]­[10]. Two key observations behind these works are: (1

Bianchini, Ricardo

304

Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters Meghan B. Teunis, Katie N. Lawrence, and Sukanta Dolai  

E-Print Network (OSTI)

Size-Dependent Optical and Electrochemical Energy Gaps Comparison of CdSe Nanolusters Meghan B, a comparison of the size dependent optical properties and electrochemical energy gaps of poly(ethylene glycol-dependent optical and electronic properties of semiconductor nanocrystals have made them the focus of much research

Zhou, Yaoqi

305

Hydrogen Leak Detection – Low-Cost Distributed Gas Sensors  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the April 3, 2012, Fuel Cell Technologies Program webinar "America's Next Top Energy Innovator Runner-Up Presents Hydrogen Detection Technologies".

306

Low Cost Nanostructured Smart Window Coatings | Department of...  

Energy Savers (EERE)

glass unit (IGU) that reduces building energy consumption by dynamically optimizing solar gain without affecting natural light. During this project, Heliotrope will utilize...

307

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

SciTech Connect

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

308

LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill,  

E-Print Network (OSTI)

, and using these low-energy transfers, it should be possible to launch the entire constellation on a single significantly lower the cost of establishing and maintaining small lunar communication relay constellations in halo orbits. Autonomous orbit determination would allow the constellation to navigate without expensive

Born, George

309

The Potential for Low-Cost Concentrating Solar Power Systems  

SciTech Connect

Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

1999-07-08T23:59:59.000Z

310

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

311

Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers  

Science Journals Connector (OSTI)

There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical...

Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

2010-01-01T23:59:59.000Z

312

Low Cost SiOx-Graphite and Olivine Materials | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost SiOx-Graphite and Olivine Materials Low Cost SiOx-Graphite and Olivine Materials 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation...

313

Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY13 Q2 Low-Cost, Lightweight Solar Concentrators FY13 Q2 This document summarizes the progress of this Jet Propulsion Laboratory project, funded by SunShot, for the second quarter...

314

Design and testing of components for a low cost laser cutter  

E-Print Network (OSTI)

The main goal of this thesis is to document the design and testing of various components for use in a low cost laser cutting mechanism for hobbyists and recreational designers. Different electronics were used to assess the ...

Ramos, Joshua D

2011-01-01T23:59:59.000Z

315

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu…

2014-01-01T23:59:59.000Z

316

Sewage sludge ash as an alternative low-cost oxygen carrier for chemical looping combustion  

Science Journals Connector (OSTI)

In this paper, novel low-cost oxygen carriers containing Fe2O3 are evaluated for use in chemical looping combustion. Sewage sludge ashes and reference samples were...2...) fuel and a solid fuel (hard coal) were t...

Ewelina Ksepko

2014-06-01T23:59:59.000Z

317

Multiple EFG Silicon Ribbon Technology as the Basis for Manufacturing Low-Cost Terrestrial Solar Cells  

Science Journals Connector (OSTI)

The development of a technology for production of low-cost silicon sheet substrates for solar cells based on the EFG process has been...2) solar cells prepared from this 10 cm wide ribbon...

B. Mackintosh; J. P. Kalejs; C. T. Ho; F. V. Wald

1981-01-01T23:59:59.000Z

318

E-Print Network 3.0 - alternative low-cost precursors Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

de Physique11, Volume 5,juin 1995 Summary: in consistent quality and quantities at low cost, (7) liquid rather than gas or solid and (8)stable in its... Trends in the Selection...

319

TestosterICs: A Low-Cost Functional Chip Tester David Harris and David Diaz  

E-Print Network (OSTI)

TestosterICs: A Low-Cost Functional Chip Tester David Harris and David Diaz Department of Engineering Harvey Mudd College Claremont, CA 91711 David_Harris@hmc.edu Abstract Students in VLSI design

Harris, David Money

320

Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch  

Energy.gov (U.S. Department of Energy (DOE))

The goal of this scale-up is to produce low cost CF from novel PO polymer precursors in higher yield and at lower cost than the incumbent CF made from specialty-grade PAN fiber.

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on the RD&D needs for enabling low-cost, effective hydrogen production from all types of water electrolysis systems, both centralized and forecourt. Based on the results of these...

322

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

323

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

324

Low-cost, single-mode diode-pumped Cr:Colquiriite lasers  

E-Print Network (OSTI)

We present three Cr[superscript 3+]:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with ~520 ...

Demirbas, Umit

325

The Creation of a low-cost, reliable platform for mobile robotics research  

E-Print Network (OSTI)

This work documents the planning process, design, fabrication, and integration of a low-cost robot designed for research on the problem of life-long robot mapping. The robotics platform used is the iRobot Create. This robot ...

Gilbert, Taylor Harrison

2011-01-01T23:59:59.000Z

326

Low Cost SiOx-Graphite and High Voltage Spinel Cathode | Department...  

Office of Environmental Management (EM)

Cathode Low Cost SiOx-Graphite and High Voltage Spinel Cathode 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

327

Low Cost SiOx-Graphite and Olivine Materials | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 18-22, 2009 -- Washington D.C. es19zaghib.pdf More Documents & Publications Low Cost SiOx-Graphite and Olivine Materials Phase Behavior and Solid State Chemistry in Olivines...

328

Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications  

SciTech Connect

This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

2011-03-31T23:59:59.000Z

329

Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells{  

E-Print Network (OSTI)

Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes materials in order to optimize and extend the lifetime of AC cathodes in MFCs. 1. Introduction A microbial, with the cathode typically limiting power production.5,6 Catalysts can be used to reduce the activation energy

330

Low-Cost Options for Moderate Levels of Mercury Control  

SciTech Connect

This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. As no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.

Sharon Sjostrom

2008-02-09T23:59:59.000Z

331

Low Cost Heliostat Development Phase II Final Report  

SciTech Connect

The heliostat field in a central receiver plant makes up roughly one half of the total plant cost. As such, cost reductions for the installed heliostat price greatly impact the overall plant cost and hence the plant’s Levelized Cost of Energy. The general trend in heliostat size over the past decades has been to make them larger. One part of our thesis has been that larger and larger heliostats may drive the LCOE up instead of down due to the very nature of the precise aiming and wind-load requirements for typical heliostats. In other words, it requires more and more structure to precisely aim the sunlight at the receiver as one increases heliostat mirror area and that it becomes counter-productive, cost-wise, at some point.

Kusek, Stephen M.

2014-04-21T23:59:59.000Z

332

Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire  

SciTech Connect

In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

Michael Hack

2010-07-09T23:59:59.000Z

333

Implementation of a Low Cost Robot Controller PC-ROBOCONT on Hydraulic Robot for Spray Painting G-201  

Science Journals Connector (OSTI)

The paper describes the implementation of the low cost robot controller PC-ROBOCONT on hydraulic spray painting robot G-201. PC-ROBOCONT is a low cost robot controller based on popular PC 386. For use with the sp...

B. Nemec; L. Zlajpah; S. Mrak

1994-01-01T23:59:59.000Z

334

Technical Note: Comments on "A Low-cost Device for Chromatographic Analysis of Gas Mixtures at Reduced Pressures"  

Science Journals Connector (OSTI)

......Comments on "A Low-cost Device for Chromatographic Analysis of Gas Mixtures at Reduced Pressures...Chornet reported a low-cost device for gas chromatographic (GC) analysis...routine analyses on the production line are performed by the......

John Chih-An Hu

1982-11-01T23:59:59.000Z

335

Simplified, low?cost, efficient, acoustic levitation system  

Science Journals Connector (OSTI)

Recently I have improved apparatus for the acoustic levitation of a drop of one liquid in another making it practical to build for anyone who has an oscillaior and audio amplifier with response to 50 kHz a current probe an inexpensive oscilloscope and a lead zirconate titanate cylinder of the right size. This piezoelectric cylinder (1.5?in. o.d. and length 0.125?in. thickness) is epoxied near the center of a foot long piece of standard 30?mm o.d. pyrex tube. A hollow piston with o?ring seal and O. 005?in. diaphragm acts as an excellent bottom pressure?release reflector of acoustic energy as is the top air—liquid interface leading to strong acoustic standing waves at particular resonance frequencies. Optimum frequencies are determined by observing the input current to the transducer as the oscillator is tuned between 47 and 55 kHz and as liquid and piston levels are adjusted. Benzene droplets in water have been levitated with only a fraction of a watt input to the transducer. More details of this simple system will be described. [Work supported by U. S. Office of Naval Research and NSF Heat Transfer Program.

Robert E. Apfel

1977-01-01T23:59:59.000Z

336

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

337

Low Cost, High Efficiency, High Pressure Hydrogen Storage  

SciTech Connect

A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

Mark Leavitt

2010-03-31T23:59:59.000Z

338

NETL: News Release - Colorado Company Pursues Low-Cost, Low-Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

10, 2007 10, 2007 Colorado Company Pursues Low-Cost, Low-Impact Technology to Develop Nation's Oil Shale Resources DOE-Funded Research Targets America's Largest Potential Source of Oil WASHINGTON, DC - A U.S. Department of Energy-funded project has successfully demonstrated the viability of a new technology that could prove to be the key to unlocking America's largest potential source of oil. If ongoing research continues to confirm the technology's effectiveness, its application offers the potential to dramatically reduce costs and environmental impacts in the extraction of oil from oil shale. America holds more than three-fourths of the world's estimated 2.6 trillion barrels of oil-in-place of oil shale resources. As much as 1.1 trillion barrels of oil equivalent is believed to be recoverable in the richest single deposit - the Green River formation of Colorado, Utah, and Wyoming. That volume is almost 50 percent greater than the combined proved reserves of conventional oil in the entire Middle East.

339

Zelenay wins Electrochemical Society's Research Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Society's Research Award Electrochemical Society's Research Award Zelenay wins Electrochemical Society's Research Award The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. December 11, 2012 Piotr Zelenay Piotr Zelenay The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and environmental consequences of energy utilization." Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding

340

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.

342

Modeling and Identification of 2 DOF Low Cost Driving Simulator: Experimental Results  

E-Print Network (OSTI)

consists in motorized rail for the longitudinal movement while the second system consists in motorized yaw and the modeling aspects of a 2 DOF low cost motion platform allowing the restitution of the longitudinal and yaw will be implemented. The whole system is considered as a two coupled systems and linked mechanically. The first system

Paris-Sud XI, Université de

343

Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications  

E-Print Network (OSTI)

. Moghavvemi University ofMalaya INTRODUCTION The use of electronics in the automotive industry will reach (orPlanning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications H. Ameri, A. Attaran & M the position and speed as with other components used in the automotive industry, radars will find widespread

Paris-Sud XI, Université de

344

Low-cost, Automated Assessment of Sit-To-Stand Movement in "Natural" Environments  

E-Print Network (OSTI)

1 Low-cost, Automated Assessment of Sit-To-Stand Movement in "Natural" Environments Sonya Allin assessing the quality of "sit-to- stand" movements in environments outside of clinics. Automated assessments have been designed to translate perceived kinematics onto assessment scores that are consistent

345

Full design of a low-cost quadrotor UAV by student team  

E-Print Network (OSTI)

Full design of a low-cost quadrotor UAV by student team Jean-Baptiste Devaud#1 , Stéphane Najko.marzat@onera.fr Abstract-- This paper presents the complete design of a quadrotor UAV, named VORTEX, comprising its architecture and control. The use of Unmanned Aerial Vehicles (UAV) for surveillance, observation and security

Paris-Sud XI, Université de

346

Low Cost Hydrogen Production Platform Robert B. Bollinger and Timothy M. Aaron  

E-Print Network (OSTI)

Low Cost Hydrogen Production Platform Robert B. Bollinger and Timothy M. Aaron Praxair, Inc. P.O. Box 44 Tonawanda, NY 14151 Phone: 716-879-2000 Abstract Praxair is in the initial phases of developing. Praxair has as partners in this program, Boothroyd-Dewhurst Inc. (BDI) and Diversified Manufacturing Inc

347

Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop*  

E-Print Network (OSTI)

1 Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop* Frederick L-- In this paper, we discuss the design of a novel robotic platform for Urban Search and Rescue (USAR). The system locomotive morphology. The main facets of this work involve the morphological concepts, initial design

Crabbe, Frederick

348

Low-Cost Single-Phase Powered Induction Machine Drive for Residential Applications  

E-Print Network (OSTI)

, and lifetime. Keywords-induction motor; harmonic elimination; power factor correction; efficiency; low cost of the motors are less than 1 hp in size, and account for approximately 10% of the electricity consumed by the electric motor population [1]. These fractional horsepower motors are primarily single- phase induction

Chapman, Patrick

349

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.  

E-Print Network (OSTI)

is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. ResearchRelatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10

350

DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery  

Energy.gov (U.S. Department of Energy (DOE))

The US DOE's FCTO has issued two RFIs seeking feedback from the research community and relevant stakeholders about hydrogen production and hydrogen delivery RD&D activities aimed at developing technologies that can ultimately produce and deliver low-cost hydrogen.

351

The PANOPTES project: discovering exoplanets with low-cost digital cameras  

E-Print Network (OSTI)

The PANOPTES project: discovering exoplanets with low-cost digital cameras Olivier Guyona,b, Josh at optimizing system robustness while maintaining adequate cost. PANOPTES is both an outreach project (PANOPTES, www.projectpanoptes.org) project is aimed at identifying transiting exoplanets using a wide

Guyon, Olivier

352

The path to ubiquitous and low-cost organic electronic appliances on plastic  

Science Journals Connector (OSTI)

... films on a variety of very-low-cost substrates such as glass, plastic or metal foils, and the relative ease of processing of the organic compounds that are currently being ... the world of inorganic semiconductors. Many processes involve direct printing through use of contact with stamps, or alternatively via ink-jets and other solution-based methods. ...

Stephen R. Forrest

2004-04-29T23:59:59.000Z

353

ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots  

E-Print Network (OSTI)

ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots Anna Eilering of the robot links, which are then 3D printed and assembled. This procedure is generalizable to variety to target robot. smaller scale suitable for desktop use. The puppet is a 3D- printed miniature of the target

Hauser, Kris

354

Strategic Plan for Utilizing Low Cost Engineering Resources at Generic Aerospace  

E-Print Network (OSTI)

of these methods are costly and may cause other issues, such as inconsistent output, high turnover and resource constraints for other sites. One concept that is being more readily adopted is the use of Low Cost Engineering Services (LCES) offered by third party...

Veach, Michael

2012-12-14T23:59:59.000Z

355

Novel technologies and techniques for low-cost phased arrays and scanning antennas  

E-Print Network (OSTI)

reconfigurable grating antenna is presented for low-cost millimeter-wave beam steering. The versatility of the approach is proven by adapting the design to dual-beam and circular-polarized operation. In addition, a simple and accurate procedure is developed...

Rodenbeck, Christopher Timothy

2004-11-15T23:59:59.000Z

356

Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed  

E-Print Network (OSTI)

treatment residual; iron; lime sludge; municipal wastewater Introduction The US-EPA has identified for removing P from wastewater (US-EPA, 1993). However, questions of mechanisms, predictabilityOptimization of low-cost phosphorus removal from wastewater using co-treatments with constructed

Florida, University of

357

A low emission technology -- low cost coal water mixture fired fluidized bed combustion  

SciTech Connect

In this paper, low cost coal water mixture (CWM) FBC technology is described. Low cost CWM may be coal washery sludge or the mixture of water and coal crashed easily. This technology is featured by agglomerate combustion of low cost MM. Experimental results in 0.5MW FBC test rig are reported. lie effects of bed temperate excess air, staged combustion on combustion and emission performance has been studied. The comparison combustion tests by using dry coal and CWM we made ha 0.5MW FBC test rig. Also coal washery sludge of different origins are also tested in the test rig. Based on the test rig comments a demonstration AFBC boiler with capacity of 35 T/H steam for utility application (6 MW) is designed. The design features will be presented in this paper Both the operation experience of test rig and demonstration unit show the developed low cost CWM FBC technology is of high combustion efficiency and low emission. This technology is being commercialized and applied in China in top priority by Chinese government.

Jianhua Yan; Xuguang Jiang; Yong Chi [Zhejiang Univ., Hangzhou (China)] [and others

1995-12-31T23:59:59.000Z

358

Low-cost, non-precious metal/polymer composite catalysts for fuel cells  

E-Print Network (OSTI)

will fuel cells take their place as a centerpiece of a hydrogen economy and position hydrogen as a major) activity in known-to-date non- precious metal. Fuel cell testing of the composite Figure 2 shows a hydrogenLow-cost, non-precious metal/polymer composite catalysts for fuel cells R. Bashyam and P. Zelenay 1

359

Low-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay  

E-Print Network (OSTI)

scanning fiber display6 to present icons indicating the location of potential hazards. The scanning fiberLow-cost wearable low-vision aid using a handmade retinal light-scanning microdisplay Ryland C) is a portable system that uses machine vision to track potential walking hazards for the visually impaired

Washington at Seattle, University of

360

Development of an Electrochemical Separator and Compressor  

SciTech Connect

Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

Trent Molter

2011-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-cost gigabit PCF transceivers using commercially available logic ICs for short-range optical networks  

Science Journals Connector (OSTI)

We propose low-cost gigabit optical transceivers for broadband and short-range communication networks using plastic clad optical fiber. The transceivers can be used for broadband...

Fujimoto, Nobuhiro; Ishizuka, Atsuo; Moriya, Masayoshi; Goto, Masami

2008-01-01T23:59:59.000Z

362

Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators  

SciTech Connect

REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

None

2012-01-01T23:59:59.000Z

363

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost open-path Instrument for Low Cost open-path Instrument for monItorIng atmospherIC Carbon DIoxIDe at sequestratIon sItes Background Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere may lead to the curtailment of CO 2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO 2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO 2 concentration above the background level in the air near the ground. Although measurement of CO 2 concentration can be performed, it is

364

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

365

NREL: News Feature - Super-Efficient Cells Key to Low-Cost Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Super-Efficient Cells Key to Low-Cost Solar Power Super-Efficient Cells Key to Low-Cost Solar Power February 16, 2011 This photo shows eight Amonix 7700 solar power generators, those in front tilted horizontally, those in the rear tilted near vertically. Each is a huge rectangle divided into hundreds of squares holding cells and lenses. Enlarge image The Amonix 7700 Concentrated Photovoltaic (CPV) Solar Power Generators are showcasing reliability and undergoing validation-of-performance measurements at the SolarTAC facility in Aurora, Colo. Credit: Dennis Schroeder In this photo, a man in an orange safety vest and hardhat is using a laptop, with large concentrated photovoltaic generators in the background. Enlarge image A technician at SolarTAC in Aurora, CO, enters some numbers into a laptop as he monitors validation of the Amonix 7700 Solar Power Generators.

366

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

367

The Stirling engine as a low cost tool to educate mechanical engineers  

SciTech Connect

The University of Zaragoza through CIRCE, the New Enterprise foundation, an Opel foundation and the local Government of Aragon have been developed a program to introduce the Stirling Engine as a low cost tool to educate students in mechanical engineering. The promotion of a prize like GNAT Power organized by the magazine Model Engineer in London, has improved the practical education of students in the field of mechanical devices and thermal engines. Two editions of the contest, 1993 and 1994, awarded the greatest power Stirling engine made by only using a little candle of paraffin as a heat source. Four engines were presented in the first edition, with an average power of about 100 mW, and seven engines in the second one, achieving a power of about 230 mW. Presentations in Technical Schools and the University have been carried out. Also low cost tools have been made for measuring an electronic device to draw the real internal pressure volume diagram using a PC. A very didactic software to design classic kinematic alpha, beta and gamma engines plus Ringbom beta and gamma engines has been created. A book is going to be published (in Spanish) explaining the design of small Stirling engines as a way to start with low cost research in thermal engines, a very difficult target with IC engines.

Gros, J.; Munoz, M.; Moreno, F.; Valero, A. [Univ. of Zaragoza (Spain). Center for Research of Powerplant Efficiency

1995-12-31T23:59:59.000Z

368

Reclaiming lost capability in power plant coal conversions: an innovative, low-cost approach  

SciTech Connect

Some of the capability lost during coal conversion can be recovered for midrange/peaking power generation through low cost, turbine cycle and economizer modifications. The additional output can be realized by shutting off adjacent high pressure feedwater heaters (as specified by turbogenerator manufacturers) and simultaneously increasing heat input to the economizer. The supplemental economizer heat input makes up for heat lost to the feedwater when extraction steam is shut off. Several options for applying this novel approach to capability recovery are described. The reclaimed capability is realized at somewhat lower efficiency but at low cost, compared to the overall cost of a coal conversion. Rather than return converted units to up to 100% oil or gas firing during periods of high system demand, the proposed method allows the continued comsumption of coal for the base-load portion of the plant's output. The development of the low NO/sub x/ Slagging Combustor will allow even the added economizer heat input to be supplied by relatively low cost coal. Following a brief review of factors affecting boiler capability in coal conversions and current approaches to coal conversion in this country and overseas, the results of a preliminary study that apply the proposed novel concept to a West Coast power plant are described.

Miliaras, E.S.; Kelleher, P.J.; Fujimura, K.S.

1983-01-01T23:59:59.000Z

369

Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials  

DOE Patents (OSTI)

A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

2014-05-06T23:59:59.000Z

370

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

Contiguous Platinum Monolayer Oxygen Reduction Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Co-PIs: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Brookhaven National Laboratory Yang Shao-Horn Massachusetts Institute of Technology Rachel O'Malley, David Thompsett, Sarah Ball, Graham Hard Johnson Matthey Fuel Cells Radoslav Adzic Brookhaven National Laboratory DOE Projects Kickoff Meeting September 30 , 2009 2 Project Overview Project Overview 1. Objectives: Objectives: Developing high performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer Pt monolayer on stable, inexpensive metal or alloy nanorods, nanowires, nanobars and

371

A reliable, fast and low cost maximum power point tracker for photovoltaic applications  

SciTech Connect

This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)

2010-01-15T23:59:59.000Z

372

A new double sided linear switched reluctance motor with low cost  

Science Journals Connector (OSTI)

This paper presents the realization and design of a new linear switched reluctance motor (LSRM) structure. The new model has double sided configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. A high correlation between experimental and analytical results is obtained, which has been demonstrated in the form of inductance versus position versus current.

Ferhat Daldaban; Nurettin Ustkoyuncu

2006-01-01T23:59:59.000Z

373

A simple and low-cost measurement system for switched reluctance motor drive  

Science Journals Connector (OSTI)

This paper describes a low cost digital measurement system for measuring the voltage, current and flux linkage and rotor position of switched reluctance motor (SRM) drive. The digital measurement scheme was developed using a eZdsp TMS320F2812 board along with CCS-IDE environment. The graphical window allows plotting the current, voltage, flux linkage and rotor position waveforms of SRM with a high degree of accuracy and presentation of results. The complete digital measurement scheme of the SRM incorporating the magnetic characteristics implementation algorithm is experimentally implemented and validated using a digital signal processor board TMS320F2812 for SRM drive.

M. Marsaline Beno; N.S. Marimuthu

2009-01-01T23:59:59.000Z

374

Size-Controllable and Low-Cost Fabrication of Graphene Quantum Dots Using Thermal Plasma Jet  

Science Journals Connector (OSTI)

graphene quantum dots; thermal plasma jet; mass production; size-controllable fabrication; low-cost fabrication; carbyne-like edges; photoluminescence ... We produced carbon soot by injecting ethylene gas continuously (at a rate of 2.5 L/min) into Ar plasma and attaching a carbon tube (5, 10, or 20 cm in length) to the anode. ... (34) In principle, oxygen is not contained in our fabrication, since only Ar and ethylene gases have been added into a plasma system as the plasma gas and carbon source, respectively. ...

Juhan Kim; Jung Sang Suh

2014-03-30T23:59:59.000Z

375

A new principle for low-cost hydrogen sensors for fuel cell technology safety  

SciTech Connect

Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

2014-03-24T23:59:59.000Z

376

NETL: IEP - Bench-Scale Silicone Process for Low-Cost CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Bench-Scale Silicone Process for Low-Cost CO2 Capture Bench-Scale Silicone Process for Low-Cost CO2 Capture Project No.: FE0007502 GE Global Research and their project partners are conducting research on the use of a novel silicone solvent to capture CO2 with a continuous bench-scale system. The project will utilize both computational and experimental methods. Previously measured experimental data from a continuous laboratory-scale CO2 capture system will be used to design this bench-scale system. Data from the bench-scale system, such as kinetics and mass transfer information, will be used to determine scale-up effects and needed design parameters to develop a scale-up strategy, update cost of electricity (COE) calculations and perform a technical and economic feasibility study. A manufacturing plan for the aminosilicone solvent and a price model will be used for optimization. The final objective of the program is to demonstrate, at the bench-scale, a process that achieves 90 percent CO2 capture efficiency with less than a 35 percent increase in the COE. Development of this scalable bench-scale process combined with a rigorous process model and thorough manufacturability analysis for the solvent, will enable a practical technology path to later development at larger scales and commercialization. The technology will eventually be retrofittable to coal-based power plants.

377

Low Cost Carbon Fibre: Applications, Performance and Cost Models - Chapter 17  

SciTech Connect

Weight saving in automotive applications has a major bearing on fuel economy. It is generally accepted that, typically, a 10% weight reduction in an automobile will lead to a 6-8% improvement in fuel economy. In this respect, carbon fibre composites are extremely attractive in their ability to provide superlative mechanical performance per unit weight. That is why they are specified for high-end uses such as Formula 1 racing cars and the latest aircraft (e.g. Boeing 787, Airbus A350 and A380), where they comprise over 50% by weight of the structure However, carbon fibres are expensive and this renders their composites similarly expensive. Research has been carried out at Oak Ridge National Laboratories (ORNL), Tennessee, USA for over a decade with the aim of reducing the cost of carbon fibre such that it becomes a cost-effective option for the automotive industry. Aspects of this research relating to the development of low cost carbon fibre have been reported in Chapter 3 of this publication. In this chapter, the practical industrial applications of low-cost carbon fibre are presented, together with considerations of the performance and cost models which underpin the work.

Warren, Charles David [ORNL; Wheatley, Dr. Alan [University of Sunderland; Das, Sujit [ORNL

2014-01-01T23:59:59.000Z

378

Review of Back Contact Silicon Solar Cells for Low-Cost Application  

SciTech Connect

Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.

Smith, David D.

1999-08-04T23:59:59.000Z

379

The rise of low-cost sensing for managing air pollution in cities  

Science Journals Connector (OSTI)

Abstract Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation.

Prashant Kumar; Lidia Morawska; Claudio Martani; George Biskos; Marina Neophytou; Silvana Di Sabatino; Margaret Bell; Leslie Norford; Rex Britter

2015-01-01T23:59:59.000Z

380

Low-cost coherent receiver for long-reach optical access network using single-ended detection  

Science Journals Connector (OSTI)

A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two...

Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments  

Science Journals Connector (OSTI)

Making a Low-Cost Soda Can Ethanol Burner for Out-of-Laboratory Flame Test Demonstrations and Experiments ... Video clips for the three flame tests shown in Figure 3, and for turning the burner on and off. ...

Henson L. Lee Yu; Perfecto N. Domingo, Jr.; Elliard Roswell S. Yanza; Armando M. Guidote, Jr.

2014-10-13T23:59:59.000Z

382

Large scale production of carbon nanotube arrays on the sphere surface from liquefied petroleum gas at low cost  

Science Journals Connector (OSTI)

Liquefied petroleum gas (LPG), a cheap industrial material, ... and good mobility, leading to the mass production of CNT arrays continuously. The arrays obtained ... easily be produced on large scale at low cost.

Qiang Zhang; JiaQi Huang; Fei Wei; GuangHui Xu; Yao Wang…

2007-11-01T23:59:59.000Z

383

Size effects in Ni/Ni(OH)2 nanomaterials for electrochemical capacitors.  

SciTech Connect

Electrochemical capacitors based on redox-active metal oxides show great promise for many energy-storage applications. These materials store charge through both electric double-layer charging and faradaic reactions in the oxide. The dimensions of the oxide nanomaterials have a strong influence on the performance of such capacitors. Not just due to surface area effects, which influence the double-layer capacitance, but also through bulk electrical and ionic conductivities. Ni(OH)2 is a prime candidate for such applications, due to low cost and high theoretical capacity. We have examined the relationship between diameter and capacity for Ni/Ni(OH)2 nanorods. Specific capacitances of up to 511 F/g of Ni were recorded in 47 nm diameter Ni(OH)2 nanorods.

Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

2010-04-01T23:59:59.000Z

384

CX-009000: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Categorical Exclusion Determination 0: Categorical Exclusion Determination CX-009000: Categorical Exclusion Determination "High Quality, Low Cost Bulk Gallium Nitride (GaN) Substrates Grown by the Electrochemical Solution Growth Method CX(s) Applied: A9, B3.6 Date: 08/20/2012 Location(s): Missouri Offices(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to MEMC Electronic Materials, Inc. MEMC would conduct research and development activities for a two phase project to develop a new process method for growing large bulk gallium nitrate (GaN) crystals at low cost with improved functional properties." CX-009000.pdf More Documents & Publications CX-000845: Categorical Exclusion Determination Energy Storage Systems 2010 Update Conference Presentations - Day 3,

385

Development of Low Cost Industrially Scalable PCM Capsules for Thermal Energy Storage in CSP Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

386

Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy | Department...  

Energy Savers (EERE)

research site in the United States that allows scientists and engineers to develop and test new technologies for Enhanced Geothermal Systems (EGS). EGS are the next frontier in...

387

Low Cost, Low Energy, Method of Dewatering Cultures of the Green Microalgae Nannochloris oculata: Electrocoagulation  

E-Print Network (OSTI)

a major hurdle for the industry. Regardless of the technology used to extract the oil from the algae cells, or even if it is to be converted to a bio-oil, the microalgae must be concentrated by two or more orders of magnitude prior to entering...

Murdock, Jared

2014-05-01T23:59:59.000Z

388

Electrochemical Characterization Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrochemical Characterization Laboratory at the Energy Systems Integration Facility. The research focus at the Electrochemical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) is evaluating the electrochemical properties of novel materials synthesized by various techniques and understanding and delineating the reaction mechanisms to provide practical solutions to PEMFCs commercialization issues of cost, performance and durability. It is also involved in the development of new tools and techniques for electrochemical characterization. The laboratory concentrates on the development and characterization of new materials for PEMFCs such as electrocatalysts, catalyst supports in terms of electrochemical activity, electrochemical surface area and corrosion/durability. The impact of impurities and/or contaminants on the catalyst activity is also under study. Experiments that can be performed include: (1) Determination and benchmarking of novel electrocatalyst activity; (2) Determination of electrochemical surface area; (3) Determination of electrocatalyst and support corrosion resistance and durability; (4) Synthesis and characterization of novel electrocatalyst; (5) Determination of fundamental electrochemical parameters; and (6) Estimation of electrocatalyst utilization.

Not Available

2011-10-01T23:59:59.000Z

389

A simple, low-cost, data logging pendulum built from a computer mouse  

SciTech Connect

Lessons and homework problems involving a pendulum are often a big part of introductory physics classes and laboratory courses from high school to undergraduate levels. Although laboratory equipment for pendulum experiments is commercially available, it is often expensive and may not be affordable for teachers on fixed budgets, particularly in developing countries. We present a low-cost, easy-to-build rotary sensor pendulum using the existing hardware in a ball-type computer mouse. We demonstrate how this apparatus may be used to measure both the frequency and coefficient of damping of a simple physical pendulum. This easily constructed laboratory equipment makes it possible for all students to have hands-on experience with one of the most important simple physical systems.

Gintautas, Vadas [Los Alamos National Laboratory; Hubler, Alfred [UIUC

2009-01-01T23:59:59.000Z

390

Low-cost and durable catalyst support for fuel cells: graphite submicronparticles  

SciTech Connect

Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (~ 3.5 nm) are uniformly dispersed on GSP support. Pt/GSP exhibits the highest activity towards oxygen reduction reactions. The durability study indicates that Pt/GSP is 2 ~ 3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

2010-01-01T23:59:59.000Z

391

Selective sorption of PCBs by low-cost polymers and application to soil washing processes  

SciTech Connect

Surfactant-assisted soil washing and soil flushing processes have shown to be a promising soil decontamination method. In these and other remediation technologies that employ surfactants to mobilize organic contaminants, large volumes of contaminated aqueous solutions are generated. An efficient process to selectively concentrate the organic contaminant from the aqueous surfactant solution, thereby allowing the recycle of the surfactant, is considered essential for cost-effective application of these remediation methods. To this end, a process was developed wherein commercial, low-cost polymers are used to selectively sorb PCBs and petroleum oils from aqueous surfactant solutions. Sorption isotherms and sorption rates were determined for a large number of polymer sorbents and several significant structure-property relationships were observed. Two classes of polymers, polyester elastomers and carbon-filled elastomer rubbers (e.g., recycled rubber tire), were found to perform superiorly in this application and a successful pilot-scale demonstration of the process was conducted.

Sivavec, T.M.; Webb, J.L.; Gascoyne, D.G. [GE Corporate Research and Development, Schenectady, NY (United States)

1996-10-01T23:59:59.000Z

392

Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems  

SciTech Connect

Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The logger’s fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.

Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming

2014-06-23T23:59:59.000Z

393

Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package  

Energy.gov (U.S. Department of Energy (DOE))

With the help of DOE funding, Philips Lumileds has developed a low-cost, high-power, warm-white LED package for general illumination. During the course of the two-year project, this package was used to commercialize a series of products with correlated color temperatures (CCTs) ranging from 2700 to 5700 K, under the product name LUXEON M. A record efficacy of nearly 125 lm/W was demonstrated at a flux of 1023 lumens, a CCT of 3435 K, and a color rendering index (CRI) of more than 80 at room temperature in the productized package. In an R&D package, a record efficacy of more than 133 lm/W at a flux of 1015 lumens, a CCT of 3475 K, and a CRI greater than 80 at room temperature were demonstrated.

394

Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing  

SciTech Connect

Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.

More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Kim, Seong Jip [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 Korea and Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

2013-12-16T23:59:59.000Z

395

Phase-Sensitive Detection in the undergraduate lab using a low-cost microcontroller  

E-Print Network (OSTI)

Phase-sensitive detection (PSD) is an important experimental technique that allows signals to be extracted from noisy data. PSD is also used in modulation spectroscopy and is used in the stabilization of optical sources. Commercial lock-in amplifiers that use PSD are often expensive and host a bewildering array of controls that may intimidate a novice user. Low-cost microcontrollers such as the Arduino family of devices seem like a good match for learning about PSD; however, making a self-contained device (reference signal, voltage input, mixing, filtering, and display) is difficult, but in the end the project teaches students "tricks" to turn the Arduino into a true scientific instrument.

Schultz, K D

2015-01-01T23:59:59.000Z

396

Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants  

SciTech Connect

TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

Elliott, Jeannine

2013-08-31T23:59:59.000Z

397

A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)  

SciTech Connect

This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

Anil Virkar

2008-03-31T23:59:59.000Z

398

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

long-standing focus of EETD electrochemical research long-standing focus of EETD electrochemical research has been to support the development of high-perfor- mance rechargeable batteries for electric vehicles. This has proved to be an extremely challenging task because of the need to simultaneously meet multiple battery performance requirements: high energy (watt-hours per unit battery mass or volume), high power (watts per unit battery mass or volume), long life (10 years and hundreds of deep charge-discharge cycles), low cost (measured in dollars per unit battery capacity), resistance to abuse and operating temperature extremes, perfect safety, and minimal environmental impact. Despite years of intensive worldwide R&D, no battery can meet all of these goals. A compromise of sorts is the hybrid-electric vehicle (HEV).

399

In-situ short circuit protection system and method for high-energy electrochemical cells  

DOE Patents (OSTI)

An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

400

In-situ short-circuit protection system and method for high-energy electrochemical cells  

DOE Patents (OSTI)

An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.

Gauthier, Michel (La Prairie, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Rouillard, Jean (Saint-Luc, CA); Rouillard, Roger (Beloeil, CA); Shiota, Toshimi (St. Bruno, CA); Trice, Jennifer L. (Eagan, MN)

2003-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications  

E-Print Network (OSTI)

this material is inherently low cost, a manufacturing process that produces electrochemically-active LiFePO4 1. Introduction Critical to the success of new cathode materials, is their preparation, which to the synthesis of active materials, but in the end a commercially viable approach must be used [1]. Soft chemical

Suzuki, Masatsugu

402

Transition Metal Oxide Nanoparticles Anchored Nanocarbon Hybrid Foam for High Performance Electrochemical Energy Storage Applications.  

E-Print Network (OSTI)

??In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due… (more)

Wang, Wei

2014-01-01T23:59:59.000Z

403

Charging-free electrochemical system for harvesting low-grade thermal energy  

Science Journals Connector (OSTI)

...Mechanical Engineering, Massachusetts Institute of Technology...Mechanical Engineering, Massachusetts Institute of Technology...processes, environment, solar-thermal, and geothermal energy (1...Commun 2 : 550 Work at Massachusetts Institute of Technology...by the Solid State Solar-Thermal Energy Conversion...

Yuan Yang; Seok Woo Lee; Hadi Ghasemi; James Loomis; Xiaobo Li; Daniel Kraemer; Guangyuan Zheng; Yi Cui; Gang Chen

2014-01-01T23:59:59.000Z

404

Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage  

Science Journals Connector (OSTI)

Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage ... (21) In this work we aim to follow an alternate route for converting iron oxides to oxyfluorides using a controlled fluorination process. ... The FBR method used in this study for conversion of iron oxide to oxyfluorides using low pressure fluorine gas mixed with an inert carrier gas (He) is a relatively simple and safe process used routinely for fluorination studies. ...

Hui Zhou; Jagjit Nanda; Surendra K. Martha; Jamie Adcock; Juan C. Idrobo; Loïc Baggetto; Gabriel M. Veith; Sheng Dai; Sreekanth Pannala; Nancy J. Dudney

2013-10-21T23:59:59.000Z

405

Design, development, and applications of a low-cost, dynamic neutron radiography system utilizing the TAMU NSC TRIGA reactor  

E-Print Network (OSTI)

partial fulfilment of the requirements for the degree of MASTER OF SC'IENCE May 1990 Major Subject: Nuclear Engineering DESIGN, DEVELOPMENT. AND APPLICATIONS OF A LOW ? COST, DYNAMIC NEUTRON RADIOGRAPHY SYSTEM UTILIZING THE TAMU NSC TRIGA REACTOR A...DESIGN, DEVELOPMENT. AND APPLICATIONS OF A LOW ? COST, DYNAMIC NEUTRON RADIOGRAPHY SYSTEM UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis SC'OTT PATRIC'If ItIIDGETT Submitted to the Ofhce of Graduate Studies of Texas AklVI I!niversity rn...

Midgett, Scott Patrick

2012-06-07T23:59:59.000Z

406

Rapid removal of heavy metal ions from aqueous solutions by low cost adsorbents  

Science Journals Connector (OSTI)

In the present investigation, different agricultural solid wastes namely: eggplant hull (EH), almond green hull (AGH), and walnut shell (WS), that are introduced as low cost adsorbents, were used for the removal of heavy metals (cobalt, strontium and mercury ions) from aqueous solutions. Activation process and/or chemical treatments using H2O2 and NH3 were performed on these raw materials to increase their adsorption performances. The effectiveness of these adsorbents was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbents, initial metal-ion concentrations, pH of solutions, contact times, and solution temperatures. High metal adsorption efficiencies were achieved for all cases only in the first two to three minutes of adsorbents' contact time. Maximum adsorption capacity of AGH sorbent for cobalt and EH for mercury were found to be 45.5 mg/g and 147.06 mg/g, respectively. The adsorption capacity of mercury for WS was also obtained as 151.5 and 100.9 mg/g for two different treated sorbents.

Ali Ahmadpour; Tahereh Rohani Bastami; Masumeh Tahmasbi; Mohammad Zabihi

2012-01-01T23:59:59.000Z

407

Low cost methodologies to analyze and correct abnormal production decline in stripper gas wells  

SciTech Connect

The goal of this research program is to develop and deliver a procedure guide of low cost methodologies to analyze and correct problems with stripper wells experiencing abnormal production declines. A study group of wells will provide data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the historic frequency of the causes of the production problems. Once the most frequently occurring causes of the production problems are determined, data collection forms and decision trees will be designed to cost-effectively diagnose these problems and suggest corrective action. Finally, economic techniques to solve the most frequently occurring problems will be researched and implemented. These systematic methodologies and techniques will increase the efficiency of problem assessment and implementation of solutions for stripper gas wells. This first quarterly technical report describes the data reduction and methodology to establish a study group of stripper gas wells in which Artex Oil Company or its affiliate, Arloma Corporation, own a working or royalty interest. The report describes the procedures to define wells exhibiting abnormal decline and identify the associated problem. Finally, the report discusses initial development of diagnostic procedures to evaluate the cause of abnormal production declines.

James, J.; Huck, G.; Knobloch, T.

2000-01-01T23:59:59.000Z

408

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

409

Developing a low cost 3D imaging solution for inscribed stone surface analysis  

Science Journals Connector (OSTI)

Abstract The article uses a 3D imaging based solution where surface shading is determined by surface geometry. It is applied to inscribed stone surfaces in order to examine lettering and other carvings dated to the 5th - 9th centuries AD. Mid-range terrestrial laser scanning and structure from motion (SfM) based photogrammetry were cross-examined in order to create a low cost, but nevertheless highly accurate solution to 3D imaging that requires a computer, a camera, open source software like CloudCompare and a SfM based service called Photo located at ReCap360.autodesk.com. Ambient occlusion (AO) shading was used to show improvements made to the SfM data, which was achieved by adding known parameters to all photographs used. It simulates the direct light components of a light source so that exposed areas appear lightened and enclosed areas (like crevices and incisions) appear darkened. In the case study, AO was used to differentiate lettering in the inscription from damage and weathering on the granite surface of the Tristan Stone, as well as picking up a previously unnoticed wheel-head cross. This particular inscribed stone is located near Fowey in Cornwall, UK, and was known as the Long Stone before its name was changed on British Ordnance Survey (OS) Maps in 1951. The Tristan Stone was the first artefact to be scanned by the FARO Focus3D laser scanner after its release in 2010.

Adam P. Spring; Caradoc Peters

2014-01-01T23:59:59.000Z

410

Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics  

SciTech Connect

The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

Buonassisi, Tonio

2013-02-26T23:59:59.000Z

411

Measuring Boltzmann’s constant with a low-cost atomic force microscope: An undergraduate experiment  

Science Journals Connector (OSTI)

We discuss a low-cost atomic force microscope that we have designed and built for use in an undergraduate teaching laboratory. This microscope gives students hands-on access to nano-Newton force measurements and subangstrom position measurements. The apparatus relies mainly on off-the-shelf components and utilizes an interferometric position sensor known as the interdigitated (ID) cantilever to obtain high resolution. The mechanical properties of the ID readout enable a robust and open design that makes it possible for students to directly control it. Its pedagogical advantage is that students interact with a complete instrument system and learn measurement principles in context. One undergraduate experiment enabled by this apparatus is a measurement of Boltzmann’s constant which is done by recording the thermal noise power spectrum of a microfabricated cantilever beam. In addition to gaining an appreciation of the lower limits of position and force measurements students learn to apply numerous concepts such as digital sampling Fourier-domain analysis noise sources and error propagation.

M. Shusteff; T. P. Burg; S. R. Manalis

2006-01-01T23:59:59.000Z

412

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

SciTech Connect

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

413

Financing Tool Fits the Bill | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

low-cost, long-term financing and assistance from an independent expert energy advisor. The program allowed for 500 low-cost loans for whole-home energy remodels and...

414

Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

415

CO2 Capture Using Electrical Energy: Electrochemically Mediated Separation for Carbon Capture and Mitigation  

SciTech Connect

IMPACCT Project: MIT and Siemens Corporation are developing a process to separate CO2 from the exhaust of coal-fired power plants by using electrical energy to chemically activate and deactivate sorbents, or materials that absorb gases. The team found that certain sorbents bond to CO2 when they are activated by electrical energy and then transported through a specialized separator that deactivates the molecule and releases it for storage. This method directly uses the electricity from the power plant, which is a more efficient but more expensive form of energy than heat, though the ease and simplicity of integrating it into existing coal-fired power plants reduces the overall cost of the technology. This process could cost as low as $31 per ton of CO2 stored.

None

2010-07-16T23:59:59.000Z

416

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

the 20th European Photovoltaic Solar Energy Conference andin 23rd European Photovoltaic Solar Energy Conference andfor photovoltaic application,” Nano Energy, vol. 1, no. 1,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

417

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 1240 of 8,172 results. 31 - 1240 of 8,172 results. Download CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003761-categorical-exclusion-determination Download CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003766-categorical-exclusion-determination Download CX-003769: Categorical Exclusion Determination

418

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory September 3, 2010 CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

419

A Low-Cost Quantitative Absorption Spectrophotometer Daniel R. Albert, Michael A. Todt, and H. Floyd Davis*  

E-Print Network (OSTI)

A Low-Cost Quantitative Absorption Spectrophotometer Daniel R. Albert, Michael A. Todt, and H with spectrophotometry. Additionally, more than 75% of the high school teachers polled stated that the high cost of modern spectrophotometers was prohibitive for regular classroom use. The lowest-cost modern

Davis, H. Floyd

420

A direct thin-film path towards low-cost large-area III-V photovoltaics  

E-Print Network (OSTI)

A direct thin-film path towards low-cost large-area III-V photovoltaics Rehan Kapadia1,2 *, Zhibin-V photovoltaics (PVs) have demonstrated the highest power conversion efficiencies for both single- and multi times, and large equipment investments restrict applications to concentrated and space photovoltaics

California at Irvine, University of

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 13, JULY 1, 2008 1151 Low-Cost Optoelectronic Self-Injection-Locked  

E-Print Network (OSTI)

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 13, JULY 1, 2008 1151 Low-Cost Optoelectronic Self by injecting 8-dBm optical signals without using any high-speed optoelectronic components. Index Terms--InP monolithic oscillator, optoelectronic oscillator (OEO), phase-noise reduction, self-injection locking (SIL

Choi, Woo-Young

422

Hardware and software architecture for state estimation on an experimental low-cost small-scaled helicopter  

E-Print Network (OSTI)

: Low-cost sensors Embedded systems MEMS Unmanned aerial vehicle Autonomous helicopter Data fusion a b contribution of this paper is to detail, at the light of a successful reported autonomous hovering flight these aerial platforms represent a very good choice for outdoor applications under moderate to large wind gust

423

Obstacle detection and mapping in low-cost, low-power multi-robot systems using an Inverted  

E-Print Network (OSTI)

Obstacle detection and mapping in low-cost, low-power multi-robot systems using an Inverted with constrained memory capacity and processing power, and is called the Inverted Particle Filter. This method has circuits. An important benefit of this is reduced power consumption opening for new battery-powered

Paris-Sud XI, Université de

424

High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures  

E-Print Network (OSTI)

High-resolution modeling of the western North American power system demonstrates low-cost and low t Decarbonizing electricity production is central to reducing greenhouse gas emissions. Exploiting intermittent be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing

Kammen, Daniel M.

425

Use of coconut fiber as a low-cost thermal insulator  

SciTech Connect

Cost is one of the major factors to be considered when choosing a thermal insulator. Design engineers continuously strive to provide the best at the lowest possible cost. In the tropics climate conditions are essentially hot and humid and a cause for daily discomfort. To some extent, air-conditioning of buildings has solved this problem. The major deterrent to air-conditioning is the exorbitant cost of imported thermal insulation materials. This has prompted a search for local, low-cost but effective thermal insulation for buildings. Coconut fiber is available at minimal cost from the copra industry in Trinidad, as it is a waste product from the coconut. The viability of using coconut fiber as building thermal insulation was explored by conducting thermal conductivity tests on 200 mm X 400 mm X 60 mm thick slab-like specimens. The test equipment used was a locally designed constant temperature hot box apparatus. This apparatus was designed to test slab-like specimens under steady-state conditions. The reliability if this experimental set up was checked using Gypsum Plaster. The thermal conductivity test results for coconut fiber over the density range 30 kg/m{sup 3} to 115 kg/m{sup 3} showed the characteristic hooked shape graph for fibrous material. For the 60 mm thick specimens at a mean temperature of 39 C, a minimum thermal conductivity of 0.058 W/mK occurred at an optimum density of 85 kg/m{sup 3}. The thermal conductivity of commonly used industrial insulators, namely loose-fill expanded vermiculite, cellular glass and blanket fiber glass, at a mean temperature of 38 C are 0.066 W/mK, 0.061 W/mK and 0.052 W/mK respectively. When compared, these results show that air dried coconut fiber has far reaching potential for use as an effective building thermal insulation.

Kochhar, G.S.; Manohar, K. [Univ. of the West Indies, St. Augustine (Trinidad and Tobago)

1997-11-01T23:59:59.000Z

426

A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture  

SciTech Connect

The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

Alptekin, Gokhan

2012-09-30T23:59:59.000Z

427

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

photon harvesting in organic solar cells with luminescentfor low-energy gap organic solar cells,” Sol. Energy Mater.

Leow, Shin Woei

2014-01-01T23:59:59.000Z

428

Research and Development of High-Power and High-Energy Electrochemical Storage Devices  

SciTech Connect

The accomplishments and technology progressmade during the U.S. Department of Energy (DOE) Cooperative Agreement No. DE-FC26- 05NT42403 (duration: July 11, 2005 through April 30, 2014, funded for $125 million in cost- shared research) are summarized in this Final Technical Report for a total of thirty-seven (37) collaborative programs organized by the United States Advanced Battery Consortium, LLC (USABC). The USABC is a partnership, formed in 1991, between the three U.S. domestic automakers Chrysler, Ford, and General Motors, to sponsor development of advanced high-performance batteries for electric and hybrid electric vehicle applications. The USABC provides a unique opportunity for developers to leverage their resources in combination with those of the automotive industry and the Federal government. This type of pre-competitive cooperation minimizes duplication of effort and risk of failure, and maximizes the benefits to the public of the government funds. A major goal of this program is to promote advanced battery development that can lead to commercialization within the domestic, and as appropriate, the foreign battery industry. A further goal of this program is to maintain a consortium that engages the battery manufacturers with the automobile manufacturers and other key stakeholders, universities, the National Laboratories, and manufacturers and developers that supply critical materials and components to the battery industry. Typically, the USABC defines and establishes consensus goals, conducts pre-competitive, vehicle-related research and development (R&D) in advanced battery technology. The R&D carried out by the USABC is an integral part of the DOE’s effort to develop advanced transportation technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use domestically produced fuels. The USABC advanced battery development plan has the following three focus areas: 1. Existing technology validation, implementation, and cost reduction. 2. Identification of the next viable technology with emphasis on the potential to meet USABC cost and operating temperature range goals. 3. Support high-risk, high-reward battery technology R&D. Specific to the Cooperative Agreement DE- FC26-05NT42403, addressing High-Energy and High Power Energy Storage Technologies, the USABC focus was on understanding and addressing the following factors (listed in priority of effort): • Cost: Reducing the current cost of lithium- ion batteries (currently about 2-3 times the FreedomCAR target ($20/kW). • Low Temperature Performance: Improving the discharge power and removing lithium plating during regenerative braking. • Calendar Life: Achieving 15-year life and getting accurate life prediction. • Abuse Tolerance: Developing a system level tolerance to overcharge, crush, and high temperature exposure. This Final Technical Report compilation is submitted in fulfillment of the subject Cooperative Agreement, and is intended to serve as a ready-reference for the outcomes of following eight categories of projects conducted by the USABC under award from the DOE’s Energy Efficiency and Renewable Energy ) Vehicle Technologies Program: USABC DoE Final Report – DoE Cooperative Agreement DE-FC26-95EE50425 8 Protected Information 1. Electric Vehicle (EV) (Section A of this report) 2. Hybrid Electric Vehicle (HEV) (Section B 3. Plug-In Hybrid Electric Vehicle (PHEV) (Section C) 4. Low-Energy Energy Storage Systems (LEESS) (Section D) 5. Technology Assessment Program (TAP) (Section E) 6. Ultracapacitors (Section F) 7. 12 Volt Start-Stop (Section G) 8. Separators (Section H) The report summarizes the main areas of activity undertaken in collaboration with the supplier community and the National Laboratories. Copies of the individual supplier final reports are available upon request. Using project gap analysis versus defined USABC goals in each area, the report documents known technology limits and provides direction on future areas of technology and performance needs for vehicle applicatio

No, author

2014-04-30T23:59:59.000Z

429

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

430

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91 - 6800 of 29,416 results. 91 - 6800 of 29,416 results. Download CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003759-categorical-exclusion-determination Download CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003761-categorical-exclusion-determination Download CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical

431

Crystalline Silicon P-N Junction Solar Cells — Efficiency Limits And Low-Cost Fabrication Technology  

Science Journals Connector (OSTI)

Economic growth depends on energy use. Worldwide, energy accounts for 25 to 30% of the present investments in development and economic growth. The highest future energy needs are envisaged for developing count...

J. Szlufcik

2002-01-01T23:59:59.000Z

432

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

433

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

for building integrated photovoltaics,” 2013, vol. 8821, pp.of building integrated photovoltaics,” Sol. Energy, vol. 85,of building-integrated photovoltaics,” Energy, vol. 26, no.

Leow, Shin Woei

2014-01-01T23:59:59.000Z

434

Electrochemical cell  

DOE Patents (OSTI)

An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5-1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1-10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

Kaun, Thomas D. (New Lenox, IL)

1984-01-01T23:59:59.000Z

435

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

436

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

437

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Air-Microfluidics: Towards Lab-on-a-Chip Systems for Low-Cost Air-Quality Monitoring Speaker(s): Igor Paprotny Date: November 12, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Lara Gundel Air-microfluidic devices that monitor particles suspended in air, as opposed to liquids, can dramatically reduce the size and cost of future air-quality sensors. The use of microelectromechanical systems (MEMS) technologies and wafer-scale integration permits the inclusion of many different sensors onto a small footprint. Benefits of air-microfluidics are many. For example, air-microfluidic lab-on-a-chip devices can be used as portable sensors for tracking individual exposure to airborne pollutants. Such sensors will enable linking exposure and biometric information to

438

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

439

Maglev Launch: Ultra?low Cost, Ultra?high Volume Access to Space for Cargo and Humans  

Science Journals Connector (OSTI)

Despite decades of efforts to reduce rocket launch costs improvements are marginal. Launch cost to LEO for cargo is ?$10 000 per kg of payload and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space—Maglev Launch—magnetically accelerates levitated spacecraft to orbital speeds 8 km/sec or more in evacuated tunnels on the surface using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described the Gen?1System for unmanned cargo craft to orbit and Gen?2 for large?scale access of human to space. Magnetically levitated and propelled Gen?1 cargo craft accelerate in a 100 kilometer long evacuated tunnel entering the atmosphere at the tunnel exit which is located in high altitude terrain (?5000 meters) through an electrically powered “MHD Window” that prevents outside air from flowing into the tunnel. The Gen?1 cargo craft then coasts upwards to space where a small rocket burn ?0.5 km/sec establishes the final orbit. The Gen?1 reference design launches a 40 ton 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day a single Gen?1 facility could launch 150 000 tons annually. Using present costs for tunneling superconductors cryogenic equipment materials etc. the projected construction cost for the Gen?1 facility is 20 billion dollars. Amortization cost plus Spacecraft and O&M costs total $43 per kg of payload. For polar orbit launches sites exist in Alaska Russia and China. For equatorial orbit launches sites exist in the Andes and Africa. With funding the Gen?1 system could operate by 2020 AD. The Gen?2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70 000 feet where deceleration is acceptable. A levitated evacuated launch tube is used with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen?2 system could launch 100’s of thousands of passengers per year and operate by 2030 AD. Maglev launch will enable large human scale exploration of space thousands of gigawatts of space solar power satellites for beamed power to Earth a robust defense against asteroids and comets and many other applications not possible now.

James Powell; George Maise; John Rather

2010-01-01T23:59:59.000Z

440

Professional Bios Kathy Ayers and Monjid Hamdan Kathy Ayers, Director of Research, Proton Energy Systems  

E-Print Network (OSTI)

a novel, low cost regenerative fuel cell system. She was also a finalist for the Connecticut Women of electrochemical systems that include PEM-based electrolyzers and fuel cells ranging in power from 5 to 75 k focusing on PEM electrolyzers incorporating an advanced low-cost membrane. He has also been a part of a U

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors  

Science Journals Connector (OSTI)

Manganese oxide (MnO2) is a promising pseudocapacitive electrode material because of its high capacitance, abundant resource, low-cost, and environmental friendliness. However, its poor electrical and ionic conductivities and low stability hinder applications. Forming MnO2 nanocomposites with high surface area porous metal, carbon materials, or conducting polymers is a possible solution. In this work, we have developed a facile and scalable asymmetric in situ deposition method to incorporate MnO2 nanoparticles in conductive single walled carbon nanotube (SWCNT) films. The high porosity of vacuum filtrated SWCNT films accommodates pseudocapacitive MnO2 nanoparticles without sacrificing the mechanical flexibility and electrochemical stability of SWCNT films. We exposed one side of SWCNT films to acidic potassium permanganate (KMnO4) solution. The infiltrated \\{KMnO4\\} solution partially etches \\{SWCNTs\\} to create abundant mesopores, which ensure electrolyte ions efficiently access deposited MnO2. Meanwhile, the remaining SWCNT network serves as excellent current collectors. The electrochemical performance of the SWCNT–MnO2 composite electrodes depends on the porosity of SWCNT films, pH, and concentration of \\{KMnO4\\} solution, deposition temperature and time. Our optimized two-electrode electrochemical capacitor, with 1 M Na2SO4 in water as electrolyte, showed a superior performance with specific capacitance of 529.8 F g?1, energy density of 73.6 Wh kg?1, power density of 14.6 kW kg?1, excellent capacitance retention (99.9%) after 2000 charge and discharge cycles, and one of the highest reported frequency responses (knee frequency at 1318 Hz). The high performance flexible electrochemical capacitors have broad applications in portable electronics and electrical vehicles, especially when high frequency response is desired.

Jianmin Shen; Andong Liu; Yu Tu; Hong Wang; Rongrong Jiang; Jie Ouyang; Yuan Chen

2012-01-01T23:59:59.000Z

442

Development of Novel Nanomaterials for High-Performance and Low-Cost Fuel Cell Applications.  

E-Print Network (OSTI)

??Proton exchange membrane fuel cells (PEMFCs) are promising energy converting technologies to generate electricity by mainly using hydrogen as a fuel, producing water as the… (more)

Sun, Shuhui

2011-01-01T23:59:59.000Z

443

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

444

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...  

Office of Environmental Management (EM)

April at the Florida Canyon Mine, Nevada, marked the beginning of another promising clean energy commercial enterprise. The Geothermal Technologies Office researches, develops, and...

445

Project Profile: Low-Cost Self-Cleaning Reflector Coatings for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovation This project derives innovative new coatings by modifying high surface-area nano-structured silica particles with self-assembled low surface energy monolayers. The...

446

Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch  

SciTech Connect

The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

Spalding, Mark A [The Dow Chemical Company

2014-08-27T23:59:59.000Z

447

UNIVERSITY OF CALIFORNIA, SAN DIEGO A Low-Cost, Low-Power, Wireless Occupancy Sensing Platform  

E-Print Network (OSTI)

of smart buildings is energy conservation. The US Department of Energy estimates that buildings account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.4 Power Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ii #12;LIST OF FIGURES Figure 1: End use of electricity in US buildings. Source: US DOE [4

448

High efficiency, low cost, thin film silicon solar cell design and method for making  

DOE Patents (OSTI)

A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

Sopori, Bhushan L. (Denver, CO)

2001-01-01T23:59:59.000Z

449

CX-000587: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-000587: Categorical Exclusion Determination 25A1988 - Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage - Metal-Air Ionic Liquid (MAIL) CX(s) Applied: B3.6 Date: 12/16/2009 Location(s): Arizona Office(s): Advanced Research Projects Agency - Energy Develop new battery chemistries based on rechargeable metal-air cathodes, metallic anodes and ionic liquid electrolytes that will revolutionize rechargeable energy storage and will result in transformative advances in energy density, cycle life, sustainability, and cost. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000587.pdf More Documents & Publications CX-009894: Categorical Exclusion Determination Advanced Materials and Devices for Stationary Electrical Energy Storage

450

Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency Clean Diesels  

Energy.gov (U.S. Department of Energy (DOE))

Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

451

Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

452

Harsh-environment, Low-cost Sensor Technology for Engine and After-treatment Systems  

Energy.gov (U.S. Department of Energy (DOE))

Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

453

Low-cost methods for reducing heating consumption in FSILGs at MIT  

E-Print Network (OSTI)

Rising energy prices and increasing price volatility present a problem for many fraternities, sororities, and independent living groups (FSILGs) at MIT. The buildings they occupy are typically quite old, with little ...

Stoddard, Steven J

2006-01-01T23:59:59.000Z

454

HEARING DISTANCE: A LOW-COST MODEL FOR NEAR-FIELD BINAURAL EFFECTS Simone Spagnol  

E-Print Network (OSTI)

of Venice Michele Geronazzo, Federico Avanzini University of Padova ABSTRACT An extremely low-order filter intensity is constant but the proportion of reflected to direct energy, the so-called R/D ratio, is altered

Avanzini, Federico

455

Internet-based Building Performance Analysis Provided as a Low-Cost Commercial Service  

E-Print Network (OSTI)

Internet-based monitoring services can play a very important role in reducing the energy consumed in commercial buildings. They can provide the information needed to identify improvements that should be made in the operation of particular buildings...

Heinemeier, K.; Koran, W.

2001-01-01T23:59:59.000Z

456

Silicide Nanopowders as Low-Cost and High-Performance Thermoelectric Materials  

Science Journals Connector (OSTI)

Thermoelectric devices directly convert heat into electricity and are very attractive for waste heat recovery and solar energy utilization. If thermoelectric devices can be made sufficiently efficient and inex...

Renkun Chen

2013-06-01T23:59:59.000Z

457

The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report  

SciTech Connect

Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

George A. Marchetti

1999-12-15T23:59:59.000Z

458

Construction and Test of Low Cost X-Ray Tomography Scanner for Physical-Chemical Analysis and Nondestructive Inspections  

SciTech Connect

X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe the development of a low cost micro-CT X-ray scanner that is being developed for nondestructive testing. This tomograph operates using a microfocus X-ray source and contains a silicon photodiode as detectors. The performance of the system, by its spatial resolution, has been estimated through its Modulation Transfer Function-MTF and the obtained value at 10% of MTF is 661 {mu}m. It was built as a general purpose nondestructive testing device.

Oliveira, Jose Martins Jr. de [Universidade de Sorocaba-UNISO, Campus Seminario, Caixa Postal 578, Av. Dr. Eugenio Salermo, 100, Centro, 18035-430, Sorocaba, SP (Brazil); Martins, Antonio Cesar Germano [Universidade Estadual Paulista Julio de Mesquita Filho-UNESP, GASI, Av. 3 de Marco, 511, Alto da Boa Vista, 18087-180, Sorocaba, SP (Brazil)

2009-06-03T23:59:59.000Z

459

Development of a low-cost bi-axial intensity-based optical fibre accelerometer for wind turbine blades  

Science Journals Connector (OSTI)

Abstract A bi-axial optical fibre accelerometer was developed for wind turbine monitoring. The sensor was fabricated from intensity-modulated optical fibre, which is low-cost, lightweight and simple in design. The bi-axial acceleration was measured by light intensity coupling between a cantilever fibre and two receiving fibres. Numerical simulation was performed to obtain the light coupling characteristics and the results were used to design the sensor parameters. A prototype was fabricated and the calibration scheme validated experimentally. The performance of the prototype was tested in terms of frequency response and linearity.

Yao Ge; Kevin S. Kuang; Ser Tong Quek

2013-01-01T23:59:59.000Z

460

Elisabet Metcalfe | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Elisabet Metcalfe About Us Elisabet Metcalfe - SRA International Most Recent Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy July 17...

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Synthesis, structural and electrochemical properties of electron beam evaporated V{sub 2}O{sub 5} thin films  

SciTech Connect

Vanadium pentoxide is one of the most promising cathode materials because it offers high energy density, low cost, low toxicity over the other cathode materials. Its layered and open structure makes this material in thin film form well suited for electro-chemical insertion reactions with the Li ions. In the present investigation, V{sub 2}O{sub 5} thin films have been prepared by electron beam evaporation technique on gold coated silicon substrates maintained at a substrate temperature of 250 Degree-Sign C in an oxygen partial pressure of 2 Multiplication-Sign 10{sup -4} mbar. The XRD patterns exhibited three predominant diffraction peaks corresponding to (200) (001) and (400) planes of orthorhombic phase of V{sub 2}O{sub 5} with P{sub mnm} space group. The electrochemical characteristics of V{sub 2}O{sub 5} thin films with thickness of 600 nm were examined in non-aqueous region. The film exhibited step wise discharge with two plateaus. The as-deposited film delivered a discharge capacity of 70 {mu}Ah/(cm{sup 2}-{mu}m) at a current density of 30 {mu}A/cm{sup 2}. Annealing of these films at 450 Degree-Sign C exhibited a better discharge capacity of 90 {mu}Ah/(cm{sup 2}-{mu}m).

Hussain, O. M.; Rosaiah, P. [Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

2012-06-25T23:59:59.000Z

462

National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers  

E-Print Network (OSTI)

of times onto smaller solar cells." -- Mark O'Neill, Chief Technology Officer, Entech Solar, Inc. "The SLA Offers Unparalleled Efficiency and Performance Affordable Green Energy Technology from NASA/Entech Solar Fresnel lenses for optical concentration, minimizing solar cell area, mass, and cost. The SLA has been

463

Solid-State Lighting with High Brightness, High Efficiency, and Low Cost  

E-Print Network (OSTI)

-based lamp for lighthouse application were discussed at the system level ("Implementation and test of a LED University, Hsinchu 30010, Taiwan 4 Center for Photonics and Nanoelectronics, Department of Electrical the advanced lighting with the energy- saving and environmental-protecting capabilities, the tech- nologies

Gilchrist, James F.

464

Field Trial of a Low-Cost, Distributed Plug Load Monitoring System  

SciTech Connect

Researchers have struggled to inventory and characterize the energy use profiles of the ever-growing category of so-called miscellaneous electric loads (MELs) because plug-load monitoring is cost-prohibitive to the researcher and intrusive to the homeowner. However, these data represent a crucial missing link to our understanding of how homes use energy, and we cannot control what we do not understand. Detailed energy use profiles would enable the nascent automated home energy management (AHEM) industry to develop effective control algorithms that target consumer electronics and other plug loads. If utility and other efficiency programs are to incent AHEM devices, they need large-scale datasets that provide statistically meaningful justification of their investments by quantifying the aggregate energy savings achievable. To address this need, we have investigated a variety of plug-load measuring devices available commercially and tested them in the laboratory to identify the most promising candidates for field applications. The scope of this report centers around the lessons learned from a field validation of one proof-of-concept system, called Smartenit (formerly SimpleHomeNet). The system was evaluated based on the rate of successful data queries, reliability over a period of days to weeks, and accuracy. This system offers good overall performance when deployed with up to ten end nodes in a residential environment, although deployment with more nodes and in a commercial environment is much less robust. We conclude that the current system is useful in selected field research projects, with the recommendation that system behavior is observed over time.

Auchter, B.; Cautley, D.; Ahl, D.; Earle, L.; Jin, X.

2014-03-01T23:59:59.000Z

465

E-Print Network 3.0 - accompanying electrochemical intercalation...  

NLE Websites -- All DOE Office Websites (Extended Search)

on magnetism in undoped Summary: into electrochemical energy 1 and batteries, electrochromic devices based on lithium intercalation. A theoretical... Physica B 328 (2003)...

466

Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture  

SciTech Connect

This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based system demonstrates significant advantages compared to the MEA system.

Vipperla, Ravikumar; Yee, Michael; Steele, Ray

2012-11-01T23:59:59.000Z

467

Voluntary Agreements for Energy Efficiency or GHG Emissions Reduction in Industry: An Assessment of Programs Around the World  

E-Print Network (OSTI)

Energy or CO2 tax Energy Audits and Assessments Emissionssuch as free or low-cost energy audits or tax exemptions forinvestments in wind energy, audit programs, benchmarking,

Price, Lynn

2005-01-01T23:59:59.000Z

468

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 6040 of 31,917 results. 31 - 6040 of 31,917 results. Download DOE-HDBK-1131-98 General Employee Radiological Training Change Notice No. 1 (November 2003) | Reaffirmation with Errata (April 2004) | Replaced by DOE-HDBK-1131-2007 This handbook describes the DOE General Employee Radiological Training program. It includes standards and policies as well as recommendations for material development and program administration. It is intended for use by DOE contractors for the development of facility-specific general employee radiological training. http://energy.gov/hss/downloads/doe-hdbk-1131-98 Download CX-000587: Categorical Exclusion Determination 25A1988 - Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage - Metal-Air Ionic Liquid (MAIL) CX(s) Applied: B3.6 Date: 12/16/2009

469

Industrial energy use indices  

E-Print Network (OSTI)

, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department...

Hanegan, Andrew Aaron

2009-05-15T23:59:59.000Z

470

The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study  

Science Journals Connector (OSTI)

A preliminary study finds that use of low-cost 3D printing allows quick and accurate creation of custom-made foot orthoses; mass adoption of this new technology could potentially have tremendous clinical applicability.

Colin E Dombroski; Megan ER Balsdon; Adam Froats

2014-07-10T23:59:59.000Z

471

Development of a low-cost black-liquid solar collector, Phase II. Second semi-annual report, March 1, 1980-August 31, 1980  

SciTech Connect

Battelle's Columbus Laboratories (BCL) is continuing its research effort to develop an efficient, low-temperature, low-cost, flat-plate black-liquid solar collector. The research efforts during this second 6-month period of Phase II have been directed toward (1) evaluating the long-term durability of various plastic materials and solar collector designs, (2) obtaining sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application, (3) working closely with a company willing to commercialize black liquid plastic collectors, and (4) incorporating improved black liquids with the identified plastic collector designs. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities have been operated. One unit has been in use since February 1980 at Battelle in Columbus, Ohio, and the other unit began operation in May 1980 at Ramada Energy Systems, Inc., a collector manufacturing company near Phoenix, Arizona. Since Ramada Energy Systems has been working with extruded polycarbonate panels, Battelle has been working to date with extruded acrylic panel designs. Other potential plastics for solar collectors are being evaluated by exposure testing.

Landstrom, D.K.; Talbert, S.G.; McGinniss, V.D.

1980-09-30T23:59:59.000Z

472

Low Cost Arc Fault Detection and Protection for PV Systems: January 30, 2012 - September 30, 2013  

SciTech Connect

Final report for Tigo Energy Incubator project. The specific objective of this 18-month research effort was to develop an off-the-shelf arc-fault detector. The starting point of the project was a prototype detector that was constructed using discrete components and laboratory equipment. An intermediate objective was to build a technically viable detector using programmable components in the detector circuitry. The final objective was to build a commercially viable detector by reducing the cost of the circuitry through the use of more sophisticated programmable components and higher levels of integration.

McCalmont, S.

2013-10-01T23:59:59.000Z

473

Low-Cost Solar Domestic Hot Water Systems for Mild Climates  

SciTech Connect

In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

2005-01-01T23:59:59.000Z

474

Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture  

SciTech Connect

IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

None

2010-07-01T23:59:59.000Z

475

Modular Hybrid Plasma Reactor for Low Cost Bulk Production of Nanomaterials  

SciTech Connect

INL developed a bench scale modular hybrid plasma system for gas phase nanomaterials synthesis. The system was being optimized for WO3 nanoparticles production and scale model projection to a 300 kW pilot system. During the course of technology development many modifications had been done to the system to resolve technical issues that had surfaced and also to improve the performance. All project tasks had been completed except 2 optimization subtasks. These 2 subtasks, a 4-hour and an 8-hour continuous powder production runs at 1 lb/hr powder feeding rate, were unable to complete due to technical issues developed with the reactor system. The 4-hour run had been attempted twice and both times the run was terminated prematurely. The modular electrode for the plasma system was significantly redesigned to address the technical issues. Fabrication of the redesigned modular electrodes and additional components had been completed at the end of the project life. However, not enough resource was available to perform tests to evaluate the performance of the new modifications. More development work would be needed to resolve these problems prior to scaling. The technology demonstrated a surprising capability of synthesizing a single phase of meta-stable delta-Al2O3 from pure alpha-phase large Al2O3 powder. The formation of delta-Al2O3 was surprising because this phase is meta-stable and only formed between 973-1073 K, and delta-Al2O3 is very difficult to synthesize as a single phase. Besides the specific temperature window to form this phase, this meta-stable phase may have been stabilized by nanoparticle size formed in a high temperature plasma process. This technology may possess the capability to produce unusual meta-stable nanophase materials that would be otherwise difficult to produce by conventional methods. A 300 kW INL modular hybrid plasma pilot scale model reactor had been projected using the experimental data from PPG Industries 300 kW hot wall plasma reactor. The projected size of the INL 300 kW pilot model reactor would be about 15% that of the PPG 300 kW hot wall plasma reactor. Including the safety net factor the projected INL pilot reactor size would be 25-30% of the PPG 300 kW hot wall plasma pilot reactor. Due to the modularity of the INL plasma reactor and the energy cascading effect from the upstream plasma to the downstream plasma the energy utilization is more efficient in material processing. It is envisioning that the material through put range for the INL pilot reactor would be comparable to the PPG 300 kW pilot reactor but the energy consumption would be lower. The INL hybrid plasma technology is rather close to being optimized for scaling to a pilot system. More near term development work is still needed to complete the process optimization before pilot scaling.

Peter C. Kong

2011-12-01T23:59:59.000Z

476

Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture  

SciTech Connect

The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

Wood, Benjamin

2012-06-30T23:59:59.000Z

477

Array automated assembly task low cost silicon solar array project. Phase 2. Final report  

SciTech Connect

The initial contract was a Phase II Process Development for a process sequence, but with concentration on two particular process steps: laserscribing and spray-on junction formation. The add-on portion of the contract was to further develop these tasks, to incorporate spray-on of AR Coating and aluminum and to study the application of microwave energy to solar cell fabrication. The overall process cost projection is 97.918 cents/Wp. The major contributor to this excess cost is the module encapsulation materials cost. During the span of this contract the study of microwave application to solar cell fabrication produced the ability to apply this technique to any requirement of 600/sup 0/C or less. Above this temperature, non-uniformity caused the processing to be unreliable. The process sequence is described in detail, and a SAMICS cost analysis for each valid process step studied is presented. A temporary catalog for expense items is included, and engineering specifications for the process steps are given. (WHK)

Olson, Clayton

1980-12-01T23:59:59.000Z

478

Tunable Electrochemical Properties of Fluorinated Graphene. ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tunable Electrochemical Properties of Fluorinated Graphene. Tunable Electrochemical Properties of Fluorinated Graphene. Abstract: The structural and electrochemical properties of...

479

0-7803-5998-4/01/$10.00 @2001 IEEE 566 A LOW COST UNCOOLED INFRARED MICROBOLOMETER  

E-Print Network (OSTI)

the n-well region is protected from etching by electrochemical etch-stop technique within a TMAH a responsivity of 1200V/W, a detectivity of 2.2x108 cmHz1/2 /W, and a noise equivalent temperature difference

Akin, Tayfun

480

A review of Continuum Electrochemical Engineering Models and a Novel Monte Carlo Approach to Understand Electrochemical Behavior of Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Electrochemical phenomenon associated with systems from electrochemical energy (Batteries, Fuel cells and capacitors) to electro deposition are multistep and multi-phenomena processes and hence can be very tediou...

Vinten D. Diwakar; S. Harinipriya…

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost electrochemical energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Design of cascaded low cost solar cell with CuO substrate  

SciTech Connect

For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan [Advanced Electronic Technology Center, ECE Dept., University of Massachusetts, Lowell, MA-01851 (United States)

2013-12-04T23:59:59.000Z

482

Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture  

SciTech Connect

GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

Fresia, Megan; Vogt, Kirk

2013-12-31T23:59:59.000Z

483

Continuous Process for Low-Cost, High-Quality YSZ Powder  

SciTech Connect

This report describes results obtained by NexTech Materials, Ltd. in a project funded by DOE under the auspices of the Solid-State Energy Conversion Alliance (SECA). The project focused on development of YSZ electrolyte powder synthesis technology that could be ''tailored'' to the process-specific needs of different solid oxide fuel cell (SOFC) designs being developed by SECA's industry teams. The work in the project involved bench-scale processing work aimed at establishing a homogeneous precipitation process for producing YSZ electrolyte powder, scaleup of the process to 20-kilogram batch sizes, and evaluation of the YSZ powder products produced by the process. The developed process involved the steps of: (a) preparation of an aqueous hydrous oxide slurry via coprecipitation; (b) washing of residual salts from the precipitated hydroxide slurry followed by drying; (c) calcination of the dried powder to crystallize the YSZ powder and achieve desired surface area; and (d) milling of the calcined powder to targeted particle size. YSZ powders thus prepared were subjected to a comprehensive set of characterization and performance tests, including particle size distribution and surface area analyses, sintering performance studies, and ionic conductivity measurements. A number of different YSZ powder formulations were established, all of which had desirable performance attributes relative to commercially available YSZ powders. Powder characterization and performance metrics that were established at the onset of the project were met or exceeded. A manufacturing cost analysis was performed, and a manufactured cost of $27/kg was estimated based on this analysis. The analysis also allowed an identification of process refinements that would lead to even lower cost.

Scott L. Swartz; Michael Beachy; Matthew M. Seabaugh

2006-03-31T23:59:59.000Z

484

Nitrided Metallic Bipolar Plates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bipolar Plates High Performance, Low Cost Hydrogen Generation from Renewable Energy Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application...

485

Center for Energy Nanoscience at USC  

NLE Websites -- All DOE Office Websites (Extended Search)

The Center for Energy Nanoscience performs research to create low cost, high efficiency solar cells and light emitting diodes (LEDs) by using semiconductor nanotechnology and...

486

Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System  

Energy.gov (U.S. Department of Energy (DOE))

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

487

Low Cost Radio Telescope  

Science Journals Connector (OSTI)

A radio interferometer has been constructed at Haverford College as an aid to learning the fundamentals of radio astronomy. Its cost both in cash outlay and in construction time make it a feasible year-long project for an undergraduate. Its simplicity does not prevent it from being a useful instrument for instruction at the college or high-school level; among its capabilities are the measurement of the positions of at least four of the strongest discrete cosmic-noisesources and the diameter of the radio sun.

Joseph H. Taylor Jr.

1964-01-01T23:59:59.000Z

488

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

489

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

490

Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels  

Science Journals Connector (OSTI)

Abstract This work evaluates the performance of an iron ore, mainly composed of Fe2O3, as an oxygen carrier (OC) for Chemical Looping Combustion (CLC) with gaseous fuels. The OC was characterized by TGA and evaluated in a continuous 500 Wth CLC unit, using CH4, syngas and a PSA off-gas as fuels. The OC was able to fully convert syngas at 880 °C. However, lower conversion rates were observed with methane-containing fuels. The addition of a Ni-based OC was evaluated in order to increase the reactivity of the OC with methane. In spite of this, an absence of catalytic effect was observed for the Ni-based OC. A deep analysis was carried out into the reasons for the absence of catalytic effect of the Ni-based OC. The performance of the iron ore with regard to attrition and fluidization behaviour was satisfactory throughout 50 h of hot operation in the continuous CLC plant. Thus, this low cost material is a suitable OC for gaseous fuels mainly composed of H2 and CO.

Miguel A. Pans; Pilar Gayán; Luis F. de Diego; Francisco García-Labiano; Alberto Abad; Juan Adánez.

2014-01-01T23:59:59.000Z

491

Bar codes and intrinsic-surface-roughness tag: Accurate and low-cost accountability for CFE. [Conventional force equipment (CFE)  

SciTech Connect

CFE poses a number of verification challenges that could be met in part by an accurate and low-cost means of aiding in accountability of treaty-limited equipment. Although the treaty as signed does not explicitly call for the use of tags, there is a provision for recording serial numbers'' and placing special marks'' on equipment subject to reduction. There are approximately 150,000 residual items to be tracked for CFE-I, about half for each alliance of state parties. These highly mobile items are subject to complex treaty limitations: deployment limits and zones, ceilings subceilings, holdings and allowances. There are controls and requirements for storage, conversion, and reduction. In addition, there are national security concerns regarding modernization and mobilization capability. As written into the treaty, a heavy reliance has been placed on human inspectors for CFE verification. Inspectors will mostly make visual observations and photographs as the means of monitoring compliance; these observations can be recorded by handwriting or keyed into a laptop computer. CFE is now less a treaty between two alliances than a treaty among 22 state parties, with inspection data an reports to be shared with each party in the official languages designated by CSCE. One of the potential roles for bar-coded tags would be to provide a universal, exchangable, computer-compatible language for tracking TLE. 10 figs.

DeVolpi, A.; Palm, R.

1990-01-01T23:59:59.000Z

492

Electrochemical hydrogen Storage Systems  

SciTech Connect

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

493

Targeted Energy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA  

SciTech Connect

This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

2013-03-01T23:59:59.000Z

494

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Monjid Hamdan (Primary Contact), Tim Norman Giner, Inc. (Formerly Giner Electrochemical Systems, LLC.) 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0526 Email: mhamdan@ginerinc.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO18065 Subcontractors: * Virginia Polytechnic Institute and University, Blacksburg, VA * Parker Hannifin Ltd domnick hunter Division, Hemel Hempstead, United Kingdom Project Start Date: May 1, 2008

495

Industrial energy use indices  

E-Print Network (OSTI)

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

496

Planar electrochemical device assembly  

DOE Patents (OSTI)

A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

2010-11-09T23:59:59.000Z

497

Graphene and its Hybrid Nanostructures for Nanoelectronics and Energy Applications  

E-Print Network (OSTI)

storage of energy in carbon nanotubes and nanostructurednanotubes (CNTs) have been widely applied in electrochemical energy

LIN, JIAN

2011-01-01T23:59:59.000Z

498

On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor  

Science Journals Connector (OSTI)

This paper presents the design and development of autonomous attitude stabilization, navigation in unstructured, GPS-denied environments, aggressive landing on inclined surfaces, and aerial gripping using onboard sensors on a low-cost, custom-built quadrotor. ... Keywords: Aerial gripping, GPS-Denied environment, Indoor navigation, Micro air vehicle, Quadrotor, SLAM

Vaibhav Ghadiok; Jeremy Goldin; Wei Ren

2012-08-01T23:59:59.000Z

499

Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling  

Science Journals Connector (OSTI)

This paper summarizes our research on laser cladding of high-vanadium CPM®...tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance agains...

J. Chen; L. Xue

2012-06-01T23:59:59.000Z

500

Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor for Robotic Manipulation  

E-Print Network (OSTI)

Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor fingertip force sensor for robotic manipulation. Our design makes the most of 3D printing technology sensor features a detachable fingertip made of 3D- printed materials, and a cantilever mechanism

Todorov, Emanuel