Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

2

The development of low cost LiFePO4-based high power lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

3

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

4

The development of low cost LiFePO4-based high power lithium-ion batteries  

SciTech Connect

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

5

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

optimization and scale up for energy cells To be completed June-13 June-13 Optimized low cost andor safer electrolyte for energy cells On schedule June-13 Cathode coated stack...

6

Development of an Advanced, Low-Cost parabolic Trough Collector...  

Office of Environmental Management (EM)

Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation This...

7

Advanced Low-Cost Receivers for Parabolic Troughs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receivers for Parabolic Troughs Advanced Low-Cost Receivers for Parabolic Troughs This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded...

8

Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

9

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

10

Advanced Low-Cost Receivers for Parabolic Troughs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost Receivers for Parabolic Troughs Advanced Low-Cost Receivers for Parabolic Troughs This presentation was delivered at the SunShot Concentrating Solar Power (CSP)...

11

Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and...

12

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

13

Lithium Ion Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

14

E-Print Network 3.0 - advanced lithium-ion batteries Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

being undertaken at ISEM... .isem.uow.edu.au 12;Project Lithium ion batteries for Electric Vehicles (EVs) Aims To provide novel solutions... to enhance the performance ......

15

Advanced Low-Cost Receivers for Parabolic Troughs - FY13 Q2 ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost Receivers for Parabolic Troughs - FY13 Q2 Advanced Low-Cost Receivers for Parabolic Troughs - FY13 Q2 This document summarizes the progress of this Norwich...

16

Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

17

Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

18

High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Due to well-known Jahn–Teller distortion in spinel LiMn1.5Ni0.5O4, it can only be reversibly electrochemically cycled between 3 and 4.8 V with a limited reversible capacity of ?147 mAh g?1. This study intends to embed the layer-structured Li2MnO3 nanodomains into LiMn1.5Ni0.5O4 spinel matrix so that the Jahn–Teller distortion can be suppressed even when the average Mn oxidation state is below +3.5. A series of xLi2MnO3·(1 ? x)LiMn1.5Ni0.5O4 where x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 are synthesized by co-precipitation method. The composites with intermediate values of x = 0.1, 0.2, 0.3, 0.4 and 0.5 exhibit both spinel and layered structural domains in the particles and show greatly improved cycle stability than that of the pure spinel. Among them, 0.3Li2MnO3·0.7LiMn1.5Ni0.5O4 delivers the highest and almost constant capacity after a few conditional cycles and shows superior cycle stability. Ex-situ X-ray diffraction results indicate that no Jahn–Teller distortion occurs during the cycling of the 0.3Li2MnO3·0.7LiMn1.5Ni0.5O4 composite. Additionally, 0.3Li2MnO3·0.7LiMn1.5Ni0.5O4 possesses a high energy density of ?700 Wh kg?1, showing great promise for advanced high energy density lithium-ion batteries.

Jia Lu; Ya-Lin Chang; Bohang Song; Hui Xia; Jer-Ren Yang; Kim Seng Lee; Li Lu

2014-01-01T23:59:59.000Z

19

Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries  

SciTech Connect

Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

20

The Self-Improvement of Lithium-Ion Batteries | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture and Viral Disease Architecture and Viral Disease RNA Folding: A Little Cooperation Goes a Long Way A New Phase in Cellular Communication Engineering Thin-Film Oxide Interfaces Novel Materials Become Multifunctional at the Ultimate Quantum Limit Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Self-Improvement of Lithium-Ion Batteries NOVEMBER 30, 2012 Bookmark and Share Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure. The search for clean and green energy in the 21st century requires a better and more efficient battery technology. The key to attaining that goal may

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lithium Ion Electrode Production NDE and QC Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Presentation name New Directions in Lithium Ion Electrode In-Line NDE * Low-cost IR laser thickness measurement (can be done in multiple point scans across the web or an entire...

22

Advanced, Low-Cost Solar Water Heating Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced, Low-Cost Solar Water Heating Advanced, Low-Cost Solar Water Heating Research Project Advanced, Low-Cost Solar Water Heating Research Project The U.S. Department of Energy is currently conducting research into advanced low-cost solar water heating. This project will employ innovative techniques to adapt water heating technology to meet U.S. market requirements, including specifications, cost, and performance targets. Project Description This project seeks to identify and resolve technical, performance, and cost barriers to the development of easy-to-install and reliable solar water heating systems for all major U.S. climate regions. The project will also evaluate opportunities for breakthrough system innovations and innovations in advanced system performance ratings. Project Partners

23

Advanced Low-Cost Receivers for Parabolic Troughs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

radiative losses. IMPACT This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP. In addition, it...

24

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

25

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane  

SciTech Connect

The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm²); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

Hamdan, Monjid [Giner, Inc.] [Giner, Inc.

2013-08-29T23:59:59.000Z

26

Advanced Low-Cost Receivers for Parabolic Troughs (Fact Sheet)  

SciTech Connect

Norwich Technologies is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

27

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

calculation method and provide insights for the next step research of advanced additives. 5 Pristine Lithium uptake Lithium removal Lithium anodes - Instantaneous...

28

Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Lithium-ion battery (LIB) technology is currently the most important and promising energy storage technology that has captured the portable electronic market, invaded the power tool equipment market, and penetrated the electric vehicle market. The ever-growing demand for its energy capacity necessitates the understanding of (de)lithiation mechanism on a nanoscale, and thus the development of platforms enabling in-situ electrochemical TEM characterization. Sealed liquid cell (SLC) device has been widely recognized as the most desirable platform, since it allows the introduction of commercial volatile electrolytes into TEM. However, a comprehensive review summarizing the current development of \\{SLCs\\} for in-situ TEM LIB research is missing and in urgent need for its benign development. This review article aims to fill this gap.

Fan Wu; Nan Yao

2015-01-01T23:59:59.000Z

29

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

30

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

31

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

32

Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes  

E-Print Network (OSTI)

interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasingSolution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel storage capacity (theoretical values of 4200 vs 372 mAh/g for graphite). How- ever, the insertion

Cui, Yi

33

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles and electric vehicles due to their relatively high specific energy and specific power. The Advanced Technology of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

34

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

35

Electrolytes for lithium ion batteries  

SciTech Connect

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

36

Graphene-based composites as cathode materials for lithium ion batteries  

Science Journals Connector (OSTI)

Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode ...

Libao Chen; Ming Zhang; Weifeng Wei

2013-01-01T23:59:59.000Z

37

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

38

Exploring the interaction between lithium ion and defective graphene...  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

39

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

40

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

42

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

43

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

44

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

45

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Anode Design to Improve Lithium-Ion Batteries Print Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

46

Development of Large Format Lithium Ion Cells with Higher Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

47

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

48

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents (OSTI)

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

49

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network (OSTI)

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ã?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

50

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network (OSTI)

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

51

Anode materials for lithium-ion batteries  

DOE Patents (OSTI)

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

52

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

53

NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES  

SciTech Connect

This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

John Olson, PhD

2004-07-21T23:59:59.000Z

54

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery  

Science Journals Connector (OSTI)

Defect-Free, Size-Tunable Graphene for High-Performance Lithium Ion Battery ... These results propose that the as-prepared defect free graphene will bring significant advance of composite electrodes for high performance in electrochemical energy systems such as batteries, fuel cells, and capacitors. ...

Kwang Hyun Park; Dongju Lee; Jungmo Kim; Jongchan Song; Yong Min Lee; Hee-Tak Kim; Jung-Ki Park

2014-07-11T23:59:59.000Z

55

Low Cost, Durable Seal  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on low cost, durable seals, was given by George Roberts of UTC Power at a February 2007 meeting on new fuel cell projects.

56

Costs of lithium-ion batteries for vehicles  

SciTech Connect

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

57

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites  

Energy.gov (U.S. Department of Energy (DOE))

A new Advanced Composite Manufacturing Institute, one of six National Network for Manufacturing Innovation Institutes to launch in 2014, will receive up to $70 million over five years in Energy Department funding.

58

Towards Safer Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

59

High-discharge-rate lithium ion battery  

DOE Patents (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

60

Lithium Ion Electrode Production NDE and QC Considerations |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, Oak Ridge National Laboratory, at the...

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Physically based Impedance Modelling of Lithium-Ion Cells.  

E-Print Network (OSTI)

??In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then,… (more)

Illig, Jörg

2014-01-01T23:59:59.000Z

62

JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

63

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network (OSTI)

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to… (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

64

Development of Large Format Lithium Ion Cells with Higher Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overall Project Goal: To research, develop and demonstrate large format lithium ion cells with energy density > 500 WhL Barriers addressed: - Low energy density - Cost -...

65

Sandia National Laboratories: lithium-ion-based solid electrolyte...  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium-ion-based solid electrolyte battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March...

66

Development of Electrolytes for Lithium-ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battaglia & J. Kerr (LBNL) * M. Payne (Novolyte) * F. Puglia & B. Ravdel (Yardney) * G. Smith & O. Borodin (U. Utah) 3 3 Develop novel electrolytes for lithium ion batteries that...

67

Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates  

Science Journals Connector (OSTI)

Flexible graphene-based lithium ion batteries with ultrafast charge and...and flexible lithium ion battery made from graphene foam, a three-dimensional...and flexible lithium ion battery made from graphene foam, a three-dimensional...

Na Li; Zongping Chen; Wencai Ren; Feng Li; Hui-Ming Cheng

2012-01-01T23:59:59.000Z

68

Stress fields in hollow core–shell spherical electrodes of lithium ion batteries  

Science Journals Connector (OSTI)

...core-shell spherical electrodes of lithium ion batteries Yingjie Liu 1 Pengyu Lv...System, Department of Mechanics and Engineering Science, College of Engineering...structure design of electrodes of lithium ion batteries. lithium ion battery...

2014-01-01T23:59:59.000Z

69

Development of Lithium?ion Battery as Energy Storage for Mobile Power Sources Applications  

Science Journals Connector (OSTI)

In view of the need to protect the global environment and save energy there has been strong demand for the development of lithium?ion battery technology as a energy storage system especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium?ion battery development is toward the high power and energy density cheaper in price and high safety standard. In our laboratory the research and development of lithium?ion battery technology was mainly focus to develop high power density performance of cathode material which is focusing to the Li?metal?oxide system LiMO 2 where M=Co Ni Mn and its combination. The nano particle size material which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition we also developed variety of sizes of lithium?ion battery prototype including (i) small size for electronic gadgets such as mobile phone and PDA applications (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC SIRIM Berhad will be discussed in this paper.

Mohd Ali Sulaiman; Hasimah Hasan

2009-01-01T23:59:59.000Z

70

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

performance Project Immediate Objectives (Oct-13 to Sep-14) * Complete 2 Ah prototype cells utilizing separatorelectrode stacks with much thinner ceramic separator (8 um...

71

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Deliver eight 2 Ah coated stack & control cells by Oct- 12 for DOE testing * Provide cost analysis of these cells by Dec-12 * Evaluate design options for new current collector...

72

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

73

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

74

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network (OSTI)

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

75

Low-cost, Rapid DNA Sequencing Technique - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Low-cost, Rapid DNA Sequencing Technique Oak Ridge National Laboratory Contact ORNL About This...

76

Lithium-Ion Battery Teacher Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Ion Battery Teacher Workshop Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B ¾ of an inch from one end of the sheet. Making the Chassis 6 3. Draw a 5/8" x ½" notch from 1" from the top of the sheet. Making the Chassis 7 4. Draw Line C 2 ½" from the other end of the same sheet of balsa. Making the Chassis 8 5. Using a sharp utility knife or a coping saw, cut

77

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

78

Batteries - Lithium-ion - Developing Better High-Energy Batteries for  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material. Researcher Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material, a key element of the material licensed to NanoeXa. Argonne's an internationally recognized leader in the development of lithium-battery technology. "Our success reflects a combined effort with a materials group and a technology group to exploit the concept to tackle key safety and energy problems associated with conventional technology," said Argonne's Michael Thackeray. Recently, Argonne announced a licensing agreement with NanoeXa (see

79

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

80

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Students race lithium ion battery powered cars in Pantex competition |  

NLE Websites -- All DOE Office Websites (Extended Search)

race lithium ion battery powered cars in Pantex competition | race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Students race lithium ion battery powered cars ... Students race lithium ion battery powered cars in Pantex competition Posted By Greg Cunningham, Pantex Public Affairs

82

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

83

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are...  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Why Silicon Anodes of Lithium-Ion Batteries Are Fast to Discharge but Slow to Charge December 02, 2014 Measured and calculated rate-performance of a Si thin-film (70...

84

Thermo-mechanical Behavior of Lithium-ion Battery Electrodes  

E-Print Network (OSTI)

Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

An, Kai

2013-11-25T23:59:59.000Z

85

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

(1) A194-A200 (2014). (1,716 KB) Technology Marketing Summary Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a...

86

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

87

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel…

2013-01-01T23:59:59.000Z

88

The application of graphene in lithium ion battery electrode materials  

Science Journals Connector (OSTI)

Graphene is composed of a single atomic layer ... concept, structure, properties, preparation methods of graphene and its application in lithium ion batteries. A continuous 3D conductive network formed by graphene

Jiping Zhu; Rui Duan; Sheng Zhang; Nan Jiang; Yangyang Zhang; Jie Zhu

2014-10-01T23:59:59.000Z

89

Thermal Behavior and Modeling of Lithium-Ion Cuboid Battery  

Science Journals Connector (OSTI)

Thermal behaviour and model are important items should be considered when designing a battery pack cooling system. Lithium-ion battery thermal behaviour and modelling method are investigated in this paper. The te...

Hongjie Wu; Shifei Yuan

2013-01-01T23:59:59.000Z

90

Development of Large Format Lithium Ion Cells with Higher Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cells Program Review ES-127 Development of Large Format Lithium Ion Cells with Higher Energy Density Erin O'Driscoll (PI) Han Wu (Presenter) Dow Kokam May 13,...

91

Low-Cost "Vacuum Desiccator"  

Science Journals Connector (OSTI)

Low-Cost "Vacuum Desiccator" ... Described are individualized, low-cost, and safe desiccators that can be efficiently and rapidly made with an inexpensive kitchen aid sold for shrink-wrapping food. ... Cost-Effective Teacher ...

Frederick Sweet

2004-10-01T23:59:59.000Z

92

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient...  

Energy Savers (EERE)

AMO Announces Funding Opportunity for Low-Cost, Energy Efficient Manufacturing and Recycling of Advanced Fiber-Reinforced Polymer Composites AMO Announces Funding Opportunity for...

93

Understanding the Degredation of Silicion Electrodes for Lithium Ion Batteries Using Acoustic Emission  

SciTech Connect

Silicon is a promising anode material for lithium ion battery application due to its high specific capacity, low cost, and abundance. However, when silicon is lithiated at room temperature it can undergo a volume expansion in excess of 280% which leads to extensive fracturing. This is thought to be a primary cause of the rapid decay in cell capacity routinely observed. Acoustic emission (AE) was employed to monitor activity in composite silicon electrodes while cycling in lithium ion half-cells using a constant current-constant voltage procedure. The major source of AE was identified as the brittle fracture of silicon particles resulting from the alloying reaction that gives rise to LixSi phases. The largest number of emissions occurred on the first lithiation corresponding to surface fracture of the silicon particles, followed by distinct emission bursts on subsequent charge and discharge steps. Furthermore, a difference in the average parameters describing emission during charge and discharge steps was observed. Potential diagnostic and materials development applications of the presented AE techniques are discussed.

Rhodes, Kevin J [ORNL; Dudney, Nancy J [ORNL; Lara-Curzio, Edgar [ORNL; Daniel, Claus [ORNL

2010-01-01T23:59:59.000Z

94

JCESR: Moving Beyond Lithium-Ion  

ScienceCinema (OSTI)

The Joint Center for Energy Storage Research (JCESR; http://www.jcesr.org/) is a major research partnership that integrates government, academic, and industrial researchers from many disciplines. JCESR's vision is to transform transportation and the electricity grid with high-performance, low cost energy storage.

Zavadil, Kevin; Crabtree, George; Gallagher, Kevin; Trahey, Lynn; Srinivasan, Venkat; Chiang, Yet-Ming; Chamberlain, Jeff

2014-11-18T23:59:59.000Z

95

JCESR: Moving Beyond Lithium-Ion  

SciTech Connect

The Joint Center for Energy Storage Research (JCESR; http://www.jcesr.org/) is a major research partnership that integrates government, academic, and industrial researchers from many disciplines. JCESR's vision is to transform transportation and the electricity grid with high-performance, low cost energy storage.

Zavadil, Kevin; Crabtree, George; Gallagher, Kevin; Trahey, Lynn; Srinivasan, Venkat; Chiang, Yet-Ming; Chamberlain, Jeff

2014-10-16T23:59:59.000Z

96

Towards a lithium-ion fiber battery  

E-Print Network (OSTI)

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

97

E-Print Network 3.0 - advanced automotive battery Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

OPERATIONS 12.0 billion yen investment to mass produce advanced lithium-ion batteries... Energy Utilization 12;HISTORY OF NISSAN'S EV 15 years of experience in lithium-ion...

98

Design of Safer High-Energy Density Materials for Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Safer High-Energy Density Materials for Lithium-Ion Cells Design of Safer High-Energy Density Materials for Lithium-Ion Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

99

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

100

Thermal behaviors of electrolytes in lithium-ion batteries determined by differential scanning calorimeter  

Science Journals Connector (OSTI)

Lithium-ion batteries have been widely used in daily electric ... occurred from time to time. Lithium-ion batteries composed of various electrolytes (containing organic solvents ... to meet safety requirements of...

Yu-Yun Sun; Tsai-Ying Hsieh; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

102

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

103

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes ... Despite rapidly growing interest in the application of graphene in lithium ion batteries, the interaction of the graphene with lithium ions and electrolyte species during electrochemical cycling is not fully understood. ...

Bin Wang; Xianglong Li; Xianfeng Zhang; Bin Luo; Meihua Jin; Minghui Liang; Shadi A. Dayeh; S. T. Picraux; Linjie Zhi

2013-01-02T23:59:59.000Z

104

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

several years SAFT has developed a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on SAFT lithium-ion cells The cells used are lithium-ion SAFT power cells: VL30P which outputs a nominal capacity of 30 Ah

Paris-Sud XI, Université de

105

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

years, Saft has been developing a range of lithium ion cells and batteries to cover the full spectrum. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on Saft lithium or several cells. II. OVERVIEW OF EXPERIMENT A. Used lithium-ion cells The cells used are lithium-ion Saft

Boyer, Edmond

106

Non-aqueous electrolyte for lithium-ion battery  

DOE Patents (OSTI)

The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

2014-04-15T23:59:59.000Z

107

Novel carbonaceous materials used as anodes in lithium ion cells  

SciTech Connect

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

108

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z

109

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

lithium ion batteries. Materials Science & Engineering R-Ion Batteries by Jianxin Zhu Doctor of Philosophy, Graduate Program in Materials Science and EngineeringIon Batteries A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering

Zhu, Jianxin

2014-01-01T23:59:59.000Z

110

Electrolytes - Advanced Electrolyte and Electrolyte Additives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Electrolyte Additives Develop & evaluate materials & additives that enhance thermal & overcharge abuse Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery...

111

Lithium ion batteries with titania/graphene anodes  

DOE Patents (OSTI)

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

112

Ground state hyperfine structure in muonic lithium ions  

E-Print Network (OSTI)

On the basis of perturbation theory in fine structure constant alpha and the ratio of electron to muon masses we calculate one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections to hyperfine splitting of the ground state in muonic lithium ions $(\\mu\\ e\\ ^6_3Li)^+$ and $(\\mu\\ e\\ ^7_3Li)^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu\\ e\\ ^6_3Li)^+$ $\\Delta\

Martynenko, A P

2014-01-01T23:59:59.000Z

113

Ground state hyperfine structure in muonic lithium ions  

E-Print Network (OSTI)

On the basis of perturbation theory in fine structure constant alpha and the ratio of electron to muon masses we calculate one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections to hyperfine splitting of the ground state in muonic lithium ions $(\\mu\\ e\\ ^6_3Li)^+$ and $(\\mu\\ e\\ ^7_3Li)^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu\\ e\\ ^6_3Li)^+$ $\\Delta\

A. P. Martynenko; A. A. Ulybin

2014-11-12T23:59:59.000Z

114

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Title Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Publication Type Journal Article Year of Publication 2012 Authors Ridgway, Paul L., Honghe Zheng, A. F. Bello, Xiangyun Song, Shidi Xun, Jin Chong, and Vincent S. Battaglia Journal Journal of The Electrochemical Society Volume 159 Issue 5 Pagination A520 Date Published 2012 ISSN 00134651 Abstract Battery grade graphite products from major suppliers to the battery industry were evaluated in 2325 coin cells with lithium counter electrodes. First and ongoing cycle efficiency, total and reversible capacity, cycle life and discharge rate performance were measured to compare these anode materials. We then ranked the graphites using a formula which incorporates these performance measures to estimate the cost of the overall system, relative to the cost of a system using MCMB. This analysis indicates that replacing MCMB with CCP-G8 (Conoco Phillips) would add little to no cost, whereas each of the other graphites would lead to a more costly system. Therefore we chose CCP-G8 as the new baseline graphite for the BATT program.

115

Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

116

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

117

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

118

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

not contain any proprietary, confidential, or otherwise restricted information Post-test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Overview...

119

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC This presentation contains no proprietary information. Project ID: ES166 Post-test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Overview...

120

Graphene as a high-capacity anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Graphene was produced via a soft chemistry synthetic route for lithium ion battery applications. The sample was characterized by X ... electron microscopy, respectively. The electrochemical performances of graphene

Hongdong Liu ???; Jiamu Huang ???; Xinlu Li…

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development of Novel Nanomaterials Based on Silicon and Graphene for Lithium Ion Battery Applications.  

E-Print Network (OSTI)

??Electrochemical energy storage is one of the important strategies to address the strong demand for clean energy. Rechargeable lithium ion batteries (LIBs) are one of… (more)

Hu, Yuhai

2014-01-01T23:59:59.000Z

122

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network (OSTI)

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient… (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

123

Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions.  

E-Print Network (OSTI)

??Lithium ion (Li-ion) batteries have been gaining recognition as the primary technology for energy storage in motive applications due to their improved specific energy densities,… (more)

Bhatia, Padampat Chander

2013-01-01T23:59:59.000Z

124

Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications  

Science Journals Connector (OSTI)

Abstract A graphene/silicon nanocomposite has been synthesized, characterized and tested as anode active material for lithium-ion batteries. A morphologically stable composite has been obtained by dispersing silicon nanoparticles in graphene oxide, previously functionalized with low-molecular weight polyacrylic acid, in eco-friendly, low-cost solvent such as ethylene glycol. The use of functionalized graphene oxide as substrate for the dispersion avoids the aggregation of silicon particles during the synthesis and decreases the detrimental effect of graphene layers re-stacking. Microwave irradiation of the suspension, inducing reduction of graphene oxide, and the following thermal annealing of the solid powder obtained by filtration, yield a graphene/silicon composite material with optimized morphology and properties. Composite anodes, prepared with high-molecular weight polyacrylic acid as green binder, exhibited high and stable reversible capacity values, of the order of 1000 mAh g?1, when cycled using vinylene carbonate as electrolyte additive. After 100 cycles at a current of 500 mA g?1, the anode showed a discharge capacity retention of about 80%. The mechanism of reversible lithium uptake is described in terms of Li–Si alloying/dealloying reaction. Comparison of the impedance responses of cells tested in electrolytes with or without vinylene carbonate confirms the beneficial effects of the additive in stabilizing the composite anode.

F. Maroni; R. Raccichini; A. Birrozzi; G. Carbonari; R. Tossici; F. Croce; R. Marassi; F. Nobili

2014-01-01T23:59:59.000Z

125

Low Cost Fabrication of Oxide Dispersion Strengthened Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Oxide Dispersion Low Cost Fabrication of Oxide Dispersion Strengthened Materials Background To obtain significant increases in the efficiency of coal fired power plants, steam pressure and temperature must be increased beyond current technology to advanced ultra-supercritical (A-USC) conditions -temperatures and pressures up to 760 degrees Celsius (°C) and 35 megapascals (MPa). The upper bounds of operating pressure and temperature are limited by the properties of the current set

126

Thermal evaluation and performance of high-power Lithium-ion cells  

SciTech Connect

Under the sponsorship of the US Advanced Battery Consortium (USABC) and the Partnership for a New Generation of Vehicles (PNGV), Saft has developed high-power lithium-ion (Li-Ion) batteries for hybrid electric vehicles (HEVs). These high-power Li-Ion batteries are being evaluated for the US Department of Energy's (DOE) Hybrid Vehicle Propulsion Program. As part of this program, the National Renewable Energy Laboratory (NREL) characterized the thermal performance of the Saft (6-Ah) Li-Ion cells. The characterization included (1) obtaining thermal images of cells under a specified cycle, (2) measuring heat generation from the cells at various temperatures and under various charge/discharge profiles, and (3) determining the cells' capabilities for following a simulated power profile (driving cycle) at various initial states of charge and temperatures.

Keyser, M.; Pesaran, A.; Oweis, S.; Chagnon, G.; Ashtiani, C.

2000-01-25T23:59:59.000Z

127

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes ... A new graphene-based hybrid nanostructure is designed for anode materials in lithium-ion batteries. ...

Huawei Song; Hao Cui; Chengxin Wang

2014-07-08T23:59:59.000Z

128

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials ... Collected particles were lithiated, and one promising material was evaluated as the active cathode component in a lithium-ion battery. ...

Gary M. Koenig, Jr.; Ilias Belharouak; Haixai Deng; Yang-Kook Sun; Khalil Amine

2011-03-09T23:59:59.000Z

129

Electronically conductive polymer binder for lithium-ion battery electrode  

DOE Patents (OSTI)

A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

2014-10-07T23:59:59.000Z

130

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode ... In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene–nanotube–iron three-dimensional nanostructure as an anode material in lithium-ion batteries. ...

Si-Hwa Lee; Vadahanambi Sridhar; Jung-Hwan Jung; Kaliyappan Karthikeyan; Yun-Sung Lee; Rahul Mukherjee; Nikhil Koratkar; Il-Kwon Oh

2013-04-03T23:59:59.000Z

131

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,  

E-Print Network (OSTI)

resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominatedImpedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance

Cui, Yi

132

Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes  

Science Journals Connector (OSTI)

...system) and a photograph of the battery used to power a green LED...electrode in a lithium-ion battery using lithium metal foil as...nanowires as a lithium-ion battery cathode was evaluated (Fig...expected to bind favorably to the graphene surface via {pi}-stacking...

Yun Jung Lee; Hyunjung Yi; Woo-Jae Kim; Kisuk Kang; Dong Soo Yun; Michael S. Strano; Gerbrand Ceder; Angela M. Belcher

2009-05-22T23:59:59.000Z

133

Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)  

SciTech Connect

This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

2010-11-01T23:59:59.000Z

134

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies  

SciTech Connect

To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized ? electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-? type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.

Vijayakumar, M.; Hu, Jian Z.

2013-10-15T23:59:59.000Z

135

Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure  

E-Print Network (OSTI)

Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure Min Intercalation Electrochemistry Capacitance Lithium Ion batteries A B S T R A C T We demonstrate TiO2@graphitic on the electrode surface and enhanced lithium ion intercalation, leading to lower charge transfer resistance

Cao, Guozhong

136

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,  

E-Print Network (OSTI)

Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

Cui, Yi

137

Advanced Cathode Material Development for PHEV Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

138

Advanced Cathode Material Development for PHEV Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

139

Dow Offers Low-Cost Ethylenimine  

Science Journals Connector (OSTI)

New process paves way to commercialization of highly reactive cyclic compound at low cost ... Behind the imine's substantially lower price tag is a new, low-cost commercial process developed by Dow. ...

1963-06-24T23:59:59.000Z

140

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office of  

Office of Science (SC) Website

High-Power Electrodes for Lithium-Ion High-Power Electrodes for Lithium-Ion Batteries Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 High-Power Electrodes for Lithium-Ion Batteries Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement For novel 3-D anodes made of sheets of carbon (graphene) and silicon nanoparticles, transport studies found much shorter lithium diffusion paths throughout the electrode and fast lithiation/delithiation of the nanoparticles. Significance and Impact This anode design holds a greater charge than conventional lithium-ion anodes and charges/discharges more rapidly while maintaining mechanical stability. Research Details Electrochemical studies: 83% of theoretical capacity (3200 mAh g-1)

142

Better Lithium-Ion Batteries Are On The Way From Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss, +1 510 486 6249, paul_preuss@lbl.gov traditional-new.jpg At left, the traditional approach to composite anodes using silicon (blue spheres) for higher energy capacity has a polymer binder such as PVDF (light brown) plus added particles of carbon to conduct electricity (dark brown spheres). Silicon swells and shrinks while acquiring and releasing lithium ions, and repeated swelling and shrinking eventually break contacts among the conducting carbon particles. At right, the new Berkeley Lab polymer (purple) is itself conductive and continues to bind tightly to the silicon particles despite repeated swelling and shrinking.

143

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

144

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

145

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

146

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

147

An electrical network model for computing current distribution in a spirally wound lithium ion cell  

E-Print Network (OSTI)

Lithium ion batteries are the most viable option for electric vehicles but they still have significant limitations. Safety of these batteries is one of the concerns that need to be addressed when they are used in mainstream ...

Patnaik, Somani

2012-01-01T23:59:59.000Z

148

Cathode materials for lithium ion batteries prepared by sol-gel methods  

Science Journals Connector (OSTI)

Improving the preparation technology and electrochemical performance of cathode materials for lithium ion batteries is a current major focus of research and development in the areas of materials, power sources...

H. Liu; Y. P. Wu; E. Rahm; R. Holze; H. Q. Wu

2004-06-01T23:59:59.000Z

149

SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

CATHODE MATERIALS FOR LITHIUM-ION BATTERIES Feng Lin, 1*As shown in Figure 2, in lithium-metal half-cells, capacitypredominantly occurs along the lithium diffusion channels,

Lin, Feng

2014-01-01T23:59:59.000Z

150

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network (OSTI)

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

151

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network (OSTI)

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

152

Graphene sheets decorated with ZnO nanoparticles as anode materials for lithium ion batteries  

Science Journals Connector (OSTI)

ZnO/graphene composites were synthesized using a facile solution- ... 4 nm were densely and homogeneously deposited on graphene sheets. As the anode material for the lithium ion batteries, the ZnO/graphene compos...

Ling-Li Xu; Shao-Wei Bian; Kang-Lin Song

2014-09-01T23:59:59.000Z

153

Cobalt oxide–graphene nanocomposite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Composites of Co3O4/graphene nanosheets are prepared and characterized by X- ... behavior as anode materials of lithium-ion rechargeable batteries is investigated by galvanostatic discharge/charge measurements...

Guiling Wang; Jincheng Liu; Sheng Tang…

2011-12-01T23:59:59.000Z

154

TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries  

Science Journals Connector (OSTI)

A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported. The morphology and crystal structure...2/GNS electrode ...

Yi-ping Tang ???; Shi-ming Wang ???; Xiao-xu Tan ???…

2014-05-01T23:59:59.000Z

155

Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance  

Science Journals Connector (OSTI)

Silicon has been recognized as the most promising anode material for high capacity lithium ion batteries. However, large volume variations during charge ... can be overcome by combination with well-organized graphene

Shuangqiang Chen; Peite Bao; Xiaodan Huang; Bing Sun; Guoxiu Wang

2014-01-01T23:59:59.000Z

156

The effect of graphene nanosheets as an additive for anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

A small amount of graphene nanosheets was added to commercial graphite as an anode active material in lithium ion batteries and its effects were examined through a ... composite electrode containing 1 or 5 wt% graphene

Jae Hun Jeong; Dong-Won Jung; Byung-Sun Kong…

2011-11-01T23:59:59.000Z

157

Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries  

Science Journals Connector (OSTI)

Vent sizing package 2 (VSP2) was used to measure the thermal hazard and runaway characteristics of 18650 lithium-ion batteries, which were manufactured by Sanyo Electric Co ... ., Ltd. Runaway reaction behaviors ...

C.-Y. Jhu; Y.-W. Wang; C.-Y. Wen…

2011-10-01T23:59:59.000Z

158

Power Capability Estimation Accounting for Thermal and Electical Contraints of Lithium-Ion Batteries.  

E-Print Network (OSTI)

??Lithium-ion (Li-ion) batteries have become one of the most critical components in vehicle electrification due to their high specific power and energy density. The performance… (more)

Kim, Youngki

2014-01-01T23:59:59.000Z

159

Evaluation of thermal hazard for commercial 14500 lithium-ion batteries  

Science Journals Connector (OSTI)

Commercial lithium-ion batteries ranged from different sizes, shapes, capacities, ... In this study, the worst scenarios on thermal runaway of four commercial batteries were conducted and compared. A customized-m...

Tsai-Ying Hsieh; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

160

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

A new cathode material for batteries of high energy density.art positive electrode materials for high-energy lithium ionwhen exploring new materials for high-energy lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

state lithium-ion (Li-ion) battery were adhesively joinedfilm solid state Li-ion battery was not able to withstand5.8 The performance of the Li-ion battery under tensile

Kang, Jin Sung

2012-01-01T23:59:59.000Z

162

Low Cost Titanium ? Propulsion Applications | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Applications Low Cost Titanium Propulsion Applications 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

163

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

164

Low-Cost Titanium Alloy Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Titanium Alloy Production Low-Cost Titanium Alloy Production titaniumalloyproduction.pdf More Documents & Publications Low Cost Titanium Propulsion Applications Low Cost...

165

Renewable Low-Cost Carbon Fiber Workshop Agenda | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda carbonfiberworkshopagenda.pdf More...

166

Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop  

Science Journals Connector (OSTI)

Abstract Lithium-ion batteries (LIBs) are replacing the Nickel–Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of \\{LIBs\\} in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in \\{LIBs\\} during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185 Amp-Hour (Ah) LIB with 1–3 C (C) discharge cycles for both forced and natural convection environments at 300 K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.

W. Walker; H. Ardebili

2014-01-01T23:59:59.000Z

167

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

SciTech Connect

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

168

BUSINESS PLAN NIRMAL: LOW COST WATER PURIFICATION  

E-Print Network (OSTI)

NIRMAL #12;BUSINESS PLAN 2 NIRMAL: LOW COST WATER PURIFICATION I. Executive summary Nearly one the water. Hence we intend to address the issue by providing a low cost water purification system using billion people all over the world do not have access to safe drinking water.It is estimated that around 37

Mlllet, Dylan B.

169

Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review  

Science Journals Connector (OSTI)

Abstract Sn-based materials have attracted much attention as anodes in lithium ion batteries (LIBs) due to their low cost, high theoretical capacities, and high energy density. However, their practical applications are limited by the poor cyclability originating from the huge volume changes. Graphene nanosheets (GNSs), a novel two-dimensional carbon sheet with one atom thickness and one of the thinnest materials, significantly address the challenges of Sn-based anodes as excellent buffering materials, showing great research interests in LIBs. In this review, various nanocomposites of GNSs/Sn-based anodes are summarized in detail, including binary and ternary composites. The significant impact of 2D \\{GNSs\\} on the volume change of Sn-based anodes during cycling is discussed, along with with their preparation methods, properties and enhanced LIB performance.

Yang Zhao; Xifei Li; Bo Yan; Dejun Li; Stephen Lawes; Xueliang Sun

2015-01-01T23:59:59.000Z

170

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties  

Science Journals Connector (OSTI)

Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties ... A facile hydrothermal and sol–gel polymerization route was developed for large-scale fabrication of well-designed Co3O4 nanoparticles anchored carbon aerogel (CA) architecture hybrids as anode materials for lithium-ion batteries with improved electrochemical properties. ... carbon aerogel; oxide; hybrid; mesoporous structure; lithium-ion battery ...

Fengbin Hao; Zhiwei Zhang; Longwei Yin

2013-08-08T23:59:59.000Z

171

Low Cost Hydrogen Production Platform  

SciTech Connect

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

172

N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery  

Science Journals Connector (OSTI)

N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery ... Graphene-based electrode materials for rechargeable lithium batteries ...

C. Nethravathi; Catherine R. Rajamathi; Michael Rajamathi; Ujjal K. Gautam; Xi Wang; Dmitri Golberg; Yoshio Bando

2013-03-13T23:59:59.000Z

173

Nanostructured Tin-Based Anodes for Lithium Ion Batteries with X-Ray Absorption Fine Structure Studies.  

E-Print Network (OSTI)

??The practical applications of lithium ion batteries are highly dependent on the choice of electrodes, where boosting the materials innovations to design and achieve high… (more)

Wang, Dongniu

2013-01-01T23:59:59.000Z

174

Design and Simulation of Passive Thermal Management System for Lithium-ion Battery Packs on an Unmanned Ground Vehicle.  

E-Print Network (OSTI)

?? The transient thermal response of a 15-cell, 48 volt, lithium-ion battery pack for an unmanned ground vehicle was simulated with ANSYS Fluent. Heat generation… (more)

Parsons, Kevin Kenneth

2012-01-01T23:59:59.000Z

175

From Low-Cost Depth Sensors to CAD: Cross-Domain 3D Shape Retrieval via  

E-Print Network (OSTI)

applications for 3D shape retrieval, such as high-quality 3D scanning, manipulation and printing. NoteFrom Low-Cost Depth Sensors to CAD: Cross-Domain 3D Shape Retrieval via Regression Tree Fields Yan@us.ibm.com Abstract. The recent advances of low-cost and mobile depth sensors dramatically extend the potential of 3D

Chang, Shih-Fu

176

Low-Cost, Lightweight Solar Concentrators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective...

177

Building low-cost music controllers  

Science Journals Connector (OSTI)

This paper presents our work on building low-cost music controllers intended for educational and creative use. The main idea was to build an electronic music controller, including sensors and a sensor interface, on a “10 euro” budget. We ...

Alexander Refsum Jensenius; Rodolphe Koehly; Marcelo M. Wanderley

2005-09-01T23:59:59.000Z

178

Explorations in Low-Cost Compliant Robotics  

E-Print Network (OSTI)

This thesis presents the findings of exploratory research in low-cost compliant robotics. The most heavily leveraged trade-off is that of mechanical precision for computational power, with the hope that the price of future ...

Kumpf, Adam

2007-01-30T23:59:59.000Z

179

Explorations in low-cost compliant robotics  

E-Print Network (OSTI)

This thesis presents the findings of exploratory research in low-cost compliant robotics. The most heavily leveraged trade-off is that of mechanical precision for computational power, with the hope that the price of future ...

Kumpf, Adam (Adam A.)

2007-01-01T23:59:59.000Z

180

High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost  

SciTech Connect

GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

None

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance  

Science Journals Connector (OSTI)

Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance ... A new nanocomposite formulation of the FeS-based anode for lithium-ion batteries is proposed, where FeS nanoparticles wrapped in reduced graphene oxide (RGO) are produced via a facile direct-precipitation approach. ...

Ling Fei; Qianglu Lin; Bin Yuan; Gen Chen; Pu Xie; Yuling Li; Yun Xu; Shuguang Deng; Sergei Smirnov; Hongmei Luo

2013-05-14T23:59:59.000Z

182

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model  

E-Print Network (OSTI)

Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical state of charge (SOC). In this paper an averaged electrochemical Lithium-ion battery model suitable-Volmer current and the solid concentration at the interface with the electrolyte and (ii) the battery current

Stefanopoulou, Anna

183

High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

High-Energy Cathode Materials (Li2MnO3–LiMO2) for Lithium-Ion Batteries ... Fabrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries ... Li-rich materials are considered the most promising for Li-ion battery cathodes, as high energy densities can be achieved. ...

Haijun Yu; Haoshen Zhou

2013-03-28T23:59:59.000Z

184

Simplified Heat Generation Model for Lithium ion battery used in Electric Vehicle  

Science Journals Connector (OSTI)

It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. In an effort to gain a better understanding of the heat generation in Lithium ion batteries, a simple heat generation models were constructed in order to predict the thermal behaviour of a battery pack. The Lithium ion battery presents in this paper is Lithium Iron Phosphate (LiFePO4). The results show that the model can be viewed as an acceptable approximation for the variation of the battery pack temperature at a continuous discharge current from data provided by the manufacturer and literature.

Nur Hazima Faezaa Ismail; Siti Fauziah Toha; Nor Aziah Mohd Azubir; Nizam Hanis Md Ishak; Mohd Khair Hassan; Babul Salam Ksm Ibrahim

2013-01-01T23:59:59.000Z

185

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

186

Zero-Net Power, Low-Cost Sensor Platform  

SciTech Connect

Numerous national studies and working groups have identified very low-power, low-cost sensors as a critical technology for increasing energy efficiency, reducing waste, and optimizing processes. This research addressed that need by developing an ultra low-power, low-cost sensor platform based on microsensor (MS) arrays that includes MS sensors, very low-power electronics, signal processing, and two-way data communications, all integrated into a single package. MSs were developed to measure carbon dioxide and room occupancy. Advances were made in developing a coating for detecting carbon dioxide and sensing thermal energy with MSs with a low power electrical readout. In addition, robust algorithms were developed for communications within buildings over power lines and an integrated platform was realized that included gas sensing, temperature, humidity, and room occupancy with on-board communications.

Hardy, J.E.

2005-04-15T23:59:59.000Z

187

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber (CF) with at least 650 ksi tensile strength. Development of Low-Cost, High...

188

Low-Cost, Lightweight Solar Concentrator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Low-Cost, Lightweight Solar Concentrators - FY13 Q1 Low-Cost Light Weigh Thin Film Solar Concentrators Low-Cost, Lightweight Solar Concentrators FY13...

189

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers (EERE)

Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple...

190

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Low Cost...

191

Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

192

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Low Cost PM Technology for Particle Reinforced...

193

Low-Cost Wireless Sensors for Building Monitoring Applications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Wireless Sensors for Building Monitoring Applications Low-Cost Wireless Sensors for Building Monitoring Applications Lead Performer: Oak Ridge National Laboratory - Oak...

194

Low-Cost Solutions for Dynamic Window Material | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Solutions for Dynamic Window Material Low-Cost Solutions for Dynamic Window Material Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer...

195

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials 2010 DOE Vehicle Technologies and Hydrogen...

196

Low-Cost Packaged CHP System with Reduced Emissions - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

197

A Low-Cost Continuous Emissions Monitoring System for Mobile...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition A Low-Cost Continuous Emissions...

198

Low Cost Carbon Fiber Overview | Department of Energy  

Energy Savers (EERE)

Low Cost Carbon Fiber Overview Low Cost Carbon Fiber Overview 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

199

Low-Cost Constant Temperature Heating Block  

Science Journals Connector (OSTI)

Low-Cost Constant Temperature Heating Block ... Secondary school and undergraduate laboratories can build many units for the cost of a commercially comparable one while simultaneously putting to practice several electronic principles taught in most instrumental analysis courses. ... Cost-Effective Teacher ...

Charles G. Shevlin; Ward Coppersmith; Christopher Fish; Stanley Vlock; William Vellema

1997-08-01T23:59:59.000Z

200

Low-cost inertial measurement unit.  

SciTech Connect

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

www.praxair.com Low Cost Hydrogen  

E-Print Network (OSTI)

www.praxair.com Low Cost Hydrogen Production Platform Cooperative Agreement: DE-FC36-01GO11004 Timothy M. Aaron Team Praxair - Tonawanda, NY Boothroyd-Dewhurst - Wakefield, RI Diversified Manufacturing (Hot Components Only) Praxair HGS Comparison 1/4 Capacity 1/6 Physical Plant Size Lower H2 Cost

202

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles are a fast-growing technology that is attrac- tive for use in portable electronics and electric vehicles due electric vehicle HEV applications.c A baseline cell chemistry was identified as a carbon anode negative

203

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models  

E-Print Network (OSTI)

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models or approximation for the solid phase. One of the major difficulties in simulating Li-ion battery models is the need typically solve electrolyte con- centration, electrolyte potential, solid-state potential, and solid-state

Subramanian, Venkat

204

Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions  

E-Print Network (OSTI)

-ion battery which has been converted to a one-dimensional 1D model using approxi- mations for solid-state listed elsewhere Electrochem. Solid-State Lett., 10, A225 2007 can be carried out to expedite of charge, state of health, and other parameters of lithium-ion batteries in millisec- onds. Rigorous

Subramanian, Venkat

205

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes  

E-Print Network (OSTI)

Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes Jiayan Luo, Xin Zhao Information ABSTRACT: Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol

Huang, Jiaxing

206

Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack  

Science Journals Connector (OSTI)

Abstract Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

Kuahai Yu; Xi Yang; Yongzhou Cheng; Changhao Li

2014-01-01T23:59:59.000Z

207

Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter  

Science Journals Connector (OSTI)

In this study, the thermal hazard features of various lithium-ion batteries, such as LiCoO2 and LiFePO4..., were assessed properly by calorimetric techniques. Vent sizing package 2 (VSP2), an adiabatic calorimete...

Tien-Yuan Lu; Chung-Cheng Chiang…

2013-12-01T23:59:59.000Z

208

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

209

Iowa Powder Atomization Technologies, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

210

America's Next Top Energy Innovator Challenge | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

211

Secretary Chu Announces Winning Startup Companies for "America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

212

7AC Technologies, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined...

213

Low-Cost Manufacturable Microchannel Systems for Passive  

E-Print Network (OSTI)

for use in fuel cell systems need development in order to achieve cost targets. Low-cost, highLow-Cost Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 LowLow--CostCost;2 Project objective: Create a low cost and passive PEM water management system Project objective

214

A low cost adaptive optics system using a membrane mirror  

Science Journals Connector (OSTI)

A low cost adaptive optics system constructed almost entirely of commercially available components is presented.

Paterson, Carl; Munro, I; Dainty, J

2000-01-01T23:59:59.000Z

215

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

216

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

1999-01-01T23:59:59.000Z

217

Low-cost laser diode array  

DOE Patents (OSTI)

A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

Freitas, B.L.; Skidmore, J.A.

1999-06-01T23:59:59.000Z

218

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

SciTech Connect

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

219

Low-Cost Spectral Sensor Development Description.  

SciTech Connect

Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

Armijo, Kenneth Miguel; Yellowhair, Julius

2014-11-01T23:59:59.000Z

220

The Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-ion Composite  

E-Print Network (OSTI)

Performance of a Lithium-ion Composite Cathode G Liu a,z ,of the AB and PVDF composites films. (100% legend representsimages of the AB/PVDF composites. A. AB:PVDF = 0.2:1; B. AB:

Liu, G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells  

E-Print Network (OSTI)

The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

Campbell, John Earl, Jr

2012-01-01T23:59:59.000Z

222

Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode ... VO2 Nanowires Assembled into Hollow Microspheres for High-Rate and Long-Life Lithium Batteries ...

Nasir Mahmood; Chenzhen Zhang; Fei Liu; Jinghan Zhu; Yanglong Hou

2013-10-16T23:59:59.000Z

223

Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries  

Science Journals Connector (OSTI)

Mesoporous metal oxides such as SnO2...exhibit a superior electrochemical performance as anode materials for lithium-ion batteries due to their large surface areas and ... collapse during the charge–discharge pro...

Shuhua Jiang; Wenbo Yue; Ziqi Gao; Yu Ren; Hui Ma…

2013-05-01T23:59:59.000Z

224

TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Anatase TiO2...nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized ... as an anode material for the lithium ion battery. The nanosized TiO2 particles wer...

Dan Li; Dongqi Shi; Zongwen Liu; Huakun Liu…

2013-04-01T23:59:59.000Z

225

In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

A novel SnO2/graphene composite has been synthesized via an in...2 nanosheets are uniformly grown on graphene support. The as-prepared products were characterized ... used as an anode material for lithium ion batteries

Hongdong Liu; Jiamu Huang; Chengjie Xiang…

2013-10-01T23:59:59.000Z

226

Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery  

Science Journals Connector (OSTI)

In this study, PPESK/PVDF/PPESK tri-layer composite separators for lithium-ion batteries were prepared by electrospinning technique. The physical properties, electrochemical performances and thermal properties of...

Chun Lu; Wen Qi; Li Li; Jialong Xu; Ping Chen…

2013-07-01T23:59:59.000Z

227

Transient modeling and validation of lithium ion battery pack with air cooled thermal management system for electric vehicles  

Science Journals Connector (OSTI)

A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit volta...

G. Y. Cho; J. W. Choi; J. H. Park; S. W. Cha

2014-08-01T23:59:59.000Z

228

Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive  

Science Journals Connector (OSTI)

To enhance the thermal stability of graphite electrodes for lithium-ion batteries, 4-isopropyl phenyl diphenyl phosphate (IPPP)...6...in ethylene carbonate and diethyl carbonate (1:1 in weight). The electrochemic...

Qingsong Wang; Jinhua Sun; Chunhua Chen

2009-07-01T23:59:59.000Z

229

Multiphysics modeling of lithium ion battery capacity fading process with solid-electrolyte interphase growth by elementary reaction kinetics  

Science Journals Connector (OSTI)

Abstract A pseudo two-dimensional mathematical model is developed for a lithium ion battery, integrating the elementary reaction based solid-electrolyte interphase (SEI) growth model with multiple transport processes. The model is validated using the experimental data. Simulation results indicate that the operating temperature has great effect on the SEI layer generation and growth. Under different charging–discharging rates, it is found that high charging–discharging rate can intensify the battery capacity fading process. Different cooling conditions are then applied and show that enhanced surface convective cooling condition can effectively slow down the battery capacity fading. After that, the effect of electrolyte salt concentration and exchange current density are studied. It is found that raising the electrolyte salt concentration can improve the diffusion property of lithium ions, and stabilize the battery performance under lithium ion consumption induced resistance rising. It also suggests that improving exchange current density could greatly decrease the lithium ion battery capacity fading.

Yuanyuan Xie; Jianyang Li; Chris Yuan

2014-01-01T23:59:59.000Z

230

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

231

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan The advent of Li-ion batteries has played a central role in the impressive development of portable digital and wireless technology. Such success has triggered further efforts to utilize them as key components in other applications with an even larger impact on society, which include electric vehicles and energy backup for renewable energy sources. However, several challenges need to be met before these expectations can be realized, as Li-ion batteries currently do not meet the power and energy density requirements of these devices. New and better materials for the electrodes

232

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another, which either stores or discharges energy, depending on the direction of the flow. They can employ several different chemistries, each offering distinct benefits and limitations. Despite their success in mobile applications, Li-ion technologies have not demonstrated

233

Artificial SEI Enables High-Voltage Lithium-ion Batteries | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Materials for Energy Functional Materials for Energy Artificial SEI Enables High-Voltage Lithium-ion Batteries September 03, 2013 Efficacy of Lipon coating as an artificial SEI for suppression of electrolyte decomposition on a 5V spinel cathode: coulombic efficiency was measured versus cycle numbers at samples with different coating thickness. An artificial solid electrolyte interphase (SEI) of lithium phosphorus oxynitride (Lipon) enables the use of 5V cathode materials with conventional carbonate electrolytes in lithium-ion batteries. Five volt cathode materials, such as LiNi0.5Mn1.5O4, are desirable to provide higher energy, however conventional carbonate electrolytes decompose above 4.5V compromising the battery performance. This work shows that Lipon coating suppresses the electrolyte decomposition, as measured by the

234

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

235

Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery  

Science Journals Connector (OSTI)

The polyethylene (PE)-supported polymer membranes based on the blended polyvinylidene fluoride (PVDF) and cellulose acetate butyrate (CAB) are prepared for gel polymer electrolyte (GPE) of lithium ion battery. The performances of the prepared membranes and the resulting \\{GPEs\\} are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, linear potential sweep, and charge–discharge test. The effect of the ratio of PVDF to CAB on the performance of the prepared membranes is considered. It is found that the GPE based on the blended polymer with PVDF:CAB = 2:1 (in weight) has the largest ionic conductivity (2.48 × 10?3 S cm?1) and shows good compatibility with anode and cathode of lithium ion battery. The LiCoO2/graphite battery using this GPE exhibits superior cyclic stability at room temperature, storage performance at elevated temperature, and rate performance.

Jiansheng Liu; Weishan Li; Xiaoxi Zuo; Shengqi Liu; Zhao Li

2013-01-01T23:59:59.000Z

236

Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes  

Science Journals Connector (OSTI)

Carbon-coated silicon nanowire array films prepared by metal catalytic etching of silicon wafers and pyrolyzing of carbon aerogel were used for lithium-ion battery anodes. The films exhibited an excellent first discharge capacity of 3344 ? mAh ? g ? 1 with a Coulombic efficiency of 84% at a rate of 150 ? mA ? g ? 1 between 2 and 0.02 V and a significantly enhanced cycling performance i.e. a reversible capacity of 1326 ? mAh ? g ? 1 was retained after 40 cycles. These improvements were attributed to the uniform and continuous carbon coatings which increased electronic contact and conduction and buffered large volume changes during lithium ion insertion/extraction.

Rui Huang; Xing Fan; Wanci Shen; Jing Zhu

2009-01-01T23:59:59.000Z

237

Solid-state Inorganic Lithium-Ion Conductors - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Marketing SummaryA research team at the University of Colorado Boulder led by Se-Hee Lee has developed an advanced single step, high energy ball milling system...

238

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network (OSTI)

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

239

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion  

Science Journals Connector (OSTI)

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion ... The muons themselves are quasi-static, most probably located in a 4h site between the [Li2N] plane and the Li(1)/Ni layer. ... The initial fall in ? results from an increase in muon hopping as the temperature is raised, while the subsequent rise originates from an increasing proportion of trapped and therefore static muons. ...

Andrew S. Powell; James S. Lord; Duncan H. Gregory; Jeremy J. Titman

2009-10-27T23:59:59.000Z

240

Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes  

Science Journals Connector (OSTI)

Conjugated Polymer Energy Level Shifts in Lithium-Ion Battery Electrolytes ... By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. ...

Charles Kiseok Song; Brian J. Eckstein; Teck Lip Dexter Tam; Lynn Trahey; Tobin J. Marks

2014-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application  

Science Journals Connector (OSTI)

Abstract Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared \\{CAs\\} could stay at about 470 mA h g?1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g?1). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m2 g?1, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions.

Xiaoqing Yang; Hong Huang; Guoqing Zhang; Xinxi Li; Dingcai Wu; Ruowen Fu

2015-01-01T23:59:59.000Z

242

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Heliostat Development to Low-Cost Heliostat Development to someone by E-mail Share SunShot Initiative: Low-Cost Heliostat Development on Facebook Tweet about SunShot Initiative: Low-Cost Heliostat Development on Twitter Bookmark SunShot Initiative: Low-Cost Heliostat Development on Google Bookmark SunShot Initiative: Low-Cost Heliostat Development on Delicious Rank SunShot Initiative: Low-Cost Heliostat Development on Digg Find More places to share SunShot Initiative: Low-Cost Heliostat Development on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

243

SunShot Initiative: Low-Cost Solar Thermal Collector  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

244

Low Cost Carbon Fiber Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Cost Carbon Fiber Overview Low Cost Carbon Fiber Overview 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

245

Low Cost Gigabit Rate Transmit/Receive Chip Set  

E-Print Network (OSTI)

1 H Low Cost Gigabit Rate Transmit/Receive Chip Set Technical Data Features · Transparent, Extended Ribbon Cable Replacement · Implemented in a Low Cost Aluminum M-Quad 80 Package · High-Speed Serial Rate

California at Santa Cruz, University of

246

Low Cost Gigabit Rate Transmit/Receive Chip Set  

E-Print Network (OSTI)

1 H Low Cost Gigabit Rate Transmit/Receive Chip Set Technical Data Fea t ures . Transparent, Extended Ribbon Cable Rep l acemen t . Implemented in a Low Cost Aluminum M­Quad 80 Package . High

California at Santa Cruz, University of

247

The era of plentiful, low-cost petroleum is  

E-Print Network (OSTI)

The era of plentiful, low-cost petroleum is approaching an end. Without massive mitigation of plentiful, low-cost petroleum is approaching an end. The good news is that commercially viable mitigation

Laughlin, Robert B.

248

Low-Cost Packaged Combined Heat and Power System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

249

The potential for low-cost airlines in Asia  

E-Print Network (OSTI)

The purpose of this thesis is to assess the potential for low-cost airlines in Asia. Low-cost airlines have been very successful in North America and Europe and have significantly impacted the airline industry and its ...

Dietlin, Philipp, 1979-

2004-01-01T23:59:59.000Z

250

Low-Cost Production of Hydrogen and Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Bloom Energy is testing the potential to produce low-cost hydrogen and electricity simultaneously from natural gas.

251

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)  

SciTech Connect

This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

2011-01-01T23:59:59.000Z

252

Developing a Low-Cost Robot Colony  

E-Print Network (OSTI)

Taking inspiration from nature, we have developed a colony of small, low-cost robots. We have created a robotic base which is inexpensive and utilizes simple sensors, yet has the capabilities required to form a colony. To overcome computational limitations, we have developed custom sensors and algorithms that enable the robots to communicate, localize relative to one another, and sense the environment around them. Using these noisy sensors and simple local rules, the Colony as a whole is able to exhibit more complex global behaviors. We present our work developing an autonomous robot colony and algorithms for efficient communication, localization, and robot behaviors. We also highlight recent developments that enable our Colony to recharge autonomously.

Felix Duvallet; James Kong; Eugene Marinelli; Kevin Woo; Austin Buchan; Brian Coltin; Christopher Mar; Bradford Neuman

253

Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance  

Science Journals Connector (OSTI)

Abstract The SnO2/carbon nanotubes encapsulated in graphene sheets (CSGN) composites are synthesized via a sonochemical method which is straightforward, low-cost and operable under ambient conditions. The open spaces formed by carbon nanotubes and graphene offering the accommodation of volume change and the access of an easy electrolyte-wetting, and the improved electrical conductivity by the presence of graphene and carbon nanotubes, lead to the superior cycling performance. As a result, the CSGN with SnO2 content of 61.4 wt% exhibits a reversible specific capacity of 842.9 mAh g?1 at the first cycle and retains 793.8 mAh g?1 after 50 cycles at a current density of 125 mA g?1, indicating a high capacity retention rate of 94%. The cycling performance is attributed to the unique structure of CSGN and enhanced electrical conductivity, which may make much sense to the structure designing of other electrode materials for lithium ion batteries.

Bin Huang; Juan Yang; Youlan Zou; Lulu Ma; Xiangyang Zhou

2014-01-01T23:59:59.000Z

254

Poly vinyl acetate used as a binder for the fabrication of a LiFePO4-based composite cathode for lithium-ion batteries  

Science Journals Connector (OSTI)

ABSTRACT This paper describes a method for the preparation of composite cathodes for lithium ion-batteries by using poly vinyl acetate (PVAc) as a binder. \\{PVAc\\} is a non-fluorinated water dispersible polymer commonly used in a large number of industrial applications. The main advantages for using of this polymer are related to its low cost and negligible toxicity. Furthermore, since the \\{PVAc\\} is water processable, its use allows to replace the organic solvent, employed to dissolve the fluorinated polymer normally used as a binder in lithium battery technology, with water. In such a way it is possible to decrease the hazardousness of the preparation process as well as the production costs of the electrodes. In the paper the preparation, characterization and electrochemical performance of a LiFePO4 electrode based on \\{PVAc\\} as the binder is described. Furthermore, to assess the effect of the \\{PVAc\\} binder on the electrode properties, its performance is compared to that of a conventional electrode employing PVdF-HFP as a binder.

Pier Paolo Prosini; Maria Carewska; Cinzia Cento; Amedeo Masci

2014-01-01T23:59:59.000Z

255

Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

B. Wilding; D. Bramwell

1999-01-01T23:59:59.000Z

256

Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries  

DOE Patents (OSTI)

The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

Manthiram, Arumugam; Choi, Wongchang

2014-05-13T23:59:59.000Z

257

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials  

Science Journals Connector (OSTI)

Free Energy for Protonation Reaction in Lithium-Ion Battery Cathode Materials ... The electrochemically inert layered defect-rocksalt compound Li2MnO3 has been structurally integrated with more electrochemically active layered compounds in order to enhance Li-ion-battery cathode stability. ... Cathodes of the material had a discharge capacity of 200 mA-h/g, based on the mass of the Li-Mn oxide; an electrode capacity of >140 mA-h/g was achieved on cycling in a room-temp. ...

R. Benedek; M. M. Thackeray; A. van de Walle

2008-08-06T23:59:59.000Z

258

Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests.  

SciTech Connect

An electrochemical model was developed to examine hybrid pulsed power characterization (HPPC) tests on the positive electrode of lithium-ion cells. By utilizing the same fundamental equations as in previous electrochemical impedance spectroscopy studies, this investigation serves as an extension of the earlier work and a comparison of the two techniques. The electrochemical model was used to examine performance characteristics and limitations for the positive electrode during HPPC tests. Parametric studies using the electrochemical model and focusing on the positive electrode thickness were employed to examine methods of slowing electrode aging and improving performance.

Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Sciences and Engineering Division; Illinois Inst. of Tech.

2008-01-01T23:59:59.000Z

259

VSe2/graphene nanocomposites as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Unprecedented VSe2/graphene nanocomposites are synthesized through a hydrothermal route. A large number of hexagonal \\{VSe2\\} sheets anchored on the graphene sheets can be observed. The thicknesses and lengths of \\{VSe2\\} sheets are controlled by graphene sheets. VSe2/graphene nanocomposite prepared with 15 mg graphite oxide (VSe2/G-15) exhibits the best electrochemical lithium storage properties such as charge/discharge capacities, cycle stability and rate capability when used as an anode material for lithium-ion batteries.

Yaping Wang; Binbin Qian; Huanhuan Li; Liang Liu; Long Chen; Haobin Jiang

2015-01-01T23:59:59.000Z

260

Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries  

Science Journals Connector (OSTI)

Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG) on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

Gouri Radhakrishnan; Brendan Foran; Michael V. Quinzio; Miles J. Brodie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes  

Science Journals Connector (OSTI)

Abstract In this report, we introduce electrospun silicon nanoparticle and carbon nanotube loaded carbon nanofibers (SCNFs) as anode materials in lithium-ion batteries (LIBs). The one-dimensional structure of electrospun nanofibers provides porosity for the anode material. Carbon nanotubes (CNTs) in the electrospun fibers reduce the volume expansion of silicon nanoparticles (SiNPs) and improve mechanical stability of the electrode. Both \\{CNTs\\} and carbon nanofibers enhance electronic conduction by connecting SiNPs in \\{SCNFs\\} for electrode reactions. These contribute to improved electrochemical performance of SCNF anode-based \\{LIBs\\} resulting in the enhancement of capacity and cycling ability.

Nguyen Trung Hieu; Jungdon Suk; Dong Wook Kim; Ok Hee Chung; Jun Seo Park; Yongku Kang

2014-01-01T23:59:59.000Z

262

Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe3O4 Nanoparticles and Its Application for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe3O4 Nanoparticles and Its Application for Lithium-Ion Battery ... graphene nanoscroll; graphene; Fe3O4; one-dimensional wrapping; lithium-ion batteries ...

Jinping Zhao; Bingjun Yang; Zongmin Zheng; Juan Yang; Zhi Yang; Peng Zhang; Wencai Ren; Xingbin Yan

2014-05-14T23:59:59.000Z

263

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery  

Science Journals Connector (OSTI)

Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery ... Yu, A.; Park, H. W.; Davies, A.; Higgins, D.; Chen, Z.; Xaio, X.Free-Standing Layer-by-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries J. Phys. ...

Fathy M Hassan; Abdel Rahman Elsayed; Victor Chabot; Rasim Batmaz; Xingcheng Xiao; Zhongwei Chen

2014-07-31T23:59:59.000Z

264

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven  

E-Print Network (OSTI)

PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using Abstract-- This paper presents a numerical calculation of the evolution of the spatially-resolved solid concentration in the two electrodes of a lithium-ion cell. The microscopic solid con- centration is driven

Stefanopoulou, Anna

265

Atomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability  

E-Print Network (OSTI)

- tages of using Li-ion batteries as alternative of fossil fuel for hybrid vehicle power source lie.1116/1.3664115] I. INTRODUCTION Lithium-ion batteries become the focus of rechargeable batteries in the new decade in hybrid vehicles requires high discharge capacity which current lithium-ion batteries do not have

Cao, Guozhong

266

Progress toward low-cost titanium  

SciTech Connect

Although titanium has impressive mechanical and corrosion properties, designers and engineers simply do not think of it as a cost-effective, viable alternative to aluminum and steel. Moreover, the history and use of titanium have been solidly wedded to the aerospace industry. This explains why titanium's price rises and falls cyclically with the demand for civilian and military aircraft. Although the titanium industry is temporarily depressed, developing prospects may offer reason for optimism: several non-aerospace industries are interested in using titanium. Unfortunately, the decision makers in these industries are more than cautious, remembering titanium's reputation for down today, up tomorrow seesaw prices. The US Army and Navy are two of the new and potentially large customers for titanium. Lessons from the recent conflict in Panama and the Gulf War have spurred interest in the development of lighter, more efficient, more maneuverable vehicles and artillery. Other promising nonmilitary, non-aerospace applications include suspension springs and engine parts for cars and trucks, marine and offshore oil-rig components that currently are made of stainless steels and nickel-base alloys, and piping and reactor parts for the pulp-and-paper and chemical processing industries. Existing markets, such as tubing for shell-and-tube heat exchangers, are expected to grow. For the future, the Bureau of Mines - in cooperation with the US Army Tank/Automotive Command, Warren, Michigan, and other government and industry organizations - is planning a comprehensive, five-year program on low-cost titanium that will consist of several projects that seek not only to further reduce costs, but to improve ballistic protection and other mechanical and wear properties.

Turner, P.C.; Hansen, J.S. (Bureau of Mines, Albany, OR (United States))

1993-01-01T23:59:59.000Z

267

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

SciTech Connect

The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

Wilcox, James D.

2008-12-18T23:59:59.000Z

268

Uniform hierarchical SnS microspheres: Solvothermal synthesis and lithium ion storage performance  

SciTech Connect

Graphical abstract: - Highlights: • Uniform hierarchical SnS microspheres via solvothermal reaction. • The formation process was investigated in detail. • The obtained hierarchical SnS microspheres exhibit superior capacity (1650 mAh g{sup ?1}) when used as lithium battery for the hierarchical microsphere structure. - Abstract: Hierarchical SnS microspheres have been successfully synthesized by a mild solvothermal process using poly(vinylpyrrolidone) as surfactant in this work. The morphology and composition of the microspheres were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of reaction parameters, such as sulfur sources, reaction temperature and the concentration of PVP, on the final morphology of the products are investigated. On the basis of time-dependent experiments, the growth mechanism has also been proposed. The specific surface area of the 3D hierarchitectured SnS microspheres were investigated by using nitrogen adsorption and desorption isotherms. Lithium ion storage performances of the synthesized materials as anodes for Lithium-ion battery were investigated in detail and it exhibits excellent electrochemical properties.

Fang, Zhen, E-mail: fzfscn@mail.ahnu.edu.cn; Wang, Qin; Wang, Xiaoqing; Fan, Fan; Wang, Chenyan; Zhang, Xiaojun

2013-11-15T23:59:59.000Z

269

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

270

Investigating the low-temperature impedance increase of lithium-ion cells.  

SciTech Connect

Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li{sub 4/3}Ti{sub 5/3}O{sub 4} composite (LTOc) counter electrode and a LiPF{sub 6}-bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C.

Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

2008-01-01T23:59:59.000Z

271

The Effect of Temperature on Capacity and Power in Cycled Lithium Ion Batteries  

SciTech Connect

The Idaho National Laboratory (INL) tested six Saft America HP-12 (Generation 2000), 12-Ah lithium ion cells to evaluate cycle life performance as a power assist vehicle battery. The cells were tested to investigate the effects of temperature on capacity and power fade. Test results showed that five of the six cells were able to meet the Power Assist Power and Energy Goals at the beginning of test and after 300,000 cycles using a Battery Size Factor of 44.3 cells. The initial Static Capacity tests showed that the capacities of the cells were stable for three discharges and had an average of 16.4 Ah. All the cells met the Self-Discharge goal, but failed to meet the Cold Cranking goal. As is typical for lithium ion cells, both power and capacity were diminished during the low-temperature Thermal Performance test and increased during the high-temperature Thermal Performance test. Capacity faded as expected over the course of 300,000 life cycles and showed a weak inverse relationship to increasing temperature. Power fade was mostly a result of cycling while temperature had a minor effect compared to cycle life testing. Consequently, temperature had very little effect on capacity and power fade for the proprietary G4 chemistry.

Jeffrey R. Belt

2005-03-01T23:59:59.000Z

272

Low Cost SiOx-Graphite and Olivine Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sotowa (Showa-Denko) Objective Synthesize and evaluate doped manganese phosphate as low cost cathode material Replace graphite anode with an alternative material that meets the...

273

Project Profile: Low-Cost, Lightweight Solar Concentrators |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost, Lightweight Solar Concentrators Project Profile: Low-Cost, Lightweight Solar Concentrators JPL logo The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot...

274

Low Cost SiOx-Graphite and Olivine Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replace graphite anode with an alternative material that meets the requirement for low cost and high energy. Continue development of binders for the cathode and alternative anode...

275

Development of Low-Cost, High Strength Commercial Textile Precursor...  

Energy Savers (EERE)

High cost of carbon fiber CF largest cost component of high pressure storage tanks. Inadequate supply base for low cost carbon fibers Timeline Barriers * ORNL:...

276

Adaptive PCCI with Variable Orifice Injector for Low Cost High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Low Cost High Efficiency Clean Diesels Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit,...

277

A Low Cost Spectrographic Attachment for an Echelle Spectrometer  

Science Journals Connector (OSTI)

The report describes a simple, low cost photographic attachment for an echelle spectrometer. The crossed dispersion prism/echelle grating system provides a high resolution spectrum...

Brackett, John M; Mitchell, Joel C; Vickers, Thomas J

1983-01-01T23:59:59.000Z

278

Low Cost Carbon Fiber from Renewable Resources | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from Renewable Resources Low Cost Carbon Fiber from Renewable Resources 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

279

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers (EERE)

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

280

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Process for Low Cost Domestic Production of LIB Cathode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- EV) Use BASF's existing assets and low cost production process. Validate that cost and quality targets are met via coin cells, pouch cells and 18650 cells. ...

282

Process for Low Cost Domestic Production of LIB Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Process for Low Cost Domestic Production of LIB Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

283

Development and Commercialization of a Novel Low-Cost Carbon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Commercialization of a Novel Low-Cost Carbon Fiber 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

284

High Performance, Low Cost Hydrogen Generation from Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance, Low Cost Hydrogen Generation from Renewable Energy 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

285

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

286

Low Cost Exploration, Testing, and Development of the Chena Geothermal...  

Open Energy Info (EERE)

Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensivelyexplored, tested, and...

287

An integrated approach towards efficient, scalable, and low cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low...

288

Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Low-Cost, Lightweight Solar Concentrators FY13 Q2 Low-Cost, Lightweight Solar Concentrator Low-Cost Light Weigh Thin Film Solar Concentrators...

289

Low-Cost Illumination-Grade LEDs  

SciTech Connect

Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

Epler, John

2013-08-31T23:59:59.000Z

290

Low-cost hadron colliders at Fermilab: A discussion paper  

SciTech Connect

New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

Foster, G.W.; Malamud, E.

1996-06-21T23:59:59.000Z

291

Low Cost Components: Advanced High Power & High Energy Battery Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

292

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

293

Low Cost Components: Screening of Advanced Battery Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

294

Advanced Low-Cost Recievers for Parabolic Troughs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT OBJECTIVES KEY RESULTS AND OUTCOMES NEXT MILESTONES 1. Burkholder F, Kutscher C. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver (NRELTP-550-45633):...

295

Advanced Low-Cost Receivers for Parabolic Troughs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT OBJECTIVES KEY RESULTS AND OUTCOMES NEXT MILESTONES 1. Burkholder F, Kutscher C. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver (NRELTP-550-45633):...

296

Advanced Low-Cost Receivers for Parabolic Troughs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

receiver designs were validated by comparing to published correlations and NREL data. Heat loss increases when vacuum fails due to convection within annulus Receiver model...

297

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane  

Energy Savers (EERE)

Virginia Tech University (Academic)- Membrane Development Collaborations 3M Fuel Cell Components Program- NSTF Catalyst & Membrane Entegris - Carbon Cell Separators...

298

Low-Cost Thermocouple Signal-Conditioning Module  

Science Journals Connector (OSTI)

Low-Cost Thermocouple Signal-Conditioning Module ... In this article we present a signal-conditioning module, based on the AD594C chip (Analog Devices, Inc.), which can be easily built at low cost and overcomes the drawbacks associated with thermocouple use. ... Cost-Effective Teacher ...

Michael F. Cunningham; Marcelo K. Lenzi; Fabricio M. Silva; Enrique L. Lima; José Carlos Pinto

2005-01-01T23:59:59.000Z

299

Low-cost distributed solar-thermal-electric power generation  

E-Print Network (OSTI)

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

300

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells  

E-Print Network (OSTI)

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells Yvonne Krämer*[a] , Claudia Birkenmaier[b] , Julian Feinauer[a,c] , Andreas*[e] and Thomas Schleid[f] Abstract: A novel approach for the marking of deposited lithium on graphite anodes from

Schmidt, Volker

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have of SWNTs on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion Battery (LIB). A LIB using only graphite in the anode was the control. SWNTs were mixed

Mellor-Crummey, John

302

LiFePO4 batteries with enhanced lithium-ion-diffusion ability due to graphene addition  

Science Journals Connector (OSTI)

In this study, graphene was added to LiFePO4 via a hydrothermal method to improve the lithium-ion-diffusion ability of LiFePO4. The influence of graphene addition on LiFePO4 was studied by X-ray diffraction (XRD)...

Van Hiep Nguyen; Hal-Bon Gu

2014-10-01T23:59:59.000Z

303

CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced  

E-Print Network (OSTI)

CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced one-step route was developed to synthesize crystalline CuGeO3 nanowire/graphene composites (CGCs). Crystalline CuGeO3 nanowires were tightly covered and anchored by graphene sheets, forming a layered structure

Lin, Zhiqun

304

Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries  

SciTech Connect

A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

2014-11-01T23:59:59.000Z

305

Simulation of Electrolyte Composition Effects on High Energy Lithium-Ion Cells  

SciTech Connect

An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of a high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si

K. Gering

2014-09-01T23:59:59.000Z

306

Emission of Negative Electricity from Nickel when Bombarded by Positive Lithium Ions  

Science Journals Connector (OSTI)

A nickel target was bombarded with positive lithium ions and observations were made of the number of negative charges emitted per positive ion striking the target. The energies of the bombarding ions were within the ranges 1000 to 2000 electron-volts and 5000 to 20,000 electron-volts, approximately. Observations were made with the target at room temperature and at a yellowish-red heat. There is a marked difference between the curves found for the two cases. For the cold target the curve has a maximum between 10,000 and 11,000 volts, while the number of negative charges emitted per positive ion from the hot target increases from 0.13 at 1000 volts to 2.35 at 20,000 volts, no maximum having been found.

W. S. Stein

1932-05-01T23:59:59.000Z

307

Thermally stable hyperbranched polyether-based polymer electrolyte for lithium-ion batteries  

Science Journals Connector (OSTI)

A thermally stable polymer matrix, comprising hyperbranched polyether PHEMO (poly(3-{2-[2-(2-hydroxyethoxy) ethoxy] ethoxy}methyl-3'-methyloxetane)) and PVDF-HFP (poly(vinylidene fluoride-hexafluoropropylene)), has been successfully prepared for applications in lithium-ion batteries. This type of polymer electrolyte has been made by adding different amounts of lithium bis(oxalate)borate (LiBOB) to the polymer matrix. Its thermal and structural properties were measured using differential scanning calorimetry and x-ray diffraction. Experimental results show that the polymer electrolyte system possesses good thermal stability, with a decomposition temperature above 420?°C. The ionic conductivity of the polymer electrolyte system is dependent on the lithium salt content, reaching a maximum of 1.1 ? 10?5?S?cm?1 at 30?°C and 2.3 ? 10?4?S?cm?1 at 80?°C when doped with 10?wt% LiBOB.

Feng Wu; Ting Feng; Chuan Wu; Ying Bai; Lin Ye; Junzheng Chen

2010-01-01T23:59:59.000Z

308

Differential thermal voltammetry for tracking of degradation in lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

Billy Wu; Vladimir Yufit; Yu Merla; Ricardo F. Martinez-Botas; Nigel P. Brandon; Gregory J. Offer

2015-01-01T23:59:59.000Z

309

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

310

Processes for making dense, spherical active materials for lithium-ion cells  

DOE Patents (OSTI)

Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2011-11-22T23:59:59.000Z

311

Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module  

Science Journals Connector (OSTI)

Abstract This paper investigates the mechanisms of penetration induced thermal runaway (TR) propagation process within a large format lithium ion battery pack. A 6-battery module is built with 47 thermocouples installed at critical positions to record the temperature profiles. The first battery of the module is penetrated to trigger a TR propagation process. The temperature responses, the voltage responses and the heat transfer through different paths are analyzed and discussed to characterize the underlying physical behavior. The temperature responses show that: 1) Compared with the results of TR tests using accelerating rate calorimetry (ARC) with uniform heating, a lower onset temperature and a shorter TR triggering time are observed in a penetration induced TR propagation test due to side heating. 2) The maximum temperature difference within a battery can be as high as 791.8 °C in a penetration induced TR propagation test. The voltage responses have a 5-stage feature, indicating that the TR happens in sequence for the two pouch cells packed inside a battery. The heat transfer analysis shows that: 1) 12% of the total heat released in TR of a battery is enough to trigger the adjacent battery to TR. 2) The heat transferred through the pole connector is only about 1/10 of that through the battery shell. 3) The fire has little influence on the TR propagation, but may cause significant damage on the accessories located above the battery. The results can enhance our understandings of the mechanisms of TR propagation, and provide important guidelines in pack design for large format lithium ion battery.

Xuning Feng; Jing Sun; Minggao Ouyang; Fang Wang; Xiangming He; Languang Lu; Huei Peng

2015-01-01T23:59:59.000Z

312

Potential use of geothermal energy sources for the production of lithium-ion batteries  

Science Journals Connector (OSTI)

The lithium-ion battery is one of the most promising technologies for energy storage in many recent and emerging applications. However, the cost of lithium-ion batteries limits their penetration in the public market. Energy input is a significant cost driver for lithium batteries due to both the electrical and thermal energy required in the production process. The drying process requires 45–57% of the energy consumption of the production process according to a model presented in this paper. The model is used as a base for quantifying the energy and temperatures at each step, as replacing electric energy with thermal energy is considered. In Iceland, it is possible to use geothermal steam as a thermal resource in the drying process. The most feasible type of dryer and heating method for lithium batteries would be a tray dryer (batch) using a conduction heating method under vacuum operation. Replacing conventional heat sources with heat from geothermal steam in Iceland, we can lower the energy cost to 0.008USD/Ah from 0.13USD/Ah based on average European energy prices. The energy expenditure after 15 years operation could be close to 2% of total expenditure using this renewable resource, down from 12 to 15% in other European countries. According to our profitability model, the internal rate of return of this project will increase from 11% to 23% by replacing the energy source. The impact on carbon emissions amounts to 393.4–215.1 g/Ah lower releases of CO2 per year, which is only 2–5% of carbon emissions related to battery production using traditional energy sources.

Gudrun Saevarsdottir; Pai-chun Tao; Hlynur Stefansson; William Harvey

2014-01-01T23:59:59.000Z

313

Assessment of Low Cost Novel Mercury Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing of Mercury Control Technologies Testing of Mercury Control Technologies for Coal-Fired Power Plants by Thomas J. Feeley, III 1. , Lynn A. Brickett 1. , B. Andrew O'Palko 1. , and James T. Murphy 2. 1. U.S. Department of Energy, National Energy Technology Laboratory 2. Science Applications International Corporation The U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research, development, and demonstration (RD&D) program directed at advancing the performance and economics of mercury control technologies for coal- fired power plants. The program also includes evaluating the fate of mercury in coal by-products and studying the transport and transformation of mercury in power plant plumes. This paper presents results from ongoing full-scale and slip-stream field testing of several mercury control

314

Project Profile: Low-Cost Heliostat Development | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Heliostat Development Project Profile: Low-Cost Heliostat Development HiTek logo HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of...

315

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

1999-01-01T23:59:59.000Z

316

Low-cost exterior insulation process and structure  

DOE Patents (OSTI)

A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

Vohra, A.

1999-03-02T23:59:59.000Z

317

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

318

Development of a low-cost underwater manipulator  

E-Print Network (OSTI)

This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive or limited in functionality. ...

Cooney, Lauren Alise

2006-01-01T23:59:59.000Z

319

Development, Production and Implementation of Low Cost Rubber Bearings  

Science Journals Connector (OSTI)

The investigations and the results discussed in this chapter are related to development, production and implementation of low cost rubber isolators. In addition to production of isolators, one of the main objecti...

Mihail Garevski

2010-01-01T23:59:59.000Z

320

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network (OSTI)

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Retro-Commissioning Increases Data Center Efficiency at Low Cost  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet discusses a success story detailing a retro-commissioning project at the Department of Energy's Savannah River Site to increase data center energy efficiency at low costs.

322

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

323

Low Cost PM Technology for Particle Reinforced Titanium Automotive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Titanium Automotive Components edm2@chrysler.com February 28, 2008 Ti-6Al-4V + 10% TiC Etched Unetched RMI RMI Ti- MMC USAMP AMD 310 - Low Cost PM Technology for Particle...

324

Design of small, low-cost, underwater fin manipulator  

E-Print Network (OSTI)

This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater servos commercially available. The design involves modifying a commercially ...

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

325

Low-Cost High-Performance Scientific Visualization  

Science Journals Connector (OSTI)

The authors discuss the development of a low-cost stereoscopic visualization system using commonly available components. The system is used to improve understanding about the field-line structure and associated dynamics, confinement, and geometry of ...

Samuel T. Jones; Scott E. Parker; Charlson C. Kim

2001-07-01T23:59:59.000Z

326

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Managed by UT-Battelle for the Department of Energy Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This...

327

Low-Cost Direct Bonded Aluminum (DBA) Substrates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, M. L. Santella, and G. Muralidharan Oak Ridge National Laboratory (ORNL) This presentation does not...

328

Development and performance of a miniature, low cost mass spectrometer  

E-Print Network (OSTI)

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01T23:59:59.000Z

329

Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

High-rate anode materials for lithium-ion batteries are desirable for applications that require high ... demonstrate the advantageous rate capability of few-layered graphene nanosheets, with widths of 100–200 nm,...

Zhiyong Wang; Hao Zhang; Nan Li; Zujin Shi; Zhennan Gu; Gaoping Cao

2010-10-01T23:59:59.000Z

330

A facile bubble-assisted synthesis of porous Zn ferrite hollow microsphere and their excellent performance as an anode in lithium ion battery  

Science Journals Connector (OSTI)

Pure porous hollow Zn ferrite (ZnFe2O4) microspheres have been successfully synthesized by a facile bubble assisted method in the presence of ammonium acetate (NH4Ac) as an anode material in lithium ion battery. ...

Lingmin Yao; Xianhua Hou; Shejun Hu; Qiang Ru…

2013-07-01T23:59:59.000Z

331

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

332

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O O O O As a continuation of FY10's work, this year we have investigated the following additives: 3-oxabicyclo3.1.0hexane-2,4-dione: Disubstituted maleic anhydride:...

333

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

334

Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

335

Studies on High Capacity Cathodes for Advanced Lithium-ion Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C. Idrobo J. Nanda and V. Cooper, Spring Meeting, American Physical Society, March 02-07, 2014. * Confocal Raman Imaging and Spectroscopy of Energy Storage Materials, J. Nanda, 10...

336

Microwave-assisted hydrothermal synthesis of porous SnO{sub 2} nanotubes and their lithium ion storage properties  

SciTech Connect

Porous SnO{sub 2} nanotubes have been synthesized by a rapid microwave-assisted hydrothermal process followed by annealing in air. The detailed morphological and structural studies indicate that the SnO{sub 2} tubes typically have diameters from 200 to 400 nm, lengths from 0.5 to 1.5 {mu}m and wall thicknesses from 50 to 100 nm. The SnO{sub 2} nanotubes are self-assembled by interconnected nanocrystals with sizes {approx}8 nm resulting in a specific surface area of {approx}54 m{sup 2} g{sup -1}. The pristine SnO{sub 2} nanotubes are used to fabricate lithium half cells to evaluate their lithium ion storage properties. The porous SnO{sub 2} nanotubes are characteristic with high lithium ion storage capacity, that is found to be 1258, 951, 757, 603, 458, and 288 mAh g{sup -1}, at 0.1, 0.2, 0.5, 1, 2, and 4C, respectively. The enhanced electrochemical properties of the SnO{sub 2} nanotubes can be ascribed to their unique geometry and porous structures. - Graphical abstract: Porous SnO{sub 2} nanotubes are synthesized by a fast microwave-assisted hydrothermal process and exhibit high lithium ion storage properties due to their unique geometry and porous characteristics. Highlights: Black-Right-Pointing-Pointer A microwave-assisted hydrothermal method was used to prepare porous SnO{sub 2} nanotubes. Black-Right-Pointing-Pointer The porous SnO{sub 2} nanotubes have abundant mesopores on their tube walls. Black-Right-Pointing-Pointer The porous SnO{sub 2} nanotubes possess high lithium ion storage properties. Black-Right-Pointing-Pointer Our results may promote the development of high-performance anode materials.

Wang, H.E., E-mail: hongen.wang@gmail.com [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong (Hong Kong); Xi, L.J.; Ma, R.G. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lu, Z.G. [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chung, C.Y. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Bello, I. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong (Hong Kong); Zapien, J.A., E-mail: apjazs@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong (Hong Kong)

2012-06-15T23:59:59.000Z

337

Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode  

Science Journals Connector (OSTI)

Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode ... Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. ... Ferrocene dissolved in the fuel served as the source for iron catalyst particles. ...

Kara Evanoff; Jim Benson; Mark Schauer; Igor Kovalenko; David Lashmore; W. Jud Ready; Gleb Yushin

2012-10-17T23:59:59.000Z

338

Influence of heat-treatment on lithium ion anode properties of mesoporous carbons with nanosheet-like walls  

SciTech Connect

Highlights: ? Mesoporous carbons possess unique nanosheet-like pore walls which can be changed by heat treatment. ? Lithium ion anode properties of mesoporous carbons could be influenced by the nanosheet-like walls. ? Mesoporous carbons with nanosheet-like walls exhibit enhanced electrochemical properties LIBs. -- Abstract: Mesoporous carbons (MCs) with nanosheet-like walls have been prepared as electrodes for lithium-ion batteries by a simple one-step infiltrating method under the action of capillary flow. The influence of heat treatment temperature on the surface topography, pore/phase structure and anode performances of as-prepared materials has been investigated. The results reveal that melted liquid-crystal polycyclic aromatic hydrocarbons could be anchored on liquid/silica interfaces by molecule engineering. After carbonization, the nanosheets are formed as the pore walls of MCs and are perpendicular to the long axis of pores. The anode properties demonstrate that C-1200 displays higher reversible capacitance than those treated in higher temperature. The rate performances of C-1200 and C-1800 are similar and more excellent than that of C-2400. These improved lithium ion anode properties could be attributed to the nanosheet-like walls of MCs which can be influenced by the heat treatment temperature.

Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)] [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China)] [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China)] [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong; Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)] [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)] [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

2012-08-15T23:59:59.000Z

339

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vehicles by 5% using advanced low cost TE technology: - Low cost materials, modules, heat exchangers, power conditioning, and vehicle integration for exhaust gas waste heat...

340

Low-Cost Solutions for Dynamic Window Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Low-Cost Solutions for Dynamic Window Material  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-cost Solutions For Dynamic Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 AZO: transparent and conducting 2 | Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Low-cost Solutions For Dynamic Window Materials André Anders Lawrence Berkeley National Laboratory aanders@lbl.gov 510-486-6745 April 4, 2013 Task 1: Reduce cost of transparent conducting oxide (TCO) for electrochromic windows, * started in FY11 * Applicable to existing technology of electrochromic window and other applications Task 2: Produce films of oxide nanocrystals relevant to dynamic windows by terminated cluster growth, * started in FY 13

342

Low-Cost Solar Water Heating Research and Development Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Solar Water Heating Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Technical Report NREL/TP-5500-54793 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Low-Cost Solar Water Heating Research and Development Roadmap K. Hudon, T. Merrigan, J. Burch and J. Maguire National Renewable Energy Laboratory Prepared under Task No. SHX1.1001 Technical Report NREL/TP-5500-54793 August 2012

343

Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries  

SciTech Connect

Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

2014-03-15T23:59:59.000Z

344

Characterization of high-power lithium-ion cells-performance and diagnostic analysis  

SciTech Connect

Lithium-ion cells, with graphite anodes and LiNi0.8Co0.15Al0.05O2 cathodes, were cycled for up to 1000 cycles over different ranges of SOC and temperatures. The decline in cell performance increases with the span of SOC and temperature during cycling. Capacity fade was caused by a combination of the loss of cycleable Li and degradation of the cathode. The room temperature anodes showed SEI compositions and degrees of graphite disorder that correlated with the extent of the Li consumption, which was linear in cell test time. TEM of the cathodes showed evidence of crystalline defects, though no major new phases were identified, consistent with XRD. No evidence of polymeric deposits on the cathode particles (FTIR) was detected although both Raman and TEM showed evidence of P-containing deposits from electrolyte salt degradation. Raman microscopy showed differences in relative carbon contents of the cycled cathodes, which is blamed for part of the cathode degradation.

Striebel, K.A.; Shim, J.; Kostecki, R.; Richardson, T.J.; Ross, P.N.; Song, X.; Zhuang, G.V.

2003-11-25T23:59:59.000Z

345

Hard Carbon Wrapped in Graphene Networks as Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Abstract Hard carbon enveloped with graphene networks was fabricated by a facile and scalable method. In the constructed architecture, hard carbon offers large lithium storage and flexible graphene layers can provide a highly conductive matrix for enabling good contact between particles and facilitate the diffusion and transport of electrons and ions. As a consequence, the hybrid anode exhibits enhanced reversible capacity (500 mAh g?1 at current density of 20 mA g?1), rate capability (400 mAh g?1 at 0.2 C, 290 mAh g?1 at 1 C, 250 mAh g?1 at 2 C, and 200 mAh g?1 at 5 C, 1C = 400 mA g?1) and cycle performance. We believe that the outstanding synergetic effect between the graphene networks and the hard carbon structures induces the superior lithium storage performance of the overall electrode by maximally utilizing the electrochemically active graphene and hard carbon particles. As far as we know, the hard carbon/graphene hybrids were firstly fabricated as anode in lithium-ion batteries.

Xiang Zhang; Changling Fan; Lingfang Li; Weihua Zhang; Wei Zeng; Xing He; Shaochang Han

2014-01-01T23:59:59.000Z

346

Numerical investigation of thermal behaviors in lithium-ion battery stack discharge  

Science Journals Connector (OSTI)

Abstract Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors.

Rui Liu; Jixin Chen; Jingzhi Xun; Kui Jiao; Qing Du

2014-01-01T23:59:59.000Z

347

Novel thermal management system design methodology for power lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Battery packs conformed by large format lithium-ion cells are increasingly being adopted in hybrid and pure electric vehicles in order to use the energy more efficiently and for a better environmental performance. Safety and cycle life are two of the main concerns regarding this technology, which are closely related to the cell's operating behavior and temperature asymmetries in the system. Therefore, the temperature of the cells in battery packs needs to be controlled by thermal management systems (TMSs). In the present paper an improved design methodology for developing \\{TMSs\\} is proposed. This methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack product design methodology in order to improve the overall safety and performance. The methodology is validated by comparing simulation results with laboratory measurements on a single module of the battery pack designed at IK4-IKERLAN for a traction application. The maximum difference between model predictions and experimental temperature data is 2 °C. The models developed have shown potential for use in battery thermal management studies for EV/HEV applications since they allow for scalability with accuracy and reasonable simulation time.

Nerea Nieto; Luis Díaz; Jon Gastelurrutia; Francisco Blanco; Juan Carlos Ramos; Alejandro Rivas

2014-01-01T23:59:59.000Z

348

Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Cellulose derivative CMCAB was synthesized, and nanometer fiber composite material was obtained from lithium iron phosphate (LiFePO4, LFP)/CMCAB by electrospinning. Under the protection of inert gas, modified LFP/carbon nanofibers (CNF) nanometer material was obtained by carbonization in 600 °C. IR, TG-DSC, SEM and EDS were performed to characterize their morphologies and structures. LFP/CNF composite materials were assembled into lithium-ion battery and tested their performance. Specific capacity was increased from 147.6 mAh g?1 before modification to 160.8 mAh g?1 after modification for the first discharge at the rate of 2 C. After 200 charge–discharge cycles, when discharge rate was increased from 2 C to 5 C to 10 C, modified battery capacity was reduced from 152.4 mAh g?1 to 127.9 mAh g?1 to 106 mAh g?1. When the ratio was reduced from 10 C to 5 C to 2 C, battery capacity can be quickly approximate to the original level. Cellulose materials that were applied to lithium battery can improve battery performance by electrospinning.

Lei Qiu; Ziqiang Shao; Mingshan Yang; Wenjun Wang; Feijun Wang; Long Xie; Shaoyi Lv; Yunhua Zhang

2013-01-01T23:59:59.000Z

349

Building America Top Innovations Hall of Fame Profile Â… Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

350

Gelatin/graphene systems for low cost energy storage  

SciTech Connect

In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

351

Low-cost and durable catalyst support for fuel cells: graphite...  

NLE Websites -- All DOE Office Websites (Extended Search)

cost and durable catalyst support for fuel cells: graphite submicronparticles. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles. Abstract: Low-cost...

352

Low Cost Solar Water Heating R&D | Department of Energy  

Energy Savers (EERE)

Low Cost Solar Water Heating R&D Low Cost Solar Water Heating R&D Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

353

Low-Cost Carbon-Fiber Integration / Users Facility and Commercializati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile Precursors Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile...

354

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

355

Sponsored by Nanotechnology Seminar Program Fulfilling a Dream: Low Cost  

E-Print Network (OSTI)

fabricated electrodeposited CZTSe and CZTS solar cell with 7.3% record high power conversion efficiency for electrodeposition. Since the solar cell devices with world record efficiency contain both Se and S in the absorber for the development of low cost Cu2ZnSn(Se,S)4 thin film solar cells with even higher efficiency. BIOGRAPHY Lili

Fisher, Frank

356

DEVELOPMENT OF LOW COST SENSORS FOR HYDROGEN SAFETY APPLICATIONS  

E-Print Network (OSTI)

production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen materials and fabrication methods, which have obvious cost advantages. The response to hydrogenDEVELOPMENT OF LOW COST SENSORS FOR HYDROGEN SAFETY APPLICATIONS Barbara S. Hoffheins, L. Curt

357

Low cost highly reliable telemetry module for space applications  

Science Journals Connector (OSTI)

In this paper we demonstrate a low cost highly reliable telemetry module design suitable for low orbit satellites based on commercial or industrial components. The proposed telemetry module configuration employs on shelf components to achieve 3 Kg weight, ... Keywords: highly reliable design, low orbit satellite, space application, telemetry module

Aladin S. Abdelaziz; Ahmed M. Mahmoud

2006-12-01T23:59:59.000Z

358

A New, Simple, "universal", Low Cost LED Driver and Controller  

E-Print Network (OSTI)

A New, Simple, "universal", Low Cost LED Driver and Controller Akram M. Fayaz Sup´elec Department:daniel.sadarnac@supelec.fr Abstract--In this paper a new LED driver and its controller are conceived realized and experimentally approach the average current through the LED is directly regulated. The proposed driver is built around

Paris-Sud XI, Université de

359

Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud  

E-Print Network (OSTI)

Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open and maintain. #12;Cloud Computing · Distributed or Cloud computing allows for the use of virtual computers Web Services (AWS) · EC2 ­ Amazon Elastic Compute Cloud "a web service that provides resizable compute

360

NETL: A Low-Cost, High-Capacity Regenerable Sorbent for CO2 Capture From  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants A Low Cost, High Capacity Regenerable Sorbent for CO2 Capture from Existing Coal-Fired Power Plants Project No.: DE-FE0007580 TDA Research, Inc is developing a low cost, high capacity CO2 adsorbent and demonstrating its technical and economic viability for post-combustion CO2 capture for existing pulverized coal-fired power plants. TDA is using an advanced physical adsorbent to selectively remove CO2 from flue gas. The sorbent exhibits a much higher affinity to adsorb CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. The sorbent binds CO2 more strongly than common adsorbents, providing the chemical potential needed to remove the CO2, however, because CO2 does not form a true covalent bond with the surface sites, regeneration can be carried out with only a small energy input. The heat input to regenerate the sorbent is only 4.9 kcal per mol of CO2, which is much lower than that for chemical absorbents or amine based solvents.

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Eeffect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion-cells.  

SciTech Connect

Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF{sub 6}), lithium tetrafluoroborate (LiBF{sub 4}), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF{sub 2}OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF{sub 4} > LiF{sub 2}OB > LiPF{sub 6}. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF{sub 4} cells. The positive electrode impedance values for the LiBF{sub 4}, LiF{sub 2}OB, and LiPF{sub 6} cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF{sub 4}, LiBOB, LiF{sub 2}OB, and vinylene carbonate (VC) to the EC:EMC (3:7 by wt.) + 1.2 M LiPF{sub 6} electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance.

Abraham, D. P.; Furczon, M. M.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Sciences and Engineering Division

2008-01-01T23:59:59.000Z

362

Low-cost flywheel demonstration program. Final report  

SciTech Connect

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

363

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

364

Low Cost Solar Water Heating R&D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Template Template Low Cost Solar Water Heating R&D Kate Hudon National Renewable Energy Laboratory Kate.hudon@nrel.gov 303-275-3190 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The major market barrier for solar water heaters (SWHs) is installed cost. This project addresses this barrier by working with an industry research partner to evaluate innovative solutions that reduce the installed cost of a SWH by

365

PPG Industries Develops a Low-Cost Integrated OLED Substrate  

Energy.gov (U.S. Department of Energy (DOE))

With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

366

An Automated Home Made Low Cost Vibrating Sample Magnetometer  

Science Journals Connector (OSTI)

The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10 ?2 ? emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software.

S. Kundu; T. K. Nath

2011-01-01T23:59:59.000Z

367

An Automated Home Made Low Cost Vibrating Sample Magnetometer  

E-Print Network (OSTI)

The design and operation of a homemade low cost vibrating sample magnetometer is described here. The sensitivity of this instrument is better than 10-2 emu and found to be very efficient for the measurement of magnetization of most of the ferromagnetic and other magnetic materials as a function of temperature down to 77 K and magnetic field upto 800 Oe. Both M(H) and M(T) data acquisition are fully automated employing computer and Labview software

Kundu, S

2011-01-01T23:59:59.000Z

368

Rock glacier monitoring with low-cost GPS  

E-Print Network (OSTI)

moving stations on rock glacier Low-cost L1 GPS receivers (blox) Power source: solar panels Local data Rock glacier GPS antennaGPS antenna Solar panelSolar panel Box incl.Box incl. -GPS receiverData logger Instruments Solar panelSolar panel (24W, 12V, 50x50cm)(24W, 12V, 50x50cm) Costs per station: 2

369

A low-cost CW-pumped supercontinuum source  

Science Journals Connector (OSTI)

In order to resolve the conflict of high performance and high cost for a continuous wave (CW)-pumped supercontinuum (SC) source under low-power pumping conditions (less than ~20 W), a cascaded-fiber configuration of a short photonic crystal fiber (PCF) and a short low-cost conventional fiber is proposed to replace long high-cost PCFs. By cascading a 60 m low-cost conventional nonlinear fiber with a 90 m PCF pumped by a 24 W CW fiber laser, a higher-quality SC with a 10 dB bandwidth of 230 nm and a 5 dB bandwidth of 176 nm is demonstrated. This SC also has a maximum output power of 13.9 W. Both the spectral performance and the output power properties for this SC source are superior to those for the SC from the 200 m high-cost PCF, and these results demonstrate the effectiveness of the method in realizing a low-cost, high-quality SC source.

C Y Guo; S C Ruan; P G Yan; H F Wei; Z C Chen; D Q Ouyang; H Q Lin; X J Hu

2013-01-01T23:59:59.000Z

370

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone  

SciTech Connect

Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

2013-09-15T23:59:59.000Z

371

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

372

Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3–5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (?1300 mAh g?1 after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g?1 at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of self-assembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications.

Kowsalya Palanisamy; Yunok Kim; Hansu Kim; Ji Man Kim; Won-Sub Yoon

2015-01-01T23:59:59.000Z

373

An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

Rui Zhao; Junjie Gu; Jie Liu

2015-01-01T23:59:59.000Z

374

Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries  

SciTech Connect

Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

2013-10-15T23:59:59.000Z

375

Facile synthesis of MnO and nitrogen-doped carbon nanocomposites as anode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract MnO and nitrogen-doped carbon (N-C) nanocomposites have been successfully synthesized by a facile thermal-decomposing method using the mixture of glycine and manganese acetate as precursor. As anode material for lithium-ion batteries (LIBs), electrochemical results show that the as-prepared MnO/N-C achieves a reversible capacity of 473 mAh g?1 after 50 cycles at a current density of 100 mA g?1 and the capacities of 631.4, 547.7, 443.1, 294.7, and 161.8 mAh g?1 at the current densities of 100, 200, 400, 800, and 1600 mA g?1, respectively. The superior cycling and rate performances is attributed to the nanocomposite structure, in which nanosized MnO particles shorten the diffusion path of lithium ions and the N-doped carbon cushions the volume change and improves the electronic conductivity of electrode.

Song Qiu; Xinzhen Wang; Guixia Lu; Jiurong Liu; Cuizhu He

2014-01-01T23:59:59.000Z

376

Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting  

Science Journals Connector (OSTI)

Abstract Phenyl acetate (PA) is more stable and much cheaper than vinylene carbonate (VC), a commercial electrolyte additive for graphite anode of lithium ion battery, but its performance needs to be improved. In this paper, we report a new additive, 4-fluorophenyl acetate (4-FPA), which results from the fluorine-substituting of PA. The properties of the formed solid electrolyte interphase (SEI) by 4-FPA are investigated comparatively with PA by molecular energy level calculation, cyclic voltammetry, charge–discharge test, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. It is found that the SEI formed by 4-FPA is more protective than PA, resulting in the improved cyclic stability of lithium ion battery: the capacity retention of LiFePO4/graphite cell after 90 cycles is 92% for 4-FPA but only 84% for PA. The fluorine in 4-FPA makes it more reducible than PA and the fluorine-containing reduction products of 4-FPA are incorporated into the SEI, which contributes to the improved performance.

Bin Li; Yaqiong Wang; Haibin Lin; Xianshu Wang; Mengqing Xu; Yating Wang; Lidan Xing; Weishan Li

2014-01-01T23:59:59.000Z

377

ORNL, Industry to Collaborate in Advanced Battery Research | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry to Collaborate in Advanced Battery Research Industry to Collaborate in Advanced Battery Research December 30, 2010 ORNL's Jagjit Nanda assembles a lithium ion battery for performance testing within a controlled environment Through new collaborations totaling $6.2 million, ORNL and American industry will tackle some of the most critical challenges facing lithium ion battery production. After receiving $3 million in American Recovery and Reinvestment Act (ARRA) funding in August through DOE's Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program (ITP), ORNL issued a competitive solicitation to industry for proposals addressing key problems centered around lithium ion battery manufacturing science, advanced materials processing, quality control, and processing scale-up. An independent council comprising ORNL and DOE representatives

378

A low cost ECL-bus multiplexer: bus switch  

Science Journals Connector (OSTI)

A fast low cost ECL differential bus multiplexer, Bus Switch (BS), has been constructed as a single CAMAC unit. It has been designed with two strobed 16-bit latches to capture and hold two 16-bit input ECL data words. Its design has foreseen the possibility of connecting 16-bit differential ECL outputs of many BS modules to the same bus. Its simplicity and flexibility make it a useful element for all kind of acquisition systems. It will be used, for example, in the first level trigger of the L3 experiment at LEP.

F. Cesaroni; E. Gennari; S. Gentile; P. Pacchiarotti

1987-01-01T23:59:59.000Z

379

Low cost, large area silicon detectors for calorimetry  

SciTech Connect

Trapezoidal detectors with 28 cm{sup 2} active area have been fabricated on >2500 {Omega}cm, 4 in. diameter n-type silicon wafers. Instead of the commonly used ion implantation method, low-cost, high volume solid state diffusion technology along with phosphosilicate-glass and TCA gettering was adopted for boron and phosphorus doping. Typically the diode dark current was 15 {mu}A {at} 100 volts. Efforts are being made to obtain a finished device yield of 80% to meet the $2/cm{sup 2} price goal of SSC semiconductor detector group. 20 refs., 4 figs.

Korde, R. (International Radiation Detectors, Torrance, CA (USA)); Furuno, K.; Hwang, H.; Brau, J.E. (Oregon Univ., Eugene, OR (USA)); Bugg, W.M. (Tennessee Univ., Knoxville, TN (USA))

1990-01-01T23:59:59.000Z

380

Low-cost options for upgrading light straight run naphtha  

SciTech Connect

Of the many alternatives available for gasoline pool octane improvement, light straight run naphtha isomerization is among the most attractive. Recent catalyst and process developments have improved the cost effectiveness and flexibility of the Penex process for achieving octane improvement. Two new commercial catalysts have been developed, the first obtains maximum once-through octane on desulfurized feeds in new or revamped units, the second allows operation at feed sulfur levels above 100 ppm. New process developments permit low cost product recycle to achieve maximum octane. An isomerization unit may be designed for once-through operation initially with postponed investment for recycle operation.

Schmidt, R.J.; Weiszmann, J.A.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Effects of a graphene nanosheet conductive additive on the high-capacity lithium-excess manganese–nickel oxide cathodes of lithium-ion batteries  

Science Journals Connector (OSTI)

This study examines the effects of a graphene nanosheet (GNS) conductive additive on the...?3) lithium-ion battery cathode containing 92 wt% Li1.1(Mn0.6Ni0.4)0.9O2...microspheres (approximately 6 ?m in diameter)....

Wen-Chin Chen; Cheng-Yu Hsieh; Yu-Ting Weng…

2014-11-01T23:59:59.000Z

382

[11] Cui L, Hu L, Choi JW, Cui Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.  

E-Print Network (OSTI)

for anodes of lithium ion batteries. ACS Nano 2010;4:3671­8. [12] Krivchenko VA, Pilevsky AA, Rakhimov AT online 6 October 2011 A B S T R A C T Chemically modified graphenes (CMGs) are promising candidates 2011 Elsevier Ltd. All rights reserved. Graphene has excellent mechanical, electrical, thermal

383

AbstractFirst-principles models that incorporate all of the key physics that affect the internal states of a lithium-ion  

E-Print Network (OSTI)

effect, and relatively long battery life [2-4]. Capacity fade, underutilization, and thermal runaway states of a lithium-ion battery are in the form of coupled nonlinear PDEs. While these models are very the internal states of battery with a full simulation running in milliseconds without compromising on accuracy

Subramanian, Venkat

384

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network (OSTI)

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr distribution of lithium results in stresses that may cause the particle to fracture. The distributions of the particle, below which fracture is averted. © 2010 American Institute of Physics. doi:10.1063/1.3492617 I

385

NETL: Mercury Emissions Control Technologies - Assessment Of Low Cost Novel  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Of Low Cost Novel Mercury Sorbents Assessment Of Low Cost Novel Mercury Sorbents Project Summary: Apogee Scientific Inc. will assess up to a dozen carbon-based and other sorbents that are expected to remove more than 90 percent of mercury and cost 40 to 75 percent less than commercial sorbents because they feature inexpensive precursors and simple activation steps. Six to 12 sorbents will undergo fixed-bed adsorption tests with the most promising three to six being further evaluated by injecting them into a pilot-scale electrostatic precipitator and baghouse. Commercial flue gas desulfurization activated carbon will provide the baseline for comparisons. A portable pilot system will be constructed and would accommodate a slipstream ESP or baghouse at minimal cost. Tests will be conducted at Wisconsin Electric's Valley power plant in Milwaukee, WI, and Midwest Generation's Powerton Station in Pekin, IL. The project team consists of URS Radian, Austin, TX; the Electric Power Research Institute, Palo Alto, CA; the Illinois State Geological Survey, Champaign, IL; ADA Environmental Solutions, Littleton, CO; and Physical Sciences Inc., Andover, MA.

386

NETL: Mercury Emissions Control Technologies - Low-Cost Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Options for Moderate Levels of Mercury Control Low-Cost Options for Moderate Levels of Mercury Control ADA- Environmental Solutions will test two new technologies for mercury control. The TOXECON II(tm) technology injects activated carbon directly into the downstream collecting fields of an electrostatic precipitator. The benefit of this technology is that the majority of the fly ash is collected in the upstream collecting fields which results in only a small portion of carbon-contaminated ash. Additionally, the TOXECON II(tm) technology requires minimal capital investment as only minor retrofits to the electrostatic precipitator are needed. The second technology is injection of novel sorbents for mercury removal on units with hot-side electrostatic precipitators (ESPs). Mercury removal from hot-side electrostatic precipitators is difficult as their high operating temperature range keeps the mercury in the vapor phase and prevents the mercury from adsorbing onto sorbents. The TOXECON II(tm) technology will be tested at Entergy's Independence Station which burns PRB coal. The novel sorbents for hot-side ESPs technology will be tested at MidAmerican's Council Bluffs Energy Center and MidAmerican's Louisa Station, both of which burn PRB coal. Additional project partners include EPRI, MidAmerican, Entergy, Alliant, ATCO Power, DTE Energy, Oglethorpe Power, Norit Americas Inc., Xcel Energy, Southern Company, Arch Coal, and EPCOR.

387

Low Cost PEM Fuel Cell Metal Bipolar Plates  

SciTech Connect

Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

Wang, Conghua [TreadStone Technologies, Inc.

2013-05-30T23:59:59.000Z

388

Teaching auscultation visually with low cost system, is it feasible?  

Science Journals Connector (OSTI)

Cardiac auscultation can generate important information in the diagnosis of diseases. The sounds that the cardiac system provides are understood in the frequency range of human hearing but in a region of low sensitivity. This project aims to build a low cost didactic software/hardware set for teaching cardiac auscultation technique in Brazilian universities. The frequencies of interest to describe the human cardiac cycle were found in the range of 20 Hz to 1 kHz which includes low frequencies where available low-cost transducers usually have large errors. To create the system an optimization of the geometry of the chestpiece is being programmed with finite element simulations; meanwhile digital filters for specific frequencies of interest and an interface based on MATLAB are being developed. There were needed filters for the gallops (20 to 70 Hz) heart beats (20 to 100 Hz) ejection murmurs (100 to 500 Hz) mitral stenosis (30 to 80 Hz) and regurgitations (200 to 900 Hz). The FEM simulation of a chestpiece demonstrates high signaling levels on the desired frequency range which can be used with the filters to obtain specific information. Furthermore the ideal signal recording equipments will be defined implemented and tested.

2014-01-01T23:59:59.000Z

389

Low-cost fiber-optic chemochromic hydrogen detector  

SciTech Connect

The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

1998-08-01T23:59:59.000Z

390

ESS 2012 Peer Review - Low Cost, High Performance and Long Life Flow Battery Electrodes - Tom Stepien, Primus Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

With ARPA-E we optimized With ARPA-E we optimized * Adhesion * Current density * Duration * Catalytic coatings * Voltaic performance Goals * Cost-effectiveness * High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has enabled Primus Power to create an innovative and technically advanced electrode Electrode Zinc Plating This, combined with our other advances has enabled us to create a unique flow battery system with ...  Low cost electrodes  Long life  High efficiency  Flexibility For...  Ubiquitous  Dispatchable  Cost effective ... grid-scale electrical energy storage to: * Accelerate renewable

391

SunShot Initiative: Next-Generation Low-Cost Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Low-Cost Next-Generation Low-Cost Reflector to someone by E-mail Share SunShot Initiative: Next-Generation Low-Cost Reflector on Facebook Tweet about SunShot Initiative: Next-Generation Low-Cost Reflector on Twitter Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Google Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Delicious Rank SunShot Initiative: Next-Generation Low-Cost Reflector on Digg Find More places to share SunShot Initiative: Next-Generation Low-Cost Reflector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

392

Low-Cost U.S. Manufacturing of Power Electronics for Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles 2010 DOE Vehicle...

393

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Development of High Volume Warm Forming of Low Cost Magnesium Sheet edm2@chrysler.com February 28, 2008 Development of High-Volume Warm Forming of Low- Cost Magnesium Sheet...

394

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy Savers (EERE)

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen...

395

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of...

396

A New Low-Cost Measurement Platform for Urea Quality Monitoring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A New Low-Cost Measurement Platform for Urea Quality Monitoring A New Low-Cost Measurement Platform for Urea Quality Monitoring This technique can use specifications for urea...

397

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system for a CHP project less than 1 megawatt (MW) in size. Low-Cost Packaged Combined Heat and Power System with Reduced Emissions More Documents & Publications Low-Cost...

398

Geothermal Brine Brings Low-Cost Power with Big Potential | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm,...

399

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Presentation from the U.S. DOE Office of...

400

Development of High-Volume Warm Forming of Low-Cost Magnesium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium...

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge–discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g?1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

Chunhui Tan; Jing Cao; Abdul Muqsit Khattak; Feipeng Cai; Bo Jiang; Gai Yang; Suqin Hu

2014-01-01T23:59:59.000Z

402

Characterization of high-power lithium-ion cells during constant current cycling. Part I. Cycle performance and electrochemical diagnostics  

SciTech Connect

Twelve-cm{sup 2} pouch type lithium-ion cells were assembled with graphite anodes, LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes and 1M LiPF{sub 6}/EC/DEC electrolyte. These pouch cells were cycled at different depths of discharge (100 percent and 70 percent DOD) at room temperature to investigate cycle performance and pulse power capability. The capacity loss and power fade of the cells cycled over 100 percent DOD was significantly faster than the cell cycled over 70 percent DOD. The overall cell impedance increased with cycling, although the ohmic resistance from the electrolyte was almost constant. From electrochemical analysis of each electrode after cycling, structural and/or impedance changes in the cathode are responsible for most of the capacity and power fade, not the consumption of cycleable Li from side-reactions.

Shim, Joongpyo; Striebel, Kathryn A.

2003-01-24T23:59:59.000Z

403

Gram-Scale Synthesis of Graphene-Mesoporous SnO2 Composite as Anode for Lithium-ion Batteries  

Science Journals Connector (OSTI)

Abstract The gram-scale synthesis of graphene based mesoporous SnO2 composite (G-M-SnO2) has been successfully realized based on kirkendall effect. When used as anode for lithium ion batteries, it delivers a high reversible capacity of 1354 mAhg?1 after 50 cycles at 100 mAg?1 and excellent rate capability of 664 mAhg?1 at 2 Ag?1. The outstanding lithium storage performance mainly results from the synergistic effect of the ultrasmall SnO2 and conductive graphene nanoparticles, which not only enhanced the conductivity of the whole electrode but also provide buffer matrix for the expansion of SnO2 nanoparticles during charge-discharge process. Furthermore, the ultra-small size of SnO2 shortens the diffusion length of Li+/e? in SnO2.

Xiaowu Liu; Xiongwu Zhong; Zhenzhong Yang; Fusen Pan; Lin Gu; Yan Yu

2015-01-01T23:59:59.000Z

404

NETL: News Release - New, Low-Cost Approach to 4-D Imaging of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2005 7, 2005 New, Low-Cost Approach to 4-D Imaging of CO2 Flood Yields Breakthrough DOE-Funded Kansas Research to Bolster Economics of Marginal EOR Projects TULSA, OK - - U.S. Department of Energy-funded research has yielded a breakthrough in high-resolution subsurface imaging with the first low-cost depiction of CO2 movement through a thin, shallow oil reservoir. The University of Kansas Center for Research project combines the time-lapse approach of 4-D seismic, which is essentially a series of three-dimensional images recorded over time, with a carefully selected application of the higher-resolution imaging of other advanced seismic technologies. The first-of-its-kind project is being implemented for a landmark CO2 flood pilot project underway in the Hall-Gurney oilfield, near Russell, Kan. That pilot-itself the first CO2 flood in Kansas-also is funded by DOE. Both projects are managed by the Office of Fossil Energy's National Energy Technology Laboratory as part of its Enhanced Oil Recovery (EOR) program.

405

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

406

SunShot Initiative: Low-Cost Heliostat Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Heliostat Development Cost Heliostat Development HiTek logo Photo of a machine with two round discs connected by intertwined chains. A staged-chain drive unit eliminates destructive coupling loads from severe wind conditions and greatly reduces cumulative fatigue damage. HiTek Services, under the Baseload CSP FOA, is conducting fundamental parametric analyses of the optimum heliostat size and developing a novel low-cost heliostat design. Approach There are four tasks under this award: Develop a means to determine the optimum size range of the heliostat, in terms of the applied forces and moments, manufacturing learning curve effects, O&M, and optical efficiency. The outcome of this task will be a spreadsheet analysis tool for parametrically determining heliostat costs that are appropriately allocated into categories with inputs for a specific design.

407

Low-Cost Miniature Multifunctional Solid-State Gas Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard J. Dunst Richard J. Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Eric D. Wachsman Principal Investigator University of Florida 339 Weil Hall Gainesville, FL 32611-4025 352-846-2991 ewach@mse.ufl.edu Low-Cost Miniature MuLtifunCtionaL soLid-state Gas sensors Description Research sponsored by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) through the National Energy Technology Laboratory (NETL), and performed by the University of Florida, has resulted in successful development of solid-state sensor technology that can provide an inexpensive, rugged device that is capable of measuring the concentration of multiple pollutants in lean-burn coal

408

Low-Cost Solar Water Heating Research and Development Roadmap  

SciTech Connect

The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

2012-08-01T23:59:59.000Z

409

LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION  

SciTech Connect

During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

Lowes, Ted

2014-07-31T23:59:59.000Z

410

LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction  

E-Print Network (OSTI)

for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from symbols, and light trucks by large. Greenhouse Gas Emissions Intensity (kg/mi), urban driving cycleLowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross

Edwards, Paul N.

411

NETL: News Release - Four Industry Teams Begin Quest for Low-Cost,  

NLE Websites -- All DOE Office Websites (Extended Search)

August 8, 2001 August 8, 2001 Four Industry Teams Begin Quest for Low-Cost, Breakthrough Fuel Cell Could Broaden Market Acceptance of "Cutting Edge" Technology Cited in President's Climate Change Policy PITTSBURGH, PA - Four new government-industry projects have been selected as the vanguards of a $500 million, 10-year effort to produce breakthrough fuel cells that will shatter current cost barriers and move the advanced, low-polluting technology into mainstream energy markets. - Technician Examining Planar Fuel Cell Assembly Future fuel cells could be mass- produced from flat, ceramic plates. This configuration is called a "planar" fuel cell. Secretary of Energy Spencer Abraham today announced that the U.S. Department of Energy has selected proposals from Honeywell, Inc., Torrence,

412

Development of a Low-Cost Rotary Steerable Drilling System  

SciTech Connect

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

413

NETL: IEP – Post-Combustion CO2 Emissions Control - A Low-Energy, Low-Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents Project No.: FG02-06ER84592 SBIR Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus AIL Research, Inc. (AIL) is in the second phase of a small business initiative research (SBIR) project that is assessing the economic and technical feasibility of a carbon dioxide (CO2) stripper that uses an internally heated contactor. The project will determine whether the construction of the internally heated contactor is compatible with the operating conditions of a monoethanolamine stripper and an advanced scrubber (e.g., one that uses a mixture of potassium carbonate and piperazine) and it will also determine the maintenance procedures required

414

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

415

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network (OSTI)

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for che...

Bolonkin, A; Bolonkin, Alexander; Cathcart, Richard

2007-01-01T23:59:59.000Z

416

Accessing Low-Cost Capital Through Securitization (Poster), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

cost, time to access capital 3 Yr. DOE Award: Advanced Financing to Achieve SunShot Promote adoption by developers, financiers, law firms, etc. Organize the industry...

417

Project Profile: High-Concentration, Low-Cost Parabolic Trough...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

aperture, while incorporating additional advancements that substantially lower installed solar field costs. For example, the reflective film surfaces are being upgraded to improve...

418

Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies  

Science Journals Connector (OSTI)

Using first-principles pseudopotential calculations, we investigate the formation and transport of small polarons in olivine LixFePO4. It is demonstrated that excess charge carriers form small polarons in LiFePO4 and FePO4. Lower limits to the activation barrier for small polaron migration are calculated within the GGA+U framework. Additionally, the interaction between lithium ions and polarons is investigated and estimates of binding energies between lithium ions and polarons are provided. Our results show that the binding energy between electron polarons and Li+ ions in FePO4 is lower than that between hole polarons and lithium vacancies in LiFePO4. The electron transfer rate is predicted to be higher in FePO4 than in LiFePO4.

Thomas Maxisch; Fei Zhou; Gerbrand Ceder

2006-03-13T23:59:59.000Z

419

Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation  

E-Print Network (OSTI)

Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

Northrop, Paul W. C.

420

On the properties of the negatively charged lithium ions and evaluation of the half-life of the ${}^{7}$Be atom(s)  

E-Print Network (OSTI)

Bound state properties of the ground $2^1S-$state in the four-electron lithium ion Li$^{-}$ (or ${}^{7}$Li$^{-}$ ion) are determined from the results of accurate, variational computations. We also determine such properties for the ground $2^1S-$state(s) in the ${}^{6}$Li$^{-}$ and ${}^{7}$Li$^{-}$ ions with the finite nuclear masses. Another closely related problem discussed in this study is accurate numerical evaluation of the half-life of the beryllium-7 isotope.

Frolov, Alexei M

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Novel Low-Cost Sodium-Zinc Chloride Battery  

SciTech Connect

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

422

Long-life and high-rate LiVPO4F/C nanocrystals modified with graphene as cathode material for lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Graphene modified LiVPO4F/C nanocomposite has been firstly investigated as cathode material for lithium-ion batteries. The LiVPO4F/C nanocrystals embedded on reduced graphene oxide sheets are synthesized via a sol–gel method. The obtained sample of graphene modified LiVPO4F/C is studied comparatively with LiVPO4F/C by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra and various electrochemical tests. The results reveal that the modification of LiVPO4F/C nanocrystals with graphene can form an effective conducting network, which can greatly improve the electronic conductivity and lithium ion transport. Thus, the as-synthesized nanocomposite exhibits excellent high-rate capability and cycling stability. In the voltage range of 3.0–4.5 V, the graphene modified LiVPO4F/C delivers a reversible discharge capacity of 151.6 (nearly to its theoretical capability of 156 mAhg? 1) and 147.8 mAhg? 1 at 0.1 and 0.5 C, respectively. It also achieves an improved cyclability with capacity retention ratio of 91.4% after 300 cycles at a higher rate of 10 C. Therefore, it is of great potential use as a cathode material in rechargeable lithium-ion batteries for hybrid-electric vehicles and electric vehicles.

Yongli Wang; Haixiang Zhao; Yongfeng Ji; Lihua Wang; Zhen Wei

2014-01-01T23:59:59.000Z

423

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar | Open  

Open Energy Info (EERE)

NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar NREL-Low-Cost Financing with Clean Renewable Energy Bonds Webinar Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low-Cost Financing with Clean Renewable Energy Bonds Agency/Company /Organization: National Renewable Energy Laboratory Partner: United States Department of Energy Sector: Energy Topics: Finance Resource Type: Webinar, Training materials, Lessons learned/best practices Website: www.nrel.gov/applying_technologies/state_local_activities/webinar_2009 Low-Cost Financing with Clean Renewable Energy Bonds Screenshot References: Low-Cost Financing with Clean Renewable Energy Bonds[1] Logo: Low-Cost Financing with Clean Renewable Energy Bonds Sponsored by the U.S. Department of Energy Technical Assistance Project for state and local officials, this Webinar described the elements of clean

424

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design

Grizzle, Jessy W.

425

A New Method of Low Cost Production of Ti Alloys to Reduce Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information. Project Objective Develop a novel low cost method for manufacturing Ti Demonstrate the mechanical properties of Ti using the...

426

Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking...  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Fabrication of Thin-Film Ceramic Membranes for Nonshrinking Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

427

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WORK Identify suitable graphite materials for anodes that meet the requirement for low cost and long cycle life. Fabricate half cells (Ligraphite) and Li-ion (graphiteolivine)...

428

Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Solar Photovoltaic Find More Like This Return to Search Low-cost, Efficient, Flexible Solar Cells with 3D Nanopillar Arrays Lawrence Berkeley National Laboratory...

429

Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2011 Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2011 Cummins Power Generation, in collaboration...

430

Low-Cost and Low-Electromagnetic-Interference Packaging of Optical Transceiver Modules  

Science Journals Connector (OSTI)

The low-cost and low-electromagnetic-interference (EMI) packaging of optical transceiver modules employing housings of plastic composites are developed and fabricated. Optical...

Cheng, Wood-Hi; Hung, Wen-Chi; Lee, Chien-Hui; Hwang, Gan-Lin; Jou, Wern-Shiang; Wu, Tzong-Lin

2004-01-01T23:59:59.000Z

431

Low Cost Carbon Fiber Research in the LM Materials Program Overview...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies...

432

Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications CX-009154: Categorical Exclusion Determination Low Cost Carbon Fiber Research in the LM Materials Program Overview Carbon Fiber Technology...

433

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

434

Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics  

E-Print Network (OSTI)

Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

Pan, Heng

2009-01-01T23:59:59.000Z

435

Durable, Low-cost, Improved Fuel Cell Membranes  

SciTech Connect

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

436

In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries  

SciTech Connect

Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

2014-10-27T23:59:59.000Z

437

Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study  

E-Print Network (OSTI)

The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

Diddo Diddens; Andreas Heuer

2012-11-14T23:59:59.000Z

438

Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials.  

SciTech Connect

We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the particles was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2}, which was electrochemically evaluated as the active cathode material in a lithium battery. The Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2} material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions.

Koenig, G. M.; Belharouak, I.; Deng, H.; Amine, K.; Sun, Y. K. (Chemical Sciences and Engineering Division)

2011-04-12T23:59:59.000Z

439

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

SciTech Connect

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

440

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery  

Science Journals Connector (OSTI)

Abstract In this work, pure LVP nanoparticles and an LVP/graphene nanocomposite are successfully synthesized by a simple and cost effective polyol based solvothermal method, which can be easily scaled up. The synthesized nanocomposite contained small (30–60 nm) LVP nanoparticles completely and uniformly anchored on reduced graphene nanosheets. As a cathode for lithium ion batteries, the nanocomposite electrode delivered high reversible lithium storage capacity (189.8 mA h g?1 at 0.1 C), superior cycling stability (111.8 mA h g?1 at 0.1 C, 112.6 mA h g?1 at 5 C, and 103.4 mA h g?1 at 10 C after 80 cycles) and better C-rate capability (90.8 mA h g?1 at 10 C), whereas the pure LVP nanoparticles electrode delivered much less capacity at all investigated current rates. The enhanced electrochemical performance of the nanocomposite electrode can be attributed to the synergistic interaction between the uniformly dispersed LVP nanoparticles and the graphene nanosheets, which offers a large number of accessible active sites for the fast diffusion of Li ions, low internal resistance, high conductivity and more importantly, accommodates the large volume expansion/contraction during cycling.

Alok Kumar Rai; Trang Vu Thi; Jihyeon Gim; Sungjin Kim; Jaekook Kim

2015-01-01T23:59:59.000Z

442

Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Graphene-based nanocomposites have been synthesized and tested as electrode materials for high power lithium-ion batteries. In the synthesis of such nanocomposites, graphene is generally introduced by either thermally or chemically reduced graphite oxide (GO), which has poorer electric conductivity and crystallinity than mechanically exfoliated graphene. Here, we prepare few-layer graphene sheet (FLGS) with high electric conductivity, by sonicating expanded graphite in DMF solvent, and develop a simple one-pot hydrothermal method to fabricate monodispersed and ultrasmall Co3O4 nanocubes (about 4 nm in size) on the FLGS. This composite, consisting of homogeneously assembled and high crystalline Co3O4 nanocubes on the FLGS, has shown higher capacity and much better cycling stability than counterparts synthesized using GO as a precursor. The products in different synthesis stages have been characterized by TEM, FTIR and XPS to investigate the nanocube growth mechanism. We find that Co(OH)2 initially grew homogeneously on the graphene surface, then gradually oxidized to form Co3O4 nanoparticle seeds, and finally converted to Co3O4 nanocubes with caboxylated anion as surfactant. This work explores the mechanism of nanocrystal growth and its impact on electrochemical properties to provide further insights into the development of nanostructured electrode materials for high power energy storage.

Junming Xu; Jinsong Wu; Langli Luo; Xinqi Chen; Huibin Qin; Vinayak Dravid; Shaobo Mi; Chunlin Jia

2015-01-01T23:59:59.000Z

443

Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries  

Science Journals Connector (OSTI)

Abstract The lithium storage performance of silicon (Si) is improved substantially by forming composite of nano-Si particles embedded homogeneously in graphene nanosheets (GNs) using a simple discharge plasma assisted milling (P-milling) method. The synergistic effect of the rapid heating of the plasma and the mechanical ball mill grinding with nano-Si as nanomiller converted the graphite powder to \\{GNs\\} with the integration of nano-Si particles in the in-situ formed GNs. This composite structure inhibits the agglomeration of nano-Si and improves electronic conductivity. The cycling stability and rate capability are enhanced, with a stable reversible capacity of 976 mAhg?1 at 50 mAg?1 for the P-milled 20 h nano-Si/GNs composite. A full cell containing a commercial LiMn2O4 cathode is assembled and demonstrated a satisfying utilization of the P-milled nano-Si/GNs composite anode with stable working potential. This composite shows promise for application in lithium ion batteries.

Wei Sun; Renzong Hu; Hui Liu; Meiqin Zeng; Lichun Yang; Haihui Wang; Min Zhu

2014-01-01T23:59:59.000Z

444

Computational, electrochemical and {sup 7}Li NMR studies of lithiated disordered carbons electrodes in lithium ion cells.  

SciTech Connect

Disordered carbons that deliver high reversible capacity in electrochemical cells have been synthesized by using inorganic clays as templates to control the pore size and the surface area. The capacities obtained were much higher than those calculated if the resultant carbon had a graphitic-like structure. Computational chemistry was used to investigate the nature of lithium bonding in a carbon lattice unlike graphite. The lithium intercalated fullerene Li{sub n}-C{sub 60} was used as a model for our (non-graphitic) disordered carbon lattice. A dilithium-C{sub 60} system with a charge and multiplicity of (0,1) and a trilithium-C{sub 60} system with a charge and multiplicity of (0,4) were investigated. The spatial distribution of lithium ions in an electrochemical cell containing this novel disordered carbon material was investigated in situ by Li-7 NMR using an electrochemical cell that was incorporated into a toroid cavity nuclear magnetic resonance (NMR) imager. The concentration of solvated Li{sup +} ions in the carbon anode appears to be larger than in the bulk electrolyte, is substantially lower near the copper/carbon interface, and does not change with cell charging.

Sandi, G.; Gerald, R., II; Scanlon, L. G.; Carrado, K. A.; Winans, R. E.

1998-01-07T23:59:59.000Z

445

Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

Yong Seok Choi; Dal Mo Kang

2014-01-01T23:59:59.000Z

446

Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies  

Science Journals Connector (OSTI)

Abstract Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended.

Tao Wang; K.J. Tseng; Jiyun Zhao; Zhongbao Wei

2014-01-01T23:59:59.000Z

447

Self-supported poly(methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery  

Science Journals Connector (OSTI)

Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate–acrylonitrile–vinyl acetate) (P(MMA–AN–VAc)). The copolymer P(MMA–AN–VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond CC in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 °C, its thermal stability is as high as 310 °C, and its mechanical strength is improved compared with P(MMA–AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li+) and its conductivity is 3.48 × 10?3 S cm?1 at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel–Tamman–Fulcher (VTF) equation.

Y.H. Liao; D.Y. Zhou; M.M. Rao; W.S. Li; Z.P. Cai; Y. Liang; C.L. Tan

2009-01-01T23:59:59.000Z

448

Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries  

SciTech Connect

Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

2014-01-01T23:59:59.000Z

449

Vehicle Technologies Office Merit Review 2014: Studies on High Capacity Cathodes for Advanced Lithium-ion Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about studies on high...

450

Renewable and Superior Thermal-Resistant Cellulose-Based Composite Nonwoven as Lithium-Ion Battery Separator  

Science Journals Connector (OSTI)

(35) Furthermore, renewable lignin/conducting polymer interpenetrating networks were also explored as low-cost cathode materials by Inganäs and his co-worker. ... Progress on anode and cathode materials that have the potential to fulfil the crucial factors of cost, safety, lifetime, durability, power d., and energy d. is discussed. ...

Jianjun Zhang; Zhihong Liu; Qingshan Kong; Chuanjian Zhang; Shuping Pang; Liping Yue; Xuejiang Wang; Jianhua Yao; Guanglei Cui

2012-12-10T23:59:59.000Z

451

Research and Development of a Low Cost Solar Collector  

SciTech Connect

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

452

Low-Cost Hydrogen Distributed Production System Development  

SciTech Connect

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

453

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT  

E-Print Network (OSTI)

VISION-BASED OBSTACLE AVOIDANCE FOR A SMALL, LOW-COST ROBOT Chau Nguyen Viet, Ian Marshall Computer.marshall@kent.ac.uk Keywords: obstacle-avoidance, robot vision. Abstract: This paper presents a vision-based obstacle avoidance algorithm for a small indoor mobile robot built from low-cost, and off-the-shelf electronics. The obstacle

Marshall, Ian W.

454

Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA)  

Energy.gov (U.S. Department of Energy (DOE))

These slides, presented at the 2014 DOE Annual Merit Review and Peer Evaluation Meeting, provide an overview of and accomplishments for a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber.

455

Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs  

E-Print Network (OSTI)

Design and Development of a Low-Cost Test-Bed for Undergraduate Education in UAVs D. Jung, E. J for the development of a low-cost Unmanned Aerial Vehicle (UAV) test-bed for educational purposes. The objective) and graduate students (secondarily) in UAV research. The complete design and development of all hardware

Tsiotras, Panagiotis

456

UNIVERSITY of CALIFORNIA ATTITUDE ESTIMATION FOR A LOW-COST UAV  

E-Print Network (OSTI)

UNIVERSITY of CALIFORNIA SANTA CRUZ ATTITUDE ESTIMATION FOR A LOW-COST UAV A thesis submitted of Physics #12;Copyright c by Gregory M. Horn 2009 #12;Abstract Attitude Estimation for a Low-Cost UAV by Gregory M. Horn Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) are a rapidly growing

Belanger, David P.

457

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis,  

E-Print Network (OSTI)

CREATING A LOW-COST AUTONOMOUS VEHICLE Richard W. Wall Jerry Bennett, Greg Eis, Kevin Lichy of the project was to design and build a low cost autonomous vehicle control system for a ground vehicle, University of Idaho Electrical and Computer Engineering Dept. Moscow, ID 83844-1023 Abstract ­ Autonomous

Idaho, University of

458

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas  

E-Print Network (OSTI)

Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

Shaw, Joseph A.

459

Science Highlights 2012 | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

New Physics in Iridium Compounds New Physics in Iridium Compounds New Physics in Iridium Compounds December 10, 2012 Unraveling the complexities of spin-orbital coupling could someday lead to new high-temperature superconductors and workable quantum computers via an elusive phase of matter called a "quantum spin liquid." Two groups of researchers utilizing x-ray beamlines at the U.S. Department of Energy's Advanced Photon are delving into the new physics required to develop just such a material. The Self-Improvement of Lithium-Ion Batteries The Self-Improvement of Lithium-Ion Batteries November 30, 2012 The key to developing a better and more efficient battery technology may lie in designing and building batteries not from the top down, but from the bottom up - beginning at the nanoscale. A team of

460

Argonne Transportation Technology R&D Center - About Us - DOE, Lithium-ion  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us Transportation Research Focuses on DOE's Energy Resources Goals Open the Door The U.S. Department of Energy's (DOE's) goals call for increasing the efficiency and productivity of energy use, while limiting the environmental impacts. In support of these goals, Argonne's Transportation Technology Research and Development Center (TTRDC) brings together scientists and engineers from many disciplines to find cost-effective solutions to the problems of foreign oil dependency and greenhouse gas emissions. As one of the DOE's lead laboratories for research in hybrid powertrains, batteries, and fuel efficient technologies, Argonne's transportation program is critical to advancing the development of next-generation vehicles. The TTRDC's overall goal is to work with DOE, other federal agencies, and industrial partners to put new transportation technologies on the road that improve the way we live and contribute to a better, cleaner future for all.

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries  

SciTech Connect

Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

2014-01-15T23:59:59.000Z

462

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

463

Low-cost diffuse optical tomography for the classroom  

Science Journals Connector (OSTI)

Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology neurology and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues basics of medical tomography and the concepts of multiple scattering and absorption. Here we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources the detectors (photo-diodes) a mechanical 2D scanning platform and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.

Taisuke Minagawa; Peyman Zirak; Udo M. Weigel; Anna K. Kristoffersen; Nicolas Mateos; Alejandra Valencia; Turgut Durduran

2012-01-01T23:59:59.000Z

464

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

SciTech Connect

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

465

Two low-cost, modular sub-? test cryostats  

SciTech Connect

Two general-purpose liquid helium (LHe) test cryostats have been developed in support of a major upgrade to the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The cryostats are capable of sustained operation below 1.8 K and currently support tests of prototype superconducting rf (srf) cavities for the APS Upgrade’s Short Pulse X-ray (SPX) initiative. To save cost, two existing test vessels were reconditioned: one “bucket dewar” supporting bare cavity tests and one shielded vacuum vessel with an integral LHe reservoir for jacketed/dressed cavity tests. A new feedbox containing a heat exchanger and associated valves was also designed and fabricated to support either cryostat. The resulting modular design permits tests on a wide variety of srf cavities in various states of completion, minimizing cost and maximizing use of the hardware. Together with a dedicated vacuum pump, control system, and helium supply via storage dewar or cryoplant, these cryostats are vital to the srf cavity development effort within the APS Upgrade.

Fuerst, J. D.; Kaluzny, J. A. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2014-01-29T23:59:59.000Z

466

High Performance, Low Cost Hydrogen Generation from Renewable Energy  

SciTech Connect

Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

Ayers, Katherine [Proton OnSite] [Proton OnSite; Dalton, Luke [Proton OnSite] [Proton OnSite; Roemer, Andy [Proton OnSite] [Proton OnSite; Carter, Blake [Proton OnSite] [Proton OnSite; Niedzwiecki, Mike [Proton OnSite] [Proton OnSite; Manco, Judith [Proton OnSite] [Proton OnSite; Anderson, Everett [Proton OnSite] [Proton OnSite; Capuano, Chris [Proton OnSite] [Proton OnSite; Wang, Chao-Yang [Penn State University] [Penn State University; Zhao, Wei [Penn State University] [Penn State University

2014-02-05T23:59:59.000Z

467

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

468

Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers  

Science Journals Connector (OSTI)

There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical...

Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

2010-01-01T23:59:59.000Z

469

High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Cost Solar Receiver for Use in a Supercritical CO 2 Recompression Cycle Brayton Energy, LLC Award Number: DE-EE0005799 | November 30, 2012 | Sullivan * Numerical Modeling is...

470

Low Cost SiOx-Graphite and Olivine Materials | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost SiOx-Graphite and Olivine Materials Low Cost SiOx-Graphite and Olivine Materials 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation...

471

Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY13 Q2 Low-Cost, Lightweight Solar Concentrators FY13 Q2 This document summarizes the progress of this Jet Propulsion Laboratory project, funded by SunShot, for the second quarter...

472

Design and testing of components for a low cost laser cutter  

E-Print Network (OSTI)

The main goal of this thesis is to document the design and testing of various components for use in a low cost laser cutting mechanism for hobbyists and recreational designers. Different electronics were used to assess the ...

Ramos, Joshua D

2011-01-01T23:59:59.000Z

473

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu…

2014-01-01T23:59:59.000Z

474

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas.

475

Sewage sludge ash as an alternative low-cost oxygen carrier for chemical looping combustion  

Science Journals Connector (OSTI)

In this paper, novel low-cost oxygen carriers containing Fe2O3 are evaluated for use in chemical looping combustion. Sewage sludge ashes and reference samples were...2...) fuel and a solid fuel (hard coal) were t...

Ewelina Ksepko

2014-06-01T23:59:59.000Z

476

Multiple EFG Silicon Ribbon Technology as the Basis for Manufacturing Low-Cost Terrestrial Solar Cells  

Science Journals Connector (OSTI)

The development of a technology for production of low-cost silicon sheet substrates for solar cells based on the EFG process has been...2) solar cells prepared from this 10 cm wide ribbon...

B. Mackintosh; J. P. Kalejs; C. T. Ho; F. V. Wald

1981-01-01T23:59:59.000Z

477

E-Print Network 3.0 - alternative low-cost precursors Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

de Physique11, Volume 5,juin 1995 Summary: in consistent quality and quantities at low cost, (7) liquid rather than gas or solid and (8)stable in its... Trends in the Selection...

478

TestosterICs: A Low-Cost Functional Chip Tester David Harris and David Diaz  

E-Print Network (OSTI)

TestosterICs: A Low-Cost Functional Chip Tester David Harris and David Diaz Department of Engineering Harvey Mudd College Claremont, CA 91711 David_Harris@hmc.edu Abstract Students in VLSI design

Harris, David Money

479

Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch  

Energy.gov (U.S. Department of Energy (DOE))

The goal of this scale-up is to produce low cost CF from novel PO polymer precursors in higher yield and at lower cost than the incumbent CF made from specialty-grade PAN fiber.

480

DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on the RD&D needs for enabling low-cost, effective hydrogen production from all types of water electrolysis systems, both centralized and forecourt. Based on the results of these...

Note: This page contains sample records for the topic "low-cost advanced lithium-ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

482

Design and prototyping of a low-cost portable mechanical ventilator  

E-Print Network (OSTI)

This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

Powelson, Stephen K. (Stephen Kirby)

2010-01-01T23:59:59.000Z

483

Low-cost, single-mode diode-pumped Cr:Colquiriite lasers  

E-Print Network (OSTI)

We present three Cr[superscript 3+]:Colquiriite lasers as low-cost alternatives to Ti:Sapphire laser technology. Single-mode laser diodes, which cost only $150 each, were used as pump sources. In cw operation, with ~520 ...

Demirbas, Umit

484

The Creation of a low-cost, reliable platform for mobile robotics research  

E-Print Network (OSTI)

This work documents the planning process, design, fabrication, and integration of a low-cost robot designed for research on the problem of life-long robot mapping. The robotics platform used is the iRobot Create. This robot ...

Gilbert, Taylor Harrison

2011-01-01T23:59:59.000Z

485

Low Cost SiOx-Graphite and High Voltage Spinel Cathode | Department...  

Office of Environmental Management (EM)

Cathode Low Cost SiOx-Graphite and High Voltage Spinel Cathode 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

486

Low Cost SiOx-Graphite and Olivine Materials | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 18-22, 2009 -- Washington D.C. es19zaghib.pdf More Documents & Publications Low Cost SiOx-Graphite and Olivine Materials Phase Behavior and Solid State Chemistry in Olivines...

487

Implementation of a Low Cost Robot Controller PC-ROBOCONT on Hydraulic Robot for Spray Painting G-201  

Science Journals Connector (OSTI)

The paper describes the implementation of the low cost robot controller PC-ROBOCONT on hydraulic spray painting robot G-201. PC-ROBOCONT is a low cost robot controller based on popular PC 386. For use with the sp...

B. Nemec; L. Zlajpah; S. Mrak

1994-01-01T23:59:59.000Z

488

Technical Note: Comments on "A Low-cost Device for Chromatographic Analysis of Gas Mixtures at Reduced Pressures"  

Science Journals Connector (OSTI)

......Comments on "A Low-cost Device for Chromatographic Analysis of Gas Mixtures at Reduced Pressures...Chornet reported a low-cost device for gas chromatographic (GC) analysis...routine analyses on the production line are performed by the......

John Chih-An Hu

1982-11-01T23:59:59.000Z

489

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes...

490

NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet)  

SciTech Connect

NREL and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heater market.

Not Available

2014-08-01T23:59:59.000Z

491

Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

492

Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

single phase * Finalizing control system design - Space vector PWM + sensored FOC, MATLABSimulink simulation, sensor signal conditioning, digital control platform, CAN...

493

Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines  

Energy.gov (U.S. Department of Energy (DOE))

Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design

494

V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels  

SciTech Connect

The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

2012-10-01T23:59:59.000Z

495

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

496

Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Battery Plant in Michigan, Announces Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were

497

Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY  

E-Print Network (OSTI)

This paper, Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions, is provided to assist utility regulators, gas and electric utilities, and others in meeting the National Action Plan for Energy Efficiency’s goal of achieving all cost-effective energy efficiency by 2025. This paper summarizes the scale and economic value of energy efficiency for reducing carbon emissions and discusses the barriers to achieving the potential for cost-effective energy efficiency. It also reviews current regional, state, and local approaches for including energy efficiency in climate policy, using these approaches to inform a set of recommendations for leveraging energy efficiency within state climate policy. The paper does not capture federal climate policy options or recommendations, discussion of tradable energy efficiency credits, or emissions impacts of specific energy efficiency measures or programs. The intended audience for the paper is any stakeholder interested in learning more about how to advance energy efficiency as a low-cost resource to reduce carbon emissions. All stakeholders, including state policy-makers, public utility commissions, city councils, and utilities, can use this paper to understand the key issues and terminology, as well as the approaches that are being used to reduce carbon emissions by advancing energy efficiency policies and programs. Energy Efficiency as a Low-Cost

unknown authors

498

Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C  

NLE Websites -- All DOE Office Websites (Extended Search)

Mainstream Engineering Develops a Low-Cost Energy-Saving Device Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » January 2013 Mainstream Engineering Develops a Low-Cost Energy-Saving Device for A/C Systems Mainstream is achieving its goal to commercialize practical and

499

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

500

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.