Powered by Deep Web Technologies
Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Broader source: Energy.gov (indexed) [DOE]

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

2

Waste Loading Enhancements for Hanford Low-Activity Waste Glasses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

3

Hanford's Simulated Low Activity Waste Cast Stone Processing  

SciTech Connect (OSTI)

Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanfords (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

Kim, Young

2013-08-20T23:59:59.000Z

4

Iodine Solubility in Low-Activity Waste Borosilicate Glass at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 C. Abstract: The purpose of this...

5

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect (OSTI)

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

6

LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS  

SciTech Connect (OSTI)

The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

2014-04-03T23:59:59.000Z

7

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

8

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT  

SciTech Connect (OSTI)

The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2007-08-08T23:59:59.000Z

9

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

10

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect (OSTI)

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

11

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

12

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

13

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

14

Phase 1 immobilized low-activity waste operational source term  

SciTech Connect (OSTI)

This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

Burbank, D.A.

1998-03-06T23:59:59.000Z

15

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect (OSTI)

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

16

Hanford immobilized low-activity tank waste performance assessment  

SciTech Connect (OSTI)

The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

Mann, F.M.

1998-03-26T23:59:59.000Z

17

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

18

System Planning for Low-Activity Waste at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Technical Review of System Planning Technical Review of System Planning for Low-Activity Waste Treatment at Hanford November 2008 Dr. David S. Kosson, Vanderbilt University Dr. David R. Gallay, Logistics Management Institute Dr. Ian L. Pegg, The Catholic University of America Dr. Ray G. Wymer, Oak Ridge National Laboratory (ret.) Dr. Steven Krahn, U. S. Department of Energy ii ACKNOWLEDGEMENT The Review Team thanks Mr. Ben Harp, Office of River Protection (ORP), and Mr. James Honeyman, CH2M HILL, for their exceptional support during this review. Mr. Harp was the lead Department of Energy (DOE) representative responsible for organizing reviews held on-site by the Review Team. Mr. Honeyman, and his staff, provided responsive support through technical presentations, telephone conferences, and numerous reference documents.

19

Toward Understanding the Effect of LowActivity Waste Glass Composition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility John D. Vienna, , Dong-Sang Kim, Isabelle S. Muller, Greg F. Piepel, ...

20

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect (OSTI)

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

22

Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment  

SciTech Connect (OSTI)

The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc.

MANN, F.M.

2000-02-09T23:59:59.000Z

23

BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect (OSTI)

This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

ARD KE

2011-04-11T23:59:59.000Z

24

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

25

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect (OSTI)

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

26

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

27

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to land disposal restrictions. The long term precision (24-hr) also was good with percent relative standard deviations (%RSDs) < 10 % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

28

Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility  

Broader source: Energy.gov [DOE]

WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

29

TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect (OSTI)

This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

BURBANK, D.A.

1999-09-01T23:59:59.000Z

30

Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass  

Broader source: Energy.gov (indexed) [DOE]

Feed Composition Feed Composition and Recycle on Hanford Low- Activity Waste Glass Mass J.D. Vienna & D.S. Kim - Pacific Northwest National Laboratory I.L. Pegg - Catholic University of America 1 LAW Glass Loading Limits WTP baseline (LAW Glass Formulation Algorithm) low uncertainty  thoroughly tested accounts for Na, S, Cl, F, Cr, K, and P impacts conservative loading Advanced silicate formulation higher uncertainty than baseline currently accounts for Na and S impacts impacts of other components not specifically tested, but, one can evaluate maxima from testing as a lower bound 2 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 SO 3 (target) wt% in Glass Na 2 O (target) wt% in Glass SO 3 ≤ 0.77 wt% Na 2 O ≤ 35.875 - 42.5*SO 3 (in wt%) Na 2 O ≤ 21 wt% Na 2 O + 0.66*K

31

Technical basis for classification of low-activity waste fraction from Hanford site tanks  

SciTech Connect (OSTI)

The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

Petersen, C.A.

1996-09-20T23:59:59.000Z

32

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

33

CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect (OSTI)

Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

MINWALL HJ

2011-04-08T23:59:59.000Z

34

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

SciTech Connect (OSTI)

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

35

Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment  

SciTech Connect (OSTI)

This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O'Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

2001-02-01T23:59:59.000Z

36

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation  

SciTech Connect (OSTI)

One of the immobilization technologies under consideration as a Supplemental Treatment for Hanfords Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

2014-01-10T23:59:59.000Z

37

Louisiana Hazardous Waste Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

38

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

39

Round-robin testing of a reference glass for low-activity waste forms  

SciTech Connect (OSTI)

A round robin test program was conducted with a glass that was developed for use as a standard test material for acceptance testing of low-activity waste glasses made with Hanford tank wastes. The glass is referred to as the low-activity test reference material (LRM). The program was conducted to measure the interlaboratory reproducibility of composition analysis and durability test results. Participants were allowed to select the methods used to analyze the glass composition. The durability tests closely followed the Product Consistency Test (PCT) Method A, except that tests were conducted at both 40 and 90 C and that parallel tests with a reference glass were not required. Samples of LRM glass that had been crushed, sieved, and washed to remove fines were provided to participants for tests and analyses. The reproducibility of both the composition and PCT results compare favorably with the results of interlaboratory studies conducted with other glasses. From the perspective of reproducibility of analysis results, this glass is acceptable for use as a composition standard for nonradioactive components of low-activity waste forms present at >0.1 elemental mass % and as a test standard for PCTS at 40 and 90 C. For PCT with LRM glass, the expected test results at the 95% confidence level are as follows: (1) at 40 C: pH = 9.86 {+-} 0.96; [B] = 2.30 {+-} 1.25 mg/L; [Na] = 19.7 {+-} 7.3 mg/L; [Si] = 13.7 {+-} 4.2 mg/L; and (2) at 90 C: pH = 10.92 {+-} 0.43; [B] = 26.7 {+-} 7.2 mg/L; [Na] = 160 {+-} 13 mg/L; [Si] = 82.0 {+-} 12.7 mg/L. These ranges can be used to evaluate the accuracy of PCTS conducted at other laboratories.

Ebert, W. L.; Wolf, S. F.

1999-12-06T23:59:59.000Z

40

Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept  

SciTech Connect (OSTI)

To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

MANN, F M

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)  

SciTech Connect (OSTI)

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.

DI Kaplan; RJ Serne

2000-02-24T23:59:59.000Z

42

Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass  

SciTech Connect (OSTI)

This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility of rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.

Riley, Brian J.; McCloy, John S.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Liu, Juan; Rodriguez, Carmen P.; Kim, Dong-Sang

2013-04-01T23:59:59.000Z

43

A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford  

SciTech Connect (OSTI)

The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

2014-08-04T23:59:59.000Z

44

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Broader source: Energy.gov (indexed) [DOE]

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

45

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

46

A data base and a standard material for use in acceptance testing of low-activity waste products  

SciTech Connect (OSTI)

The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material.

Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

1998-04-01T23:59:59.000Z

47

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

48

River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect (OSTI)

This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22T23:59:59.000Z

49

Georgia Waste Control Law (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Control Law (Georgia) Waste Control Law (Georgia) Georgia Waste Control Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Provider Georgia Department of Natural Resources The Waste Control Law makes it unlawful to dump waste in any lakes, streams

50

Low activation ferritic alloys  

DOE Patents [OSTI]

Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

1985-02-07T23:59:59.000Z

51

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Broader source: Energy.gov (indexed) [DOE]

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

52

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant December 2014  

Broader source: Energy.gov [DOE]

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

53

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

54

Final Tank Closure and Waste Management Environmental Impact...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of the low-activity waste (LAW) at the Hanford Site...

55

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Broader source: Energy.gov (indexed) [DOE]

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

56

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant December 2014  

Broader source: Energy.gov [DOE]

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

57

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

58

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to...

59

Single Pass Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization  

SciTech Connect (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Single-Pass Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using these two methods. Results show that the materials exhibit a relatively low forward dissolution rate on the order of 10-3 g/(m2d) with the material made in the laboratory giving slightly higher values.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F.

2012-03-20T23:59:59.000Z

60

Laws and Policies Relating to Detecting and Preventing Fraud, Waste and Abuse in Federal Health Care Programs  

E-Print Network [OSTI]

Laws and Policies Relating to Detecting and Preventing Fraud, Waste and Abuse in Federal Health and regulations, including those laws and regulations that address fraud, waste and abuse in Federal health care and procedures for ensuring compliance with such laws and for detecting and preventing fraud, waste and abuse

Niebur, Ernst

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT  

SciTech Connect (OSTI)

A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

HAMILTON, D.W.

2006-01-30T23:59:59.000Z

62

Chemical wastes and the law of conservation of matter  

Science Journals Connector (OSTI)

This note discusses the conservation of matter as a starting point for understanding the problems of chemical waste.

John W. Hill

1981-01-01T23:59:59.000Z

63

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

64

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect (OSTI)

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

65

Test of electron beam technology on Savannah River Laboratory low-activity aqueous waste for destruction of benzene, benzene derivatives, and bacteria  

SciTech Connect (OSTI)

High energy radiation was studied as a means for destroying hazardous organic chemical wastes. Tests were conducted at bench scale with a {sup 60}Co source, and at full scale (387 l/min) with a 1.5 MV electron beam source. Bench scale tests for both benzene and phenol included 32 permutations of water quality factors. For some water qualities, as much as 99.99% of benzene or 90% of phenol were removed by 775 krads of {sup 60}Co irradiation. Full scale testing for destruction of benzene in a simulated waste-water mix showed loss of 97% of benzene following an 800 krad dose and 88% following a 500 krad dose. At these loss rates, approximately 5 Mrad of electron beam irradiation is required to reduce concentrations from 100 g/l to drinking water quality (5 {mu}g/l). Since many waste streams are also inhabited by bacterial populations which may affect filtering operations, the effect of irradiation on those populations was also studied. {sup 60}Co and electron beam irradiation were both lethal to the bacteria studied at irradiation levels far lower than were necessary to remove organic contaminants.

Dougal, R.A. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Electrical and Computer Engineering

1993-08-01T23:59:59.000Z

66

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Corporate Board Meeting 11/18/10 Tank Waste Corporate Board Meeting 11/18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations

67

Tank Waste Corporate Board Meeting 11/18/10 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

18/10 18/10 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. High-Level Waste Corporate Board Meeting Agenda Journey to Excellence Goal 2 and Enhanced Tank Waste Strategy Introduction to Tc/I in Hanford Flowsheet Fate of Tc99 at WTP and Current Work on Capture Technetium Retention During LAW Vitrification Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass Secondary Waste Forms and Technetium Management Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification Salt Waste Processing Initiatives Recap and Conclusions to Tc/I in Hanford Flowsheet Presentations Tank Closure More Documents & Publications

68

Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrify all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stonea cementitious waste formare being considered to provide the additional LAW immobilization capacity.

Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.; Cozzi, Alex; Chung, Chul-Woo; Swanberg, David J.

2013-05-31T23:59:59.000Z

69

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

70

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

71

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment and Waste Treatment and Immobilization Plant - July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from July 31 - August 5, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the hazards analysis (HA) for WTP Low Activity Waste (LAW) Melter Process system. The primary purpose of this HSS field activity was to observe and

72

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

73

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

74

Summary - Flowsheet for the Hanford Waste Treatment Plant  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant Waste Treatment Plant ETR Report Date: March 2006 ETR-1 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Flowsheet for the Hanford Waste Treatment Plant (WTP) Why DOE-EM Did This Review The Hanford Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 53 million gallons of radioactive waste, separate it into high- and low-activity fractions, and produce canisters of high-level (HLW) glass (left) and containers of low-activity waste (LAW) glass (right). At the time of this review, the Plant was at approximately 70% design and 30% construction completion. The external review objective was to determine how well the WTP would meet its throughput capacities based on the current design,

75

Melting Hanford LAW into Iron-Phosphate Glass in a CCIM  

SciTech Connect (OSTI)

A vitrification test has been conducted using the cold crucible induction melter (CCIM) test system at the Idaho National Laboratory. The test was conducted to demonstrate the vitrification of a Hanford low activity waste (LAW) that contains relatively large amounts of sulfate and sodium, compared to other radioactive Hanford waste streams. The high sulfate content limits the potential loading of this waste stream in conventional borosilicate glass, so this test demonstrated how this waste stream could be vitrified in an iron-phosphate glass that can tolerate higher levels of sulfate.

Nick Soelberg; Sharna Rossberg

2011-09-01T23:59:59.000Z

76

Independent Oversight Activity Report, Hanford Waste Treatment and  

Broader source: Energy.gov (indexed) [DOE]

October 2013 October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from October 21-31, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff reviewing the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the WTP Low Activity Waste (LAW) Melter and Off-gas systems, observed a limited portion of the HA for the

77

Recommendations for management of greater-than-Class-C low-level radioactive waste: Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This report sets forth the Department's findings and recommendations for ensuring the safe management and disposal of low-level radioactive waste (LLW) with concentrations of radionuclides that exceed the limits established by the Nuclear Regulatory Commission for Class C LLW. Chapters are devoted to: Identification of Greater-Than Class-C Low-Level Waste; Regulatory Needs and Legislative Authorities; Proposed Actions to Ensure the Safe Management of Greater-Than-Class-C Low-Level Waste; System Considerations for Waste Disposal; Funding Options; Requirements for Implementation; and Schedule and Cost. Three Appendices are included: Public Law 99-240, Section 3(b); Greater-Than-Class-C Low-Level Waste Types and Quantities; and Descriptions of Systems Considerations for Waste Disposal. (LM)

Not Available

1987-02-01T23:59:59.000Z

78

Redox-dependent solubility of technetium in low activity waste...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as H 3 BO 3 ), fused, and then crushed to a fine, free flowing powder in a tungsten carbide mill. The crushed glass is not particularly hygroscopic and does not generate gas...

79

Iron Phosphate Glasses for Vitrifying DOE High Priority Nuclear Wastes  

SciTech Connect (OSTI)

Iron phosphate glasses have been studied as an alternative glass for vitrifying Department of Energy (DOE) high priority wastes. The high priority wastes were the Low Activity Waste (LAW) and the High Level Waste (HLW) with high chrome content stored at Hanford, WA, and the Sodium Bearing Waste (SBW) stored at the Idaho National Engineering and Environmental Laboratory. These wastes were recommended by Tanks Focus Area since they were expected to require special attention when vitrified in borosilicate glasses. All three of these wastes have been successfully vitrified in iron phosphate glasses at waste loadings ranging from a low of 32 wt% for the high sulfate LAW to 40 wt% for the SBW to a high of 75 wt% for the high chrome HLW. In addition to these desirable high waste loadings, the iron phosphate glasses were easily melted, typically between 950 and 1200 C, in less than 4 hours in commercial refractory oxide containers. It is noteworthy that the chemical durability of both glassy and deliberately crystallized iron phosphate wasteforms not only met, but significantly exceeded, all current DOE chemical durability requirements as measured by the Product Consistency Test (PCT) and Vapor Hydration Test (VHT). The high waste loading, low melting temperature, rapid furnace throughput (short melting time) and their outstanding chemical durability could significantly accelerate the clean up effort and reduce the time and cost of vitrifying these high priority wastes.

Kim, C.W.; Day, D.E.

2004-03-29T23:59:59.000Z

80

Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford  

Broader source: Energy.gov (indexed) [DOE]

DBVS DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level Waste (HLW) fraction in 20-25 years. The WTP is undersized for vitrifying the LAW fraction over the same time frame. The DOE is evaluating Bulk Vitrification as an alternative to increasing the size of the WTP LAW treatment process. Bulk vitrification is an in-container melting

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Broader source: Energy.gov [DOE]

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

82

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

83

Preliminary ILAW Formulation Algorithm Description, 24590 LAW RPT-RT-04-0003, Rev. 1  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP), has contracted with Bechtel National, Inc. (BNI) to design, construct, and commission the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site (DOE 2000). This plant is designed to operate for 40 years and treat roughly 50 million gallons of mixed hazardous high-level waste (HLW) stored in 177 underground tanks at the Hanford Site. The process involves separating the hight-level and low-activity waste (LAW) fractions through filtration, leaching, Cs ion exchange, and precipitation. Each fraction will be separately vitrified into borosilicate waste glass. This report documents the initial algorithm for use by Hanford WTP in batching LAW and glass-forming chemicals (GFCs) in the LAW melter feed preparation vessel (MFPV). Algorithm inputs include the chemical analyses of the pretreated LAW in the concentrate receipt vessel (CRV), the volume of the MFPV heel, and the compositions of individual GFCs. In addition to these inputs, uncertainties in the LAW composition and processing parameters are included in the algorithm.

Kruger, Albert A.; Kim, Dong-Sang; Vienna, John D.

2013-12-03T23:59:59.000Z

84

MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to date and how they compare to testing performed on LAW glasses. Other details about vitreous waste form durability and impacts of REDuction/OXidation (REDOX) on durability are given in Appendix A. Details about the FBSR process, various pilot scale demonstrations, and applications are given in Appendix B. Details describing all the different leach tests that need to be used jointly to determine the leaching mechanisms of a waste form are given in Appendix C. Cautions regarding the way in which the waste form surface area is measured and in the choice of leachant buffers (if used) are given in Appendix D.

Jantzen, C

2008-12-26T23:59:59.000Z

85

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Environmental Management (EM)

Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities HIAR-WTP-2014-01-27 This...

86

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant March 31 April 10, 2014  

Broader source: Energy.gov [DOE]

Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

87

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013  

Broader source: Energy.gov [DOE]

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

88

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant October 2013  

Broader source: Energy.gov [DOE]

Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

89

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant February 2014  

Broader source: Energy.gov [DOE]

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

90

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant July 2013  

Broader source: Energy.gov [DOE]

Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

91

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

92

Dissimilar behavior of technetium and rhenium in borosilicate waste glass as determined by X-ray absorption spectroscopy  

E-Print Network [OSTI]

N. R. ; LaMont, P. E. "Hanford immobilized low-activity tankstudies with simulated Hanford low-activity waste," PNNL-Darab, J. G. ; Smith, H. D. "Hanford tank waste simulants

Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

2006-01-01T23:59:59.000Z

93

Tank waste remediation system operation and utilization plan,vol. I {ampersand} II  

SciTech Connect (OSTI)

The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

Kirkbride, R.A.

1997-09-01T23:59:59.000Z

94

High Level Waste Corporate Board Charter | Department of Energy  

Energy Savers [EERE]

High Level Waste Corporate Board Charter High Level Waste Corporate Board Charter High Level Waste Corporate Board Charter More Documents & Publications Corporate Board By-Laws...

95

Nuclear waste storage bill passes Congress  

Science Journals Connector (OSTI)

Nuclear waste storage bill passes Congress ... The law sets up provisions to evaluate ways to store spent nuclear fuel and wastes. ...

1983-01-03T23:59:59.000Z

96

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect (OSTI)

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

97

1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

NONE

1993-11-01T23:59:59.000Z

98

Iron Phosphate Glass-Containing Hanford Waste Simulant  

SciTech Connect (OSTI)

Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

2012-01-18T23:59:59.000Z

99

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

100

A Guide to Careers in Administrative Law  

E-Print Network [OSTI]

? In his work with the Southern Environmental Law Center, Blan Holman advocates preserving, have in common? All of them use the tools of administrative law to effect positive change in policies from food labels to public benefits to nuclear waste disposal. Administrative law refers generally

Wolfe, Patrick J.

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chapter 19 - Nuclear Waste Fund  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

102

THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION  

SciTech Connect (OSTI)

The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

Wilmarth, B; Sheryl Bush, S

2008-10-31T23:59:59.000Z

103

conservation laws  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conservation Laws Conservation Laws Conservation Laws - Data Analysis Using Graphs - Histograms - Units or Vectors in Particle Physics In all of physics there are only six conservation laws. Each describes a quantity that is conserved, that is, the total amount is the same before and after something occurs. These laws have the restriction that the system is closed, that is, the system is not affected by anything outside it. Conservation of charge Conservation of momentum Conservation of mass/energy Conservation of angular momentum Conservation of baryons Conservation of leptons Let's review the conservation laws that you know from classical physics. Then, we will describe two particle physics conservation laws. Conservation of Charge This is used all the time in chemistry. The total charge in the system is

104

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect (OSTI)

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

105

Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters  

SciTech Connect (OSTI)

An iron phosphate composition for vitrifying a high sulfate (~17 wt%) and high alkali (~80 wt%) low activity Hanford waste, known as AZ102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ102 which corresponded to a total alkali and sulfate (SO3) content of 21 and 4.2 wt%, respectively. A slurry (7M Na) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090C for 10 days in a small JHM at PNNL and for 7 days in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their CCC-treated counterparts met the DOE LAW requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT). These glass waste forms retained up to 77 % of the SO3 (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium, surrogate for Tc-99, all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition (slurry feed) was melted continuously in the JHM and CCIM, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste.

Day, Delbert E.; Brow, R. K.; Ray, C. S.; Kim, Cheol-Woon; Reis, Signo T.; Vienna, John D.; Peeler, David K.; Johnson, Fabienne; Hansen, E. K.; Sevigny, Gary J.; Soelberg, Nicolas R.; Pegg, Ian L.; Gan, Hao

2012-01-05T23:59:59.000Z

106

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1989: Report to Congress in response to Public Law 99-240  

SciTech Connect (OSTI)

This response is submitted in response to the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act), Public Law 99-240. The report summarizes expenditures made during the calendar year 1989 of surcharge rebates from the July 1, 1986, milestones. Title I of the Act requires the Department of Energy (DOE) to administer a Surcharge Escrow Account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compacts (regional compacts currently without operating disposal sites) and nonmember States (States without disposal sites that are not members of compacts) to the three States with operating disposal facilities (Nevada, South Carolina, and Washington) (sited States) for using their disposal facilities. In administering the Surcharge Escrow Account, the Act requires DOE to: invest the funds in interest-bearing United States Government securities; determine eligibility of rebates of the funds by evaluating State and compact progress toward developing new disposal sites against milestones set forth in the Act; disburse the collected rebates and interest; assess compliance of rebate expenditures with the limitations prescribed in the Act; and submit a report annually to Congress summarizing rebate expenditures by States and regions. 5 tabs.

Not Available

1990-06-01T23:59:59.000Z

107

Hazardous Waste Management System-General (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

108

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

109

Property Law  

Science Journals Connector (OSTI)

Rights play an important role in private law. The owner of a car who has been damaged unlawfully by someone else has a right against the tortfeasor to be compensated (see Chap. 6 ...

Bram Akkermans

2014-01-01T23:59:59.000Z

110

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

111

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

A mixed waste treatability study will be performed to test the fluidized bed steam reforming (FBSR) technology on SRS Low Activity Waste (LAW) modified to simulate Hanford waste....

112

Graphs from Volume 1 Book 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to vitrify all Low Activity Waste (second LAW plant) -- Alternative 2B. 2 For all glass options, most of the impacts come from secondary waste. Secondary waste causes...

113

DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS  

SciTech Connect (OSTI)

This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and glass melting rate. The WTP HLW melter has a glass surface area of 3.75 m{sup 2} and depth of {approx}1.1 m. The two melters in the HLW facility together are designed to produce up to 7.5 MT of glass per day at 100% availability. Further increases in HLW waste processing rates can potentially be achieved by increasing the melter operating temperature above 1150 C and by increasing the waste loading in the glass product Increasing the waste loading also has the added benefit of decreasing the number of canisters for storage. The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet WTP contract requirements. The WTP's overall mission will require the immobilization oftank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulfur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings. Results of this work have demonstrated the feasibility of increases in waste-loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. It is expected that these higher waste loading glasses will reduce the HLW canister production requirement by about 25% or more.

KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

2009-12-30T23:59:59.000Z

114

Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements  

SciTech Connect (OSTI)

This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors.

Kocher, D.C.

1991-01-01T23:59:59.000Z

115

Physical, Chemical and Structural Evolution of Zeolite - Containing Waste Forms Produced from Metakaolinite and Calcined HLW  

SciTech Connect (OSTI)

During the seventh year of the current grant (DE-FG02-05ER63966) we completed an exhaustive study of cold calcination and began work on the development of tank fill materials to fill empty tanks and control residuals. Cold calcination of low and high NOx low activity waste (LAW) SRS Tank 44 and Hanford AN-107 simulants, respectively with metallic Al + Si powders was evaluated. It was found that a combination of Al and Si powders could be used as reducing agents to reduce the nitrate and nitrite content of both low and high NOx LAW to low enough levels to allow the LAW to be solidified directly by mixing it with metakaolin and allowing it to cure at 90 C. During room temperature reactions, NOx was reduced and nitrogen was emitted as N2 or NH3. This was an important finding because now one can pretreat LAW at ambient temperatures which provides a low-temperature alternative to thermal calcination. The significant advantage of using Al and Si metals for denitration/denitrition of the LAW is the fact that the supernate could potentially be treated in situ in the waste tanks themselves. Tank fill materials based upon a hydroceramic binder have been formulated from mixtures of metakaolinite, Class F fly ash and Class C flue gas desulphurization (FGD) ash mixed with various concentrations of NaOH solution. These harden over a period of hours or days depending on composition. A systematic study of properties of the tank fill materials (leachability) and ability to adsorb and hold residuals is under way.

Grutzeck, Michael

2005-06-01T23:59:59.000Z

116

Name of Policy: Detecting and Preventing Fraud, Waste and Abuse  

E-Print Network [OSTI]

Name of Policy: Detecting and Preventing Fraud, Waste and Abuse Policy Number: 3364-15-02 Issuing applicable laws and regulations, including those laws and regulations that address fraud, waste and abuse and preventing fraud, waste and abuse. The University will not take, or tolerate, any retaliatory act against

Viola, Ronald

117

EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

Crawford, C.; Jantzen, C.

2012-02-02T23:59:59.000Z

118

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

con202vf UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300, the Nuclear Waste Technical Review Board (Board) submits its second report of 2003 in accordance with provisions of the Nuclear Waste Policy Amendments Act of 1987, Public Law 100-203. The Act requires the Board

119

Classification and disposal of radioactive wastes: History and legal and regulatory requirements  

SciTech Connect (OSTI)

This document discusses the laws and regulations in the United States addressing classification of radioactive wastes and the requirements for disposal of different waste classes. This review emphasizes the relationship between waste classification and the requirements for permanent disposal.

Kocher, D.C.

1990-01-01T23:59:59.000Z

120

Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) announces the availability of a section 3116 determination for the disposal of separated, solidified, low-activity salt waste at the Savannah River Site (SRS) near...

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

Herman, Connie C.

2013-09-30T23:59:59.000Z

122

Towards a coronal unification with the SunTowards a coronal unification with the Sun Neon and oxygen in low activity starsNeon and oxygen in low activity stars  

E-Print Network [OSTI]

and oxygen in low activity starsNeon and oxygen in low activity stars The solar abundance / modeling problem as solution of the solar modeling problem; a problem that arises from the disagreement between revised solar abundances and helioseismology. We apply linear combinations of strong emission lines as well as a global

Robrade, Jan

123

PROJECT W-551 SUMMARY INFORMATION FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION  

SciTech Connect (OSTI)

This report provides summary data for use by the decision board to assess and select the final technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-fonnaldebyde resin. This document provides a summary of comparative data against prior weighted criteria to support technology selection. Supporting details and background for this summary are documented in the separate report, RPP-RPT-37741.

TEDESCHI AR

2008-08-11T23:59:59.000Z

124

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Facility * LAW - low-activity waste * SSTs -- single-shell tanks * WTP - Waste Treatment and Immobilization Plant 8 Phased Construction and Startup of the WTP...

125

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Facility * LAW - low-activity waste * SSTs -- single-shell tanks * WTP - Waste Treatment and Immobilization Plant "DraftPreliminary Analysis" - "Confidential...

126

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect (OSTI)

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

127

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

128

Tank Waste Corporate Board Meeting 11/06/08 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11/06/08 11/06/08 Tank Waste Corporate Board Meeting 11/06/08 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 6th, 2008. Note: (Please contact Steven Ross at steven.ross@em.doe.gov for a HLW Glass Waste Loadings version with animations on slide 6). Slurry Retrieval, Pipeline Transport & Plugging and Mixing Workshop The Way Ahead - West Valley Demonstration Project High-Level Liquid Waste Tank Integrity Workshop - 2008 Savannah River Tank Waste Residuals Hanford Tank Waste Residuals HLW Glass Waste Loadings High-Level Waste Corporate Board Performance Assessment Subcommittee More Documents & Publications Tank Waste Corporate Board Meeting 11/18/10 System Planning for Low-Activity Waste at Hanford Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

129

Rhenium solubility in borosilicate nuclear waste glass  

E-Print Network [OSTI]

Retention in Hanford LAW Glass - Phase 1 Final Report. VSL-rhenium in borosilicate waste glass as determined by X-rayfor NIST SRM 610617 Glasses Following ISO Guidelines," 35[

McCloy, John S.

2014-01-01T23:59:59.000Z

130

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad, New Mexico 8822 Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted

131

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

132

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

133

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect (OSTI)

The U.S. Department of Energys Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanfords tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanfords WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

2014-08-21T23:59:59.000Z

134

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

135

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

136

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

137

The Nuclear Waste Policy Act, as amended, with appropriations acts appended. Revision 1  

SciTech Connect (OSTI)

This act provides for the development of repositories for the disposal of high-level radioactive wastes, low-level radioactive wastes, and spent nuclear fuels. In addition, it establishes research and development programs, as well as demonstration programs regarding the disposal of these wastes. This Act consists of the Act of Jan. 7, 1983 (Public Law 97-425; 96 Stat. 2201), as amended by Public Law 100-203 and Public Law 102-486.

NONE

1995-02-01T23:59:59.000Z

138

Chinese Business Law Postgraduate  

E-Print Network [OSTI]

Intellectual property law 4 2 · Explanation of IPR basics · Strategic considerations · Avoiding IPR problems

Einmahl, Uwe

139

SECOND LAW OF THERMODYNAMICS  

E-Print Network [OSTI]

SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES San Diego, California, USA 14 ­ 15 June 2011 The First Law of energy conservation was even known (Joule 1843) and long before Thermodynamic concepts were, including this one. The Laws of Thermodynamics have much wider, including philosophical significance

Kostic, Milivoje M.

140

E-Print Network 3.0 - automated nuclear waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: automated nuclear waste Page: << < 1 2 3 4 5 > >> 1 Marc Bachman Amanda Lawing Summary: begins 1982...

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ris DTU 09-06-08 Waste-to-energy technologies in TIMES models  

E-Print Network [OSTI]

Risø DTU 09-06-08 1 Waste-to-energy technologies in TIMES models Poul Erik Grohnheit, Kenneth DTU 09-06-08 2 Waste-to-energy technologies in TIMES models · European law 1999 Directive and current (focusing on Denmark) Long tradition for waste incineration for district heating · How to model waste-to-energy

142

DOE Issues Salt Waste Determination for the Savannah River Site |  

Broader source: Energy.gov (indexed) [DOE]

Issues Salt Waste Determination for the Savannah River Site Issues Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks, approximately 36 million gallons of radioactive waste is left over from plutonium production during the Cold War. In addition, the department issued an amended Record of Decision and Implementation Plan to the Defense Nuclear Facilities Safety Board. "Today's announcement clears the way for the removal and treatment of this

143

Water, law, science  

SciTech Connect (OSTI)

In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

Narasimhan, T.N.

2007-10-17T23:59:59.000Z

144

Reviving Telecommunications Surveillance Law  

E-Print Network [OSTI]

2:27:00 PM Reviving Telecommunications Surveillance Law Paulif there was too much telecommunications surveillance in thewe can think of each telecommunications surveillance statute

Schwartz, Paul M.

2008-01-01T23:59:59.000Z

145

Gas Safety Law (Florida)  

Broader source: Energy.gov [DOE]

This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

146

third law of thermodynamics  

Science Journals Connector (OSTI)

third law of thermodynamics [The statement that the entropy of any perfect crystalline substance becomes zero at the absolute zero of temperature] ? dritter thermodynamischer Hauptsatz m, Nernstscher...

2014-08-01T23:59:59.000Z

147

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

148

College of Law LLM in Oil and Gas Law  

E-Print Network [OSTI]

College of Law LLM in Oil and Gas Law New LLM in Oil and Gas Law launched to complement our other internationally acclaimed LLM degrees NEW Holman Fenwick Willan is proud to sponsor the LLM Prize in Oil and Gas impressive range of courses on maritime and commercial law, the new LLM in Oil and Gas Law will allow

Martin, Ralph R.

149

Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... One of the best, because most general, of the conventional statements of the Second Law is that the only processes that can happen spontaneously are those in which the entropy ... Is anything gained by yet another addition to the anthology of statements of the Second Law ? I believe that it is illuminating to see that the arcane world of ...

D. R. WILKIE

1973-04-27T23:59:59.000Z

150

Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... SIR,-In a recent article1 Hillel proposes a statement of the Second Law of Thermodynamics which he claims is consistent with the time reversal symmetry of the microscopic laws of ... physical processes (such as K meson decay) which are asymmetric in time independently of thermodynamics. Hillel's remarks are thus a statement about time and not about ...

P. C. W. DAVIES

1974-03-22T23:59:59.000Z

151

A High-Conduction Ge Substituted Li3AsS4 Solid Electrolyte with Exceptional Low Activation Energy  

SciTech Connect (OSTI)

Lithium-ion conducting solid electrolytes show potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. Herein we report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li3AsS4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li3.334Ge0.334As0.666S4 has a high ionic conductivity of 1.12 mScm-1 at 27oC. Local Li+ hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li+ solid conductors. Furthermore, this study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.

Sahu, Gayatri [ORNL; Rangasamy, Ezhiylmurugan [ORNL; Li, Juchuan [ORNL; Chen, Yan [ORNL; An, Ke [ORNL; Dudney, Nancy J [ORNL; Liang, Chengdu [ORNL

2014-01-01T23:59:59.000Z

152

Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... In fact this is not original; nor is it a statement of the Second Law. A similar but more extensive statement, made more meaningful by an additional sentence* ... is happening can be made to do useful work.

A. C. LEGON

1973-08-17T23:59:59.000Z

153

Strip Mine Law (Missouri)  

Broader source: Energy.gov [DOE]

This law authorizes the Land Reclamation Commission of the Department of Natural Resources to adopt and promulgate rules and regulations pertaining to strip mining of coal and reclamation, review...

154

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

155

Solid Waste Facilities Regulations (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management

156

Microsoft Word - FAQs _English_ 01-22-10 WITH NEW PARAGRAPHS...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of the low-activity waste (LAW) at the Hanford Site...

157

Marc Bachman Amanda Lawing  

E-Print Network [OSTI]

hydropower to become the second largest source of electricity after coal #12;http Yucca Mountain Advantages / Disadvantages Proposed completion + Cost Safety + Transportation Future Work #12; Stored at facility High-level radioactive waste Environmental concerns Permanente disposal

Bowen, James D.

158

Low Level Radioactive Waste Authority (Michigan) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) < Back Eligibility Utility Fed. Government Investor-Owned Utility Municipal/Public Utility Program Info State Michigan Program Type Safety and Operational Guidelines Provider Department of Environmental Quality Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority (LLRWA) to fulfill state responsibilities under federal law for managing and assuring disposal capacity for the low-level radioactive waste produced in Michigan. The LLRWA began a facility siting process in 1989 under the statutory limits of Act 204. The LLRWA eventually determined that it was impossible to find a

159

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect (OSTI)

This report presents a history of commercial low-level radioactive waste disposal in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the last decade to ensure the safe disposal of low-level radioactive waste in the 1990s and beyond. These steps include the issuance of comprehensive State and Federal regulations governing the disposal of low-level radioactive waste, and the enactment of Federal laws making States responsible for the disposal of such waste generated within their borders.

Not Available

1994-08-01T23:59:59.000Z

160

Toward Understanding the Effect of Nuclear Waste Glass Composition of Sulfur Solubility  

SciTech Connect (OSTI)

The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ? P2O5 > Na2O ? B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ? SnO2 > Others ? SiO2. The order of component effects is similar to previous literature data, in most cases.

Vienna, John D.; Kim, Dong-Sang; Muller, I. S.; Kruger, Albert A.; Piepel, Gregory F.

2014-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

162

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

163

HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT  

SciTech Connect (OSTI)

The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

HERTING DL

2008-09-16T23:59:59.000Z

164

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

the Board will focus include the technical implications of very long-term dry storage of commercial spent, facility operation and design, and waste storage and disposal. con266vf #12;con266vf 2 The Board to have responsibility under existing law for the long-term management and disposition of DOE-owned spent

165

Chapter 3 Property Law  

Science Journals Connector (OSTI)

This chapter examines the economics of property rights and property law. It shows how the economics of property rights can be used to understand fundamental features of property law and related extra-legal institutions. The chapter examines both the rationale for legal doctrine, and the effects of legal doctrine regarding the exercise, enforcement, and transfer of rights. It also examines various property rights regimes including open access, private ownership, common property, and state property. The guiding questions are: How are property rights established? What explains the variation in the types of property rights? What governs the use and transfer of rights? And, how are property rights enforced? In answering these questions we argue that property rights and property law can be best understood as a system of societal rules designed to maximize social wealth. They do this by creating incentives for people to maintain and invest in assets, which leads to specialization and trade.

Dean Lueck; Thomas J. Miceli

2007-01-01T23:59:59.000Z

166

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

167

PHILOSOPHY, POLITICS,PHILOSOPHY, POLITICS,PHILOSOPHY, POLITICS, & LAW& LAW& LAW  

E-Print Network [OSTI]

PHILOSOPHY, POLITICS,PHILOSOPHY, POLITICS,PHILOSOPHY, POLITICS, & LAW& LAW& LAW This interdisciplinary major combines, in a systematic and structured way, basic education in philosophy, political by the rigor of philosophy and its attention to foundational issues who are also interested in politics and law

Krylov, Anna I.

168

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

SciTech Connect (OSTI)

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

169

Third Law of Thermodynamics  

Science Journals Connector (OSTI)

A new formulation of the third law is proposed stating a universal connection between the lower limits of the energy and the entropy of any physical system. As consequences of the new theorem are derived the Nernst heat theorem, a theorem concerning the lowest energy state of mixtures, and the nondegeneracy of the energetic ground state of physical systems.

Gottfried Falk

1959-07-15T23:59:59.000Z

170

Remote-handled transuranic waste study  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

NONE

1995-10-01T23:59:59.000Z

171

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

172

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

173

The Thermodynamics Laws from The Law of Stable Equilibrium  

Science Journals Connector (OSTI)

The First and Second Laws of Thermodynamics and the Two Property Rule are derived from the Law of Stable Equilibrium. The treatment is simpler ... Haywood (2). It is aimed at thermodynamics courses for engineerin...

P. H. Brazier

1985-01-01T23:59:59.000Z

174

1989 Annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

Not Available

1990-10-01T23:59:59.000Z

175

FACULTY OF LAW Centre for Commercial Law Studies  

E-Print Network [OSTI]

FACULTY OF LAW Centre for Commercial Law Studies SEMINAR ON FINANCIAL REGULATORY REFORM Obama recently signed into law a package of financial regulatory reforms unparalleled in scope and depth since the 1930s. The Dodd-Frank Wall Street Reform and Consumer Protection Act is intended

Tan, Chew Lim

176

Law Behind Second Law of Thermodynamics --Unification with Cosmology--  

E-Print Network [OSTI]

In an abstract setting of a general classical mechanical system as a model for the universe we set up a general formalism for a law behind the second law of thermodynamics, i.e. really for "initial conditions". We propose a unification with the other laws by requiring similar symmetry and locality properties.

Holger B. Nielsen; Masao Ninomiya

2006-02-02T23:59:59.000Z

177

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Broader source: Energy.gov (indexed) [DOE]

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

178

Basis for Section 3116 Determination for Salt Waste Disposal at the  

Broader source: Energy.gov (indexed) [DOE]

Basis for Section 3116 Determination for Salt Waste Disposal at the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site The Secretary of Energy is making this 3116 Determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) [1]. This 3116 Determination concerns the disposal of separated, solidified low-activity radioactive salt waste at the Savannah River Site (SRS) near Aiken, South Carolina. Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site More Documents & Publications EIS-0082-S2: Amended Record of Decision Notice of Availability of Section 3116 Determination for Salt Waste Disposal at the Savannah River Site

179

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

SciTech Connect (OSTI)

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

2009-02-20T23:59:59.000Z

180

The Second Law of Thermodynamics  

Science Journals Connector (OSTI)

This chapter presents the second law of thermodynamics. This law will conform to your intuitiononce you understand its significance and can apply it properly to both closed and open systems.

Dwight C. Look Jr.; Harry J. Sauer Jr.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

APSUO By-laws  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Photon Source Users Organization By-laws Advanced Photon Source Users Organization By-laws Name This organization will be called the Advanced Photon Source Users Organization (APSUO). Purpose The purpose of this Organization is to facilitate the availability and effective use of the Advanced Photon Source by the synchrotron radiation research community so that the greatest overall scientific and technical benefits are realized. Organization Membership All badged APS users are APSUO members. Meetings Annual User Meetings will be held at the APS site. The APSUO Steering Committee shall be responsible for the programs of the User Meetings. APSUO members shall receive appropriate advance notice of the Meetings. Steering Committee A Steering Committee will conduct the business of the APSUO. Four members

182

Ethics and Law  

Science Journals Connector (OSTI)

Ethics are the set of moral rules that govern human conduct. Hegel for his part asserted that ethicity implied the full realization of freedom as well as the suppression of it as arbitrariness. In this paper we point out that through the relation between Law and Ethics we can discover how high are the Ethics of a society as well as the adherence of its members to it.

Andrs Vilacoba Ramos

2007-01-01T23:59:59.000Z

183

Laws and Requirements | Department of Energy  

Office of Environmental Management (EM)

Laws and Requirements Laws and Requirements To help agencies comply with federal laws and requirements, the Federal Energy Management Program (FEMP) analyzes energy management...

184

Fisher info and thermodynamics' first law  

E-Print Network [OSTI]

theory, that thermodynamics ?rst law (TFL) can bewhich is a Fishers thermodynamics ?rst-law: note that theone can derive thermodynamics ?rst law for the Fisher

Plastino, A; Plastino, A R; Soffer, Bernard H

2006-01-01T23:59:59.000Z

185

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

186

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

187

Report to Congress: 1995 Annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report is prepared in response to the Low-Level Radioactive Waste Policy Act, Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the progress of states and compact regions during calendar year 1995 in establishing new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress, and also includes an introduction that provides background information and perspective on United States policy for low-level radioactive waste disposal.

NONE

1996-06-01T23:59:59.000Z

188

1996 annual report on low-level radioactive waste management progress. Report to Congress  

SciTech Connect (OSTI)

This report is prepared in response to the Low-Level Radioactive Waste Policy Act (the Act), Public Law 96-573, 1980, as amended by the Low-Level Radioactive Waste Policy Amendments Act of 1985, Public Law 99-240. The report summarizes the activities during calendar year 1996 related to the establishment of new disposal facilities for commercially-generated low-level radioactive waste. The report emphasizes significant issues and events that have affected progress in developing new disposal facilities, and also includes an introduction that provides background information and perspective on US policy for low-level radioactive waste disposal.

NONE

1997-11-01T23:59:59.000Z

189

Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3  

SciTech Connect (OSTI)

This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

Not Available

1993-03-01T23:59:59.000Z

190

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

191

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

192

Missouri Clean Water Law (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Missouri Clean Water Law (Missouri) Missouri Clean Water Law (Missouri) Missouri Clean Water Law (Missouri) < Back Eligibility Agricultural Commercial Construction Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Missouri Program Type Environmental Regulations Provider Missouri Department of Natural Resources The public policy of the state of Missouri is to conserve the waters of the state and to protect, maintain, and improve their quality for public water supplies and for domestic, agricultural, industrial, recreational and other legitimate beneficial uses and for the propagation of wildlife, fish and aquatic life, as well as to provide for the prevention, abatement, and control of new or existing water pollution. No waste may be discharged into

193

Everyday Environmentalism: Law, Nature & Individual Behavior  

E-Print Network [OSTI]

Review: Everyday Environmentalism: Law, Nature & IndividualJason J . Everyday Environmentalism: Law, Nature &this book to "promote environmentally conscious decision-

Anderson, Byron P.

2012-01-01T23:59:59.000Z

194

Medical and Biohazardous Waste Generator's Guide (Revision2)  

SciTech Connect (OSTI)

These guidelines describe procedures to comply with all Federal and State laws and regulations and Lawrence Berkeley National Laboratory (LBNL) policy applicable to State-regulated medical and unregulated, but biohazardous, waste (medical/biohazardous waste). These guidelines apply to all LBNL personnel who: (1) generate and/or store medical/biohazardous waste, (2) supervise personnel who generate medical/biohazardous waste, or (3) manage a medical/biohazardous waste pickup location. Personnel generating biohazardous waste at the Joint Genome Institute/Production Genomics Facility (JGI/PGF) are referred to the guidelines contained in Section 9. Section 9 is the only part of these guidelines that apply to JGI/PGF. Medical/biohazardous waste referred to in this Web site includes biohazardous, sharps, pathological and liquid waste. Procedures for proper storage and disposal are summarized in the Solid Medical/Biohazardous Waste Disposal Procedures Chart. Contact the Waste Management Group at 486-7663 if you have any questions regarding medical/biohazardous waste management.

Waste Management Group

2006-11-29T23:59:59.000Z

195

Waste Management Programmatic Environmental Impact Statement (WM PEIS)  

Broader source: Energy.gov (indexed) [DOE]

Waste Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing more than 2 million cubic meters of radioactive wastes from past, present, and future DOE activities. The WM PEIS will assist the U.S. Department of Energy (DOE) in improving the efficiency and reliability of management of its current and anticipated volumes of radioactive and hazardous wastes and will help DOE continue to comply with applicable laws and regulations and protect workers, public health and safety, and the environment. The WM PEIS

196

Medical and biohazardous waste generator`s guide: Revision 1  

SciTech Connect (OSTI)

This Guide describes the procedures required to comply with all federal and state laws and regulations and Lawrence Berkeley Laboratory (LBL) policy applicable to medical and biohazardous waste. The members of the LBL Biological Safety Subcommittee participated in writing these policies and procedures. The procedures and policies in this Guide apply to LBL personnel who work with infectious agents or potentially infectious agents, publicly perceived infectious items or materials (e.g., medical gloves, culture dishes), and sharps (e.g., needles, syringes, razor blades). If medical or biohazardous waste is contaminated or mixed with a hazardous chemical or material, with a radioactive material, or with both, the waste will be handled in accordance with the applicable federal and State of California laws and regulations for hazardous, radioactive, or mixed waste.

Not Available

1994-09-01T23:59:59.000Z

197

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

198

Independent Oversight Activity Report for Catholic University...  

Office of Environmental Management (EM)

Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is focused on developing the Low Activity Waste (LAW)...

199

On Hacks law  

E-Print Network [OSTI]

Abstract. Hacks law is reviewed, emphasizing its implications for the elongation of river basins as well as its connections with their fractal characteristics. The relation between Hacks law and the internal structure of river basins is investigated experimentally through digital elevation models. It is found that Hacks exponent, elongation, and some relevant fractal characters are closely related. The self-affine character of basin boundaries is shown to be connected to the power law decay of the probability of total contributing areas at any link and to Hacks law. An explanation for Hacks law is derived from scaling arguments. From the results we suggest that a statistical framework referring to the scaling invariance of the entire basin structure should be used in the interpretation of Hacks law.

Riccardo Rigon; Ignacio Rodriguez-iturbe; Amos Maritan; Achille Giacometti; David G. Tarboton; Andrea Rinaldo

1996-01-01T23:59:59.000Z

200

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Waste Isolation Pilot Plant Biennial Environmental Compliance Report  

SciTech Connect (OSTI)

This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

Washington Regulatory and Environmental Services (WRES)

2004-10-25T23:59:59.000Z

202

Attitudes toward gun control laws.  

E-Print Network [OSTI]

??Recently, empirical attention has been directed toward understanding public opinion about gun control laws. Despite this focus, three gaps are evident in extant scholarship. First, (more)

Borkowski, Elizabeth.

2012-01-01T23:59:59.000Z

203

Solar Easements and Rights Laws  

Broader source: Energy.gov [DOE]

Solar access provisions in the General Laws of Massachusetts allow for the creation of voluntary solar easements to protect solar exposure and authorizes zoning rules that prohibit unreasonable...

204

The Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... Is it not true that the Second Law of ... of Thermodynamics is contradicted by the known facts of diffusion? When, for instance, masses of ...

M. A. BROWNE

1905-11-30T23:59:59.000Z

205

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

206

Transuranic Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

1999-07-09T23:59:59.000Z

207

Waste?to?Energy  

Broader source: Energy.gov [DOE]

Waste?to?Energy Roadmapping Workshop Waste?to?Energy Presentation by Jonathan Male, Director of the Bioenery Technolgies Office, Department of Energy

208

Nuclear Waste Disposal: Amounts of Waste  

Science Journals Connector (OSTI)

The term nuclear waste...embraces all residues from the use of radioactive materials, including uses in medicine and industry. The most highly radioactive of these are the spent fuel or reprocessed wastes from co...

2005-01-01T23:59:59.000Z

209

Louisiana Water Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality administers the proper protection and maintenance of the state's waters, and regulate the discharges of waste materials, pollutants, and other...

210

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

211

Novel Non-Precious metals for PEMFC A major impediment to the commercialization of fuel cell technology is the low activity  

E-Print Network [OSTI]

Novel Non-Precious metals for PEMFC Abstract: A major impediment to the commercialization of fuel cell technology is the low activity of platinum electrocatalyst used for oxygen reduction. Pt has been is of interest. The overall objective of this project is to synthesize non-precious metal electrocatalysts

Popov, Branko N.

212

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

213

A legislator`s guide to municipal solid waste management  

SciTech Connect (OSTI)

The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

Starkey, D.; Hill, K.

1996-08-01T23:59:59.000Z

214

Impact of DOE Orders on Waste Management Operation  

SciTech Connect (OSTI)

Department of Energy Orders are the internal documents which govern the management of all Department of Energy facilities and operations. DOE Orders are the vehicles by which Federal and state laws and regulations are applied to Department of Energy activities. A selected set of 22 Department of Energy Orders was reviewed to identify the applicability and impact of each Order on waste management operations at Los Alamos National Laboratory. Of the 22 Orders reviewed, five set forth requirements which have a high degree of impact on waste management activities. Eight Orders have a moderate degree of impact on waste management activities, and the remaining nine Orders have a low degree of impact.

Klein, R.B.; Jennrich, E.A.; Shuman, R.; Sandquist, G.M. (Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)); Rutz, A.C.; Littleton, M.W.; McCauce, C.H. (Wastren, Inc., Idaho Falls, ID (United States))

1989-09-01T23:59:59.000Z

215

Recycling of sodium waste  

Science Journals Connector (OSTI)

Recycling of sodium waste ... Methods for handling and recycling a dangerous and costly chemical. ...

Bettina Hubler-Blank; Michael Witt; Herbert W. Roesky

1993-01-01T23:59:59.000Z

216

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

ELLEFSON, M.D.

2000-01-06T23:59:59.000Z

217

Infectious waste feed system  

DOE Patents [OSTI]

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

218

Partial List of Laws, Regulations and Guidelines Bearing on the Operation of Biological Research Labs  

E-Print Network [OSTI]

Partial List of Laws, Regulations and Guidelines Bearing on the Operation of Biological Research Chemicals in the Laboratory 40 CFR 260 - 262; RCRA ­ Hazardous Waste Management, Lists and Generator Rule Select Agent Regulations, 49 CFR 171-180-Transportation Additional CFR's not indicated above 21

Oliver, Douglas L.

219

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

220

LLM Oil, Gas and Mining Law Module Information: Oil, Gas and Mining Investment Law I and  

E-Print Network [OSTI]

international investment law regulating the main activities of both these industries; 3. the knowledge and understanding of international and domestic case law relating to investment disputes involving petroleum to Public International Law & International/Transnational Investment Law: Actors, Sources, Principles

Evans, Paul

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The disposal of orphan wastes using the greater confinement disposal concept  

SciTech Connect (OSTI)

In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

1991-02-01T23:59:59.000Z

222

Technetium Retention During LAW Vitrification  

Broader source: Energy.gov (indexed) [DOE]

Technetium Retention During Technetium Retention During LAW Vitrification Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC November 18, 2010 Overview * Tc in borosilcate glass structure * Re as a surrogate for Tc * Summary of previous data on Tc incorporation into LAW glass * Summary of results from ongoing test program * Single-pass retention vs. retention with recycle * Tc volatilization during container filling Tc in LAW Glass Structure * Tc is present as Tc 7+ and Tc 4+ * Tc 7+ is dominant in more oxidized glasses and Tc 4+ is dominant in reduced glasses * Strongly reducing conditions produce Tc 0 * The structure and local environment of Tc in WTP LAW glasses has been investigated by: * Synchrotron X-Ray Absorption Spectroscopy * Lukens, McKeown, Buechele, Muller, Shuh, and Pegg, Chem. Mater., 19, 559 (2007)

223

Louisiana Air Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

This law states regulations for air quality control and states the powers and duties of the secretary of environmental quality. It provides information about permits and licenses, air quality...

224

Missouri Air Conservation Law (Missouri)  

Broader source: Energy.gov [DOE]

This law's purpose is to maintain the purity of the air resources of the state to protect the health, general welfare and physical property of the people, maximum employment and the full industrial...

225

Risk assessment and the law  

Science Journals Connector (OSTI)

Risk assessment and the law ... I am not at all sure that federal judges, immune from the political process, should ever be involved, under any circumstances, as arbiters of the degree of risk acceptable to the public. ...

1980-11-24T23:59:59.000Z

226

The Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... be faced by every student attempting to grasp for himself the significance of the second law of ... of thermodynamics. As I, with difficulty and without much help from the text-books, extricated ...

F. SODDY

1905-12-07T23:59:59.000Z

227

The Third Law of Thermodynamics  

Science Journals Connector (OSTI)

... 1956, the late Sir Francis Simon gives a historical and critical survey of the third law of ... of thermodynamics. In 1906, in a paper entitled "On the Calculation of Chemical Equilibria from ...

S. WEINTROUB

1957-06-29T23:59:59.000Z

228

The Second Law of Thermodynamics  

Science Journals Connector (OSTI)

In our qualitative description of processes we have already emphasized the trend of any isolated system towards an unique and stable equilibrium state. The Second Law of Thermodynamics is the quantitative formula...

Henning Struchtrup

2014-01-01T23:59:59.000Z

229

Public Law 104-134  

Broader source: Energy.gov (indexed) [DOE]

4-134 4-134 Debt Collection Improvement Act of 1996 (Public Law 104-134) Updated April 30, 1999 The President has signed into law historic legislation having a major impact on the way the Federal Government makes payments and collects its debts. Within the Omnibus Consolidated Rescissions and Appropriations Act of 1996 (Public Law 104-134) is the Debt Collection Improvement Act of 1996. The legislation provides an excellent opportunity for the Federal Government to move toward its goal of increased electronic commerce and improved cash and debt collection management. It is our intent to expeditiously implement the law to fulfill the Congressional mandate. The Act will enhance debt collection Government-wide, as well as mandate the use of electronic funds transfer (EFT) for Federal payments, allow Federal Reserve Bank

230

Commutation Relations and Conservation Laws  

Science Journals Connector (OSTI)

The response of a physical system to external electromagnetic and gravitational fields, as embodied in the electric current and stress tensor conservation laws, is used to derive the equal-time commutation relations for charge density and energy density.

Julian Schwinger

1963-04-01T23:59:59.000Z

231

Securities Law Issues Relating to Community Solar Projects  

Broader source: Energy.gov [DOE]

The law firm Stoel Rives has analyzed the issues related to Securities Law and Community Solar both in the context of Washington state law and federal law.

232

Laws & Legal Resources | Department of Energy  

Energy Savers [EERE]

Laws & Legal Resources Laws & Legal Resources Library Books | Credit: GC Photographer Daniel Zazueta Library Books | Credit: GC Photographer Daniel Zazueta Looking for... Online...

233

Permitting plan for the high-level waste interim storage  

SciTech Connect (OSTI)

This document addresses the environmental permitting requirements for the transportation and interim storage of solidified high-level waste (HLW) produced during Phase 1 of the Hanford Site privatization effort. Solidified HLW consists of canisters containing vitrified HLW (glass) and containers that hold cesium separated during low-level waste pretreatment. The glass canisters and cesium containers will be transported to the Canister Storage Building (CSB) in a U.S. Department of Energy (DOE)-provided transportation cask via diesel-powered tractor trailer. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage of Tank Waste Remediation Systems (TWRS) immobilized HLW (IHLW) and other canistered high-level waste forms; and (2) interim storage and disposal of TWRS immobilized low-activity tank waste (ILAW). An environmental requirements checklist and narrative was developed to identify the permitting path forward for the HLW interim storage (HLWIS) project (See Appendix B). This permitting plan will follow the permitting logic developed in that checklist.

Deffenbaugh, M.L.

1997-04-23T23:59:59.000Z

234

High-Level Waste Corporate Board Meeting Agenda  

Broader source: Energy.gov (indexed) [DOE]

High-Level Waste Corporate Board High-Level Waste Corporate Board Meeting Agenda Loews Hotel 1065 West Peachtree St, Atlanta, Georgia November 18, 2010 Time Topic Speaker 7:30 AM Closed Session - ratify Charter Board members 8:30 AM Welcome, Introduction, 2011 focus for HLW Corp Board Shirley Olinger 8:50 AM Introduction to Tc/I in Hanford Flowsheet  Show flowsheet w/ split locations  Describe recycle of LAW concept  Discuss baseline assumptions  Describe subsequent talks using flowsheet figure Gary Smith 9:15 AM Waste Treatment & Immobilization Plant (WTP)  Tc/I split factors (w/ and w/o recycle)  Water management (w/ and w/o recycle) Albert Kruger 9:45 AM WTP Melter/Offgas Systems Decontamination Factors  Re as a stimulant for Tc  Issues that limit Tc incorporation in LAW glass

235

Waste-to-Energy: Waste Management and Energy Production Opportunities...  

Office of Environmental Management (EM)

Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

236

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

237

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

238

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

239

Waste Isolation Pilot Plant Activites  

Broader source: Energy.gov (indexed) [DOE]

DENVER, CO DENVER, CO WASTE ISOLATION PILOT PLANT ACTIVITIES ACTIVITIES O.W. EATON MANAGER, EXTERNAL EMERGENCY MANAGEMENT OPENING OF NEW ROUTES COMPLIANCE WITH PUBLIC LAW 102 579 WIPP LANDWITHDRAWL 102-579 WIPP LANDWITHDRAWL ACT OF 1992 1082 EMERGENCY PERSONNEL TRAINED IN 2010 *MERRTT 1082 EMERGENCY PERSONNEL TRAINED IN 2010 MERRTT *INCIDENT COMMAND SYSTEM *HOSPITAL PREPAREDNESS *HOSPITAL PREPAREDNESS *MEDICAL EXAMINER DISPATCHER (BETA) *DISPATCHER (BETA) RADIOLOGICAL TRAINING RADIOLOGICAL TRAINING FOR FOR FOR FOR HOSPITAL PERSONNEL HOSPITAL PERSONNEL Based on FEMA Course G-346 iNTRODUCTION 4 Hazardous Materials Accidents Part 1 WIPP EXTERNAL EMERGENCY MANAGEMENT EXERCISES CONDUCTED E ercise Location Date Exercise Location Date TRANSAX 90 Colorado Springs, Colorado November 8, 1990 1

240

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The overall goal of this research conducted under the auspices of the USDOE Environmental Management Science Program (EMSP) is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated. Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 10,000-fold by ordinary inorganic chemicals. Quite simply, if the radioactive matter and bulk inorganic chemicals could be separated into separate streams, large cost savings would accrue, because the latter stream is much cheaper to dispose of. In principle, one could remove the radionuclides from the waste, leaving behind the bulk of the waste; or one could remove certain bulk chemicals from the waste, leaving behind the radionuclides. The preponderance of effort over the past two decades has focused on the former approach, which produces a high-level stream for vitrification and a low-activity stream for either vitrification (Hanford) or grout (Savannah River). At Hanford, a particular concern arises in that vitrification of a large volume of low-activity waste will be unacceptably expensive. To make matters worse, a projected future deficit of tank space may necessitate construction of expensive new tanks. These problems have raised questions as to whether a solution could be devised based on separation of sodium from the waste, resulting in the reduction of the total volume of waste that must be vitrified.

Moyer, Bruce A.; Lumetta, Gregg J.; Marchand, Alan P.

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The overall goal of this research conducted under the auspices of the USDOE Environmental Management Science Program (EMSP) is to provide a scientific foundation upon which the feasibility of new liquid- liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated. Disposal of high- level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 10,000-fold by ordinary inorganic chemicals.1 Quite simply, if the radioactive matter and bulk inorganic chemicals could be separated into separate streams, large cost savings would accrue, because the latter stream is much cheaper to dispose of. In principle, one could remove the radionuclides from the waste, leaving behind the bulk of the waste; or one could remove certain bulk chemicals from the waste, leaving behind a mixture of radionuclides and minor inorganic salts. The preponderance of effort over the past two decades has focused on the former approach, which produces a high- level stream for vitrification and a low-activity stream for either vitrification (Hanford) or grout (Savannah River). At Hanford, a particular concern arises in that vitrification of a large volume of low-activity waste will be unacceptably expensive. To make matters worse, a projected future deficit of tank space may necessitate construction of expensive new tanks. These problems have raised questions as to whether a solution could be devised based on separation of sodium from the waste, resulting in the reduction of the total volume of waste that must be vitrified.

Moyer, Bruce A; Lumetta, Gregg J.; Marchand, Alan P.

2003-06-01T23:59:59.000Z

242

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

243

Below regulatory concern owners group: Individual and population impacts from BRC (below regulatory concern) waste treatment and disposal  

SciTech Connect (OSTI)

Using the IMPACTS-BRC and PRESTO-EPA-POP codes, researchers calculated potential individual and population doses for routine and unexpected radiation exposures resulting from the transportation and disposal of BRC nuclear power plant wastes. These calculations provided a basis for establishing annual curie and radionuclide concentration limits for BRC treatment and disposal. EPRI has initiated a program to develop a petition for rulemaking to NRC that would allow management of certain very low activity nuclear power plant waste types as below regulatory concern (BRC), thus exempting these wastes from requirements for burial at licensed low-level radioactive waste disposal facilities. The technical information required to support the BRC petition includes an assessment of radiologic impacts resulting from the proposed exemption, based on estimated individual and population doses that might result from BRC treatment and disposal of nuclear power plant wastes. 13 figs., 31 tabs.

Murphy, E.S.; Rogers, V.C.

1989-08-01T23:59:59.000Z

244

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats up to 1...

245

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trucks for scale. The DSTs have limited capacity and are aging. Maintaining these tanks is important to ensure that waste is ready to supply the Waste Treatment Plant. The...

246

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

247

Nuclear waste solids  

Science Journals Connector (OSTI)

Glass and polycrystalline materials for high-level radioactive waste immobilization are discussed. Borosilicate glass has been selected as the waste form for defence high-level radwaste in the US. Since releas...

L. L. Hench; D. E. Clark; A. B. Harker

1986-05-01T23:59:59.000Z

248

Kepler's Laws The equation of motion  

E-Print Network [OSTI]

of a gravitational field created by point mass that is fixed at the origin. FIGURE Newton's laws give the basic. By Newton's law on gravition, the force exerted by the fixed mass on the movable mass is in the direction and Kepler's laws imply the universal law on gravitation. See ??? 2 #12;the the semimajor axis of the ellipse

Knörrer, Horst

249

Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status  

SciTech Connect (OSTI)

The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

B. D. Becker; W. A. Clayton; B. M. Crowe

2002-05-01T23:59:59.000Z

250

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

251

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

252

Practical guidelines for small-volume additions of uninhibited water to waste storage tanks  

SciTech Connect (OSTI)

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

1994-12-01T23:59:59.000Z

253

Practical guidelines for small volume additions of uninhibited water to waste storage tanks  

SciTech Connect (OSTI)

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-11-01T23:59:59.000Z

254

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

255

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

256

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

257

Cutting Wasteful Spending While Protecting Our Priorities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cutting Wasteful Spending While Protecting Our Priorities Cutting Wasteful Spending While Protecting Our Priorities Cutting Wasteful Spending While Protecting Our Priorities June 28, 2013 - 4:06pm Addthis Aoife McCarthy Press Secretary, Office of Public Affairs It is essential for Republicans and Democrats in Congress to work together on a budget that cuts wasteful spending while supporting jobs, the economy, and middle-class families. The President has been clear that he will not sign individual appropriations bills that simply attempt to enact the House Republican budget into law, which would hurt our economy and make draconian cuts to middle class priorities. Instead of reinforcing the Administration's all-of-the-above approach to energy, the House Republican Energy and Water Appropriations bill drastically undermines the work of the Department of Energy. It undermines

258

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad Carlsbad , New Mexico 88221 NOV 1 4 2013 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Sa nta Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Pl ant Annua l Waste Minimization Report Dea r Mr. Kieling : The purpose of this letter is to provide you wi th the Waste Isola lion Pilot Plant (W IPP) Annua l Waste Minimi za tion Report. This report is required by and has bee n prepared in accordance with the W IPP Haza rdou s Was te Faci lity Permit Part 2, Perm it Condition 2.4. We certify under penalty of law that this document and all attachmen ts were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and eval uate the information submitted. Based on ou

259

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT Annual Financial Report Years Ended September 30, 2009 and 2008 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT Annual Financial Report Years Ended September 30, 2009 and 2008 As required by Section 304(c) of the Nuclear Waste Policy Act (NWPA) of 1982, as amended, Public Law 97-425, the following document is the United States Department of Energy's (DOE) Office of Civilian Radioactive Waste Management's Annual Financial Report for the years ended September 30, 2009 and 2008 as required by Section 302(c)(l) ofNWPA. The information in this report is current only as of September 30, 2009, and does not reflect actions or changes that have occurred since then.

260

Office of the US Nuclear Waste Negotiator  

SciTech Connect (OSTI)

The Office of the US Nuclear Waste Negotiator was created as an independent federal agency by the US Congress pursuant to the 1987 amendments to the Nuclear Waste Policy Act of 1982. The office, which was authorized by Congress for 5 years following the enactment of the 1987 amendments, is headquartered in Boise, Idaho, and maintains a liaison office in Washington DC. The negotiator is charged with the responsibility of attempting to find a state or Indian tribe willing to host a repository or monitored retrievable storage (MRS) facility at a technically qualified site on reasonable terms. The negotiator is instructed to negotiate with any state or Indian tribe that expresses an interest in hosting a repository or MRS facility. The negotiator will formally submit the negotiated agreement and environmental assessment to Congress, and the agreement will become effective when acted on by Congress and signed by the President into law.

Leroy, D.H.

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Revolution in European nuclear law  

Science Journals Connector (OSTI)

Until now, there has been no European Community Law about nuclear safety. According to decisions of the European Court of Justice (ECJ), the community has the right to regulate this field, but the former policy neglected this. Now, a draft has been published that seems to revolutionise the standards of nuclear safety in Europe.

Wolf-Georg Scharf

2009-01-01T23:59:59.000Z

262

COLLEGE OF LAW UNDERGRADUATE STUDIES  

E-Print Network [OSTI]

and staff from over forty countries, including countries in Europe, the Middle East, Africa, Asia and North and South America. You will make enduring friendships here and build lasting memories of your time with us university research centres in the areas of Environmental and Energy Law and Policy, Criminal Justice

Martin, Ralph R.

263

Philadelphia University Faculty of law  

E-Print Network [OSTI]

contracts that have economic aspects such as information and technology transfer contracts; also, a brief/2008 Course Syllabus Course code: 410331 Course Title: International Trade Law Course prerequisite (s) and-tarawneh@philadelphia.edu.jo313 Assistant professor Dr. Bassam Tarawneh Course module description: Module name: International

264

Wind Access and Permitting Law  

Broader source: Energy.gov [DOE]

In July 2009, the Delaware legislature enacted a law ([http://www.legis.delaware.gov/LIS/LIS145.NSF/bfa9b1a8c49c444f852568c0005... HS 1 for H.B. 70]) prohibiting unreasonable public and private...

265

Philadelphia University Faculty of law  

E-Print Network [OSTI]

of investiture, the theory of adaptation and assignment, and what the Jordanian civil code contains for international judicial competence, the rules of confession, the enforcement of judicial decisions and the foreign arbitration decisions in accordance with the Jordanian law for enforcing foreign decisions

266

The Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... CLAUSIUS' supposed deduction of the second law from the ordinary equations of dynamics in the form has been discussed at length by ... form has been discussed at length by Messrs. Larmor and Bryan in their Report on Thermodynamics for the British Association. They accept the deduction on condition that the system be ...

S. H. BURBURY

1893-12-14T23:59:59.000Z

267

Federal Energy Management Program: Laws and Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laws and Laws and Regulations to someone by E-mail Share Federal Energy Management Program: Laws and Regulations on Facebook Tweet about Federal Energy Management Program: Laws and Regulations on Twitter Bookmark Federal Energy Management Program: Laws and Regulations on Google Bookmark Federal Energy Management Program: Laws and Regulations on Delicious Rank Federal Energy Management Program: Laws and Regulations on Digg Find More places to share Federal Energy Management Program: Laws and Regulations on AddThis.com... Requirements by Subject Requirements by Regulation Notices & Rules Guidance Facility Reporting Fleet Reporting Laws and Regulations EISA 432 Compliance Tracking Track Federal agency progress toward Section 432 of the Energy Independence and Security Act (EISA) of 2007 using FEMP's EISA 432 Compliance Tracking

268

Transuranic Waste Transportation Working Group Agenda | Department...  

Office of Environmental Management (EM)

Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda More Documents &...

269

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

270

Tank Waste and Waste Processing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

271

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

272

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect (OSTI)

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

273

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

274

Waste Confidence Discussion | Department of Energy  

Office of Environmental Management (EM)

Waste Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion More Documents & Publications Status Update: Extended Storage...

275

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

276

Transuranic (TRU) Waste | Department of Energy  

Office of Environmental Management (EM)

Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

277

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

278

6 - Nuclear Waste Regulations  

Science Journals Connector (OSTI)

The most influential national and international bodies providing recommendations on radiation protection are described, including the International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA). Protection philosophies and the ICRP general principles of radiation protection are discussed. Radioactive material regulations and sources of radiation are explained. Criteria of exemption from regulatory control are discussed with examples of exemption levels for naturally occurring and radioactive waste radionuclides. Clearance of both moderate and bulk amounts of materials from regulatory control is also explained, including examples of EU and the UK regulations. Dose limits recommended by the ICRP are given, as well as the main principles of control of radiation hazards. Nuclear waste classification schemes are outlined, including the IAEA classification scheme. A brief explanation of nuclear waste classes including exempt waste, very short-lived waste, very low-level waste, low-level waste, intermediate-level waste and high-level waste is given. Examples of waste classification schemes are given, including that of the UK.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

279

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

280

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network [OSTI]

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Stabilization of compactible waste  

SciTech Connect (OSTI)

This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

Franz, E.M.; Heiser, J.H. III; Colombo, P.

1990-09-01T23:59:59.000Z

282

Waste Inspection Tomography (WIT)  

SciTech Connect (OSTI)

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

283

Waste Management at the Nevada Test Site Year 2002: Current Status  

SciTech Connect (OSTI)

The performance attributes of the U. S. Department of Energy's National Nuclear Security Administration Nevada Site Office Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other LLW disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified material, and high-specific activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

Becker, Bruce, D.; Gertz, Carl, P.; Clayton, Wendy, A.; Carilli, Jhon, T.; Crowe, Bruce M.

2003-02-24T23:59:59.000Z

284

CHEMISTRY 223: Introductory Physical Chemistry I. Kinetics 1: Gas laws, kinetic theory of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity,  

E-Print Network [OSTI]

of collisions. Thermodynamics: Zeroth law of thermodynamics. First law of thermodynamics, heat capacity, enthalpy, thermochemistry, bond energies. Second law of thermodynamics; the entropy and free energy functions. Third law of thermodynamics, absolute entropies, free energies, Maxwell relations and chemical

Ronis, David M.

285

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

286

SRS - Programs - Waste Solidification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

287

High level nuclear waste  

SciTech Connect (OSTI)

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

288

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

289

Synthesizing Optimal Waste Blends  

Science Journals Connector (OSTI)

Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. ... Durability restrictions ensure that the resultant glass meets the quantitative criteria for disposal/long-term storage in a repository. ... If glasses are formulated to minimize the volume of glass that would be produced, then the cost of processing the waste and storing the resultant glass would be greatly reduced. ...

Venkatesh Narayan; Urmila M. Diwekar; Mark Hoza

1996-10-08T23:59:59.000Z

290

General Counsel Law Library | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

online legal resources. The doors to the Law Library remain open as long as the Forrestal Building is accessible, however, the lights are turned off at 5:30 each night. The Law...

291

Private Security and the Law, 4 edition  

Science Journals Connector (OSTI)

Private Security and the Law, 4th Edition, is a unique resource that provides analysis of practices in the security industry as they relate to law, regulation, licensure, and constitutional questions of case and statutory authority.This ...

Charles Nemeth

2011-10-01T23:59:59.000Z

292

EU competition law on electricity sector liberalisation  

Science Journals Connector (OSTI)

This paper aims to study how competition law helps facilitate the process of EU electricity liberalisation and study the use of competition law on the liberalised EU energy market. This paper provides an overview of competition law regarding to purposes of EU competition law and articles 101, 102 and 106 of EC Treaty on the Functioning of the European Union. The paper explores the role of competition law on EU electricity market liberalisation and focuses on the three main directive packages that transform EU electricity market towards competition. It further explores competition law enforcement that facilitates the structural change in EU electricity sector and discusses how the EU Competition Commission utilise the competition law to decrease market barriers in EU electricity sector. Finally the paper focuses on possible issues for competition law on EU electricity sector, especially on merger and acquisition cases. The last part provides conclusion of the paper.

Pornchai Wisuttisak

2014-01-01T23:59:59.000Z

293

"Thermodynamics", Temporal Correlations and Scaling Laws  

Science Journals Connector (OSTI)

......research-article Articles Thermodynamics, Temporal Correlations and Scaling Laws Hirokazu Fujisaka * Department...equilibrium statistical-thermodynamics, and the temporal correlation...static and dynamic scaling laws of relevant functions characteristic......

Hirokazu Fujisaka

1989-06-01T23:59:59.000Z

294

Impacts of Minnesota's Primary Seat Belt Law  

E-Print Network [OSTI]

checkpoints · Motorcycle helmet mandate · Graduated driver's licenses · Automated speed Belt Law 71% 73% 73% Sobriety Checkpoints 83% 82% 82% Motorcycle Helmet Belt Law 77% 77% 70% Sobriety Checkpoints 91% 91% 90% Motorcycle Helmet

Minnesota, University of

295

Law of Conservation of Muons  

DOE R&D Accomplishments [OSTI]

A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

Feinberg, G.; Weinberg, S.

1961-02-00T23:59:59.000Z

296

Waste Confidence Discussion  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence Rule based on the EIS and Decision, if applicable 2 Overview of Draft Report Background and assumptions report is first step in process. Basic topics in the report are:

297

Norcal Waste Systems, Inc.  

SciTech Connect (OSTI)

Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

Not Available

2002-12-01T23:59:59.000Z

298

Section 24: Waste Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy (DOE). 1995b. Transuranic Waste Baseline Inventory Report (Revision 2, December). DOECAO-95-1121. ERMS 531643. Carlsbad Area Office, Carlsbad, NM. PDF Author U.S....

299

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

training, security) * Closure plan Tank-Related Permit Units New * 149 single-shell tanks (SSTs) * 28 double-shell tanks (DSTs) Existing * 242-A Evaporator * Waste Treatment...

300

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electronic Waste Transformation  

Science Journals Connector (OSTI)

Electronic Waste Transformation ... Instead, entrepreneurial individuals and small businesses recover valuable metals such as copper from obsolete equipment through activities such as burning. ...

CHERYL HOGUE

2012-04-01T23:59:59.000Z

302

Waste minimization assessment procedure  

SciTech Connect (OSTI)

Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

Kellythorne, L.L. (Centerior Energy, Cleveland, OH (United States))

1993-01-01T23:59:59.000Z

303

Vitrification of waste  

DOE Patents [OSTI]

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

304

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

305

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 19, 2014 - No second release at WIPP September 12, 2014 - Waste hoist transformer replacement September 09, 2014 - Additional areas cleared in WIPP underground...

306

Vitrification of waste  

DOE Patents [OSTI]

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

307

The Second Law and Statistical Mechanics  

Science Journals Connector (OSTI)

The beginning of thermodynamics was around 1850 when both the first and the second law were formulated. The first law is often formulated as: the energy of the world is conserved and the second law as: the entropy of the world increases. These formulations caught general attention. A lot of what happened until 1912 in understanding these two laws is described in a little book by Paul and Tatania Ehrenfest on The conceptual foundation of the statistical approach in mechanics [1].

Dick Bedeaux

2008-01-01T23:59:59.000Z

308

Author Autonomy and Atomism in Copyright Law  

E-Print Network [OSTI]

Law of Property: The Numerus Clausus Principle, 110 Y ALEand Verification: The Numerus Clausus Problem and the

Van Houweling, Molly S

2009-01-01T23:59:59.000Z

309

Solar access: it's the law  

SciTech Connect (OSTI)

The contents of the California Solar Rights Act and the California Solar Shade Control Act which may have an impact on the way in which development, particularly housing, is designed and constructed in California, are reviewed. The Solar Rights Act establishes the state government of California as supporting and encouraging solar energy implementation at the local level. The law sets parameters for establishing solar easements, amends the Solar Tax Credit to include costs of easements, prohibits ordinances and private covenants which restrict solar systems, and requires communities to consider passive solar and natural heating and cooling opportunities in new construction. The Solar Rights Act is binding on all charter cities, and is thus applicable to all California cities and counties. The Solar Shade Control Act prohibits the blockage of solar radiation by vegetation to solar collectors which meet certain specific qualifications. Owners of property with unlawful vegetation are subject to criminal charges and fines of up to $500 per day of continued infraction. However, cities and counties may elect to exempt themselves from provisions of the Solar Shade Control Act. This manuscript explains solar access concepts, interprets the legal language of the laws for lay readers, and offers specific planning and design guidelines for use by developers, planners, and government officials in reviewing or developing plans to ensure solar access to structures. Twenty-four illustrations, a glossary, and several practical appendices are offered to assist the reader in understanding and complying with the laws.

Thayer, R.L. Jr.

1981-01-01T23:59:59.000Z

310

Today's Material Gauss' Law and Flux  

E-Print Network [OSTI]

by the contents of the box, the box must contain zero net electric charge. Slide 27-31 #12;Gauss' Law and Flux: · The Concept of Flux · Calculating Electric Flux · Symmetry · Gauss's Law · Using Gauss's Law · Conductors that the box must contain net positive electric charge. Slide 27-29 #12;© 2013 Pearson Education, Inc

Ashlock, Dan

311

Kozminski University Warsaw School of Law  

E-Print Network [OSTI]

, Conference Co-Chair Professor Christopher Forsyth, Centre for Public Law, University of Cambridge Osnabrück in Domestic Courts Chair: Professor Christopher Forsyth, Centre for Public Law, University of Cambridge Professor Keith Uff, Faculty of Law, University of Birmingham: The recognition of foreign arbitral awards

Steinhoff, Heinz-Jürgen

312

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Immobilization of Simulated Hanford Low Activity Waste Supplemental Immobilization of Simulated Hanford Low Activity Waste Savannah River Site Aiken/Aiken/South Carolina A cementitious waste form (Cast Stone) is one of the alternatives being considered for Supplemental Immobilization of Hanford Low Activity Waste (LAW), along with vitrification, bulk vitrification, and fluidized bed steam reforming. A testing program will be conducted in FY13 and FY14 to obtain additional information on the Cast Stone option for immobilizing the LAW. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in waste composition, waste concentration, dry materials sources, and free water (in the waste liquid)-to-dry blend mix ratios.

313

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplemental Immobilization of Simulated Hanford Low Activity Waste Supplemental Immobilization of Simulated Hanford Low Activity Waste Savannah River Site Aiken/Aiken/South Carolina A cementitious waste form (Cast Stone) is one of the alternatives being considered for Supplemental Immobilization of Hanford Low Activity Waste (LAW), along with vitrification, bulk vitrification, and fluidized bed steam reforming. A testing program will be conducted in FY13 and FY14 to obtain additional information on the Cast Stone option for immobilizing the LAW. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in waste composition, waste concentration, dry materials sources, and free water (in the waste liquid)-to-dry blend mix ratios.

314

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Immobilization of Simulated Hanford Low Activity Waste Supplemental Immobilization of Simulated Hanford Low Activity Waste Savannah River Site Aiken/Aiken/South Carolina A cementitious waste form (Cast Stone) is one of the alternatives being considered for Supplemental Immobilization of Hanford Low Activity Waste (LAW), along with vitrification, bulk vitrification, and fluidized bed steam reforming. A testing program will be conducted in FY13 and FY14 to obtain additional information on the Cast Stone option for immobilizing the LAW. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in waste composition, waste concentration, dry materials sources, and free water (in the waste liquid)-to-dry blend mix ratios.

315

U.S. Department of Energy Categorical Exclusion Determination Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supplemental Immobilization of Simulated Hanford Low Activity Waste Supplemental Immobilization of Simulated Hanford Low Activity Waste Savannah River Site Aiken/Aiken/South Carolina A cementitious waste form (Cast Stone) is one of the alternatives being considered for Supplemental Immobilization of Hanford Low Activity Waste (LAW), along with vitrification, bulk vitrification, and fluidized bed steam reforming. A testing program will be conducted in FY13 and FY14 to obtain additional information on the Cast Stone option for immobilizing the LAW. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in waste composition, waste concentration, dry materials sources, and free water (in the waste liquid)-to-dry blend mix ratios.

316

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a PA is to examine the final waste disposition at Hanford, such as waste in the tanks at C-Farm. Vince said the quest is to model waste movement over 10,000 years,...

317

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992  

SciTech Connect (OSTI)

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities: (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1992-12-31T23:59:59.000Z

318

E-commerce law Course No.421122U002 Level: Master Department of Law  

E-Print Network [OSTI]

Protection Law - Current State and Future Perspectives", High Level Conference (14 pages INTO THE EUROPEAN COMMISSION'S PROPOSAL FOR A NEW EUROPEAN UNION DATA PROTECTION LAW. In: Journal of Internet Law?url=http://search.proquest.com/docview/923304727?accountid=14468 3. Moerel, Lokke. (1-5-2011). Back to basics: when does EU data protection law

319

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

320

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

322

Waste Management | Department of Energy  

Energy Savers [EERE]

Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs....

323

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

324

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

325

Waste heat boiler optimization by entropy minimization principle  

SciTech Connect (OSTI)

A second law analysis has been undertaken for a waste heat boiler having an economizer, evaporator and superheater. Following the principle of minimization of entropy generation, a general equation for entropy generation number is derived, which incorporates all the operating variables. By differentiating the entropy generation number equation with respect to the operating parameters, various optimization parameters can be obtained. Few illustrations have been made to see the effect of various parameters on entropy generation number.

Reddy, B.V.; Murali, J.; Satheesh, V.S. [Vellore Engineering Coll. (India). Mechanical Engineering Dept.; Nag, P.K. [Indian Inst. of Tech., Kharagpur (India). Mechanical Engineering Dept.

1996-12-31T23:59:59.000Z

326

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

327

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

328

Nuclear waste solutions  

DOE Patents [OSTI]

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

329

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

330

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

331

Salt Waste Processing Initiatives  

Broader source: Energy.gov (indexed) [DOE]

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

332

HLW Glass Waste Loadings  

Broader source: Energy.gov (indexed) [DOE]

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

333

GP-8 LAWS AND REGULATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOP (5-2011) DOP (5-2011) Supersedes (7-2010) issue DECLARATION of OCCUPATIONAL MEDICINE PROVIDER GENERAL INFORMATION PURPOSE All Contractors and their lower-tier subcontractors must comply with the Department of Energy's Worker Safety and Health Program regulation, 10 CFR 851, "Worker Safety and Health Program (WSHP). The WSHP enforces worker safety and health requirements including, but not limited to, standards of the Occupational Safety and Health Administration (OSHA), American National Standards Institute (ANSI) and Workers Compensation Laws as incorporated in the SNL WSHP. APPLICABILITY Contractors at all tiers which meet the applicability criteria must establish and provide comprehensive

334

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Appendix A Appendix A Site Evaluation Process A-iii DOE/EIS-0287 Idaho HLW & FD EIS TABLE OF CONTENTS Section Page Appendix A Site Evaluation Process A-1 A.1 Introduction A-1 A.2 Methodology A-1 A.3 High-Level Waste Treatment and Interim Storage Site Selection A-3 A.3.1 Identification of "Must" Criteria A-3 A.3.2 Identification of "Want" Criteria A-3 A.3.3 Identification of Candidate Sites A-3 A.3.4 Evaluation Process A-4 A.3.5 Results of Evaluation Process A-6 A.4 Low-Activity Waste Disposal Site Selection A-6 A.4.1 Identification of "Must" Criteria A-7 A.4.2 Identification of "Want" Criteria A-8 A.4.3 Identification of Candidate Sites A-8 A.4.4 Evaluation Process A-8 A.4.5 Results of Evaluation Process A-9 A.4.6 Final Selection of a Low-Activity Waste Disposal Facility

335

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

336

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

337

TRU Waste Sampling Program: Volume I. Waste characterization  

SciTech Connect (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

338

Challenging the generalized second law  

SciTech Connect (OSTI)

The generalized second law (GSL) of black hole thermodynamics states that the sum of changes in black hole entropy and the ordinary entropy of matter and fields outside the hole must be non-negative. In the classical limit, the GSL reduces to Hawking's area theorem. Neither law identifies the specific effects that make it work in particular situations. Motivated by Davies' recent gedanken experiment he used to infer a bound on the size of the fine structure constant from the GSL, we study a series of variants in which an electric test charge is lowered to a finite radius and then dropped into a Schwarzschild, a near-extremal magnetic Reissner-Nordstroem or a near-extremal Kerr black hole. For a classical charge, we demonstrate that a specific 'backreaction' effect is responsible for protecting the area theorem in the near-extremal examples. For the magnetically charged Reissner-Nordstroem hole an area theorem violation is defused by taking into account a subtle source of repulsion of the charge: the spinning up of the black hole in the process of bringing the charge down to its dropping point. In Kerr hole case, the electric self-force on the charge is sufficient to right matters. However, in all experiments involving an elementary charge, the full GSL would apparently be violated were the fine structure constant greater than about order unity. We argue that in this case a quantum effect, the Unruh-Wald quantum buoyancy, may protect the GSL.

Eling, Christopher; Bekenstein, Jacob D. [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

2009-01-15T23:59:59.000Z

339

Hanford Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

340

Waste inspection tomography (WIT)  

SciTech Connect (OSTI)

The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

Bernardi, R.T.; Han, K.S.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impact of DOE Orders on Waste Management Operation. Volume 1: [Final report  

SciTech Connect (OSTI)

Department of Energy Orders are the internal documents which govern the management of all Department of Energy facilities and operations. DOE Orders are the vehicles by which Federal and state laws and regulations are applied to Department of Energy activities. A selected set of 22 Department of Energy Orders was reviewed to identify the applicability and impact of each Order on waste management operations at Los Alamos National Laboratory. Of the 22 Orders reviewed, five set forth requirements which have a high degree of impact on waste management activities. Eight Orders have a moderate degree of impact on waste management activities, and the remaining nine Orders have a low degree of impact.

Klein, R.B.; Jennrich, E.A.; Shuman, R.; Sandquist, G.M. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States); Rutz, A.C.; Littleton, M.W.; McCauce, C.H. [Wastren, Inc., Idaho Falls, ID (United States)

1989-09-01T23:59:59.000Z

342

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

343

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

344

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

345

Generating power with waste wood  

SciTech Connect (OSTI)

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

346

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

347

Waste Isolation Pilot Plant Biennial Environmental Compliance Report  

SciTech Connect (OSTI)

This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

Westinghouse TRU Solutions

2000-12-01T23:59:59.000Z

348

Formulation and Characterization of Waste Glasses with Varying Processing Temperature  

SciTech Connect (OSTI)

This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

2011-10-17T23:59:59.000Z

349

Waste Isolation Pilot Plant Biennial Environmental Compliance Report  

SciTech Connect (OSTI)

This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

Washinton TRU Solutions LLC

2002-09-30T23:59:59.000Z

350

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

351

Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

352

Waste Treatment Plant Overview  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

353

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

354

Waste and Recycling  

ScienceCinema (OSTI)

Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

355

Corporate Board By-Laws  

Broader source: Energy.gov (indexed) [DOE]

May 2011 May 2011 By-Laws Office of Environmental Management Quality Assurance Corporate Board Article 1 Name The name shall be the Environmental Management (EM) Quality Assurance (QA) Corporate Board (hereafter referred to as the Board). Article 2 Mission The Board will serve a leadership role within EM for facilitating, championing, and overseeing the effectiveness of a consistent and graded approach to implementing the corporate QA program, policies and requirements, and disseminating lessons learned and best practices such that a consistent and effective approach to quality is obtained through independently managed federal and contractor QA Programs. The Board will serve as a consensus-building body to facilitate institutionalization of a streamlined and efficient QA

356

Laws and Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Laws and Regulations Laws and Regulations Laws and Regulations Federal laws and regulations set multiple energy management requirements for Federal agencies spanning energy efficiency, renewable energy, water conservation, and alternative fuel use. This section outlines Federal energy management authorities through: Requirements by Subject Requirements by Regulation. The Federal Energy Management Program (FEMP) analyzes energy management authorities and develops rules and guidance to help Federal agencies comply with applicable requirements. Reporting requirements and Federal Government performance reports are also available through: Notices and Rules Facility Reporting Fleet Reporting. EISA 432 Compliance Tracking Track Federal agency progress toward Section 432 of the Energy Independence and Security Act (EISA) of 2007 using FEMP's EISA 432

357

The Snell law for quaternionic potentials  

SciTech Connect (OSTI)

By using the analogy between optics and quantum mechanics, we obtain the Snell law for the planar motion of quantum particles in the presence of quaternionic potentials.

De Leo, Stefano, E-mail: deleo@ime.unicamp.br [Department of Applied Mathematics, State University of Campinas, So Paulo (Brazil); Ducati, Gisele C., E-mail: ducati@ufabc.edu.br [CMCC, Universidade Federal do ABC, So Paulo (Brazil)

2013-12-15T23:59:59.000Z

358

Law, Sustainability, and the Pursuit of Happiness  

E-Print Network [OSTI]

Revisited: Federalism, Green Building Codes, and ApplianceHowe, Overview of Green Buildings, 41 E NV . L. R EP .Reflections on Green Building Laws and the Transformation of

Farber, Daniel A.

2011-01-01T23:59:59.000Z

359

Tribal Energy and Environmental Information Clearinghouse - Laws...  

Open Energy Info (EERE)

- Laws and Regulations Applicable to Geothermal Energy Development webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Tribal Energy and...

360

The Law and Economics of Costly Contracting  

E-Print Network [OSTI]

Markets, Relational Contracting, New York: Free Press (and the Value of Contracting, 89 American Economic ReviewLAW AND ECONOMICS OF COSTLY CONTRACTING BY ALAN SCHWARTZ AND

Schwartz, Alan; Watson, Joel

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

PUBLIC LAW 111-5?FEB  

Broader source: Energy.gov (indexed) [DOE]

or other chief executive, as appropriate, shall certify that the infrastructure investment has received the full review and vetting required by law and that the chief...

362

Chapter 9 - The Third Law of Thermodynamics  

Science Journals Connector (OSTI)

This chapter discusses the third law of thermodynamics. The historical development of the Nernst heat theorem, which is the forerunner of the third law, is described first. The third law is presented and its consequences are discussed. The different possible contributions to the entropy of a material (e.g., configurational, electronic, isotopic, magnetic, nuclear, orderdisorder, Schottky, thermal) are also described. The calculation of absolute entropies from heat capacity data is described and the Gibbs function is introduced. The use of the third law for computing Gibbs free energies of reaction from calorimetric data is illustrated with worked examples.

2013-01-01T23:59:59.000Z

363

Citrus Waste Biomass Program  

SciTech Connect (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

364

Solute transport under steady and transient conditions in biodegraded municipal solid waste  

E-Print Network [OSTI]

for water movement, presented in a previous paper, and a strict convective solute flux law. The waste medium is conceptualized as a three-domain system consisting of a mobile domain (channels), an immobile fast domain, and an immobile slow domain. The mobile...

Bendz, David; Singh, Vijay P.

365

Independent Activity Report, Hanford Waste Treatment Plant -...  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

366

Rhenium solubility in borosilicate nuclear waste glass  

E-Print Network [OSTI]

Glasses Developed for Nuclear Waste Immobilization," 91[12],solubility in borosilicate nuclear waste glass Ashutoshfor the researchers in nuclear waste community around the

McCloy, John S.

2014-01-01T23:59:59.000Z

367

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

368

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

369

Waste Processing Annual Technology Development Report 2007 |...  

Office of Environmental Management (EM)

Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007...

370

Pollution Prevention, Waste Reduction, and Recycling | Department...  

Office of Environmental Management (EM)

Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The Pollution Prevention, Waste Reduction and Recycling Program was...

371

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare...

372

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

373

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov (indexed) [DOE]

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

374

Energy from waste via coal/waste co-firing  

SciTech Connect (OSTI)

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

375

Water Quality and Water Law Headline UNL's Fifth Annual Water Law, Policy and  

E-Print Network [OSTI]

Water Quality and Water Law Headline UNL's Fifth Annual Water Law, Policy and Science Conference "Water Quality Challenges in the Great Plains" is the theme of this year's University of Nebraska-Lincoln Water, Law, Policy and Science conference. The fifth annual UNL conference is April 22 and 23 at Lincoln

Nebraska-Lincoln, University of

376

Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

Jantzen, C

2004-11-01T23:59:59.000Z

377

LANL reaches waste shipment milestone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL reaches waste shipment milestone LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total.

378

The largest radioactive waste glassification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

379

Mixed waste characterization reference document  

SciTech Connect (OSTI)

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

380

Hack's law of debris-flow basins  

Science Journals Connector (OSTI)

Hack's law was originally derived from basin statistics for varied spatial scales and regions. The exponent value of the law has been shown to vary between 0.47 and 0.70, causing uncertainty in its application. This paper focuses on the emergence of Hack's law from debris-flow basins in China. Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km2 are included in this study. Basins in the different regions are found to present similar distributions. Hack's law is derived from maximum probability and conditional distributions, suggesting that the law should describe some critical state of basin evolution. Results suggest the exponent value is approximately 0.5. Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage. A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.

Yong LI; Z.Q. YUE; C.F. LEE; R.E. BEIGHLEY; Xiao-Qing CHEN; Kai-Heng HU; Peng CUI

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Political Science: Law and Politics Specialization  

E-Print Network [OSTI]

Political Science: Law and Politics Specialization If you are considering law school, or wish.uwindsor.ca/polsci A Rigorous, Enriching Program Political scientists at UWindsor carry out cutting-edge research in a range, international political economy, media studies, Middle Eastern and Islamic politics, and religion and politics

382

CONSTITUTION AND BY-LAWS FIRE DEPARTMENT  

E-Print Network [OSTI]

of lives, and the protection of property endangered by fires and other disasters, and to promote the teaching and practice of fire prevention and protection. ARTICLE II Section 1. The OfficersSAMPLE CONSTITUTION AND BY-LAWS OF THE FIRE DEPARTMENT WHEREAS, Certain laws and regulations

383

Compensation Law in Thermodynamics and Thermal Death  

Science Journals Connector (OSTI)

... Objections raised to the validity of a compensation law fall into four categories, namely, (1) that there are inadequate data for a ... and number of Arrhenius lines; (2) that logarithmic compression accidentally produces an apparent compensation law; (3) that biased sets of data are chosen; and (4) that such ...

GABOR KEMENY; BARNETT ROSENBERG

1973-06-15T23:59:59.000Z

384

Status of the Fundamental Laws of Thermodynamics  

E-Print Network [OSTI]

We describe recent progress towards deriving the Fundamental Laws of thermodynamics (the 0th, 1st and 2nd Law) from nonequilibrium quantum statistical mechanics in simple, yet physically relevant models. Along the way, we clarify some basic thermodynamic notions and discuss various reversible and irreversible thermodynamic processes from the point of view of quantum statistical mechanics.

Walid K. Abou Salem; Juerg Froehlich

2006-04-27T23:59:59.000Z

385

Irreversibility and the second law of thermodynamics  

E-Print Network [OSTI]

Irreversibility and the second law of thermodynamics Jos Uffink July 5, 2001 1 INTRODUCTION The second law of thermodynamics has a curious status. Many modern physicists regard it as an obsolete relic thermodynamics, in which the state does not con- tain velocity-like parameters, one may take R to be the identity

Seevinck, Michiel

386

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

387

Laws DOE Administers | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laws DOE Administers Laws DOE Administers Laws DOE Administers The Department of Energy's (DOE) overarching mission is to advance the national, economic, and energy security of the United States; to promote scientific and technological innovation in support of that mission; and to ensure the environmental cleanup of the national nuclear weapons complex. Laws passed by Congress and signed by the President both define DOE's authorities and set forth DOE's responsibilities. Additionally, a number of Executive Orders issued by the President play a central role in guiding DOE's activities. In the space below, we have provided links to key statutes and executive orders which affect the Department of Energy. For every law, we provide a link to the United States Code (U.S.C.) , which is the codification by

388

TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT  

SciTech Connect (OSTI)

At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

RAMSEY AA; THORSON MR

2010-12-28T23:59:59.000Z

389

Waste generator services implementation plan  

SciTech Connect (OSTI)

Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

Mousseau, J.; Magleby, M.; Litus, M.

1998-04-01T23:59:59.000Z

390

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, October 1--December 31, 1991  

SciTech Connect (OSTI)

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1991-12-31T23:59:59.000Z

391

Transuranic Waste Tabletop  

Broader source: Energy.gov (indexed) [DOE]

Transuranic (TRU) Waste Transuranic (TRU) Waste (Hazard Class 7 Radioactive) Moderator's Version of Tabletop Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-07D.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools planning tools planning tools T T T T Tr r r r ransur ansur ansur ansur ansuranic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) Waste aste aste aste aste (Hazar (Hazar (Hazar (Hazar (Hazard Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radioactiv activ activ activ active) e) e) e) e) Moder Moder Moder Moder Moderat at at at ator' or' or' or' or's V s V s V s V s Version of T ersion of T ersion of T ersion of T ersion of Tablet ablet ablet ablet abletop

392

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

393

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN  

E-Print Network [OSTI]

;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

Columbia University

394

Waste IncIneratIon and Waste PreventIon  

E-Print Network [OSTI]

disposing of waste, it also makes consider- able amounts of energy available in the form of electricity emissions annu- ally. About 50 percent of the energy contained in residual municipal waste comes from- sions from the fossil waste fraction and the fos- sil energy purchased from external sources

395

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

396

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

397

High-Level Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

1999-07-09T23:59:59.000Z

398

Pathology waste includes: Transgenic animals.  

E-Print Network [OSTI]

resistant, have tight fitting covers, be clean, and in good repair. · Pathology waste must be transferred via the Internet: · Visit www.ehs.uci.edu/programs/enviro/. · Fill out the "Biomedical Waste

George, Steven C.

399

Waste Management Coordinating Lead Authors  

E-Print Network [OSTI]

-use and recycling ..............602 10.4.6 Wastewater and sludge treatment.....................602 10.4.7 Waste ............................................591 10.2.2 Wastewater generation ....................................592 10.2.3 Development trends for waste and ......................... wastewater ......................................................593

Columbia University

400

Leaching of Nuclear Waste Glasses  

Science Journals Connector (OSTI)

Resistance to aqueous corrosion is the most important requirement of glasses designed to immobilize high level radioactive wastes. Obtaining a highly durable nuclear waste glass is complicated by the requirement ...

L. L. Hench

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Discovery of Nuclear Waste  

Science Journals Connector (OSTI)

When did man discover nuclear waste? To answer this question, we first have to ask if nuclear waste really is something that could be called ... Prize in physics. In early writings within nuclear energy research ...

Gran Sundqvist

2002-01-01T23:59:59.000Z

402

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

403

Hydrothermal Processing of Wet Wastes  

Broader source: Energy.gov [DOE]

Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

404

Zero Waste, Renewable Energy & Environmental  

E-Print Network [OSTI]

· Dioxins & Furans · The `State of Waste' in the US · WTE Technologies · Thermal Recycling ­ Turnkey dangerous wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans

Columbia University

405

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

406

Explosive Waste Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

407

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

408

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

409

Waste Isolation Pilot Plant Biennial Environmental Compliance Report  

SciTech Connect (OSTI)

This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] 7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. 6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. 300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. 2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. 9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

Washington Regulatory and Environmental Services

2006-10-12T23:59:59.000Z

410

Tank waste remediation system vadose zone program plan  

SciTech Connect (OSTI)

The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

Fredenburg, E.A.

1998-07-27T23:59:59.000Z

411

WORLDWIDE FOCUS ON NUCLEAR WASTE  

Science Journals Connector (OSTI)

WORLDWIDE FOCUS ON NUCLEAR WASTE ... Volume grows and years pile up, but world lacks consensus on disposing of nuclear waste ... WHAT TO DO WITH SPENT nuclear fuel and high-level radioactive waste is a problem shared by much of the world. ...

JEFF JOHNSON

2001-06-18T23:59:59.000Z

412

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network [OSTI]

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Howitt, Ivan

413

Mixed Waste Working Group report  

SciTech Connect (OSTI)

The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

Not Available

1993-11-09T23:59:59.000Z

414

Waste-to-Energy Workshop  

Broader source: Energy.gov [DOE]

The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

415

How the Law Responds to Self-Help  

E-Print Network [OSTI]

Lichtman, How the Law Responds to Self-Help (December 2004)the Law Responds to Self-Help secrecy is surely attractive,the Law Responds to Self-Help of illegitimate acts without

Lichtman, Douglas

2005-01-01T23:59:59.000Z

416

Continuum mechanics beyond the second law of thermodynamics  

Science Journals Connector (OSTI)

...mechanics beyond the second law of thermodynamics M. Ostoja-Starzewski 1...thermoviscous fluid|second law of thermodynamics|fluctuation theorem|submartingale...developed subject to the second law of thermodynamics, requiring a non-negative...

2014-01-01T23:59:59.000Z

417

Theories of Corporate Law and Corporations: Past Approaches  

Science Journals Connector (OSTI)

We can now move on to theories of corporate law. Corporate law belongs to the traditional branches of commercial law in continental Europe. Both the Napoleonic Code de commerce and the German Handelsgesetzbuch...

Prof. Dr. Petri Mntysaari

2012-01-01T23:59:59.000Z

418

Ariel Ezrachi (ed.), Research Handbook on International Competition Law  

Science Journals Connector (OSTI)

The number of jurisdictions with competition laws and competition law enforcement agencies proliferates; so does the number of networks and platforms that ... approach to competition law scholarship. The Research...

Andreas P. Reindl

2013-01-01T23:59:59.000Z

419

Waste Isolation Pilot Plant, Land Management Plan  

SciTech Connect (OSTI)

To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

Not Available

1993-12-01T23:59:59.000Z

420

Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites  

SciTech Connect (OSTI)

Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m/sup 3/) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time.

Knight, M.J.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Disposal of Nuclear Wastes  

Science Journals Connector (OSTI)

...generated between now and A.D. 2000 is about 0.04 km3 (0.01...high-level wastes do not be-come a public hazard. The AEC adopts this...pre-sented at the 66th national meeting of the American Institute of...ARH-SA-41 (Atlantic Richfield Hanford Co., Richland, Washington...

Arthur S. Kubo; David J. Rose

1973-12-21T23:59:59.000Z

422

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

1999-07-09T23:59:59.000Z

423

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Broader source: Energy.gov (indexed) [DOE]

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

424

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Broader source: Energy.gov (indexed) [DOE]

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

425

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network [OSTI]

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

426

Federal Energy Management Program: Laws & Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laws and Regulations Laws and Regulations EISA 432 Compliance Tracking Track Federal agency progress toward Section 432 of the Energy Independence and Security Act (EISA) of 2007 using FEMP's EISA 432 Compliance Tracking System. Federal laws and regulations set multiple energy management requirements for Federal agencies spanning energy efficiency, renewable energy, water conservation, and alternative fuel use. This section outlines Federal energy management authorities through: Requirements by Subject: Find regulatory requirements and related guidance by topic area. Requirements by Regulation: Take an in-depth look at individual laws and regulations. The Federal Energy Management Program (FEMP) analyzes energy management authorities and develops rules and guidance to help Federal agencies comply with applicable requirements. Reporting requirements and Federal Government performance reports are also available through:

427

Risk and benefit in environmental law  

Science Journals Connector (OSTI)

...67 : 729 ( 1979 ). RODGERS, W.H., HARD LOOK AT VERMONT YANKEE - ENVIRONMENTAL-LAW UNDER CLOSE SCRUTINY, GEORGETOWN...Cir., 1975) (low-level radiation from Maine Yankee plant acceptable). 16. Ethyl Corp. v. EPA, 541...

PF Ricci; LS Molton

1981-12-04T23:59:59.000Z

428

PUBLIC LAW 111-5?FEB  

Broader source: Energy.gov (indexed) [DOE]

PUBLIC LAW 111-5-FEB. 17,2009 123 STAT. 145 Sec. 406. RENEWABLE ENERGY AND ELECTRIC POWER TRANSMISSION LOAN GUARANTEE PROGRAM. (a) AMENDMENT.--Title XVII of the Energy Policy Act...

429

Application of Planck's law to thermionic conversion  

SciTech Connect (OSTI)

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

430

Centenary of the Second Law of Thermodynamics  

Science Journals Connector (OSTI)

... IT is almost exactly a hundred years since what is now known as the second law of ... of thermodynamics was formulated. The honour of first making the general statement that "heat cannot of ...

J. A. V. Butler

1950-02-04T23:59:59.000Z

431

NEPA and Other Laws | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEPA and Other Laws NEPA and Other Laws NEPA and Other Laws Selected documents providing guidance on the relationship between NEPA and other laws. March 5, 2013 NEPA and CEQA: Integrating State and Federal Environmental Reviews (Draft) The Council on Environmental Quality (CEQ), in collaboration with the California Governor's Office of Planning and Research, issued on March 5, 2013, a draft handbook on integrating NEPA and California Environmental Quality Act (CEQA) review processes. The guide provides practitioners with an overview of NEPA and CEQA as well as valuable suggestions for developing a single environmental review process that can meet the requirements of both statutes. March 5, 2013 NEPA and NHPA: A Handbook for Integrating NEPA and Section 106 In this document the Council on Environmental Quality and the Advisory

432

Corporate Board By-Laws | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the by-laws of the EM QA Corporate Board. By-Laws Office of Environmental Management Quality Assurance Corporate Board More Documents & Publications ORSSAB Bylaws High Level...

433

Improved Engine Design Concepts Using the Second Law of Thermodynamics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Design Concepts Using the Second Law of Thermodynamics Improved Engine Design Concepts Using the Second Law of Thermodynamics Presentation from the U.S. DOE Office of Vehicle...

434

Montana Streamside Management Zone Law Webpage | Open Energy...  

Open Energy Info (EERE)

Zone Law Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Streamside Management Zone Law Webpage Abstract Provides information on...

435

Comments of the Southern Environmental Law Center and the American...  

Broader source: Energy.gov (indexed) [DOE]

Emergency Order and allow federal and state regulators the discretion to enforce binding air pollution control laws. Comments of the Southern Environmental Law Center and the...

436

Waste acceptance and waste loading for vitrified Oak Ridge tank waste  

SciTech Connect (OSTI)

The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC`s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC.

Harbour, J.R.; Andrews, M.K.

1997-06-06T23:59:59.000Z

437

Testing the Newton law at long distances  

E-Print Network [OSTI]

Experimental tests of Newton law put stringent constraints on potential deviations from standard theory with ranges from the millimeter to the size of planetary orbits. Windows however remain open for short range deviations, below the millimeter, as well as long range ones, of the order of or larger than the size of the solar system. We discuss here the relation between long range tests of the Newton law and the anomaly recorded on Pioneer 10/11 probes.

Serge Reynaud; Marc-Thierry Jaekel

2005-01-12T23:59:59.000Z

438

Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law Solar and Wind Easements and Rights Laws and Local Option Solar Rights Law < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info State Oregon Program Type Solar/Wind Access Policy Oregon has several laws that protect access to solar and wind resources and the use of solar energy systems. Oregon's solar access laws date back to 1979 and state that no person conveying or contracting to convey a property title can include provisions that prohibit the use of solar energy systems

439

1994 annual report on low-level radioactive waste management progress  

SciTech Connect (OSTI)

This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

NONE

1995-04-01T23:59:59.000Z

440

Environmental waste disposal contracts awarded  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Waste Isolation Pilot Plant - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

442

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

443

Process Waste Assessment, Mechanics Shop  

SciTech Connect (OSTI)

This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

Phillips, N.M.

1993-05-01T23:59:59.000Z

444

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

445

WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop  

E-Print Network [OSTI]

; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

446

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1  

SciTech Connect (OSTI)

This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

NONE

1995-02-01T23:59:59.000Z

447

The genius of Roman law from a law and economics perspective  

E-Print Network [OSTI]

the Law of Property: The Numerus Clausus Principle. Yale Lawto see that the numerus clausus principle also operates inAsymmetric information and numerus clausus in Roman private

Granado, Juan Javier del

2009-01-01T23:59:59.000Z

448

Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Mixing Cavern Behavior  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies undertaken to establish a methodology to perform reduced-scale mixing tests with PJM systems in non-Newtonian fluids. A theoretical model for mixing cavern formation from steady and pulsed jets is developed and compared with data from a single unsteady jet in a yield stress simulant. Dimensional analysis is used to identify the important dimensionless parameters affecting mixing performance in more complex systems. Scaling laws are proposed based on the modeling and dimensional analysis. Experimental validation of the scaling laws governing unsteady jet mixing in non-Newtonian fluids are also presented. Tests were conducted at three scales using two non-Newtonian simulants. The data were compared non-dimensionally, and the important scale laws were confirmed. The key dimensionless parameters were found to be the Strouhal number (which describes unsteady pulse jet mixer operation), the yield Reynolds number (which governs cavern formation due to non-Newtonian fluid behavior), and the viscous Reynolds number (which determines the flow regime and the degree of turbulence). The experimentally validated scaling laws provide the basis for reduced scale testing of prototypic WTP mixing systems. It is argued that mixing systems developed from reduced scale testing will produce conservative designs at full scale.

Meyer, Perry A.; Kurath, Dean E.; Bamberger, Judith A.; Barnes, Steven M.; Etchells, Arthur W.

2006-03-02T23:59:59.000Z

449

Alternative Fuels Data Center: New Jersey Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Jersey Laws and Jersey Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for New Jersey. Your Clean Cities coordinator

450

Alternative Fuels Data Center: Massachusetts Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Massachusetts Laws and Massachusetts Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Massachusetts Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Massachusetts Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Massachusetts Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

451

Alternative Fuels Data Center: North Carolina Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Carolina Laws Carolina Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Carolina Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

452

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Rhode Island Laws and Rhode Island Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

453

Alternative Fuels Data Center: Hawaii Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hawaii Laws and Hawaii Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Hawaii. Your Clean Cities coordinator at

454

Alternative Fuels Data Center: Alaska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alaska Laws and Alaska Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Alaska. For more information, contact your

455

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maine Laws and Maine Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Maine. Your Clean Cities coordinator at

456

Alternative Fuels Data Center: New Hampshire Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hampshire Laws and Hampshire Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Hampshire Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

457

Alternative Fuels Data Center: Mississippi Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mississippi Laws and Mississippi Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Mississippi. For more information, contact

458

Alternative Fuels Data Center: West Virginia Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

West Virginia Laws and West Virginia Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: West Virginia Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: West Virginia Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives on Google Bookmark Alternative Fuels Data Center: West Virginia Laws and Incentives on Delicious Rank Alternative Fuels Data Center: West Virginia Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: West Virginia Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type West Virginia Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

459

Alternative Fuels Data Center: Utah Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Utah Laws and Utah Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Utah. Your Clean Cities coordinator at Utah

460

Alternative Fuels Data Center: Colorado Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Colorado Laws and Colorado Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Colorado. Your Clean Cities coordinator at

Note: This page contains sample records for the topic "low-activity waste law" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Louisiana Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Louisiana Laws and Louisiana Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Louisiana. Your Clean Cities coordinator at

462

Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Dist. of Columbia Laws Dist. of Columbia Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Dist. of Columbia Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

463

Alternative Fuels Data Center: Texas Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Texas Laws and Texas Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Texas. Your Clean Cities coordinator at

464

Alternative Fuels Data Center: Pennsylvania Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Pennsylvania Laws and Pennsylvania Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

465

Alternative Fuels Data Center: Ohio Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ohio Laws and Ohio Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Ohio. Your Clean Cities coordinator at your

466

Alternative Fuels Data Center: Nebraska Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Nebraska Laws and Nebraska Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Nebraska. For more information, contact

467

Alternative Fuels Data Center: Minnesota Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Minnesota Laws and Minnesota Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Minnesota. Your Clean Cities coordinator at

468

Alternative Fuels Data Center: Illinois Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Illinois Laws and Illinois Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Illinois. Your Clean Cities coordinator at

469

Alternative Fuels Data Center: Nevada Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Nevada Laws and Nevada Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Nevada. Your Clean Cities coordinator at

470

Alternative Fuels Data Center: Arizona Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Arizona Laws and Arizona Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Arizona. Your Clean Cities coordinator at

471

Alternative Fuels Data Center: Vermont Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vermont Laws and Vermont Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Vermont. Your Clean Cities coordinator at

472

Alternative Fuels Data Center: State Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Laws and State Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: State Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: State Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: State Laws and Incentives on Google Bookmark Alternative Fuels Data Center: State Laws and Incentives on Delicious Rank Alternative Fuels Data Center: State Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: State Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Laws and Incentives To view a state's laws and incentives related to alternative fuels and advanced vehicles, select a state from the map or menu below. For examples

473

Alternative Fuels Data Center: Maryland Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maryland Laws and Maryland Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Maryland. Your Clean Cities coordinator at

474

Alternative Fuels Data Center: Montana Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Montana Laws and Montana Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Montana. For more information, contact your

475

Alternative Fuels Data Center: Missouri Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Missouri Laws and Missouri Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Missouri. Your Clean Cities coordinator at

476