Powered by Deep Web Technologies
Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LOUISIANA  

Science Conference Proceedings (OSTI)

... Industries, located in Lottie, Louisiana manufactures industrial vacuums for the petrochemical, refinery, shipyard, marine barge and oil and gas ...

2013-02-27T23:59:59.000Z

2

Louisiana Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2002-2013...

3

Challenges for Na-ion Negative Electrodes  

E-Print Network (OSTI)

Na-ion batteries have been proposed as candidates for replacing Li-ion batteries. In this paper we examine the viability of Na-ion negative electrode materials based on Na alloys or hard carbons in terms of volumetric ...

Chevrier, V. L.

4

NA-54 IPR Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NA-54 IPR Production NA-54 IPR Production NA-54 IPR Production More Documents & Publications Accelerating Clean-up at Savannah River DOE EIR FM.doc Project Annex for IPR...

5

Results from NA61/SHINE  

E-Print Network (OSTI)

In this paper we summarize recent results from NA61/SHINE relevant for heavy ion physics, neutrino oscillations and the interpretation of air showers induced by ultra-high energy cosmic rays.

Unger, M

2013-01-01T23:59:59.000Z

6

Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C  

SciTech Connect

We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

Carroll, S; Craig, L; Wolery, T

2003-12-29T23:59:59.000Z

7

New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...  

Open Energy Info (EERE)

Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: New...

8

The Dow Chemical Company - NA System House ...  

Science Conference Proceedings (OSTI)

The Dow Chemical Company - NA System House - Wilmington. NVLAP Lab Code: 100210-0. Address and Contact Information: ...

2013-09-27T23:59:59.000Z

9

Aquecimento Global e Mudança Climática na Amazônia:  

NLE Websites -- All DOE Office Websites (Extended Search)

73 a 292. 1 Aquecimento Global e Mudana Climtica na Amaznia: Retroalimentao Clima-Vegetao e Impactos nos Recursos Hdricos Jos Marengo, 1 Carlos A. Nobre, 1...

10

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA NA-00 and NA-10  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Last printed 1/24/2013 10:50:00 AM Page 1 of 12 Last printed 1/24/2013 10:50:00 AM Page 1 of 12 Part 1. NA-00/NA-10/NA-15 Input Annual Workforce Analysis and Staffing Plan Report As of December 31, 2012 Reporting Offices: NNSA NA-10 HQ (including NA-15 inputs) and NA-00 (while transitioning to new organizational structure) Section One: Current Mission(s) of the Organization and Potential Changes NNSA Mission: To strengthen United States security through the military application of nuclear energy. NNSA Vision: To be an integrated nuclear security enterprise operating an efficient and agile nuclear weapons complex, recognized as preeminent in technical leadership and program management. Organizational Changes: NNSA is in the final phase of another re-organization that will split NA- 10 and establish an independent office, NA-00, to oversee the NNSA sites and other non-weapons-

11

New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier  

Open Energy Info (EERE)

Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Details Activities (1) Areas (1) Regions (0) Abstract: We present new improved equations for three still widely used Na/K, Na/Li and SiO2 geothermometers (obtained by statistical treatment of the data and application of outlier detection and rejection as well as theory of error propagation) and compare them with those by Fournier and others. New equations are also developed for estimating errors associated with the use of these new geothermometric equations and comparing them with the performance of the original equations. The errors in the use of the new

12

Louisiana | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Louisiana Last updated on 2013-08-02 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information N/A Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Louisiana (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to ASHRAE 90.1-2007 Effective Date 07/20/2011 Adoption Date 07/20/2011 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Louisiana DOE Determination Letter, May 31, 2013 Louisiana State Certification of Commercial and Residential Building Energy Codes Current Code 2006 IRC Amendments / Additional State Code Information Louisiana's current residential code is the 2006 IRC with direct reference to the 2006 IECC. All AC duct insulation is R6 instead of R8 and to include Section R301.2.1.1 of the 2003 edition of the IRC in lieu of Section R301.2.1.1 of the 2006 edition.

13

Federal Offshore Louisiana Natural Gas Gross Withdrawals and...  

U.S. Energy Information Administration (EIA) Indexed Site

Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History Gross Withdrawals NA NA NA NA NA NA 1977-2011 From Gas Wells NA NA NA NA NA NA...

14

Workforce Statistics - NA 70 | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA 70 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 70...

15

Workforce Statistics - NA MB | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA MB Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA MB...

16

Workforce Statistics - NA 20 | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA 20 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 20...

17

Workforce Statistics - NA 10 | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA 10 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 10...

18

Workforce Statistics - NA EA | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA EA Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA EA...

19

Workforce Statistics - NA-30 | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA-30 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA-30...

20

Workforce Statistics - NA 40 | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA 40 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 40...

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Workforce Statistics - NA GC | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA GC Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA GC...

22

Workforce Statistics - NA 1 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA 1 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 1...

23

Workforce Statistics - NA APM | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA APM Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA APM...

24

Workforce Statistics - NA SH | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA SH Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA SH...

25

Workforce Statistics - NA 80 | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA 80 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 80...

26

Workforce Statistics - NA IM | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Blog Workforce Statistics - NA IM Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA IM...

27

Development of Low-Temperature Molten Na Batteries with ...  

Science Conference Proceedings (OSTI)

Our novel battery system operates at temperatures near the melting point of Na metal, and employs a NaSICON ceramic primary electrolyte separator.

28

Transepithelial transport in cell culture: Stoichiometry of Na/phlorizin ...  

Science Conference Proceedings (OSTI)

Membrane Biology. Transepithelial Transport in Cell Culture: Stoiehiometry of Na /Phlorizin Binding and Na/D-Glueose Cotransport. A Two-Step, Two-Sodium ...

29

Deliquescence of NaCl-NaNO3, KNO3-NaNO3, and NaCl-KNO3 Salt Mixtures From 90 to 120?C  

SciTech Connect

We conducted reversed deliquescence experiments in saturated NaCl-NaNO{sub 3}-H{sub 2}O, KNO{sub 3}-NaNO{sub 3}-H{sub 2}O, and NaCl-KNO{sub 3}-H{sub 2}O systems from 90 to 120 C as a function of relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Discrepancy between model prediction and experimental code can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25 C models for Cl-NO{sub 3} and K-NO{sub 3} ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the non-ideal behavior of these highly concentrated solutions.

Carroll, S A; Craig, L; Wolery, T J

2004-10-20T23:59:59.000Z

30

ESS 2012 Peer Review - Na-ion Intercalation Electrodes for Na...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAES Pumped Hydro Power Stationary 1 kW 100 kW 10 MW 1 GW 10 kW 1 MW 100 MW Li Ion Battery NaS, Na metal halide Vehicle Energy Density and Cost Lifetime and Capital Cost PHEV...

31

Anodic dissolution characteristics and electrochemical migration lifetimes of Sn solder in NaCl and Na2SO4 solutions  

Science Conference Proceedings (OSTI)

In situ water drop tests and anodic polarization tests of pure Sn solder were carried out in deaerated 0.001% NaCl and Na"2SO"4 solutions to determine the correlation between anodic dissolution characteristics and the electrochemical migration lifetime. ... Keywords: Anodic dissolution, Electrochemical migration, Life time, Na2SO4, NaCl, Sn solder

Ja-Young Jung; Shin-Bok Lee; Young-Chang Joo; Ho-Young Lee; Young-Bae Park

2008-07-01T23:59:59.000Z

32

2011 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Defense Nuclear Nonproliferation (NA-20).

33

Advanced Intermediate-Temperature Na-S Battery  

Science Conference Proceedings (OSTI)

In this study, we reported an intermediate-temperature (~150°C) sodium-sulfur (Na-S) battery. With a reduced operating temperature, this novel battery can potentially reduce the cost and safety issues associated with the conventional high-temperature (300~350°C) Na-S battery. A dense ?"-Al2O3 solid membrane and tetraglyme were utilized as the electrolyte separator and catholyte solvent in this battery. Solubility tests indicated that cathode mixture of Na2S4 and S exhibited extremely high solubility in tetraglyme (e.g., > 4.1 M for Na2S4 + 4 S). CV scans of Na2S4 in tetraglyme revealed two pairs of redox couples with peaks at around 2.22 and 1.75 V, corresponding to the redox reactions of polysulfide species. The discharge/charge profiles of the Na-S battery showed a slope region and a plateau, indicating multiple steps and cell reactions. In-situ Raman measurements during battery operation suggested that polysulfide species were formed in the sequence of Na2S5 + S ? Na2S5 + Na2S4? Na2S4 + Na2S2 during discharge and in a reverse order during charge. This battery showed dramatic improvement in rate capacity and cycling stability over room-temperature Na-S batteries, which makes it attractive for renewable energy integration and other grid related applications.

Lu, Xiaochuan; Kirby, Brent W.; Xu, Wu; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo (Gary)

2013-01-01T23:59:59.000Z

34

Workforce Statistics - NA-30 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

NA-30 | National Nuclear Security Administration NA-30 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA-30 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA-30 Workforce Statistics - NA-30 Workforce Statistics - Naval Reactors

35

Workforce Statistics - NA 1 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA 1 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 1 Workforce Statistics - NA 1 NA 1 FY12 NA 1 Semi Annual Report

36

Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals (Million Cubic Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,101,321 4,262,607 1980's 4,200,273 4,202,553 3,879,918 3,313,354 3,750,641 3,286,091 3,071,900 3,384,442 3,418,949 3,373,680 1990's 3,549,524 3,401,801 3,304,336 3,351,101 3,513,981 3,460,103 3,689,170 3,760,953 3,759,040 3,732,046 2000's 3,671,424 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

37

Classes sociais e estilos de vida na sociedade brasileira.  

E-Print Network (OSTI)

??O objetivo principal deste trabalho é investigar a formação das classes sociais na sociedade brasileira como possíveis coletividades que balizam a sociabilidade cotidiana e configuram… (more)

Edison Ricardo Emiliano Bertoncelo

2010-01-01T23:59:59.000Z

38

Workforce Statistics - NA 1 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA 1 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights >...

39

Workforce Statistics - NA 20 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

20 | National Nuclear Security Administration 20 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA 20 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 20 Workforce Statistics - NA 20 NA 20 FY12 NA 20 Semi Annual Report

40

Workforce Statistics - NA 40 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

40 | National Nuclear Security Administration 40 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA 40 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 40 Workforce Statistics - NA 40 NA40 FY12 NA 40 Semi Annual Report

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Workforce Statistics - NA 10 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

0 | National Nuclear Security Administration 0 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Workforce Statistics - NA 10 Home > About Us > Our Operations > Management and Budget > Office of Civil Rights > Workforce Statistics > Workforce Statistics - NA 10 Workforce Statistics - NA 10 NA 10 FY12 NA 10 Semi Annual Report

42

EUV microexposures at the ALS using the 0.3-NA MET projection optics  

E-Print Network (OSTI)

micro-exposure capabilities at the ALS using the 0.3-NA METEUV Microexposures at the ALS using the 0.3-NA MET Optic,”microexposures at the ALS using the 0.3-NA MET projection

2005-01-01T23:59:59.000Z

43

Analysis of NaOH releases for Hanford tank farms  

Science Conference Proceedings (OSTI)

The information contained in the canceled document is now located in the document: Consequence Analysis of a NaOH Solution Spray Release During Addition to Waste Tank, WHC-SD-WM-CN-065.

Ryan, G.W., Westinghouse Hanford

1996-09-12T23:59:59.000Z

44

LOUISIANA COASTAL FACTS  

U.S. Energy Information Administration (EIA)

LOUISIANA COASTAL FACTS Historical Land Loss in Coastal Louisiana - Louisiana has lost 1,829 square miles of land since the 1930's (Barras et al. ...

45

Office of Civil Rights, NNSA, NA 1.2, Albuquerque Complex  

National Nuclear Security Administration (NNSA)

http:hq.na.govocr Fiscal Year 2011 Year-End Workforce Diversity Assistant Deputy Administrator for Secure Transportation NA-15 OCR Functions: Technical advisory services...

46

Sodium Sulfur (NaS) Battery Research in Korea: Part II ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The activities of sodium sulfur (NaS) battery research in Korea ... The presentation was focused on the development of tubular NaS batteries ...

47

Status and plans of the NA61/SHINE physics program  

SciTech Connect

One of the NA61/SHINE experiment's goals is to discover the critical point of strongly interacting matter and study the properties of the onset of deconfinement. This is to be achieved by performing a two-dimensional phase diagram (T- Micro-Sign {sub B}) scan-measuring hadron production in collisions of various beam particles and targets at various beam energies. NA61/SHINE also collects data for the T2K experiment, which are just about to be published.

Czopowicz, T., E-mail: Tobiasz.Roman.Czopowicz@cern.ch [Warsaw University of Technology, Faculty of Physics (Poland)

2012-06-15T23:59:59.000Z

48

Comparative studies of etching mechanisms of CR-39 in NaOH/H2O and NaOH/ethanol  

E-Print Network (OSTI)

of scission of the carbonate ester bond in CR-39 by the hydroxide ion through basic hydro- lysis of ester-39 detectors during etching in NaOH/ethanol has also shown that sodium car- bonate is present

Yu, K.N.

49

Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (Million Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,428,342 3,725,728 3,902,074 1980's 3,839,367 3,854,440 3,522,247 2,904,722 3,288,820 2,784,091 2,542,447 2,913,949 2,992,004 2,970,536 1990's 3,140,870 2,946,749 2,867,842 2,883,761 2,995,676 2,937,666 3,166,015 3,194,743 3,115,154 3,009,296 2000's 2,919,128 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

50

Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 410,179 375,593 360,533 1980's 360,906 348,113 357,671 408,632 461,821 502,000 529,453 470,493 426,945 403,144 1990's 408,654 455,052 436,493 467,340 518,305 522,437 523,155 566,210 643,886 722,750 2000's 752,296 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

51

Louisiana Hazardous Waste Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

52

" East North Central",9.3,"NA",10.1,10.7,11.6,11.85822  

U.S. Energy Information Administration (EIA) Indexed Site

,"NA",10,10.1,10.9,11.43527 "Urban Status" " Urban ",9.4,"NA",10.3,10.7,11.4,11.68803 " Rural ",9.3,"NA",10.1,10.4,11.6,12.8337 "Household Size" " 1 Person ",8.7,"NA",9.2,9,10.1,9....

53

DE-RP52-08NA28091  

NLE Websites -- All DOE Office Websites (Extended Search)

8NA28091 8NA28091 [Submit in Volume I, TAB 2] Attachment L-1 Page 1 of 4 CORPORATE, PARTNERSHIP, JOINT VENTURE CERTIFICATES If the offer is submitted by a corporation, partnership or a Joint Venture, the applicable form provided on the following pages must be completed and submitted in Volume I of the proposal. In the alternative, other evidence must be submitted to substantiate the authority of the person signing the offer. If a corporation, the same officer shall not execute both the offer and the certificate. DE-RP52-08NA28091 [Submit in Volume I, TAB 2] Attachment L-1 Page 2 of 4 CORPORATE CERTIFICATE I, _______________________________________________, certify that I am the Secretary of the

54

Plant response to Na/sup +/, K/sup +/ and K/sup +//Na/sup +/ ratios under saline conditions  

Science Conference Proceedings (OSTI)

This research was undertaken to more clearly determine plant response to saline-sodic waters. In the first experiment, the response of wheat and sorghum to different K/sup +//Na/sup +/ ratios at different osmotic potentials was investigated. The plants were grown in outdoor solution culture tanks containing polyethylene glycol and/or NaCl as osmoticum with 1/2 strength Hoagland as the base nutrient solution. The mass of the root system for both wheat and sorghum was determined primarily by the osmotic potential. However, root elongation was controlled primarily by the Na/sup +/ concentration. Sorghum root elongation rates decreased with increasing Na/sup +/ while those for wheat increased. Sodium was not translocated out of the sorghum root system until a critical Na/sup +/ root saturation level of .6 moles/kg was obtained. The second experiment was designed to investigate the water, nutrient and growth responses of the second crop of wheat in a wheat-sorghum-wheat rotation to zonal saline-sodic conditions.

Devitt, D.A.

1983-01-01T23:59:59.000Z

55

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,34 33419,9 33785,9 34150,8 34515,22

56

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:27 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1

57

A Lepton Universality Test at CERN NA62 Experiment  

E-Print Network (OSTI)

The NA62 experiment at CERN collected a large sample of K+ --> enu decays during a dedicated run in 2007, aiming at a precise test of lepton universality by measurement of the helicity suppressed ratio RK = BR(K+ --> enu)/BR(K+ --> munu). A preliminary result of the analysis of a partial data sample of 51089 K+ --> enu candidates is presented.

Evgueni Goudzovski

2010-05-07T23:59:59.000Z

58

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana...

59

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

60

Advanced 0.3-NA EUV lithography capabilities at the ALS  

E-Print Network (OSTI)

micro-exposure capabilities at the ALS using the 0.3-NA METEUV Microexposures at the ALS using the 0.3-NA MET Optic,”EUV lithography capabilities at the ALS Patrick Naulleau 1 ,

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Measurements of NaI(Tl) electron response: comparison of different samples  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nonproliferation Research and Development (NA-22) of theof Defense Nuclear Nonproliferation, Office of Nuclear

Hull, Giulia

2010-01-01T23:59:59.000Z

62

Caustic Recycle from Hanford Tank Waste Using Large Area NaSICON Structures (LANS)  

Science Conference Proceedings (OSTI)

This report presents the results of a 5-day test of an electrochemical bench-scale apparatus using a proprietary (NAS-GY) material formulation of a (Na) Super Ion Conductor (NaSICON) membrane in a Large Area NaSICON Structures (LANS) configuration. The primary objectives of this work were to assess system performance, membrane seal integrity, and material degradation while removing Na from Group 5 and 6 tank waste from the Hanford Site.

Fountain, Matthew S.; Sevigny, Gary J.; Balagopal, S.; Bhavaraju, S.

2009-03-31T23:59:59.000Z

63

Physicochemical basis of the Na-K-Ca geothermometer  

DOE Green Energy (OSTI)

Regular changes in solution composition were observed experimentally during granite reaction with dilute NaCl (+CaCl/sub 2/) solutions; these changes closely follow the empirical Na-K-Ca geothermometer relationship. Initial minerals forming the granite (quartz, plagioclase, K-feldspar, and biotite) were etched by the reactions. Alteration phases formed include calcium-zeolite at <300/sup 0/C, feldspar overgrowths at >300/sup 0/C, and minor amounts of clay and calcsilicate at all temperatures. Amphibole overgrowths were also found at 340/sup 0/C. Quartz is near saturation in all experiments, and preliminary calculations of aqueous species distributions and mineral affinities indicate that the solutions achieve super-saturation with feldspars as the temperature increase. A consistent variation attributable to pH differences was observed in the empirical geothermometer relationship for all experimental data. At 340/sup 0/C, the experimental solutions appear to have deviated slightly from the empirical Na-K-Ca relationship. Such deviations may also be found in natural systems that attain such temperatures.

Janecky, D.R.; Charles, R.W.; Bayhurst, G.K.; Benjamin, T.M.

1986-08-01T23:59:59.000Z

64

Louisiana Coastal Area, Louisiana Ecosystem Restoration  

E-Print Network (OSTI)

1 Louisiana Coastal Area, Louisiana Ecosystem Restoration Six Projects Authorized by Section 7006(e for the Louisiana Coastal Area, dated January 31, 2005, (hereinafter referred to as the "restoration plan"), described a program to address the most critical restoration needs to reduce the severe wetland losses

US Army Corps of Engineers

65

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 28 27 29 32 1990's 33 34 35 35 37 40 49 59 57 61 2000's 76 60 60 53 49 39 37 40 28 28 2010's 28 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Estimated Production Federal Offshore, Gulf of Mexico, Louisiana & Alabama Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate

66

Natural Gas Gross Withdrawals from Oil Wells (Summary)  

Gasoline and Diesel Fuel Update (EIA)

1-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1991-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA...

67

Louisiana Transportation Research Center  

E-Print Network (OSTI)

Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

Harms, Kyle E.

68

Neighborhoods Louisiana-Friendly  

E-Print Network (OSTI)

Neighborhoods Louisiana Yards & A Guide to Louisiana-Friendly Landscaping #12;Contributors Owings, Dale Pollet, Don Reed, Rene Schmit, Jay Stevens, and Ron Strahan. The Louisiana Yards & Neighborhoods program is a partnership of the Louisiana State University Agricultural Center (LSU Ag

69

Estudo do desempenho de um compressor axial de vários estágios com injeção de água na sua entrada.  

E-Print Network (OSTI)

??A simulação numérica de compressores axiais é de fundamental importância tanto na fase de projeto quanto na de desenvolvimento do compressor. A simulação numérica é… (more)

Luciano Porto Bontempo

2009-01-01T23:59:59.000Z

70

Hurricane Katrina: Louisiana Coastal Wetlands  

U.S. Energy Information Administration (EIA)

During the 75-year period between 1930 and 2005, more than 1.2 million acres of Louisiana’s coastal wetlands disappear. From 1932 to 1956, Louisiana ...

71

Na(+)-H+ exchanger kinetics in adrenal glomerulosa cells and its activation by angiotensin II  

SciTech Connect

We have studied the kinetic properties of basal and angiotensin II (ANG II) stimulated Na(+)-H+ exchange in adrenal glomerulosa cells by measuring changes in cytosolic pH (pHi) and initial rates of 22Na uptake in the presence or absence of dimethylamiloride (DMA). The cells were studied under basal conditions, at constant pHi with varied external sodium (Na+o), and at varied pHi with constant Na+o (50 mM). In 2,7-biscarboxyethyl-5(6)-carboxyfluorescein loaded cells under basal conditions, pHi rose from 7.09 +/- 0.02 to 7.19 +/- 0.02. Similarly, DMA-sensitive Na influx was enhanced from 9.2 +/- 1.3 to 14.8 +/- 2.1 nmol Na+/mg protein x min (P less than 0.01) by ANG II. In cells acid-loaded by preincubation in Na(+)-free media (pHi 6.8), addition of varying Na+o resulted in a rapid H+ efflux that was markedly inhibited by DMA. DMA-sensitive Na+ influx into these acidified cells with varied Na+o exhibited a Michaelis-Menten constant (Km) of 23 mM and a maximum velocity (Vmax) of 43 nmol Na+/mg protein x min. By varying pHi (from pHi 7.1 to 6.2), DMA-sensitive Na+ influx likewise showed activation with cellular acidification with a pK at pHi 7.09. At pHi 6.8, ANG II decreased the Km for Na+o from 23 to 17 mM and increased the Vmax from 43 to 53 nmol Na+/mg protein x min. The pHi dependence of DMA-sensitive Na+ influx was not affected by ANG II (pK at pHi 7.03). DMA also inhibited AII-stimulated aldosterone secretion and Na+ influx similarly. These results indicate that Na(+)-H+ exchange in adrenal glomerulosa cells is functioning under basal conditions, and is modulated by ANG II with enhanced Na+o affinity and Vmax but without a shift in pHi dependence (similar to ANG II effects on vascular smooth muscle cells). These effects suggest an important role for Na(+)-H+ exchange during ANG II stimulation of aldosterone production by glomerulosa cells.

Conlin, P.R.; Kim, S.Y.; Williams, G.H.; Canessa, M.L. (Brigham and Women' s Hospital, Boston, MA (USA))

1990-07-01T23:59:59.000Z

72

,"Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

73

,"Louisiana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

74

,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (MMcf)" Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1350_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1350_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:42:30 PM"

75

,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

76

,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

77

NA Standards | Valence Geometries | Bond Angles-Furanose Rings  

NLE Websites -- All DOE Office Websites (Extended Search)

angles in Furanose Rings angles in Furanose Rings ----------------------------------------------------- ribose deoxyribose ----------------------------------------------------- angle mean esd N mean esd N value value ----------------------------------------------------- C1'-C2'-C3' 101.5 (0.9, 80) 102.7 (1.4, 47) C2'-C3'-C4' 102.7 (1.0, 80) 103.2 (1.0, 47) C3'-C4'-O4' 105.5 (1.4, 80) 105.6 (1.0, 47) C4'-O4'-C1' 109.6 (0.9, 80) 109.7 (1.4, 47) O4'-C1'-C2' 106.4 (1.4, 80) 106.1 (1.0, 47) C1'-C2'-O2' 110.6 (3.0, 80) na C3'-C2'-O2' 113.3 (2.9, 80) na C2'-C3'-O3' 111.0 (2.8, 80) 110.6 (2.7, 47) C4'-C3'-O3' 110.6 (2.6, 80) 110.3 (2.2, 47) C5'-C4'-C3' 115.5 (1.5, 80) 114.7 (1.5, 47)

78

Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment  

SciTech Connect

The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater. -- Graphical abstract: The morphologies of the titanates depend deeply on the concentration of NaOH. With increasing NaOH concentration, three different formation mechanisms were proposed. The application of these titanate nanostructures in the wastewater treatment was studied. Display Omitted Research highlights: {yields} Effect of NaOH concentration on the structures of various titanates was reported. {yields} Three different formation mechanisms were presented with increasing NaOH concentration. {yields} Various titanates were used as adsorbents/photocatalysts in wastewater treatment.

Huang Jiquan [Key Lab of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate school of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049 (China); Cao Yongge, E-mail: caoyongge@fjirsm.ac.c [Key Lab of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Deng Zhonghua; Tong Hao [Key Lab of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

2011-03-15T23:59:59.000Z

79

Cu2Sb thin films as anode for Na-ion batteries  

SciTech Connect

Cu2Sb thin films prepared by magnetron sputtering are evaluated as an anode material for Na-ion batteries. The starting material is composed of nanocrystallites with the desired tetragonal P4/nmm structure. The study of the reaction mechanism reveals the formation of an amorphous/nanocrystalline phase of composition close to Na3Sb as the final reaction product. The solid electrolyte interphase (SEI) material is mostly composed of carbonates (Na2CO3, NaCO3R). The Cu2Sb anode possesses moderate capacity retention with a reversible storage capacity (250 mAh/g) close to the theoretical value (323 mAh/g), an average reaction potential of around 0.55 V vs. Na/Na+, and a high rate performance (10 C-rate).

Baggetto, Loic [ORNL; Allcorn, Eric [University of Texas, Austin; Manthiram, Arumugam [University of Texas, Austin; Veith, Gabriel M [ORNL

2013-01-01T23:59:59.000Z

80

,"Louisiana Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050LA3","N3010LA3","N3020LA3","N3035LA3","N3045LA3" "Date","Natural Gas Citygate Price in Louisiana (Dollars per Thousand Cubic Feet)","Louisiana Price...

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coastal Management (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Coastal Use Permit (CUP) process is part of the Louisiana Coastal Resources Program (LCRP), which is an effort among Louisiana citizens, as well as state, federal and local advisory and...

82

NA-ASC-100R-04-Vol.1-Rev.0  

National Nuclear Security Administration (NNSA)

100R-04-Vol.1-Rev.0 100R-04-Vol.1-Rev.0 August 2004 SAND 2004-3740P Issued by Sandia National Laboratories for NNSA's Office of Advanced Simulation & Computing, NA-114. For more information, contact Dr. Dimitri Kusnezov at dimitri.kusnezov@nnsa.doe.gov ON THE COVER: These experimental images show the evolution of three gaseous cylinders (seeded with a tracer gas) that have been accelerated by a planar shock wave. The flow fields are dominated by vortices created by the shock acceleration, so the swirling red flows are the SF6 gas being entrained by the vortices. The yellow is air. Each photo consists of two snapshots of the flow at two times (with time interval about 200 microseconds). These images are produced by a laser-induced fluorescence technique. In each image the structures are traveling from left to right at speeds of 100 m/s.

83

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

84

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA NA-40  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Reporting Office: NNSA NA-40 Section One - Current Mission (s) of the Organization and Potential Changes. 1. The Office of Emergency Operations (NA-40) administers and directs DOE and NNSA programs for emergency response capabilities to ensure availability and viability to respond to emergencies at DOE and NNSA facilities and field sites, and to nuclear and radiological emergencies within the United States and abroad. NA-40 is also responsible for the development of Departmental policy and guidance, technical assistance, and supporting implementation of emergency management planning, preparedness, readiness assurance, and response activities within DOE and NNSA. 2. NA-40 has no nuclear or radiological facilities under its cognizance; however,

85

Arquitetura ODP-CIM aplicada na previsão distribuída da carga do sistema elétrico de potência.  

E-Print Network (OSTI)

??O presente trabalho apresenta a utilização do modelo CIM ? Common Information Model com uma abordagem ODP ? Open and Distributed Processing na definição de… (more)

Mário Roberto Bastos

2006-01-01T23:59:59.000Z

86

2011 Annual Planning Summary for NNSA, Infrastructure and Environment (NA-50)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within NNSA, Infrastructure and Environment (NA-50).

87

http://hq.na.gov/default.aspx?L=ITEM&ITEM=17500&CA=30&OT=101...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Simulation & Computing (ASC) Defense Nuclear Nonproliferation (NA-20) Nuclear Cities Initiative (NCI) DOE Sites DOE Callup Directory Energy.Gov Simulation in...

88

O papel da advocacia de estado na gestão pública: análise da política pública energética no Brasil.  

E-Print Network (OSTI)

??O presente trabalho contém algumas reflexões sobre o papel da advocacia de Estado, na qual está inserida a Advocacia-Geral da União e seus membros de… (more)

Vaz, Tania Patricia de Lara

2010-01-01T23:59:59.000Z

89

High Energy Density Na-S/NiCl2 Hybrid Battery  

SciTech Connect

High temperature (250-350°C) sodium-beta alumina batteries (NBBs) are attractive energy storage devices for renewable energy integration and other grid related applications. Currently, two technologies are commercially available in NBBs, e.g., sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries. In this study, we investigated the combination of these two chemistries with a mixed cathode. In particular, the cathode of the cell consisted of molten NaAlCl4 as a catholyte and a mixture of Ni, NaCl and Na2S as active materials. During cycling, two reversible plateaus were observed in cell voltage profiles, which matched electrochemical reactions for Na-S and Na-NiCl2 redox couples. An irreversible reaction between sulfur species and Ni was identified during initial charge at 280°C, which caused a decrease in cell capacity. The final products on discharge included Na2Sn with 1< n < 3, which differed from Na2S3 found in traditional Na-S battery. Reduction of sulfur in the mixed cathode led to an increase in overall energy density over ZEBRA batteries. Despite of the initial drop in cell capacity, the mixed cathode demonstrated relatively stable cycling with more than 95% of capacity retained over 60 cycles under 10mA/cm2. Optimization of the cathode may lead to further improvements in battery performance.

Lu, Xiaochuan; Lemmon, John P.; Kim, Jin Yong; Sprenkle, Vincent L.; Yang, Zhenguo (Gary) [Gary

2013-02-15T23:59:59.000Z

90

Electrodeposition of PbTe Thermoelectric Materials in NaOH Solutions  

Science Conference Proceedings (OSTI)

Dissolution Kinetics of Steelmaking Slag and Its Promotion for the Growth of Algae · Electrodeposition of PbTe Thermoelectric Materials in NaOH Solutions.

91

Validação externa da metodologia de análise focada na decisão : o caso da "SEAB Paraná".  

E-Print Network (OSTI)

??Esta pesquisa tem como objetivo validar externamente a Metodologia da Análise Focada na Decisão (AFD) desenvolvida por Santos, Becker e Fisher (1998) a partir do… (more)

Luiz Roberto de Souza

2002-01-01T23:59:59.000Z

92

Migração silenciosa. Marcas do pensamento estético do Extremo Oriente na poesia portuguesa contemporânea.  

E-Print Network (OSTI)

??Na viragem do séc. XIX para o séc. XX, sobretudo através de Wenceslau de Moraes e de Camilo Pessanha, a literatura e a poesia portuguesas… (more)

Almeida, Ana Catarina Dias Nunes de

2012-01-01T23:59:59.000Z

93

Impacto do TPS (Toyota Production System) na performance de empresas do sector automóvel.  

E-Print Network (OSTI)

??O presente trabalho pretende demonstrar que o Sistema de Produção Toyota é na sua essência um Sistema de Gestão do Conhecimento. Sendo composto pela revisão… (more)

Gonçalves, Sérgio Manuel Gago

2008-01-01T23:59:59.000Z

94

NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough  

Science Conference Proceedings (OSTI)

Presentation Title, Thermodynamic Properties of Novel Low Melting Point LiNO3- NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough Solar Power ...

95

Optimization of Na 0.44 MnO 2 Cathode Material - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage: Materials, Systems, and Applications. Presentation Title, Optimization of Na0.44MnO2 Cathode Material for Use in Aqueous ...

96

Study of intradrystalline diffusion in zeolites communication 3. Kinetics of adsorption of trans-2-butene by NaA and NaMgA zeolites  

Science Conference Proceedings (OSTI)

This article studies the kinetics of adsorption of trans-2-butene by NaA zeolite with a varying crystal size, microcrystalline granulated NaA zeolite using granules of different sizes, and microcrystalline powdered Na/sub 8/Mg/sub 2/A zeolite. It is shown that the rate of adsorption is determined by the intracrystalline diffusion and that the effect of transfer in the transport pores and the final rate of dissipation of the heat of adsorption can be neglected. In adsorption of trans-2-butene by Na/sub 8/Mg/sub 2/A zeolite with a stepwise change in the pressure of the adsorbate, the kinetic curves are satisfactorily described by an internal diffusion equation for the kinetics of isothermal adsorption. The kinetics of adsorption were studied at 303 degrees K from the one-component vapor phase on a vacuum adsorption setup using quartz spring balance.

Broddak, R.; Dubinin, M.M.; Falko, L.A.; Gorlov, V.A.; Kuhlmann, B.; Scholner, E.; Voloshchuk, A.M.

1985-09-10T23:59:59.000Z

97

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Louisiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

98

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

99

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH  

E-Print Network (OSTI)

is the fall in potential energy surface during heating. Keywords: hydrogen storage, reactive force fieldModeling of Hydrogen Storage Materials: A Reactive Force Field for NaH Ojwang' J.G.O.*, Rutger van governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge

Goddard III, William A.

100

A New Improved Na-K Geothermometer By Artificial Neural Networks | Open  

Open Energy Info (EERE)

Improved Na-K Geothermometer By Artificial Neural Networks Improved Na-K Geothermometer By Artificial Neural Networks Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Improved Na-K Geothermometer By Artificial Neural Networks Details Activities (0) Areas (0) Regions (0) Abstract: A new Na/K geothermometer equation has been developed. The temperature function is:Concentrations are in mg/kg. The new improved geothermometer equation was developed by artificial neural networks. The normalized mean square error (NMSE) used in the new improved Na/K equation for temperatures ranging from 94 to 345°C is 0.179, which is lower than the corresponding NMSE 0.226, 0.598, 0.656, 0.268, 0.328 and 0.225 for the equations of Arnorsson et al. (1983; Geochim. Cosmochim. Acta 47, 567-577), Truesdell (1975; Proc. 2nd UN Symposium), Tonani (1980; Proc. Adv. Eur.

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Application Of An Artificial Neural Network Model To A Na-K Geothermometer  

Open Energy Info (EERE)

Application Of An Artificial Neural Network Model To A Na-K Geothermometer Application Of An Artificial Neural Network Model To A Na-K Geothermometer Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of An Artificial Neural Network Model To A Na-K Geothermometer Details Activities (3) Areas (2) Regions (0) Abstract: A new geothermometer model is proposed by applying data obtained from a known Na-K geothermometer to an artificial neural network. In this model, Na and K values were implemented as input signals and geothermometers as the output signal. Multi-layer perceptrons and back propagation were used as training algorithms for the artificial neural network. Reservoir temperatures of some geothermal fields in Turkey determined by this method are in accord with those determined from other methods.

102

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

103

" East North Central",21.3,"NA",26,27.6,29,32.4  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Vehicles, Selected Survey Years (Millions)" Number of Vehicles, Selected Survey Years (Millions)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",129.3,137.3,147.5,151.2,156.8,191 "Household Characteristics" "Census Region and Division" " Northeast",23.9,"NA",26.6,27,26.6,31.7 " New England",6.6,"NA",6.6,6.5,7.6,10 " Middle Atlantic ",17.3,"NA",20.1,20.5,19,21.7 " Midwest ",32.5,"NA",37.8,38.4,41.1,47.1 " East North Central",21.3,"NA",26,27.6,29,32.4 " West North Central ",11.3,"NA",11.8,10.8,12.1,14.7 " South",45.1,"NA",50.6,52.7,56,70.2 " South Atlantic",22.2,"NA",25.9,26.6,28.4,38.8

104

" East North Central",751,"NA",539,650,639,792.21608  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Expenditures per Vehicle, Selected Survey Years (Nominal Dollars) " Fuel Expenditures per Vehicle, Selected Survey Years (Nominal Dollars) " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",736,722,550,650,668,787 "Household Characteristics" "Census Region and Division" " Northeast",731,"NA",532,660,647,766.42074 " New England",706,"NA",526,687,637,810.19092 " Middle Atlantic ",740,"NA",534,651,651,746.41162 " Midwest ",738,"NA",539,651,644,792.60265 " East North Central",751,"NA",539,650,639,792.21608 " West North Central ",714,"NA",538,654,656,793.45498 " South",758,"NA",575,663,673,775.63816 " South Atlantic",772,"NA",559,639,676,755.54606

105

" East North Central",627,"NA",550,553,574,585.28553  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption per Vehicle, Selected Survey Years (Gallons) " Fuel Consumption per Vehicle, Selected Survey Years (Gallons) " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",621,611,559,548,578,592 "Household Characteristics" "Census Region and Division" " Northeast",609,"NA",525,523,545,571.15003 " New England",582,"NA",517,541,542,585.83989 " Middle Atlantic ",619,"NA",528,517,545,564.4347 " Midwest ",620,"NA",550,554,580,588.14092 " East North Central",627,"NA",550,553,574,585.28553 " West North Central ",607,"NA",550,557,592,594.43665 " South",644,"NA",585,566,598,615.25944 " South Atlantic",647,"NA",563,542,601,602.53752

106

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2011 EA-1795: Finding of No Significant Impact Loan Guarantee to Diamond Green Diesel for Construction of the Diamond Green Diesel Facility in Norco, Louisiana April 1,...

107

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Manufacturing Project in Monroe, Louisiana January 20, 2011 Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel secures a 241 loan...

108

Retail Unbundling - Louisiana  

Gasoline and Diesel Fuel Update (EIA)

Currently, only large industrial customers can purchase natural gas from nonutility suppliers. EIA State Data: In 2008, Louisiana had 886,084 residential and 57,066 commercial...

109

Solid Waste Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

110

Environmental Quality: Air (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates air quality in Louisiana. The Department has an established a fee system for funding the monitoring, investigation and other activities required...

111

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-004289: Categorical Exclusion Determination University of Louisiana Lafayette Solar Thermal Power Plant Installation 2 CX(s) Applied: B5.1 Date: 10202010 Location(s):...

112

Water Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Water Permits Division authorizes permits administered under the Water Quality Regulations. Louisiana's Water Quality Regulations require permits for the discharge of pollutants from any point...

113

,"Louisiana Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

114

Investigation of the Effects of Biodiesel-based Na on Emissions Control Components  

SciTech Connect

A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented accelerated Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.

Brookshear, D. William [University of Tennessee, Knoxville (UTK); Nguyen, Ke [University of Tennessee, Knoxville (UTK); Toops, Todd J [ORNL; Bunting, Bruce G [ORNL; Howe, Janet E [ORNL

2012-01-01T23:59:59.000Z

115

Louisiana Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Louisiana Quick Facts. The Henry Hub in Erath, Louisiana, is the interconnect for nine interstate and four intrastate pipelines that provide access to major markets ...

116

Site-specific force-distance characteristics on NaCl(001): Measurements versus atomistic simulations  

Science Conference Proceedings (OSTI)

A scanning force microscope was used to measure the frequency shift above various atomic sites on a NaCl(001) surface at 7 K. The data was converted to force and compared to the results of atomistic simulations using model NaCl and MgO tips. We find that the NaCl tip demonstrates better agreement in the magnitude of the forces in experiments, supporting the observation that the tip first came into contact with the sample. Using the MgO tip as a model of the originally oxidized silicon tip, we further demonstrate a possible mechanism for tip contamination at low temperatures.

Lantz, M. A.; Hoffmann, R.; Hidber, H. R. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Foster, A. S. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 HUT (Finland); Baratoff, A.; Hug, H. J.; Guentherodt, H.-J. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); National Center of Competence in Research (NCCR) on Nanoscale Science, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

2006-12-15T23:59:59.000Z

117

Formation, stability and mobility of self-trapped excitations in NaI and NaI1-xTIx from first principles  

Science Conference Proceedings (OSTI)

We present ab initio calculations studying the formation, mobility, and stability of self trapped excitons (STE) and self trapped holes (STH) and electrons in NaI and NaI(Tl). While previously proposed models assumed a highly mobile STE and a slower STH, we find that both carriers in pure NaI have similar mobilities, with an activation energy of about 0.2 eV. We propose an alternate interpretation of experimental record including a new migration mechanism for the STE. In the Tl-doped material excitons preferentially trap at dopants, inducing off center distortions that have a structure unlike an STE providing a mechanism for light emission at multiple wavelengths. The calculated results are generally in excellent agreement with available data.

Prange, Micah P.; Van Ginhoven, Renee M.; Govind, Niranjan; Gao, Fei

2013-03-04T23:59:59.000Z

118

Coupled left-shift of Nav channels: modeling the Na+-loading and dysfunctional excitability of damaged axons  

Science Conference Proceedings (OSTI)

Injury to neural tissue renders voltage-gated Na+ (Nav) channels leaky. Even mild axonal trauma initiates Na+ -loading, leading to secondary Ca2+-loading and white matter degeneration. The nodal isoform is Nav1.6 ... Keywords: Arrhythmia, Diffuse axonal injury, Extracellular space, Hodgkin-Huxley, Myelinated, Na/K-ATPase, Neuropathic pain

Pierre-Alexandre Boucher; Béla Joós; Catherine E. Morris

2012-10-01T23:59:59.000Z

119

Program on Technology Innovation: Advanced Sodium Sulfur (NaS) Battery Energy Storage System - 2006 Annual Report  

Science Conference Proceedings (OSTI)

Although sodium sulfur (NaS) batteries have begun to be commercialized in Japan, market development of NaS batteries in the United States has lacked a full-scale commercial demonstration. This report describes one of the first U.S. commercial NaS application efforts and details its technical aspects.

2007-12-21T23:59:59.000Z

120

High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications  

Science Conference Proceedings (OSTI)

A new SnSb/C nanocomposite based on Na alloying reactions is demonstrated as anode for Na-ion battery applications. The electrode can achieve an exceptionally high capacity (544 mA h g{sup -1}, almost double that of intercalation carbon materials), good rate capacity and cyclability (80% capacity retention over 50 cycles) for Na-ion storage.

Xiao, Lifen; Cao, Yuliang; Xiao, Jie; Wang, Wei; Kovarik, Libor; Nie, Zimin; Liu, Jun

2012-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

122

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

123

Natural Gas Gross Withdrawals from Coalbed Wells  

Annual Energy Outlook 2012 (EIA)

2002-2013 Alaska NA NA NA NA NA NA 2002-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2013 Louisiana NA NA NA NA NA NA 2002-2013 New Mexico NA NA NA NA NA NA...

124

Nonhydrocarbon Gases Removed from Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1996-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013...

125

Natural Gas Used for Repressuring  

Annual Energy Outlook 2012 (EIA)

1-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1991-2013 Oklahoma NA NA NA NA NA NA 1996-2013...

126

Natural Gas Vented and Flared  

Annual Energy Outlook 2012 (EIA)

1-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013...

127

NNSA selects Lindsey VanNess as NA-00 Inaugural Employee of the Year |  

National Nuclear Security Administration (NNSA)

selects Lindsey VanNess as NA-00 Inaugural Employee of the Year | selects Lindsey VanNess as NA-00 Inaugural Employee of the Year | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA selects Lindsey VanNess as NA-00 Inaugural ... NNSA selects Lindsey VanNess as NA-00 Inaugural Employee of the Year Posted By Office of Public Affairs

128

Dynamics and Thermodynamics of a Novel Phase of NaAlH[subscript 4  

E-Print Network (OSTI)

We characterize a novel orthorhombic phase (?) of NaAlH[subscript 4], discovered using first-principles molecular dynamics, and discuss its relevance to the dehydrogenation mechanism. This phase is close in energy to the ...

Wood, Brandon C.

129

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA for Safety and Health - NA-26  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Workforce Analysis and Staffing Plan Report Draft as of December 31, 2012 Reporting Office: _NA-26 Office of Fissile Material Disposition at SRS____ Section 1: Current Mission(s) of the Organization and Potential Changes 1. The Office of Fissile Material Disposition (NA-26) is part of the National Nuclear Security Administration (NNSA). NA-26 supports NNSA Strategic Plan Goal #2, "Provide technical leadership to limit or prevent the spread of materials, technology, and expertise relating to weapons of mass destruction; advance the technologies to detect the proliferation of weapons of mass destruction worldwide, and eliminate or secure inventories of surplus materials and infrastructure usable for nuclear weapons." The NA-26 organization focuses on the safe and secure disposition of

130

Complexation of Am(III) by oxalate in NaClO{sub 4} media  

SciTech Connect

The complexation of Am(III) by oxalate has been investigated in solutions of NaClO{sub 4} up to 9.0 M ionic strength at 25{degrees}C. The dissociation constants of oxalic acid were determined by potentiometric titration, while the stability constants of the Am(III)-oxalate complexation were measured by the solvent extraction technique. A thermodynamic model was constructed to predict the apparent equilibrium constants at different ionic strengths by applying the Pitzer equation using parameters for the Na{sup +}-HOx{sup -}, Na{sup +}-Ox{sup -}, AmOx{sup +}-ClO{sub 4}{sup -}, and Na{sup +}-Am(Ox){sub 2}{sup -} interactions obtained by fitting the data.

Choppin, G.R.; Chen, J.F. [Florida State Univ., Tallahassee, FL (United States)

1995-09-01T23:59:59.000Z

131

The Accuracy of Voluntary Observing Ships' Meteorological Observations-Results of the VSOP-NA  

Science Conference Proceedings (OSTI)

For the Voluntary Observing Ships Special Observing Project for the North Atlantic (VSOP-NA), the layout, meteorological instrumentation, and observing practices of 45 voluntary observing ships (VOS) operating in the North Atlantic were ...

Elizabeth C. Kent; Peter K. Taylor; Bruce S. Truscott; John S. Hopkins

1993-08-01T23:59:59.000Z

132

Configurational Entropy and Structure of the Molten NaCl-KCl-ZnCl2 ...  

Science Conference Proceedings (OSTI)

In this context, we examine NaCl-KCl-ZnCl2 molten salts and pay particular attention to characterizing the thermodynamics and structure of these liquids in order ...

133

An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy  

Open Energy Info (EERE)

Empirical Na-K-Ca Geothermometer For Natural Waters Empirical Na-K-Ca Geothermometer For Natural Waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Empirical Na-K-Ca Geothermometer For Natural Waters Details Activities (0) Areas (0) Regions (0) Abstract: An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340°C. The data for most geothermal waters cluster near a straight line when plotted as the function vs reciprocal of absolute temperature, where Β is either or depending upon whether the water equilibrated above or below 100°C. For most waters tested, the method gives better results than the methods suggested by other workers. The ratio

134

Investigation of Ti-doped NaAlH4 by solid-state NMR  

DOE Green Energy (OSTI)

In recent years, the development of Ti-doped NaAlH{sub 4} as a hydrogen storage material has gained attention because of its large weight percentage of hydrogen ({approx}5%) compared to traditional interstitial hydrides. The addition of transition-metal dopants, in the form of Ti-halides, such as TiCl{sub 3}, dramatically improves the kinetics of the absorption and desorption of hydrogen from NaAlH{sub 4}. However, the role that Ti plays in enhancing the absorption and desorption of H{sub 2} is still unknown. In the present study, {sup 27}Al, {sup 23}Na, and {sup 1}H MAS (Magic Angle Spinning) NMR (Nuclear Magnetic Resonance) has been performed to understand the titanium speciation in Ti-doped NaAlH{sub 4}. All experiments were performed on a sample of crushed single crystals exposed to Ti during growth, a sample of solvent-mixed 4TiCl{sub 3} + 112NaAlH{sub 4}, a reacted sample of solvent-mixed TiCl{sub 3} + {sup 3}NaAlH{sub 4} with THF, and a reacted sample of ball-milled TiCl3 + 3NaAlH{sub 4}. The {sup 27}Al MAS NMR has shown differences in compound formation between solvent-mixed TiCl{sub 3} + 3NaAlH{sub 4} with THF and the mechanically ball-milled TiCl{sub 3} + 3NaAlH{sub 4}. {sup 27}Al MAS NMR of the mechanically ball-milled mixture of fully-reacted TiCl{sub 3} + 3NaAlH{sub 4} showed spectral signatures of TiAl{sub 3} while, the solvent-mixed 4TiCl{sub 3} + 112NaAlH{sub 4}, which is totally reacted, does not show the presences of TiAl{sub 3}, but shows the existence of Al{sub 2}O{sub 3}.

Maxwell, R; Majzoub, E; Herberg, J

2003-11-24T23:59:59.000Z

135

Traduzir o outro oriental:a configuração da figura feminina na literatura portuguesa finissecular:(António Feijó e Wenceslau de Moraes).  

E-Print Network (OSTI)

??O presente estudo incide sobre a configuração literária da mulher extremo-oriental na obra de dois autores portugueses finisseculares, nomeadamente na recolha de poesias traduzidas que… (more)

Pinto, Marta Pacheco, 1984-

2013-01-01T23:59:59.000Z

136

Improved MCFC performance with Li/Na/Ba/Ca carbonate electrolyte.  

DOE Green Energy (OSTI)

Earlier electrolyte segregation tests of Li/Na carbonate used chemical analysis such as inductively coupled plasma/atomic emission spectroscopy (ICP/AES) of matrix strips wetted with carbonate and exposed to 5- to 20-V potential gradients. A segregation factor was correlated to the Li/Na carbonate composition. While fairly substantial segregation occurs at the eutectic composition of 52% Li, it is minimal at 60% to 75% Li. Such lithium-rich Li/Na carbonates may not be practical because the melting points are too high (i.e., liquidus point is 625 C). By adding calcium and barium to the lithium/sodium carbonates, we were able to lower the melting point and maintain nonsegregating behavior. This work is directed at examining the long-term stability of the quaternary Li/Na/Ba/Ca electrolytes. Electrolyte optimization work evaluates Li/Na ratio and Ba/Ca level to improve cell performance at 320 mA/cm{sup 2} and reduce temperature sensitivity. A number of cells with quaternary Li/Na/Ba/Ca electrolytes ranging from 3 to 5% Ba/Ca have operated well with stable, long-term performance. Congruent melting carbonate is important for commercial development. The best so far is 3.5% Ba/Ca/Na/Li (3.5 mol%/3.5 mol% Ba/Ca) carbonate (m.p. 440 C). Performance at 160 mA/cm{sup 2} is increased up to 150mV as compared with the baseline cell containing the Li/Na eutectic composition. Life stability has been reproduced by a number of bench-scale MCFC test with operations of 2000-4300 h and the electrolyte composition across the matrix little changed.

Centeno, C.-J.; Kaun, T. D.; Krumpelt, M.; Schoeler, A.

1999-07-21T23:59:59.000Z

137

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

138

Louisiana Natural Gas Delivered to Commercial Consumers for the Account of  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Louisiana Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 18 16 1990's 0 233 3,552 479 505 464 451 1,048 1,287 1,528 2000's 948 861 251 299 344 342 350 487 362 1,902 2010's 4,367 4,260 5,778 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Delivered to Commercial Consumers for the Account of Others Louisiana Natural Gas Delivered for the Account of Others

139

O and Na abundance patterns in open clusters of the Galactic disk  

E-Print Network (OSTI)

Aims. A global O-Na abundance anti-correlation is observed in globular clusters, which is not present in the Galactic field population. Open clusters are thought to be chemically homogeneous internally. We aim to explore the O and Na abundance pattern among the open cluster population of the Galactic disk. Methods. We combine open cluster abundance ratios of O and Na from high-resolution spectroscopic studies in the literature and normalize them to a common solar scale. We compare the open cluster abundances against the globular clusters and disk field. Results. We find that the different environments show different abundance patterns. The open clusters do not show the O-Na anti-correlation at the extreme O-depletion / Na-enhancement as observed in globular clusters. Furthermore, the high Na abundances in open clusters do not match the disk field stars. If real, it may be suggesting that the dissolution of present-day open clusters is not a significant contribution to building the Galactic disk. Large-scale h...

De Silva, G M; Lattanzio, J; Asplund, M; 10.1051/0004-6361/200912279

2009-01-01T23:59:59.000Z

140

Na and Li ion diffusion in modified ASTM C 1260 test by Magnetic Resonance Imaging (MRI)  

SciTech Connect

In the current study, MRI was applied to investigate lithium and sodium ion diffusion in cement paste and mortars containing inert sand and borosilicate glass. Paste and mortars were treated by complying with ASTM C 1260. Lithium and sodium distribution profiles were collected at different ages after different treatments. Results revealed that sodium ions had a greater diffusion rate than lithium ions, suggesting that Na reaches the aggregate particle surface before Li. Results also showed that Na and Li ions had a competitive diffusion process in mortars; soaking in a solution with higher [Li] favored Li diffusion but hindered Na diffusion. In mortars containing glass, a substantial amount of Li was consumed by the formation of ASR products. When [Li] in soaking solution was reduced to 0.37 N, a distinctive Na distribution profile was observed, indicating the free-state Na ions were continuously transformed to solid reaction products by ASR. Hence, in the modified ASTM C 1260 test, [Li] in the storage solution should be controlled at 0.74 N, in order to completely prevent the consumption of Na ions and thus stop ASR.

Feng, X. [Department of Civil Engineering, University of New Brunswick, Fredericton, NB (Canada)], E-mail: XFeng@ctlgroup.com; Balcom, B.J. [MRI Center, Department of Physics, University of New Brunswick, Fredericton, NB (Canada); Thomas, M.D.A.; Bremner, T.W. [Department of Civil Engineering, University of New Brunswick, Fredericton, NB (Canada)

2008-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

State Energy Program Assurances - Louisiana Governor Jindal ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Louisiana Governor Jindal State Energy Program Assurances - Louisiana Governor Jindal Letter from Louisiana Governor Jindal providing Secretary...

142

Coastal Management (Louisiana) | Open Energy Information  

Open Energy Info (EERE)

2013. EZFeed Policy Place Louisiana Applies to States or Provinces Louisiana Name Coastal Management (Louisiana) Policy Category Other Policy Policy Type Environmental Regulations...

143

Louisiana Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Louisiana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,383,334 3,728,717 4,465,379 1970's 5,237,519 5,994,431 6,337,328 6,524,729 6,273,136 5,831,487 5,749,783 5,709,535 5,561,040 1980's 5,197,429 4,770,095 4,190,105 4,439,430 3,811,852 3,794,464 3,880,364 3,918,236 4,002,843 1990's 4,220,068 4,340,531 4,466,425 4,315,312 4,200,126 4,604,292 4,652,677 4,767,965 4,610,969 4,687,261 2000's 4,316,127 4,206,470 3,771,001 3,391,870 3,244,850 2,527,636 2,511,802 2,857,443 2,208,920 2,175,026 2010's 2,207,760 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

144

Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2010 CX-004751: Categorical Exclusion Determination Replace West Hackberry Radio Tower CX(s) Applied: B1.19 Date: 11232010 Location(s): Louisiana Office(s): Strategic...

145

Louisiana STEP Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Emergency Response Professionals CARLSBAD, N.M., January 15, 2001 - Trainers from the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) will be in...

146

Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 263 1980's 267 253 243 238 229 220 208 194 193 196 1990's 182 175 151 133 123 136 127 134 138 142 2000's 159 141 107 82 66 65 65 71 64 74 2010's 68 64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Lease Condensate Proved Reserves as of Dec. 31 LA, South Onshore Lease Condensate Proved Reserves, Reserve Changes, and Production

147

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

148

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

149

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

150

Louisiana - North Dry Natural Gas Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Louisiana - North Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,135 3,203 2,798 1980's 3,076 3,270 2,912 2,939 2,494 2,587 2,515 2,306 2,398 2,652 1990's 2,588 2,384 2,311 2,325 2,537 2,788 3,105 3,093 2,898 3,079 2000's 3,298 3,881 4,245 5,074 5,770 6,695 6,715 6,344 7,876 17,143 2010's 26,030 27,337 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved Reserves

151

Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Louisiana Natural Gas Prices

152

Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Louisiana Natural Gas Reserves Summary as of Dec. 31

153

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

154

Catalytic Effect of Ti for Hydrogen Cycling in NaAlH4  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Ti for Effect of Ti for Hydrogen Cycling in NaAlH 4 Mei-Yin Chou School of Physics Georgia Institute of Technology (DE-FG02-05ER46229) Acknowledgment: Yan Wang, Roland Stumpf Why is NaAlH 4 interesting? A viable candidate for hydrogen-storage material: High theoretical weight-percent hydrogen content of 5.55% and low cost But (before 1997) Dehydrogenation occurs at high temperature; rehydrogenation is difficult. Bogdanovic and Schwickardi, 1997 Hydrogen can be reversibly absorbed and desorbed from NaAlH 4 under moderate conditions by the addition of catalysts (compounds containing Ti, Zr, etc.) High Hydrogen Contents in Complex Hydrides Hydride wt% Hydride wt% Be(BH 4 ) 2 20.8 Mg(AlH 4 ) 2 9.3 LiBH 4 18.2 Ca(AlH 4 ) 2 7.9 Mg(BH 4 ) 2 14.9 KBH 4 7.5 Ca(BH 4 ) 2 11.6 NaAlH 4 7.5 NaBH4 10.7 Ga(AlH

155

The behavior of NaOH at the air-water interface, a computational study  

DOE Green Energy (OSTI)

Molecular dynamics simulations with a polarizable multi-state empirical valence bond model were carried out to investigate NaOH dissociation and pairing in water bulk and at the air-water interface. It was found that NaOH readily dissociates in the bulk, and the effect of the air-water interface on NaOH dissociation is fairly minor. Also, NaOH complexes were found to be strongly repelled from the air-water interface, which is consistent with surface tension measurements. At the same time, a very strong preference for the hydroxide anion to be oriented towards the air was found that persisted a few angstroms towards the liquid from the Gibbs dividing surface of the air-water interface. This was due to a preference for the hydroxide anion to have its hydrogen pointing towards the air, and the fact that the sodium ion was more likely to be found near the hydroxide oxygen than hydrogen. As a consequence, the simulation results show that surfaces of NaOH solutions should be negatively charged, in agreement with experimental observations, but also that the hydroxide has little surface affinity. This provides the possibility that the surface of water can be devoid of hydroxide anions, but still have a strong negative charge. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Wick, Collin D.; Dang, Liem X.

2010-07-14T23:59:59.000Z

156

THE Na 8200 Angstrom-Sign DOUBLET AS AN AGE INDICATOR IN LOW-MASS STARS  

SciTech Connect

We investigate the use of the gravity sensitive neutral sodium (Na I) doublet at 8183 Angstrom-Sign and 8195 Angstrom-Sign (Na 8200 Angstrom-Sign doublet) as an age indicator for M dwarfs. We measured the Na doublet equivalent width (EW) in giants, old dwarfs, young dwarfs, and candidate members of the {beta} Pic moving group using medium-resolution spectra. Our Na 8200 A doublet EW analysis shows that the feature is useful as an approximate age indicator in M-type dwarfs with (V - K{sub s}) {>=} 5.0, reliably distinguishing stars older and younger than 100 Myr. A simple derivation of the dependence of the Na EW on temperature and gravity supports the observational results. An analysis of the effects of metallicity shows that this youth indicator is best used on samples with similar metallicity. The age estimation technique presented here becomes useful in a mass regime where traditional youth indicators are increasingly less reliable, is applicable to other alkali lines, and will help identify new low-mass members in other young clusters and associations.

Schlieder, Joshua E.; Simon, Michal [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Lepine, Sebastien; Rice, Emily [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Fielding, Drummond [Department of Physics and Astronomy, Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Tomasino, Rachael, E-mail: michal.simon@stonybrook.edu, E-mail: schlieder@mpia-hd.mpg.de, E-mail: lepine@amnh.org, E-mail: erice@amnh.org, E-mail: dfieldi1@jhu.edu, E-mail: tomas1r@cmich.edu [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States)

2012-05-15T23:59:59.000Z

157

Water Quality (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality (Louisiana) Water Quality (Louisiana) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General PublicConsumer Industrial Installer...

158

Ground Water Management Regulations (Louisiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Regulations (Louisiana) Ground Water Management Regulations (Louisiana) Eligibility Agricultural Construction Developer Fuel Distributor Industrial...

159

Stripe Correlations in Na{sub 0.75}CoO{sub 2}  

Science Conference Proceedings (OSTI)

We present a combined high-energy x-ray diffraction and local-density approximation study of the sodium ordering in Na{sub 0.75}CoO{sub 2}. The obtained results rule out previously proposed Na-ordering models and provide strong evidence for the formation of sodium-density stripes in this material. The local-density approximation calculations prove that the sodium-density stripes lead to a sizable dip in the density of the Co states at the Fermi level, pointing to band structure effects as a driving force for the stripe formation. This indicates that the sodium ordering is connected to stripelike charge correlations within the CoO{sub 2} layers, leading to an astonishing similarity between the doped cuprates and the Na{sub x}CoO{sub 2} compounds.

Geck, J.; Borisenko, S. V.; Eschrig, H.; Koepernik, K.; Knupfer, M.; Buechner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Zimmermann, M. v. [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg (Germany); Berger, H. [Institut de Physique de la Matiere Complex (IPMC), EPF Lausannne, 1015 Lausanne (Switzerland)

2006-09-08T23:59:59.000Z

160

Decontamination and decommissioning plan for processing contaminated NaK at the INEL  

Science Conference Proceedings (OSTI)

This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

LaRue, D.M.; Dolenc, M.R.

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Decontamination and decommissioning plan for processing contaminated NaK at the INEL  

Science Conference Proceedings (OSTI)

This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

LaRue, D.M.; Dolenc, M.R.

1986-09-01T23:59:59.000Z

162

Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process  

Science Conference Proceedings (OSTI)

A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

2009-02-20T23:59:59.000Z

163

At-wavelength interferometry of high-NA diffraction-limited EUV optics  

SciTech Connect

Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.

Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik; Jackson, Keith; Bokor, Jeffrey; Attwood, David

2003-08-01T23:59:59.000Z

164

Towards a study of the {sup 22}Ne(p,{gamma}){sup 23}Na reaction at LUNA  

SciTech Connect

The {sup 22}Ne(p,{gamma}){sup 23}Na reaction is a part of the hydrogen burning NeNa cycle. In second-generation stars hydrogen burning may proceed via this cycle. The rate of the {sup 22}Ne(p,{gamma}){sup 23}Na reaction depends on the strength of several resonances in the energy range of the LUNA 400 kV accelerator which have never been observed in direct experiments. A related study is under preparation at LUNA.

Cavanna, Francesca; Depalo, Rosanna; Menzel, Marie-Luise [Dipartimento di fisica, Universita di Genova, and INFN Sezione di Genova, Genova (Italy); Dipartimento di fisica, Universita di Padova, and INFN Sezione di Padova, Padova (Italy); Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Collaboration: LUNA Collaboration

2012-11-20T23:59:59.000Z

165

NaK pool-boiler solar receiver durability bench test. Volume 2, Metallurgical analysis  

DOE Green Energy (OSTI)

The principal materials used in the construction of a NaKbased pool-boiler were analyzed. The device, operated for 7500 hours, accumulated 1000 thermal cycles to a peak temperature of 750{degrees}C. Haynes 230, used to fabricate the pool-boiler vessel, was found to perform satisfactorily. Air-side corrosion of the pool-boiler vessel was insignificant. Internal surface of the alloy exhibited some NaK-induced elemental dissolution; this dissolution was somewhat more extensive where the alloy was exposed to the liquid metal compared to regions exposed only to NaK vapor; however, the corresponding metal loss in all regions was inconsequential, never exceeding more than a few microns. Autogenous seam welds of the alloy responded in a similar fashion, exhibiting only minimal metal loss over the course of the experiment. While there was 50% loss in ductility of the alloy there remained adequate ductility for the anticipated operating environment. An enhanced boiling nucleation surface comprised of stainless steel powder brazed to the vessel ID showed no change in its structure. It remained intact, showing no cracking after repeated thermal cycling. Other materials used in the experiment showed more extensive degradation after exposure to the NaK. IN 600, used to fabricate thermowells, exhibited extensive surface and intergranular dissolution. Grain boundary dissolution was sufficiently severe in one of the thermowells to cause an air leak, resulting in experiment termination. BNi-3, a brazing alloy used to join the pool-boiler vessel, endcaps and thermowells, showed some dissolution where it was exposed to the NaK as well as thermal aging effects. However, all brazes remained structurally sound. A nickel metal ribbon showed catastrophic dissolution, resulting in the formation of deep (> 30 {mu}m) pits and cavities. A zirconium metal foil used to getter oxygen from the NaK became extremely brittle.

Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States)

1995-01-01T23:59:59.000Z

166

Louisiana: Louisiana's Clean Energy Resources and Economy (Brochure)  

SciTech Connect

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Louisiana.

Not Available

2013-03-01T23:59:59.000Z

167

High Thermal Energy Storage Density LiNO3-NaNO3-KNO3-KNO2 ...  

Science Conference Proceedings (OSTI)

Presentation Title, High Thermal Energy Storage Density LiNO3-NaNO3-KNO3- KNO2 Quaternary Molten Salts for Parabolic Trough Solar Power Generation.

168

O processo de desenvolvimento da fé e a constituição do self na primeira infância, a partir de James William Fowler.  

E-Print Network (OSTI)

??Este trabalho estuda o desenvolvimento da fé e da constituição do self na primeira infância a partir de James W. Fowler. É um estudo psicológico… (more)

Maria Eliane Azevedo da Silva

2011-01-01T23:59:59.000Z

169

POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION  

Science Conference Proceedings (OSTI)

At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a safety standpoint, the inventory of residual sodium in these systems was greatly reduced by using the carbonation process. From a regulatory standpoint, the process was not able to achieve deactivation of all residual sodium, and other more aggressive measures will be needed if the remaining residual sodium must also be deactivated to meet the requirements of the existing environmental permit. This chapter provides a project history and technical summary of the carbonation of EBR-II residual sodium. Options for future treatment are also discussed.

Sherman, S.; Knight, C.

2011-03-08T23:59:59.000Z

170

,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals (MMcf)" Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1060_r19f_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1060_r19f_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:18 AM"

171

,"Federal Offshore--Louisiana Natural Gas Marketed Production (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (MMcf)" Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_r19f_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_r19f_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:28 AM"

172

,"Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:02 PM"

173

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1-2013 1-2013 Alaska NA NA NA NA NA NA 1996-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1996-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013 Montana NA NA NA NA NA NA 1996-2013 Nebraska NA NA NA NA NA NA 1991-2013 Nevada NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013

174

Natural Gas Vented and Flared (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Alaska NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1996-2013 Missouri NA NA NA NA NA NA 1991-2013 Montana NA NA NA NA NA NA 1996-2013 Nebraska NA NA NA NA NA NA 1991-2013 Nevada NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013

175

Natural Gas Used for Repressuring (Summary)  

Gasoline and Diesel Fuel Update (EIA)

NA NA NA NA NA NA 1973-2013 NA NA NA NA NA NA 1973-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Alabama NA NA NA NA NA NA 1991-2013 Alaska NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1991-2013 Colorado NA NA NA NA NA NA 1991-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013

176

Louisiana Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Louisiana Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Selected Cities Baton Rouge BatonRougeGasPrices.com Automotive.com MapQuest.com Lafayette LafayetteGasPrices.com Automotive.com MapQuest.com Lake Charles LakeCharlesGasPrices.com Automotive.com MapQuest.com Metairie MetairieGasPrices.com Automotive.com MapQuest.com Monroe MonroeGasPrices.com Automotive.com MapQuest.com New Orleans NewOrleansGasPrices.com Automotive.com Mapquest.com Shreveport ShreveportGasPrices.com Automotive.com MapQuest.com Other Louisiana Cities LouisianaGasPrices.com (search by city or ZIP code) - GasBuddy.com Louisiana Gas Prices (selected cities) - GasBuddy.com

177

Louisiana Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

178

Louisiana Wetland Loss at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

179

Alternative Fuels Data Center: Louisiana Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Information Louisiana Information to someone by E-mail Share Alternative Fuels Data Center: Louisiana Information on Facebook Tweet about Alternative Fuels Data Center: Louisiana Information on Twitter Bookmark Alternative Fuels Data Center: Louisiana Information on Google Bookmark Alternative Fuels Data Center: Louisiana Information on Delicious Rank Alternative Fuels Data Center: Louisiana Information on Digg Find More places to share Alternative Fuels Data Center: Louisiana Information on AddThis.com... Louisiana Information This state page compiles information related to alternative fuels and advanced vehicles in Louisiana and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

180

Grant Title: WELLS FARGO GRANT PROGRAM Funding Opportunity Number: N/A  

E-Print Network (OSTI)

Grant Title: WELLS FARGO GRANT PROGRAM Funding Opportunity Number: N/A Agency/Department: Wells: Organizations with tax-exempt status under Section 501(c)(3) of the U.S. Internal Revenue Code, as well as qualified tribal and governmental agencies, including public school systems. Summary: Wells Fargo makes

Farritor, Shane

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The luminescence characteristics of CsI(Na) crystal under {alpha} and X/{gamma} excitation  

SciTech Connect

In this paper, we study the effective decay time characteristic of CsI(Na) crystal under {sup 239}Pu alpha particle and {sup 137}Cs gamma-ray excitation using a single photon counting decay time measurement system. The measurement system employs a silicon optical fiber to couple and transit single photon. The slow decay time component of CsI(Na) crystal is 460-550 ns. We observe a 15 ns fast decay component under alpha particle excitation. In addition, we find that the primary stage of the falling edge in the decay time curve is non-exponential and drops rapidly when CsI(Na) crystal is excited by {sup 239}Pu alpha particles. Since the high density of self-trapped-excitons (STEs) is produced in alpha particle excitation process, we propose that the fast falling edge is corresponding to the quenching process of STEs which transit with non-radiation in the case of high excitation density. To prove this proposal, we excited the CsI(Na) crystal with sub-nanosecond intensive pulsed X-ray radiation. Our X-ray impinging results show that the fast falling edge also exists under low energy (average 100 keV) bremsstrahlung X-ray excitation.

Liu Jinliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China); Liu Fang [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China); School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Ouyang Xiaoping [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China); School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Liu Bin [School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Chen Liang; Ruan Jinlu; Zhang Zhongbing; Liu Jun [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China)

2013-01-14T23:59:59.000Z

182

Electrical Conductivity of the KF-NaF- AlF3 Molten System at Low ...  

Science Conference Proceedings (OSTI)

The electrical conductivity of the NaF-KF-AlF3 system at CR=1.3-1.7 was ... Experimental Investigation of Single Bubble Characteristics in a Cold Model of a ... Impact of Amperage Creep on Potroom Busbars and Electrical Insulation: ...

183

Evaluation of NaK as the Primary Coolant for the SNAP II System  

SciTech Connect

An evaluation was made of the use of NaK as the primary coolant for the SNAP-2 system. Pumping-power limitations based on the mercury Rankine cycle are analyzed. Problems pertinent to any design-specification modifications are reviewed.

Wallerstedt, R.

1959-07-10T23:59:59.000Z

184

Louisiana.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Louisiana www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

185

Louisiana.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Louisiana www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

186

Temperature induced immiscibility in the NaCl?H[subscript 2]O system at high pressure  

SciTech Connect

High-pressure polymorphs of H{sub 2}O are a major component in many outer planets, extra solar bodies, and icy satellites. This study sought to examine the influence of ionic impurities on the phase stability, thermal expansion, and melting curve of ice VII. Powder diffraction patterns of ice VII formed from pure H{sub 2}O and 5 wt.% NaCl aqueous solutions were taken at room temperature up to 11.1 {+-} 0.3 and 26.6 {+-} 0.4 GPa, respectively. Thermal expansions, {alpha}, of all ice VII samples were recorded and modeled up to the melting point of the samples. Ice VII formed from a NaCl-bearing aqueous solution at pressures greater than 2.2 GPa and less than 500 K can be indexed by ice VII only, whereas at temperatures greater than 500 K, diffraction lines indicative of halite (NaCl) are observed and become more intense with increasing temperature and only disappear at the melting point of the high-pressure ice. This phenomenon was observed in all NaCl-bearing ice samples that were heated to greater than 500 K. The melting curves of ice VII formed from pure H{sub 2}O and a 5 wt.% NaCl aqueous solution suggest that the presence of Na{sup +} and Cl{sup -} in the ice VII structure results in a depression of the melting curve by approximately 40 K. The exsolution of halite from the NaCl-doped ice VII and the depression of the ice VII melting curve suggest that the presence of ionic impurities in ice VII may promote the formation of a self-segregating zone deep within ice-rich bodies. This zone could initiate the formation of solute-rich melt pockets that may ascend toward the surface and result in surface manifestations such as solute-bearing aqueous vents, unexplained domes/diapirism, and/or salt-rich regions.

Frank, M.R.; Scott, H.P.; Maglio, S.J.; Prakapenka, V.B.; Shen, G. (NIU); (CIW); (UC); (Indiana)

2008-10-09T23:59:59.000Z

187

Metastability And Crystal Structure of The Bialkali Complex Metal Hydride NaK(BH4)2  

DOE Green Energy (OSTI)

A new bialkali borohydride, NaK(BH{sub 4}){sub 2}, was synthesized by mechanical milling of NaBH4 and KBH4 in a 1:1 ratio. The synthesis was conducted based on a prediction from a computational screening of hydrogen storage materials suggesting the potential stability of NaK(BH{sub 4}){sub 2}. The new phase was characterized using X-ray diffraction, Raman scattering and magic angle spinning (MAS) nuclear magnetic resonance (NMR). The Raman measurements indicated B-H vibrations of the (BH{sub 4}){sup -} anion, while magnetic resonance chemical shifts in {sup 23}Na, and {sup 39}K MAS NMR spectra showed new chemical environments for Na and K resulting from the formation of the new bialkali phase. X-ray diffraction spectra indicated a new crystal structure with rhombohedral symmetry, most likely in the space group R3, distinct from the starting materials NaBH{sub 4}, and KBH{sub 4}. Although in-situ XRD measurements indicated the material to be metastable, decomposing to the starting materials NaBH{sub 4} and KBH{sub 4}, the successful synthesis of NaK(BH{sub 4}){sub 2} demonstrates the ability of computational screening to predict candidates for hydrogen storage materials.

Seballos, L; Zhang, J Z; Ronnebro, E; Herberg, J L; Majzoub, E H

2008-05-19T23:59:59.000Z

188

Louisiana/Incentives | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Incentives Louisiana/Incentives < Louisiana Jump to: navigation, search Contents 1 Financial Incentive Programs for Louisiana 2 Rules, Regulations and Policies for Louisiana Download All Financial Incentives and Policies for Louisiana CSV (rows 1 - 70) Financial Incentive Programs for Louisiana Download Financial Incentives for Louisiana CSV (rows 1 - 22) Incentive Incentive Type Active Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit No Alternative Vehicle Conversion Credits - Personal (Louisiana) Personal Tax Credit No City of New Orleans - NOLA Wise Energy Efficiency Loan Program (Louisiana) Local Loan Program Yes City of Shreveport - Shreveport Energy Efficiency Program (SEED) (Louisiana) Local Loan Program Yes Cleco Power - Power Miser New Home Program (Louisiana) Utility Rate Discount Yes

189

Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)  

Gasoline and Diesel Fuel Update (EIA)

2007-2013 2007-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2013 Alabama NA NA NA NA NA NA 2007-2013 Arizona NA NA NA NA NA NA 2007-2013 Arkansas NA NA NA NA NA NA 2007-2013 California NA NA NA NA NA NA 2007-2013 Colorado NA NA NA NA NA NA 2007-2013 Florida NA NA NA NA NA NA 2007-2013 Illinois NA NA NA NA NA NA 2007-2013 Indiana NA NA NA NA NA NA 2007-2013 Kansas NA NA NA NA NA NA 2007-2013 Kentucky NA NA NA NA NA NA 2007-2013 Louisiana NA NA NA NA NA NA 2007-2013 Maryland NA NA NA NA NA NA 2007-2013 Michigan NA NA NA NA NA NA 2007-2013 Mississippi NA NA NA NA NA NA 2007-2013 Missouri NA NA NA NA NA NA 2007-2013 Montana NA NA NA NA NA NA 2007-2013 Nebraska NA NA NA NA NA NA 2007-2013

190

The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission  

Science Conference Proceedings (OSTI)

This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

2012-08-29T23:59:59.000Z

191

Consistent Data Assimilation of Structural Isotopes: 23Na and 56Fe  

SciTech Connect

A new approach is proposed, the consistent data assimilation, that allows to link the integral data experiment results to basic nuclear parameters employed by evaluators to generate ENDF/B point energy files in order to improve them. Practical examples are provided for the structural materials 23Na and 56Fe. The sodium neutron propagation experiments, EURACOS and JANUS-8, are used to improve via modifications of 23Na nuclear parameters (like scattering radius, resonance parameters, Optical model parameters, Statistical Hauser-Feshbach model parameters, and Preequilibrium Exciton model parameters) the agreement of calculation versus experiments for a series of measured reaction rate detectors slopes. For the 56Fe case the EURACOS and ZPR3 assembly 54 are used. Results have shown inconsistencies in the set of nuclear parameters used so that further investigation is needed. Future work involves comparison of results against a more traditional multigroup adjustments, and extension to other isotope of interest in the reactor community.

Giuseppe Palmiotti

2010-09-01T23:59:59.000Z

192

2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ NA-10  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

printed 2/17/2012 2:23:00 PM Page 1 of 8 printed 2/17/2012 2:23:00 PM Page 1 of 8 Annual Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-10 HQ (including NA-15 inputs) Section One: Current Mission(s) of the Organization and Potential Changes NNSA Mission: To strengthen United States security through the military application of nuclear energy. NNSA Vision: To be an integrated nuclear security enterprise operating an efficient and agile nuclear weapons complex, recognized as preeminent in technical leadership and program management. Organizational Changes: NNSA is in the final phase of re-organizing. This plan reflects known changes that resulted from the elimination of the ABQ Service Center and re-distribution of the functions and personnel, some of whom were part of the TQP Program. The plan has also

193

MHK Projects/Ocean Navitas NaREC | Open Energy Information  

Open Energy Info (EERE)

Navitas NaREC Navitas NaREC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.1294,"lon":-1.50652,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

194

OFFICE OF CIVIL RIGHTS NA-1.2 VIDEO LIBRARY Item Title  

National Nuclear Security Administration (NNSA)

OFFICE OF CIVIL RIGHTS NA-1.2 OFFICE OF CIVIL RIGHTS NA-1.2 VIDEO LIBRARY Item # Title # of copies DVD / CD Length Year Publisher 1 A Clear Picture - Harassment in the Public Sector- Una Imagen Clara Acosoen el Sector Publico 1 DVD 2008 Coastal Training Technologies Corp. A Dupont Company 2 Harassment Hurts: It's Personal 1 DVD 16 min 2009 ATS Media 3 Harassment Is .. (government version) 1 DVD 21 min 2005 Coastal Training Technologies Corp. A Dupont Company 4 Harassment Made Simple 1 DVD 6 min 2011 TrainingABC 5 Harassment Training for Supervisors: Let's Face It. Capacitaci ón contra el Hostigamiento para Supervisores Enfrent émoslo 1 DVD 58 min 2007 Coastal Training Technologies Corp. A Dupont Company 6 It's UP to You: Stopping Sexual Harassment for Managers 1 DVD 27 min 2005 ATS Media 7 OpenLines: Exploring Harassment

195

Spectral Content of 22Na/44Ti Decay Data: Implications for a Solar Influence  

E-Print Network (OSTI)

We report a reanalysis of data on the measured decay rate ratio $^{22}$Na/$^{44}$Ti which were originally published by Norman et al., and interpreted as supporting the conventional hypothesis that nuclear decay rates are constant and not affected by outside influences. We find upon a more detailed analysis of both the amplitude and the phase of the Norman data that they actually favor the presence of an annual variation in $^{22}$Na/$^{44}$Ti, albeit weakly. Moreover, this conclusion holds for a broad range of parameters describing the amplitude and phase of an annual sinusoidal variation in these data. The results from this and related analyses underscore the growing importance of phase considerations in understanding the possible influence of the Sun on nuclear decays. Our conclusions with respect to the phase of the Norman data are consistent with independent analyses of solar neutrino data obtained at Super-Kamiokande-I and the Sudbury Neutrino Observatory (SNO).

Daniel O'Keefe; Brittany L. Morreale; Robert H. Lee; John B. Buncher; Ephraim Fischbach; Tom Gruenwald; Jere H. Jenkins; Daniel Javorsek II; Peter A. Sturrock

2012-12-10T23:59:59.000Z

196

High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides  

DOE Green Energy (OSTI)

This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

2007-07-27T23:59:59.000Z

197

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network (OSTI)

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

198

MHK Projects/University of Manchester Phase 1 and 2 NaREC | Open Energy  

Open Energy Info (EERE)

University of Manchester Phase 1 and 2 NaREC University of Manchester Phase 1 and 2 NaREC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.1294,"lon":-1.50652,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

199

Sodium (Na)  

Science Conference Proceedings (OSTI)

...Ionization state Potential, eV I 5.139 II 47.286 III 71.64 IV 98.91 V 138.39 VI 172.15 VII 208.47 VIII 264.18 IX 299.87 X 1465.091 XI 1648.659...

200

1 MW / 7.2 MWh NaS Battery Demonstration and Case Study Update  

Science Conference Proceedings (OSTI)

The New York Power Authority (NYPA), working together with the Metropolitan Transit Authority Long Island Bus (LIB) Company, has installed an advanced sodium sulfur battery energy storage system (NaS BESS) at the LIB facility located at 700 Commercial Avenue, Garden City, New York. The BESS is capable of providing a nominal 1MW of power to the bus fueling compressor station for 6-8 hours per day, 7 days per week.

2009-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High-statistics measurement of the beta-delayed alpha spectrum of 20Na  

E-Print Network (OSTI)

A measurement of the 20Na beta-delayed alpha spectrum with a high-granularity set-up has allowed the decay scheme to be revised on several points. Three new transitions of low intensity are found at low alpha-particle energy. An R-matrix fit of the complete spectrum gives an improved description of the decay and indicates feeding to the broad 2^+ alpha-cluster state close to 9 MeV.

K. L. Laursen; O. S. Kirsebom; H. O. U. Fynbo; A. Jokinen; M. Madurga; K. Riisager.; A. Saastamoinen; O. Tengblad; J. Äysto

2013-04-09T23:59:59.000Z

202

Honeywell FM&T, LLC Contract No. DE-NA0000622  

National Nuclear Security Administration (NNSA)

FM&T, LLC FM&T, LLC Contract No. DE-NA0000622 Modification No. 016 Page 2 of 10 1. Part II - Contract Clauses. The following Section I clause is revised and replaced in its entirety as follows: I-11 52.204-4 PRINTED OR COPIED DOUBLE-SIDED ON POSTCONSUMER FIBER CONTENT PAPER (MAY 2011) (a) Definitions. As used in this clause- "Postconsumer fiber" means- (1) Paper, paperboard, and fibrous materials from retail stores, office

203

Efficiency Calibration Using HEU Standards of 2-Inch by 2-Inch NaI Detector  

SciTech Connect

The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of highly enriched uranium (HEU) in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the solid waste Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Two measurement systems will be used to determine HEU holdup: One is a portable EG and G Dart system that contains Gamma-Vision software to support a Multichannel Analyzer (MCA) card, high voltage power, and space to store and manipulate multiple 4096-channel gamma-ray spect ra. The other is a 2-inch x 2-inch NaI crystal with an MCA that uses a portable computer with a Canberra NaI plus card installed. This card converts the PC to a full function MCA and contains the ancillary electronics, high voltage power supply and amplifier, required for data acquisition. This report will discuss the calibration of the 2-inch x 2-inch NaI detector.

Dewberry, R. A.

2000-10-24T23:59:59.000Z

204

NMR Study of the Magnetic and Metal-Insulator Transitions in Na0:5CoO2: A Nesting Scenario J. Bobroff,1  

E-Print Network (OSTI)

NMR Study of the Magnetic and Metal-Insulator Transitions in Na0:5CoO2: A Nesting Scenario J, France (Received 22 July 2005; published 13 March 2006) Co and Na NMR are used to probe the local have performed a 59Co and 23Na NMR study which allows us to differentiate the two Co sites and to give

Paris-Sud 11, Université de

205

Coastal Louisiana and South Florida  

U.S. Energy Information Administration (EIA)

1 Separate news excerpts portray different results for two major wetland restoration initiatives proposed by Florida and Louisiana in 2000. This

206

Abating Louisiana Coastal Wetland Loss  

U.S. Energy Information Administration (EIA)

Number: 1982-10. WHEREAS, the coastal wetlands of the state of Louisiana are a nationally important resource, they support 25 percent of the total ...

207

Crystal structure of new synthetic Ca,Na carbonate-borate Ca{sub 2}Na(Na{sub x}Ca{sub 0.5-x})[B{sub 3}{sup t}B{sub 2}{sup {delta}}O{sub 8}(OH)(O{sub 1-x}OH{sub x})](CO{sub 3})  

SciTech Connect

New Ca,Na carbonate-borate Ca{sub 2}Na(Na{sub x}Ca{sub 0.5-x}) [B{sub 3}{sup t}B{sub 2}{sup {Delta}}O{sub 8}(OH)(O{sub 1-x}OH{sub x})](CO{sub 3}) crystals (x {approx} 0.4) have been synthesized by the hydrothermal method in the Ca(OH){sub 2}-H{sub 3}BO{sub 3}-Na{sub 2}CO{sub 3}-NaCl-system at t = 250 Degree-Sign C and P = 70-80 atm; the structure parameters are found to be a = 11.1848(3) Angstrom-Sign , b = 6.4727(2) Angstrom-Sign , c = 25.8181(7) Angstrom-Sign , {beta} = 96.364(3) Degree-Sign , V = 1857.60(9) Angstrom-Sign {sup 3}, sp. gr. C2/c, Z = 8, and {rho}{sub calcd} = 2.801 g/cm{sup 3} (Xcalibur S autodiffractometer (CCD), 2663 reflections with I > 2{sigma} (I), direct solution, refinement by the least-squares method in the anisotropic approximation of thermal atomic vibrations, hydrogen localization, R{sub 1} = 0.0387). The structure is based on boron-oxygen layers of pentaborate radicals 5(2{Delta} + 3T). Ca and Na polyhedra and CO{sub 3} triangles are located between the layers. A crystallochemical analysis of the new Ca,Na carbonate-borate has established its similarity to natural Na,Ca pentaborates (heidornite and tuzlaite) and synthetic Na,Ba-decaborate.

Yamnova, N. A., E-mail: natalia-yamnova@yandex.ru; Borovikova, E. Yu.; Gurbanova, O. A.; Dimitrova, O. V.; Zubkova, N. V. [Moscow State University (Russian Federation)

2012-05-15T23:59:59.000Z

208

Louisiana Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Louisiana Gas Prices (Ciudades Selectas) - GasBuddy.com Louisiana Gas Prices (Organizado por Condado) -...

209

Louisiana/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Bonding Assistance Program (Louisiana) Louisiana Bond Program Yes BiomassBiogas Coal with CCS Concentrating solar power Energy Storage Fuel Cells Geothermal Electric...

210

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

211

Natural Gas Gross Withdrawals from Shale Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

2007-2013 2007-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2013 Louisiana NA NA NA NA NA NA 2007-2013 New Mexico NA NA NA NA NA NA 2007-2013 Oklahoma NA NA NA NA NA NA 2007-2013 Texas NA NA NA NA NA NA 2007-2013 Wyoming NA NA NA NA NA NA 2007-2013 Other States Other States Total NA NA NA NA NA NA 2007-2013 Alabama NA NA NA NA NA NA 2007-2013 Arizona NA NA NA NA NA NA 2007-2013 Arkansas NA NA NA NA NA NA 2007-2013 California NA NA NA NA NA NA 2007-2013 Colorado NA NA NA NA NA NA 2007-2013 Florida NA NA NA NA NA NA 2007-2013 Illinois NA NA NA NA NA NA 2007-2013 Indiana NA NA NA NA NA NA 2007-2013 Kansas NA NA NA NA NA NA 2007-2013 Kentucky NA NA NA NA NA NA 2007-2013 Maryland

212

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1996-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1996-2013 Alabama NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland

213

Natural Gas Gross Withdrawals from Coalbed Wells  

Gasoline and Diesel Fuel Update (EIA)

2002-2013 2002-2013 Alaska NA NA NA NA NA NA 2002-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2013 Louisiana NA NA NA NA NA NA 2002-2013 New Mexico NA NA NA NA NA NA 2002-2013 Oklahoma NA NA NA NA NA NA 2002-2013 Texas NA NA NA NA NA NA 2002-2013 Wyoming NA NA NA NA NA NA 2002-2013 Other States Other States Total NA NA NA NA NA NA 2002-2013 Alabama NA NA NA NA NA NA 2002-2013 Arizona NA NA NA NA NA NA 2002-2013 Arkansas NA NA NA NA NA NA 2006-2013 California NA NA NA NA NA NA 2002-2013 Colorado NA NA NA NA NA NA 2002-2013 Florida NA NA NA NA NA NA 2002-2013 Illinois NA NA NA NA NA NA 2006-2013 Indiana NA NA NA NA NA NA 2006-2013 Kansas NA NA NA NA NA NA 2002-2013 Kentucky

214

Precision mass measurements of very short-lived, neutron-rich Na isotopes using a radiofrequency spectrometer  

E-Print Network (OSTI)

Mass measurements of high precision have been performed on sodium isotopes out to $^{30}$Na using a new technique of radiofrequency excitation of ion trajectories in a homogeneous magnetic field. This method, especially suited to very short-lived nuclides, has allowed us to significantly reduce the uncertainty in mass of the most exotic Na isotopes: a relative error of 5\\audi was achieved for $^{28}$Na having a half-life of only 30.5 ms and 9\\audi for the weakly produced $^{30}$Na. Verifying and minimizing binding energy uncertainties in this region of the nuclear chart is important for clarification of a long standing problem concerning the strength of the $N~=~20$ magic shell closure. These results are the fruit of the commissioning of the new experimental program Mistral.

Lunney, M D; Doubre, H; Henry, S; Monsanglant, C; De Saint-Simon, M; Thibault, C; Toader, C F; Borcea, C; Bollen, G

2001-01-01T23:59:59.000Z

215

Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2  

E-Print Network (OSTI)

by heating them in a molten salt- mixture of 68-mol% LiNOtakes place during the molten salt exchange. Because the850° C. c) prepared by molten salt exchange of Na x Ti y Mn

Doeff, Marca M.; Richardson, Thomas J.; Hwang, Kwang-Taek

2004-01-01T23:59:59.000Z

216

Microsoft Word - louisiana.doc  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Louisiana NERC Region(s) ....................................................................................................... SERC/SPP Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 26,744 14 Electric Utilities ...................................................................................................... 16,471 17 Independent Power Producers & Combined Heat and Power ................................ 10,272 10 Net Generation (megawatthours) ........................................................................... 102,884,940 16

217

Louisiana Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Prices are in ...

218

Louisiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Change in Working ...

219

Lasing on the D lines of sodium pumped by free{yields}free transitions of Na-Xe collision pairs  

SciTech Connect

Lasing on the D{sub 1} and D{sub 2} lines of Na (589.6 and 589.0 nm, respectively) has been generated simultaneously by photoexciting free{yields}free transitions of thermal Na-Xe collision pairs. Pumping the blue satellite of the Na D{sub 2} line in Na/Xe mixtures ({lambda} Almost-Equal-To 560 nm) selectively interacts with Na-Xe pairs having an instantaneous internuclear separation of {approx}5 A and culminates in the population of both Na (3{sup 2}P{sub J}) fine structure levels. The spectral width of the laser excitation spectrum is 1.3 nm (centered at 560.1 nm) and the 3{sup 2}P{sub 3/2}{yields}3{sup 2}S{sub 1/2} (D{sub 2}) laser linewidth was measured to be 9.2 {+-} 0.6 GHz, which is consistent with a coefficient of 18.4 MHz/Torr for broadening of the D{sub 2} 589.0 nm transition by Xe.

Hewitt, J. D.; Eden, J. G. [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States)

2012-12-10T23:59:59.000Z

220

Effect of rare earth ions on the phase transition of Na sub 2 SO sub 4 crystals  

SciTech Connect

The V {r reversible} I phase transition of Na{sub 2}SO{sub 4} crystals was investigated on a sample of pure Na{sub 2}SO{sub 4} and on rare-earth ion (Ln{sup 3+} = La{sup 3+}, Eu{sup 3+}, Tm{sup 3+})-doped Na{sub 2}SO{sub 4} samples in various ambient gases (O{sub 2}, N{sub 2}, NH{sub 3}) with high temperature X-ray diffraction and differential thermal analysis. On heating in N{sub 2} flow, the initiating temperature for the V {yields} I transition was lowered by doping with Ln{sup 3+} ion and the doping effect was enhanced by an increase in the ionic size ratio r{sub Ln{sup 3+}}/r{sub Na{sup +}}. The low temperature form of the solid solution (LSS) Na{sub 2}SO{sub 4} and rare earth sulfate, which was a by-product in the preparation of the Ln{sup 3+}-doped samples, transformed to a high temperature form (HSS) after the V {yields} I transition, and the initiating temperature for the LSS {yields} HSS transition was highest in the Eu{sup 3+}-doped sample (r{sub Ln{sup 3+}}/r{sub Na{sup +}} {approx equal} 1).

Ohta, Masatoshi; Sakaguchi, Masakazu (Niigata Univ. (Japan))

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Gross Withdrawals from Shale Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History U.S. NA NA NA NA NA NA 2007-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2013 Louisiana NA NA NA NA NA NA...

222

NA-42 TI Shared Software Component Library FY2011 Final Report  

SciTech Connect

The NA-42 TI program initiated an effort in FY2010 to standardize its software development efforts with the long term goal of migrating toward a software management approach that will allow for the sharing and reuse of code developed within the TI program, improve integration, ensure a level of software documentation, and reduce development costs. The Pacific Northwest National Laboratory (PNNL) has been tasked with two activities that support this mission. PNNL has been tasked with the identification, selection, and implementation of a Shared Software Component Library. The intent of the library is to provide a common repository that is accessible by all authorized NA-42 software development teams. The repository facilitates software reuse through a searchable and easy to use web based interface. As software is submitted to the repository, the component registration process captures meta-data and provides version control for compiled libraries, documentation, and source code. This meta-data is then available for retrieval and review as part of library search results. In FY2010, PNNL and staff from the Remote Sensing Laboratory (RSL) teamed up to develop a software application with the goal of replacing the aging Aerial Measuring System (AMS). The application under development includes an Advanced Visualization and Integration of Data (AVID) framework and associated AMS modules. Throughout development, PNNL and RSL have utilized a common AMS code repository for collaborative code development. The AMS repository is hosted by PNNL, is restricted to the project development team, is accessed via two different geographic locations and continues to be used. The knowledge gained from the collaboration and hosting of this repository in conjunction with PNNL software development and systems engineering capabilities were used in the selection of a package to be used in the implementation of the software component library on behalf of NA-42 TI. The second task managed by PNNL is the development and continued maintenance of the NA-42 TI Software Development Questionnaire. This questionnaire is intended to help software development teams working under NA-42 TI in documenting their development activities. When sufficiently completed, the questionnaire illustrates that the software development activities recorded incorporate significant aspects of the software engineering lifecycle. The questionnaire template is updated as comments are received from NA-42 and/or its development teams and revised versions distributed to those using the questionnaire. PNNL also maintains a list of questionnaire recipients. The blank questionnaire template, the AVID and AMS software being developed, and the completed AVID AMS specific questionnaire are being used as the initial content to be established in the TI Component Library. This report summarizes the approach taken to identify requirements, search for and evaluate technologies, and the approach taken for installation of the software needed to host the component library. Additionally, it defines the process by which users request access for the contribution and retrieval of library content.

Knudson, Christa K.; Rutz, Frederick C.; Dorow, Kevin E.

2011-07-21T23:59:59.000Z

223

Improved container electrode coatings for Na/S battery systems. Final report  

DOE Green Energy (OSTI)

Current sodium sulfur (Na/S) battery systems utilize the fast ion conducting properties of sodium beta{double_prime}-alumina electrolyte (BASE) to create high energy density sodium-sulfur electrochemical cells which can be used as components of secondary batteries. Since the days when these cells were invented at the Ford Motor Company Scientific Laboratory by J.T. Kummer and N. Weber, problems with container electrode corrosion have troubled the Na/S systems that have been developed in the many laboratories. In an unpublished investigation carried out at the Ford Motor Company laboratory, it was shown that titanium nitride films sputter deposited onto aluminum substrates under the appropriate conditions can exhibit excellent resistance to corrosion by sodium polysulfide melts. In the work carried out here, the corrosion resistant properties of TiN coatings sputter deposited on Al substrates have been investigated. TiN sputter coated aluminum samples were tested under static conditions in sodium sulfide melts and in Na/S cells under the range of electrochemical conditions needed for battery operation. The sputter deposited coatings produced in these experiments exhibited satisfactory corrosion resistance in the static tests but degraded under full cell operation. Tests of TiN coatings deposited by reactive ion-plating (IP), a common commercial process, showed excellent corrosion and electrical performance in both static and complete cell testing. Charge/discharge testing of sulfur core cells with IP coatings for over 350 cycles to 70 % depth of discharge has shown only very minor changes in cell performance and the tests are continuing.

Hunt, T.K. [Environmental Research Institute of Michigan, Ann Arbor, MI (United States). Applications Development Dept.

1995-08-01T23:59:59.000Z

224

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

225

Preparations for EUV interferometry of the 0.3 NA MET optic  

SciTech Connect

An at-wavelength interferometer is being created for the measurement and alignment of the 0.3 numerical aperture Micro Exposure Tool projection optic at EUV wavelengths. The prototype MET system promises to provide early learning from EUV lithographic imaging down to 20-nm feature size. The threefold increase to 0.3 NA in the image-side numerical aperture presents several challenges for the extension of ultra-high-accuracy interferometry, including pinhole fabrication and the calibration and removal of systematic error sources.

Goldberg, Kenneth A.; Naulleau, Patrick P.; Denham, Paul E.; Rekawa, Senajith B.; Jackson, Keith H.; Liddle, J. Alexander; Harteneck, Bruce; Gullikson, Eric; Anderson, Erik H.

2003-10-30T23:59:59.000Z

226

Forestry Policies (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana) Louisiana) Forestry Policies (Louisiana) < Back Eligibility Agricultural Commercial Developer Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Agriculture and Forestry Louisiana's Forests are managed by the Louisiana Department of Agriculture and Forestry. In 2010 the Department issued the Statewide Forest Resource Assessment and Strategy. The report identifies the harvesting of forestry residues for biomass energy as an untapped resource with great potential, and recognized Louisiana as an ideal location to develop biomass energy: http://webshare.ldaf.state.la.us/gis/State%20Assessment/Louisiana%20Stat... The document also states the goal of the Louisiana Office of Forestry to

227

Natural Gas Dry Production (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

055,938 1,990,431 2,075,702 2,076,287 1,990,290 2,076,796 055,938 1,990,431 2,075,702 2,076,287 1,990,290 2,076,796 1997-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2006-2013 Alabama NA NA NA NA NA NA 2006-2013 Alaska NA NA NA NA NA NA 2006-2013 Arizona NA NA NA NA NA NA 2006-2013 Arkansas NA NA NA NA NA NA 2006-2013 California NA NA NA NA NA NA 2006-2013 Colorado NA NA NA NA NA NA 2006-2013 Florida NA NA NA NA NA NA 2006-2013 Illinois NA NA NA NA NA NA 2006-2013 Indiana NA NA NA NA NA NA 2006-2013 Kansas NA NA NA NA NA NA 2006-2013 Kentucky NA NA NA NA NA NA 2006-2013 Louisiana NA NA NA NA NA NA 2006-2013 Maryland NA NA NA NA NA NA 2006-2013 Michigan NA NA NA NA NA NA 2006-2013 Mississippi NA NA NA NA NA NA 2006-2013 Missouri

228

Electronic Reconstruction through the Structural and Magnetic Transitions in Detwinned NaFeAs  

SciTech Connect

We use angle-resolved photoemission spectroscopy to study twinned and detwinned iron pnictide compound NaFeAs. Distinct signatures of electronic reconstruction are observed to occur at the structural (T{sub S}) and magnetic (T{sub SDW}) transitions. At T{sub S}, C{sub 4} rotational symmetry is broken in the form of an anisotropic shift of the orthogonal d{sub xz} and d{sub yz} bands. The magnitude of this orbital anisotropy rapidly develops to near completion upon approaching T{sub SDW}, at which temperature band folding occurs via the antiferromagnetic ordering wave vector. Interestingly, the anisotropic band shift onsetting at T{sub S} develops in such a way to enhance the nesting conditions in the C{sub 2} symmetric state, hence is intimately correlated with the long range collinear AFM order. Furthermore, the similar behaviors of the electronic reconstruction in NaFeAs and Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} suggests that this rapid development of large orbital anisotropy between T{sub S} and T{sub SDW} is likely a general feature of the electronic nematic phase in the iron pnictides, and the associated orbital fluctuations may play an important role in determining the ground state properties.

Yi, M.; Lu, D.H.; Moore, R.G.; Kihou, K; Lee, C-H; Iyo, A.; Eisaki, H.; Yoshida, T; Fujimori, A; Shen, Z-X

2012-05-25T23:59:59.000Z

229

Thermodynamic modeling of neptunium(V)-acetate complexation in concentrated NaCl media  

Science Conference Proceedings (OSTI)

The complexation of neptunium(V), Np(V), with the acetate anion, Ac{sup -}, was measured in sodium chloride media to high concentration using an extraction technique. The data were interpreted using the thermodynamic formalism of Pitzer, which is valid to high electrolyte concentrations. A consistent model for the deprotonation constants of acetic acid in NaCl and NaClO{sub 4} media was developed. For the concentrations of acetate expected in a waste repository, only the neutral complex NpO{sub 2}Ac(aq) was important in describing the interactions between the neptunyl ion and acetate. The thermodynamic stability constant log {beta}{sup 0}{sub 101} for the reaction NpO{sub 2}{sup +} + Ac{sup -} {leftrightarrow} NpO{sub 2}Ac was calculated to be 1.46{plus_minus}0.11. This weak complexing behavior between the neptunyl ion and acetate indicates that acetate will not significantly enhance dissolved Np(V) concentrations in ground waters associated with nuclear waste repositories that may contain acetate.

Novak, C.F.; Borkowski, M.; Choppin, G.R.

1995-09-01T23:59:59.000Z

230

Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water/Ethanol Separation  

Science Conference Proceedings (OSTI)

This paper reports preparation and separation testing results of water-selective zeolite membrane, such as NaA (or 4A-type), supported on a robust, porous metal sheet of 50um thickness. The thin sheet support is of large potential for development of a low-cost, inorganic membrane module of high surface area packing density. The porous Ni alloy sheet of micrometer or sub-micrometer mean pore size, which was prepared by a proprietary process, is used to evaluate different zeolite membrane deposition methods and conditions. The membranes are characterized by SEM, XRD and water/ethanol separation tests. Quality NaA zeolite membrane at thickness ethanol separation factor of >10,000 and water permeation flux of about 4 kg/(m2•h) at 75ºC with a feed of 10wt% water in ethanol. The membrane is also demonstrated with good stability in 66-hour continuous testing at 75ºC and 90ºC.

Zhang, Jian; Liu, Wei

2011-04-01T23:59:59.000Z

231

Examination and experimental constraints of the stellar reaction rate factor $N_A $ of the $^{18}$Ne($?$,$p$)$^{21}$Na reaction at temperatures of X-Ray Bursts  

E-Print Network (OSTI)

The $^{18}$Ne($\\alpha$,$p$)$^{21}$Na reaction is one key for the break-out from the hot CNO-cycles to the $rp$-process. Recent papers have provided reaction rate factors $N_A $ which are discrepant by at least one order of magnitude. The compatibility of the latest experimental results is tested, and a partial explanation for the discrepant $N_A$ is given. A new rate factor is derived from the combined analysis of all available data. The new rate factor is located slightly below the higher rate factor by Matic {\\it et al.}\\ at low temperatures and significantly below at higher temperatures whereas it is about a factor of five higher than the lower rate factor recently published by Salter {\\it et al.}

P. Mohr; A. Matic

2013-03-06T23:59:59.000Z

232

Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Gross Withdrawals (Million Cubic Feet) Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 498,876 487,512 1980's 417,312 381,938 366,546 322,588 319,638 256,736 207,265 225,599 214,645 204,005 1990's 182,240 148,429 138,101 157,011 159,513 94,044 192,527 180,848 192,956 164,523 2000's 141,567 153,871 137,192 133,456 129,245 107,584 97,479 72,868 86,198 76,386 2010's 69,836 71,226 73,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas

233

Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838 29,906 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

234

Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908 152,862 152,724 124,955 133,434 103,381 105,236 110,745 94,785 95,359 2010's 102,448 95,630 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

235

Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's 4,954 4,859 3,968 3,506 3,168 3,051 3,058 2,960 2,445 2,463 2010's 2,496 2,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

236

Louisiana Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Louisiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,149,192 3,650,412 3,179,306 2,986,468 3,243,795 3,158,903 3,066,789 1990's 3,780,551 3,355,867 3,404,963 3,454,646 3,562,360 3,709,015 3,976,305 5,398,216 5,410,523 5,265,670 2000's 3,587,815 1,529,733 1,365,925 1,350,399 1,357,366 1,296,048 1,361,119 1,275,806 1,292,478 1,449,809 2010's 2,140,525 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

237

Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's 15,350 13,536 12,749 11,326 10,081 9,492 8,500 7,807 6,846 5,802 2010's 5,457 4,359 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

238

Louisiana - South Onshore Dry Natural Gas Proved Reserves (Billion Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,580 17,755 13,994 1980's 13,026 12,645 11,801 11,142 10,331 9,808 9,103 8,693 8,654 8,645 1990's 8,171 7,504 6,693 5,932 6,251 5,648 5,704 5,855 5,698 5,535 2000's 5,245 5,185 4,224 3,745 3,436 3,334 3,335 3,323 2,799 2,844 2010's 2,876 2,519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Dry Natural Gas Proved Reserves

239

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

240

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

242

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

243

Recovery Act State Memos Louisiana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

244

Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,260 1990's 22,679 21,611 19,653 19,383 20,835 21,392 21,856 21,934 20,774 19,598 2000's 19,788 19,721 18,500 16,728 14,685 13,665 11,824 11,090 10,450 9,362 2010's 8,896 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural

245

Methods to study event-by-event fluctuations in the NA61/SHINE experiment at the CERN SPS  

Science Conference Proceedings (OSTI)

Theoretical calculations locate the critical point (CP) of strongly interacting matter at energies accessible at the CERN SPS. Event-by-event transverse momentum and multiplicity fluctuations are considered as one of the most important tools to search for the CP. Pilot studies of the energy dependence and the system size dependence of both p{sub T} and multiplicity fluctuations were performed by the NA49 experiment. The NA61/SHINE ion program is a continuation of these efforts. After briefly recalling the essential NA49 results on fluctuations we will discuss the technical methods (removing Non-Target interactions) which we plan to apply for future transverse momentum and multiplicity fluctuation analyses.

Cetner, T., E-mail: Tomasz.Cetner@cern.ch; Grebieszkow, K., E-mail: kperl@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics (Poland)

2012-05-15T23:59:59.000Z

246

Enterprise Zone Program (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Zone Program (Louisiana) Enterprise Zone Program (Louisiana) Enterprise Zone Program (Louisiana) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Nonprofit Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Corporate Tax Incentive Enterprise Zone Provider Louisiana Economic Development The Enterprise Zone Program is a jobs incentive program providing Louisiana income and franchise tax credits to businesses hiring at least 35% of net, new jobs from targeted groups. Enterprise Zones (EZs) are areas with high unemployment, low income, or a high percentage of residents receiving some

247

2011 Annual Workforce Analysis and Staffing Plan Report - NNSA HQ NA-70  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Workforce Analysis and Staffing Plan Report Annual Workforce Analysis and Staffing Plan Report As of December 31, 2011 Reporting Office: NNSA NA-70 Section One: Current Mission(s) of the Organization and Potential Changes 1. DNS is the NNSA line management organization responsible for security direction and program management with respect to prioritization of resources, program evaluation, and funding allocation. Key management areas include security operations, resources, engineering, and technical support to NNSA field elements and facilities. Specific subject matter expertise also includes physical and personnel security, protective forces, nuclear materials control and accountability, classified and sensitive information protection, and technical security programs. DNS evaluates the status of protection programs at all NNSA facilities against National policy and

248

High Density Hydrogen Storage Systems Demonstration Using NaAIH4  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Hydrogen Storage Density Hydrogen Storage System Demonstration Using NaAlH 4 Complex Compound Hydrides D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello United Technologies Research Center East Hartford, Connecticut Report to the U.S. Department of Energy (DOE) Contract Number: DE-FC36-02AL-67610 December 19, 2006 * * Presented to the DOE and the FreedomCAR & Fuel Partnership Hydrogen Storage Tech Team This presentation does not contain proprietary or confidential information 2 Overview Objective: Identify and overcome the critical technical barriers in developing complex hydride based storage systems, especially those which differ from conventional metal hydride systems, to meet DOE system targets. Approach: Design, fabricate and test a sequence of subscale and full scale

249

2012 Annual Workforce Analysis and Staffing Plan Report - NNSA NA-70  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Annual Workforce Analysis and Staffing Plan Report As of December 31, 2012 Reporting Office: NNSA NA-70 Section One: Current Mission(s) of the Organization and Potential Changes The DNS core mission is to protect NNSA capabilities, facilities, materials, information, and employees. DNS is responsible for managing and funding the security that supports the NNSA missions, with the exception of those missions under the Office of Naval Reactors and the Office of Secure Transportation's (OST) over-the-road operations. DNS also provides unique knowledge and expertise in nuclear security for a broader set of 21st century national security needs that are synergistic with its mission, such as those in nuclear non-proliferation, homeland security, and intelligence. DNS provides the overall

250

Nuclear Sturcture Along the Neutron Dripline: MoNa-LISA and the dinueutron system  

Science Conference Proceedings (OSTI)

Nuclei with extreme neutron-to-proton ratios were found to present different structures from what was known for the stable ones. With the current facilities we can now study nuclei that lie even beyond the neutron drip line. At the National Superconducting Cyclotron Laboratory at Michigan State University we use the MoNA/Sweeper setup to perform such studies of neutron unbound nuclei. In a typical experiment, a radioactive beam is employed to produce the nucleus of interest. This unbound nucleus immediately decays into a neutron and a remaining charged fragment, both of which are detected and used to reconstruct the original nucleus and study its properties. In this Colloquium, new exciting findings from recent experiments will be presented. These include the first observation of a dineutron decay from 16Be, the exploration of the “south shore” of the Island of Inversion and the first evidence of the decay of the troubling nucleus 26O.

Spyou, Artemis [Michigan State Univeristy

2012-09-05T23:59:59.000Z

251

Los Alamos National Security, LLC Contract No. DE-AC52-06NA25396  

National Nuclear Security Administration (NNSA)

Los Alamos National Security, LLC Los Alamos National Security, LLC Contract No. DE-AC52-06NA25396 Attachment to Modification No. 150 PART III - SECTION J APPENDIX G October 5, 2010 [Modified by Modification No. A009, A015, A018, A019, A021, A027, M033, M041, M042, M046, M056, M062, M069, M078, M103, M133, 150] LIST OF APPLICABLE DIRECTIVES In addition to the list of applicable directives listed below, the Contractor shall also comply with supplementary directives, (e.g., manuals) which are invoked by a Contractor Requirements Document (CRD) attached to a directive. Electronic copies of these documents are available at the following Websites: http://directives.doe.gov/cqi-bin/currentchecklist http://www.directives,doe.gov/directives/globesearch-adv.html http://www.nnsa.doe.gov/

252

The Large-Angle Photon Veto System for the NA62 Experiment at CERN  

E-Print Network (OSTI)

Abstract—The branching ratio (BR) for the decay K + ? ? + ? ¯? is a sensitive probe for new physics. The NA62 experiment at the CERN SPS will measure this BR to within about 10%. To reject the dominant background from channels with final state photons, the large-angle vetoes (LAVs) must detect photons of energy as low as 200 MeV with an inefficiency of less than 10 ?4, as well as provide energy and time measurements with resolutions of 10 % and 1 ns for 1 GeV photons. The LAV detectors make creative reuse of lead glass blocks recycled from the OPAL electromagnetic calorimeter barrel. We describe the mechanical design and challenges faced during construction, the characterization of the lead glass blocks and solutions adopted for monitoring their performance, and the development of front-end electronics to allow simultaneous time and energy measurements over an extended dynamic range using the time-over-threshold

F. Ambrosino; B. Angelucci; A. Antonelli; F. Costantini; R. Fantechi; S. Gallorini; S. Giudici; E. Leonardi; I. Mannelli; P. Massarotti; M. Moulson; M. Napolitano; V. Palladino; F. Rafaelli; M. Raggi; G. Saracino; M. Serra; T. Spadaro; P. Valente; S. Venditti; F. Ambrosino; P. Massarotti; M. Napolitano

2011-01-01T23:59:59.000Z

253

Discrete Properties of Intrinsic Localized Modes Observed in the High Temperature Vibrational Spectrum of NaI  

SciTech Connect

Inelastic neutron measurements of the high temperature lattice excitations in NaI show surprising features. In thermal equilibrium at 555 K an intrinsic mode, localized in three dimensions, is observed at a single frequency near the center of the spectral phonon gap, polarized along [111]. At higher temperatures mixing between the intrinsic localized mode and the zone boundary TO mode is observed. Higher energy inelastic neutron and x-ray scattering measurements on a room temperature NaI crystal indicate that the creation energy of the ground state of the intrinsic localized mode is 299 meV.

Manley, M E; Sievers, A J; Lynn, J W; Kiselev, S A; Agladze, N I; Chen, Y; Llobet, A; Alatas, A

2008-10-13T23:59:59.000Z

254

X-ray and electron diffraction studies of superlattices and long-range three-dimensional Na ordering in gamma-Na[subscript x]CoO[subscript 2] (x=0.71 and 0.84)  

E-Print Network (OSTI)

We have recently demonstrated that x=0.71 and 0.84 are the two most stable single-phase compounds above x=0.5 in gamma-Na[subscript x]CoO[subscript 2] [G. J. Shu et al., Phys. Rev. B 76, 184115 (2007); F. C. Chou et al., ...

Chou, F. C.

255

Use of the discrete variable representation in the quantum dynamics by a wave packet propagation: Predissociation of NaI(/sup 1/. sigma. /sup +//sub 0/). -->. NaI(0/sup +/). -->. Na(/sup 2/S)+I(/sup 2/P)  

SciTech Connect

Using the Gauss--Chebyshev discrete variable representation (DVR), the dissociative quantum dynamics for a wave packet evolving under the influence of the Hamiltonian for two interacting diabatic states of a diatomic molecule is calculated. The split time evolution operator method is used to obtain the solutions to the time-dependent Schroedinger equation. A specific example of the numerical calculation is shown for the predissociation process of NaI..-->..Na(/sup 2/S)+I(/sup 2/P) from its first excited electronic state (0/sup +/). The numerical results are compared with the experimental observations from the femtosecond laser photofragmentation, recently reported by Zewail and co-workers.

Choi, S.E.; Light, J.C.

1989-03-01T23:59:59.000Z

256

Climate Variability and Sugarcane Yield in Louisiana  

Science Conference Proceedings (OSTI)

This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and ...

David Greenland

2005-11-01T23:59:59.000Z

257

Federal Offshore, Gulf of Mexico (Louisiana) Crude Oil Proved ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Miscellaneous includes ...

258

Louisiana Onshore Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Beginning with ...

259

Roles of double salt formation and NaNO{sub 3} in Na{sub 2}CO{sub 3}-promoted MgO absorbent for intermediate temperature CO{sub 2} removal  

Science Conference Proceedings (OSTI)

Absorption and desorption of carbon dioxide on Na{sub 2}CO{sub 3}-promoted MgO have been studied at temperatures compatible with warm gas cleanup (300–470 ?C) from a pre-combustion syngas. The absorbents are synthesized through the formation and activation of the precipitate resulting from the addition of sodium carbonate to an aqueous solution of magnesium nitrate. The absorbent, which comprises MgO, Na{sub 2CO{sub 3} and residual NaNO{sub 3} after activation, forms the double salt Na{sub 2}Mg(CO{sub 3}){sub 2} on exposure to CO{sub 2}. The thermodynamic properties of the double salt, obtained through computational calculation, predict that the preferred temperature range for absorption of CO{sub 2} with the double salt is significantly higher compared with MgO. Faster CO{sub 2} uptake can be achieved as a result of this higher temperature absorption window. Absorption tests indicate that the double salt absorbent as prepared has a capacity toward CO{sub 2} of 15 wt.% (3.4 mmol CO{sub 2}/g absorbent) and can be easily regenerated through both pressure swing and temperature swing absorption in multiple-cycle tests. Thermodynamic calculations also predict an important effect of CO{sub 2} partial pressure on the absorption capacity in the warm temperature range. The impurity phase, NaNO{sub 3}, is identified as a key component in facilitating CO{sub 2} absorption by these materials. The reason for reported difficulties in reproducing the performance of these materials can be traced to specific details of the synthesis method, which are reviewed in some detail.

Keling Zhanga,b, Xiaohong S. Li c, Yuhua Duand, David L. Kingc,?, Prabhakar Singha,b, Liyu Li

2012-11-12T23:59:59.000Z

260

Louisiana Wetland Loss Fact at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss Fact? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Post-Closure Groundwater Monitoring Plan for the 1324-N Surface Impoundment and 1324-NA Percolation Pond  

Science Conference Proceedings (OSTI)

The 1324-N Surface Impoundment and the 1324-NA Percolation Pond, located in the 100-N Area of the Hanford Site, are regulated under the Resource Consevation and Recovery Act (RCRA). Surface and underground features of the facilities have been removed and laboratory analyses showed that soil met the closure performance standards. These sites have been backfilled and revegetated.

Hartman, Mary J.

2004-04-02T23:59:59.000Z

262

Investigation of superconducting and non-superconducting phases of Na?Ì£?CoO?·1.3H?0  

E-Print Network (OSTI)

The discovery of unconventional superconductivity in hydrated Na?Ì£?CoO?·1.3H?0 has lead to active research work on the material over the last year due to its similarities and possible insight into the high-T[sub]c copper ...

Garcia, Daniel Robert, 1982-

2004-01-01T23:59:59.000Z

263

EA-0952: The Louisiana State University Waste-to Energy Incinerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana...

264

Formation of mesoporous materials from silica dissolved in various NaOH concentrations: effect of pH and ionic strength  

Science Conference Proceedings (OSTI)

We describe the effects of NaOH/SiO2 ratio and pH on the formation of mesoporous materials, which was synthesized via an alkalimetal hydroxide fusion method, from amorphous silica dissolved in NaOH. Physical properties (e.g., specific surface ...

Jayhyun Park; Yosep Han; Hyunjung Kim

2012-01-01T23:59:59.000Z

265

N/Z and N/A dependence of balance energy as a probe of symmetry energy in heavy-ion collisions  

E-Print Network (OSTI)

We study the N/Z and N/A dependence of balance energy (E$_{bal}$) for isotopic series of Ca having N/Z (N/A) varying from 1.0 to 2.0 (0.5 to 0.67). We show that the N/Z (N/A) dependence of E$_{bal}$ is sensitive to symmetry energy and its density dependence at densities higher than saturation density and is insensitive towards the isospin dependence of nucleon-nucleon (nn) cross section and Coulomb repulsion. We also study the effect of momentum dependent interactions (MDI) on the N/Z (N/A) dependence of E$_{bal}$. We find that although MDI influences the E$_{bal}$ drastically, the N/Z (N/A) dependence of E$_{bal}$ remains unchanged on inclusion of MDI.

Aman D. Sood

2010-12-29T23:59:59.000Z

266

Examination of Na-Doped Mo Sputtering for CIGS Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-375  

DOE Green Energy (OSTI)

This work has investigated the use of Na doped Mo (MONA) sputtering targets for use in preparing CIGS devices. The Mo:Na material is doped to about 3% Na by weight, implying that a 40 nm layer on top of the standard Mo contact contains sufficient Na to dope a 2.5 ..mu..m CIGS film. The ability to control Na doping independent of both CIGS processing conditions and adhesion is an important gain for industry and research. Manufacturers gain a route to increased manufacturability and performance, while NREL researchers gain a tightened performance distribution of devices and increased process flexibility. Our immediate partner in this work, the Climax Molybdenum Technology Center, gains validation of their product.

Repins, I.

2012-01-01T23:59:59.000Z

267

Tax Increment Financing (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana) Louisiana) Tax Increment Financing (Louisiana) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Low-Income Residential Multi-Family Residential Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Property Tax Incentive Sales Tax Incentive Louisiana law provides for two types of Tax Increment Financing mechanisms: (1) property tax, also known as ad valorem, and (2) sales tax. Either form may be utilized to enhance an economic development project. In these, it is assumed the project will create future increases in tax revenue above

268

NA Standards | Refinement Parameters | X-PLOR param file for high  

NLE Websites -- All DOE Office Websites (Extended Search)

the file for different bond distances and angles of C2'and C3'-endo the file for different bond distances and angles of C2'and C3'-endo remark K= scale*(kT/sigma**2), scales=Base 0.1875, Sugar 0.566, Phos 1.548 ! removed references to CA, CF, CS, MG, NH3, OS (ATB 12/30/94) ! removed TIP3 water model (ATB 12/30/94) ! mapped NA->NNA, CH3E->CC3E (ATB 12/30/94) ! G.PARKINSON, J.VOJTECHOVSKY, L.CLOWNEY, A.T.BRUNGER ! H.M.BERMAN ! NEW PARAMETERS FOR THE REFINEMENT OF NUCLEIC ACID CONTAINING ! STRUCTURES ! ACTA CRYST.D (1996) v. 52 57-64 set echo=false end !the generic bonds were taken from param11.dna with 3*kq bond C5R OH 876.000 1.4300 ! 5' end bond C5D OH 876.000 1.4300 ! 5' end bond C3R OH 876.000 1.4300 ! 3' end bond C3D OH 876.000 1.4300 ! 3' end bond HHO O2R 1350.000 0.9572 !Mod HO to HHO 05/15/96

269

A comparison of equilibrium and non-equilibrium cycle methods for Na-cooled ATW system.  

SciTech Connect

An equilibrium cycle method, embodied in the REBUS-3[1] code system, has generally been used in conventional fast reactor design activities. The equilibrium cycle method provides an efficient approach for modeling reactor system, compared to the more traditional non-equilibrium cycle fuel management calculation approach. Recently, the equilibrium analysis method has been utilized for designing Accelerator Transmutation of Waste (ATW)[2,3,4] cores, in which a scattered-reloading fuel management scheme is used. Compared with the conventional fast reactors, the ATW core is significantly different in several aspects since its main mission is to incinerate the transuranic (TRU) fuels. The high burnup non-fertile fuel has large variations in composition and reactivity during its lifetime. Furthermore, a relatively short cycle length is utilized in the ATW design to limit the potentially large reactivity swing over a cycle, and consequently 7 or 8-batch fuel management is usually assumed for a high fuel burnup. The validity of the equilibrium analysis method for the ATW core, therefore, needed to be verified. The main objective of this paper is to assess the validity of the equilibrium analysis method for a Na-cooled ATW core[4], which is an alternative core design of the ATW system under development.

Kim, Y.; Hill, R. N.; Taiwo, T. A.

2002-03-30T23:59:59.000Z

270

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is ex...

Cristallo, S; Straniero, O; Piersanti, L; Dominguez, I

2006-01-01T23:59:59.000Z

271

Short-lived isotopes and 23Na production in low mass AGB Stars  

E-Print Network (OSTI)

We discuss the synthesis of some short-lived isotopes and of 23Na in thermally pulsing AGB stars with initial mass of 2 Msun and two different metallicities (Z=1.5e-2, corresponding to the metal amount in the Sun, and Z=1e-4), representative of disk and halo stars, respectively. The different nucleosynthesis channels are illustrated in some details. As previously found, the 13C formed after each third dredge up episode is usually completely consumed by alpha captures before the onset of the subsequent thermal pulse, releasing neutrons. This is the most efficient neutron source in low mass AGB stars and the resulting s-process nucleosynthesis is at the origin of the solar main component. However, in the solar metallicity model, we find that the temperature of the first formed 13C pocket remains too low during the interpulse and the 13C is not completely burnt, being partially engulfed in the convective zone generated by the following thermal pulse. Due to the rapid convective mixing in this zone, the 13C is exposed to a larger temperature and a nucleosynthesis characterized by a relatively high neutron density develops. The main effect is the strong enhancement of isotopes located beyond some critical branching in the neutron-capture path, like 60Fe, otherwise only marginally produced during a standard s-process nucleosynthesis.

S. Cristallo; R. Gallino; O. Straniero; L. Piersanti; I. Dominguez

2006-06-15T23:59:59.000Z

272

Comparison of LaBr3:Ce and NaI(Tl) Scintillators for Radio-Isotope Identification Devices  

SciTech Connect

Lanthanum halide (LaBr3:Ce) scintillators offer significantly better resolution (<3 percent at 662 kilo-electron volt [keV]) relative to sodium iodide (NaI(Tl)) and have recently become commercially available in sizes large enough for the hand-held radio-isotope identification device (RIID) market. There are drawbacks to lanthanum halide detectors, however. These include internal radioactivity that contributes to spectral counts and a low-energy response that can cause detector resolution to be lower than that of NaI(Tl) below 100 keV. To study the potential of this new material for RIIDs, we performed a series of measurements comparing a 1.5?1.5 inch LaBr?3:Ce detector with an Exploranium GR 135 RIID, which contains a 1.5-2.2 inch NaI(Tl) detector. Measurements were taken for short time frames, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. Some measurements were noncontact, involving short distances or cargo shielding scenarios. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision TM). In general, the LaBr3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr3:Ce detector was usually two to three times faster. The notable exception was for 40K containing NORM where interfering internal contamination in the LaBr3:Ce detector exist. NaI(Tl) consistently outperformed LaBr3:Ce for this important isotope. LaBr3:Ce currently costs much more than NaI(Tl), though this cost-difference is expected to diminish (but not completely) with time. As is true of all detectors, LaBr3:Ce will need to be gain-stabilized for RIID applications. This could possibly be done using the internal contaminants themselves. It is the experience of the authors that peak finding software in RIIDs needs to be improved, regardless of the detector material.

Milbrath, Brian D.; Choate, Bethany J.; Fast, Jim E.; Hensley, Walter K.; Kouzes, Richard T.; Schweppe, John E.

2006-07-31T23:59:59.000Z

273

Pilot oil atlas for Louisiana  

SciTech Connect

An interdisciplinary research team of engineers, geologists, and computer scientists was assembled at LSU to develop unproved methods for prospecting for bypassed oil and to support oil and gas producers in Louisiana. The overall objective of the project was to develop methods for extending the producing life of several types of reservoirs by reducing the amount of oil being bypassed and abandoned. As part of this work, the team collected information available from public sources for several example reservoirs. One task of the project was to develop a format for the compilation of the extensive but cumbersome Louisiana reservoir data so that it could be used by government and industry to evaluate the resource and plan future activities. The existing information system maintained by Louisiana is a Production Audit Reporting System (PARS). It was designed to allow auditing of oil and gas production and severance taxes associated with this production. It was not intended to be used as a database for determining reservoir recovery efficiency or prospecting for oil and gas. Its use for these purposes, however, has been increasing. The database format suggested in this report would allow production information to be easily displayed by reservoir as well as by lease, unit, or well. The data collected as part of the bypassed-oil study was used to illustrate the proposed new format. This pilot database, or atlas, contains information available for 15 reservoirs. It is recommended that LSU continue to compile and publish database information on the potential for bypassed oil in Louisiana's active reservoirs. This technology-transfer activity should focus each year on those active reservoirs involved in hearings of the Louisiana Office of Conservation. It should also focus on reservoirs being screened by LSU for EOR.

Bourgoyne, A.T. Jr.; Kimbrell, C.; Gao, Weigang.

1993-01-01T23:59:59.000Z

274

Hydrothermal synthesis and the crystal structure of borate cancrinite (Na,Ca){sub 2}[Na{sub 6}(AlSiO{sub 4}){sub 6}](BO{sub 3}) . 2H{sub 2}O  

Science Conference Proceedings (OSTI)

Transparent prismatic single crystals of borate cancrinite (Na,Ca){sub 2}[Na{sub 6}(AlSiO{sub 4}){sub 6}](BO{sub 3}) . 2H{sub 2}O are prepared through hydrothermal crystallization. The parameters of the hexagonal unit cell and intensities of 10806 reflections are measured on an Enraf-Nonius CAD4 automated diffractometer. The compound crystallizes in the hexagonal crystal system with the unit cell parameters a = 12.745(4) A, c = 5.180(2) A, V = 728.6(4) A{sup 3}, and space group P6{sub 3}. The structure is determined by direct methods and refined using the full-matrix least-squares procedure in the anisotropic approximation for the non-hydrogen atoms. The refinement of the structure is performed to the final discrepancy factor R{sub 1} = 0.027 for 2889 unique reflections with I > 2 {sigma} (I). In the structure of the borate cancrinite, the AlO{sub 4} and SiO{sub 4} tetrahedra form a zeolite-like framework in which twelve-membered hexagonal channels are occupied by sodium atoms and BO{sub 3} groups, whereas six-membered channels are filled with sodium and calcium atoms and water molecules. The mean interatomic distances are found to be as follows: (Si-O){sub mean} = 1.614 A and (Al-O){sub mean} = 1.741 A in the AlO{sub 4} and SiO{sub 4} tetrahedra, (Na-O){sub mean} = 2.542 A in the seven-vertex sodium polyhedra, and [(Na,Ca)-O]{sub mean} = 2.589 A in the ditrigonal bipyramids.

Shirinova, A. F. [Baku State University (Azerbaijan)], E-mail: afashf@rambler.ru; Khrustalev, V. N. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Samedov, H. R. [National Academy of Sciences of Azerbaijan, Institute of Chemical Problems (Azerbaijan); Chiragov, M. I. [Baku State University (Azerbaijan)

2006-01-15T23:59:59.000Z

275

The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil  

E-Print Network (OSTI)

Under application of an electric field greater than a triggering electric field $E_c \\sim 0.4$ kV/mm, suspensions obtained by dispersing particles of the synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or column-like structures parallel to the applied electric field. This micro-structuring results in a transition in the suspensions' rheological behavior, from a Newtonian-like behavior to a shear-thinning rheology with a significant yield stress. This behavior is studied as a function of particle volume fraction and strength of the applied electric field, $E$. The steady shear flow curves are observed to scale onto a master curve with respect to $E$, in a manner similar to what was recently found for suspensions of laponite clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield stress is demonstrated to scale with respect to $E$ as a power law with an exponent $\\alpha \\sim 1.93$, while the static yield stress inferred from constant shear stress tests exhibits a similar behavior with $\\alpha \\sim 1.58$. The suspensions are also studied in the framework of thixotropic fluids: the bifurcation in the rheology behavior when letting the system flow and evolve under a constant applied shear stress is characterized, and a bifurcation yield stress, estimated as the applied shear stress at which viscosity bifurcation occurs, is measured to scale as $E^\\alpha$ with $\\alpha \\sim 0.5$ to 0.6. All measured yield stresses increase with the particle fraction $\\Phi$ of the suspension. For the static yield stress, a scaling law $\\Phi^\\beta$, with $\\beta = 0.54$, is found. The results are found to be reasonably consistent with each other. Their similarities with-, and discrepancies to- results obtained on laponite-oil suspensions are discussed.

Y. Méheust; K. P. S. Parmar; B. Schjelderupsen; J. O. Fossum

2010-02-01T23:59:59.000Z

276

A new measurement of the $K^\\pm\\to?^\\pm??$ decay at the NA48/2 experiment  

E-Print Network (OSTI)

The NA48/2 experiment at CERN collected two data samples with minimum bias trigger conditions in 2003 and 2004. A measurement of the rate and dynamic properties of the rare decay $K^\\pm\\to\\pi^\\pm\\gamma\\gamma$ from these data sets based on 149 decay candidates with an estimated background of $15.5\\pm0.7$ events is reported.

NA48/2 collaboration

2013-10-21T23:59:59.000Z

277

Nanoscale modulations in (KLa)(CaW)O-6 and (NaLa)(CaW)O-6  

Science Conference Proceedings (OSTI)

Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 x 9.4 a{sub p} periodicity (a{sub p} {approx} 4 {angstrom} for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the orientation of the nanostripes is different from the stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases.

Licurse, Mark [University of Pennsylvania; Borisevich, Albina Y [ORNL; Davies, Peter [University of Pennsylvania

2012-01-01T23:59:59.000Z

278

A Distribuição Espacial e Variabilidade Interanual do Fogo na Amazônia  

NLE Websites -- All DOE Office Websites (Extended Search)

3 a 60. 3 a 60. 1 A Distribuição Espacial e Variabilidade Interanual do Fogo na Amazônia Wilfrid Schroeder, 1 Ane Alencar, 2 Eugênio Arima, 3 e Alberto Setzer 4 Evidências a partir de observações de carvão sugerem baixa frequência de eventos de fogo causadores de alteração das florestas amazônicas no período anterior ao século vinte. Entretanto, a distribuição espacial e temporal do fogo mudou drasticamente nas últimas décadas. O fogo tornou-se uma das forças motrizes do uso da terra e da mudança da cobertura vegetal na Amazônia. A crescente intervenção humana na região, juntamente com anomalias climáticas, expuseram as florestas tropicais a um número sem precedentes de fogos em vegetação com consequências importantes para o funcionamento do complexo sistema

279

Electrochemical and structural characterization of titanium-substituted manganese oxides based on Na0.44MnO2  

DOE Green Energy (OSTI)

A series of titanium-substituted manganese oxides, Li{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (y = 0.11, 0.22, 0.33, 0.44, and 0.55) with the Na{sub 0.44}MnO{sub 2} structure were prepared from Na{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (x {approx} 0.44) precursors. The electrochemical characteristics of these compounds, which retain the unique double-tunnel structure during ion exchange, were examined in lithium/polymer electrolyte cells operating at 85 C. All of the substituted cathode materials intercalated lithium reversibly, with Li{sub x}Ti{sub 0.22}Mn{sub 0.78}O{sub 2} exhibiting the highest capacity in polymer cells, about 10-20% greater than that of unsubstituted Li{sub x}MnO{sub 2} made from Na{sub 0.44}MnO{sub 2}. In common with Li{sub x}MnO{sub 2}, the Ti-substituted materials exhibited good capacity retention over one hundred or more cycles, with some compositions exhibiting a fade rate of less than 0.03% per cycle.

Doeff, Marca M.; Richardson, Thomas J.; Hwang, Kwang-Taek

2004-03-01T23:59:59.000Z

280

General Air Permits (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Air Permits (Louisiana) General Air Permits (Louisiana) General Air Permits (Louisiana) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality Any source, including a temporary source, which emits or has the potential to emit any air contaminant requires an air permit. Facilities with potential emissions less than 5 tons per year of any regulated air pollutant do not need a permit. The Louisiana Department of Environmental Quality issues Title V General Permits. The permit is developed based on equipment types versus facility types, the general permits are not limited in their use to a specific industry or category. Title V permits combine

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Categorical Exclusion Determinations: Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Louisiana Categorical Exclusion Determinations: Louisiana Location Categorical Exclusion Determinations issued for actions in Louisiana. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 2013 CX-010876: Categorical Exclusion Determination Smart and Calibrated Pig Surveys of Strategic Petroleum Reserve Raw Water/Crude Oil Pipelines CX(s) Applied: B1.3 Date: 08/22/2013 Location(s): Texas, Louisiana Offices(s): Strategic Petroleum Reserve Field Office August 19, 2013 CX-010877: Categorical Exclusion Determination Clean and Inspect West Hackberry T-15 Brine Tank CX(s) Applied: B1.3 Date: 08/19/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office July 23, 2013 CX-010611: Categorical Exclusion Determination Thermally Efficient and Protective Cooling Technologies for Advanced Gas

282

Hydrothermal synthesis and luminescent properties of NaLa(MoO{sub 4}){sub 2}:Dy{sup 3+} phosphor  

SciTech Connect

Pompon-like NaLa(MoO{sub 4}){sub 2}:Dy{sup 3+} phosphors have been successfully prepared via a hydrothermal method using ammonia as pH value regulator. The hydrothermal process was carried out under aqueous condition without the use of any organic solvent, surfactant, and catalyst. The experimental results demonstrate that the obtained NaLa(MoO{sub 4}){sub 2}:Dy{sup 3+} phosphor powders are single-phase scheelite structure with tetragonal symmetry. Moreover, the phosphor under the excitation of 390 and 456 nm exhibited blue emission (486 nm) and yellow emission (574 nm), corresponding to the {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 15/2} transition and {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 13/2} transition of Dy{sup 3+} ions, respectively. In addition, the yellow-to-blue emission intensity ratio (Y/B) can be changed with the doped concentration of Dy{sup 3+} ions. All chromaticity coordinates of the obtained NaLa(MoO{sub 4}){sub 2}:Dy{sup 3+} phosphors are located in the white-light region. The results indicate that this kind of phosphor may has potential applications in the fields of near UV-excited and blue-excited white LEDs. - Graphical abstract: It can be seen from the SEM images that a pompon-like shape was obtained with an average diameter of about 1 {mu}m, and it is composed of many nanoflakes. Highlights: Black-Right-Pointing-Pointer Pompon-like NaLa(MoO{sub 4}){sub 2}:Dy{sup 3+} phosphors have been successfully prepared via a hydrothermal method. Black-Right-Pointing-Pointer Blue emission at 486 nm and yellow emission at 574 nm were obtained from the samples. Black-Right-Pointing-Pointer The yellow-to-blue emission intensity ratio (Y/B) can be changed with the doped concentration of Dy{sup 3+} ions. Black-Right-Pointing-Pointer NaLa(MoO{sub 4}){sub 2}:Dy{sup 3+} can be efficiently excited by the blue light and the near ultraviolet light.

Li Linlin; Zi Wenwen; Li Guanghuan; Lan Shi; Ji Guijuan [College of Chemistry, Jilin University, Changchun 130026 (China); Gan Shucai, E-mail: gansc@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130026 (China); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130026 (China); Xu Xuechun [College of Earth Sciences, Jilin University, Changchun 130026 (China)

2012-07-15T23:59:59.000Z

283

The Impact of Na—H+ Exchange on Long-Term Borosilicate Glass Corrosion: Experiments and Field Observations  

SciTech Connect

New insights from laboratory experiments coupled with field observations indicate that pore water solutions that eventually breach containment materials in disposal systems will interact with sodium-excess borosilicate waste glass in an unexpected way. Because many glass waste forms are relatively sodium-rich, they are especially vulnerable to Na+—H+ exchange (ion exchange or simply, IEX). Although the kinetics of this process has been previously investigated for early-stage glass reactions, the implications of IEX for long-term dissolution resistance have not yet been realized. Non-radioactive glass with major- and minor-element chemical compositions similar to Hanford high-Na waste glass were subjected to dissolution experiments to quantify the rates of matrix dissolution and IEX rates. Single-Pass Flow-Through (SPFT) tests quantified the IEX rate at 40°C pH = 8 and silica saturation and showed a dependence upon the fraction of excess sodium in the glass. The equation for the rate (in moles of sodium released per meter squared per second) dependence on excess sodium is: log10rate[mol/(m2?s)] = 0.63R + (-11.0); r2 = 0.86 where R = molar Na+/?(M3+). Further, rates of Na release are slower by ?30% in D2O-based solutions compared to those in H2O. These results are the hallmark of IEX reactions. Our results are compared against those from a lysimeter field experiment consisting of glasses buried in Hanford sand and to dissolution experiments conducted with a Pressurized Unsaturated Flow (PUF) apparatus. These longer-term tests indicate an initial decrease in dissolution rate by a factor of 10×, and then a constant steady-state rate thereafter. Thus, these data show that IEX reactions are important at near-saturation conditions and effectively prevent dissolution rates from falling below a minimum value. In sum, IEX modifies the long-term behavior of glass dissolution and models cannot assume that dissolution of Na-rich borosilicate glass will decrease by a factor of 100× to 1000×, as argued for minerals and less sodic glasses.

Icenhower, Jonathan P.; Pierce, Eric M.; McGrail, B. Peter

2009-05-01T23:59:59.000Z

284

NGPL Louisiana station nears completion  

Science Conference Proceedings (OSTI)

Construction on a 3,600-hp compressor station on the Louisiana line of Natural Gas Pipeline Co. of America near Henry, La., was scheduled for completion later this month. The Louisiana line extends some 205 miles along the Gulf Coast between New Caney, Tex., and the Henry hub area. The new compressor station will be located about 44 miles west of the Henry hub. Work began on the $5.1 million expansion project in Cameron Parish, La., in May following Federal Energy Regulatory Commission (FERC) certification. By mid-September, the compressor building, service building, and meter house has been erected, final compressor inspections were under way, and gas piping tie-ins had been completed, according to NGPL. Powered by three 1,200-hp Solar Saturn gas-fired centrifugal engines, the station is designed to increase the capacity of the Louisiana line east of the Stingray pipeline system by up to 220 MMcfd. Current capacity for east bound flows is approximately 900 MMcfd.

Not Available

1990-10-22T23:59:59.000Z

285

Louisiana Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

286

,"Louisiana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

287

,"Louisiana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

288

Louisiana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

289

,"Louisiana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural...

290

Louisiana Coastal Land Loss Video Release  

U.S. Energy Information Administration (EIA)

Today, the U.S. Geological Survey National Wetlands Research Center is pleased to announce the release of a new Louisiana coastal land loss video, ...

291

Qualifying RPS State Export Markets (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Louisiana as eligible sources towards their RPS targets or goals. For specific...

292

Louisiana Refinery Catalytic Hydrotreating, Diesel Fuel Downstream ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Cat. Hydro. Diesel Fuel Downstream Charge Capacity (B/SD ; Louisiana Downstream Charge Capacity of Operable ...

293

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

294

Energy Crossroads: Utility Energy Efficiency Programs Louisiana...  

NLE Websites -- All DOE Office Websites (Extended Search)

Louisiana Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Entergy Corporation Information for Businesses Southwestern Electric Power Company...

295

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

has a Master's in Business Analytics and a background in economic development as well as energy, transportation, and emissions research. She first joined the Louisiana Clean Fuels...

296

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Beauregard Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Beauregard Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

297

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Avoyelles Parish, Louisiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Avoyelles Parish, Louisiana ASHRAE Standard ASHRAE 169-2006 Climate...

298

Related Deployment Efforts in New Orleans, Louisiana | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Efforts in New Orleans, Louisiana In addition to focusing on rebuilding schools and homes with energy efficiency, New Orleans, Louisiana, is incorporating...

299

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million...

300

Louisiana (with State Offshore) Shale Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Production (Billion Cubic Feet) Louisiana (with State Offshore) Shale Production (Billion Cubic...

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Louisiana--North Shale Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1...

302

Louisiana--North Shale Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0...

303

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Download Data (XLS File) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas...

304

Louisiana (with State Offshore) Shale Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves...

305

Ducks Unlimited Pledges to Help Save Coastal Louisiana ...  

U.S. Energy Information Administration (EIA)

Don Young at America's Energy Coast Press Conference in New Orleans, Louisiana. DU Executive Vice President Don Young speaks in favor of a Louisiana ...

306

Louisiana's 4th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Louisiana. Registered Energy Companies in Louisiana's 4th congressional district Panhandle Energies LLC Vanguard SynFuels LLC Retrieved from "http:en.openei.orgw...

307

Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

308

Louisiana's 5th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

US Recovery Act Smart Grid Projects in Louisiana's 5th congressional district Cleco Power LLC Smart Grid Project Registered Energy Companies in Louisiana's 5th congressional...

309

Na NMR Evidence for Charge Order and Anomalous Magnetism in NaxCoO2 I. R. Mukhamedshin,1,* H. Alloul,1,  

E-Print Network (OSTI)

23 Na NMR Evidence for Charge Order and Anomalous Magnetism in NaxCoO2 I. R. Mukhamedshin,1,* H are studied by 23Na NMR and SQUID magnetometry. In nominal 0:50 x 0:70 solid state reacted samples,6] with the magnetic prop- erties. In a pioneering work, two 59Co NMR signals attributed to nonmagnetic Co3 sites were

Paris-Sud 11, Université de

310

The effect of Na{sup +} impurities on the conductivity and water uptake of nafion 115 polymer electrolyte fuel cell membranes.  

DOE Green Energy (OSTI)

Water uptake and ionic conductivities are reported for Nafion 115 membranes as functions of water activity and percentage of sulfonic groups occupied by sodium impurities. Water content was determined gravimetrically under liquid hydration and at 100, 75.3, and 11.3% relative humidity (RH). Water content exponentially decreased from the H{sup +}-form membrane water uptake isotherm to the Na{sup +}-form isotherm when hydrated by water vapor. Ninety percent of this decrease is reached at a substitution level of 0.2Na{sup +}/SO{sub 3}{sup -}. Water uptake under liquid water hydration decreased more gradually, only 50% to completion at 0.2Na{sup +}/SO{sub 3}{sup -}. Four-probe conductivity testing of Nafion 115 membranes, normalized against dry dimensions, revealed that although hydration decreases immediately with the introduction of sodium impurities, ionic conductivity at 100% RH remains constant up to 0.15Na{sup +}/SO{sub 3}{sup -}. Above 0.15Na{sup +}/SO{sub 3}{sup -} an exponential decrease in ionic conductivity is observed with higher sodium content. The dependence of ionic conductivity on water content is also reported for sodium contents of 0, 0.27, 0.62 and 1Na{sup +}/SO{sub 3}{sup -}.

Bendert, J. C.; Papadias, D. D.; Myers, D. J.; Chemical Sciences and Engineering Division

2010-08-25T23:59:59.000Z

311

High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF{sub 3}  

Science Conference Proceedings (OSTI)

NaNiF{sub 3} perovskite was found to transform to post-perovskite at 16-18 GPa and 1273-1473 K. The equilibrium transition boundary is expressed as P (GPa)=-2.0+0.014 Multiplication-Sign T (K). Structure refinements indicated that NaNiF{sub 3} perovskite and post-perovskite have almost regular NiF{sub 6} octahedra consistent with absence of the first-order Jahn-Teller active ions. Both NaNiF{sub 3} perovskite and post-perovskite are insulators. The perovskite underwent a canted antiferromagnetic transition at 156 K, and the post-perovskite antiferromagnetic transition at 22 K. Magnetic exchange interaction of NaNiF{sub 3} post-perovskite is smaller than that of perovskite, reflecting larger distortion of Ni-F-Ni network and lower dimension of octahedral arrangement in post-perovskite than those in perovskite. - Graphical abstract: Perovskite-post-perovskite transition in NaNiF{sub 3} at high pressure Highlights: Black-Right-Pointing-Pointer NaNiF{sub 3} perovskite (Pv) transforms to post-perovskite (pPv) at 16 GPa and 1300 K. Black-Right-Pointing-Pointer The equilibrium transition boundary is expressed as P (GPa)=-2.0+0.014 T (K). Black-Right-Pointing-Pointer Antiferromagnetic transition occurs at 156 K in Pv and 22 K in pPv.

Shirako, Y. [Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Shi, Y.G. [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Institute of Physics, Chinese Academy of Sciences, 100190 Beijing (China); Aimi, A.; Mori, D.; Kojitani, H. [Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Yamaura, K. [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Inaguma, Y. [Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Akaogi, M., E-mail: masaki.akaogi@gakushuin.ac.jp [Department of Chemistry, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)

2012-07-15T23:59:59.000Z

312

Nanoscale modulations in (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}  

Science Conference Proceedings (OSTI)

Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 Multiplication-Sign 9.4a{sub p} periodicity (a{sub p} Almost-Equal-To 4 A for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formation of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases. - Graphical abstract: Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction and high-resolution transmission electron microscopy show a two-dimensional, nanocheckerboard modulation. For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Highlights: Black-Right-Pointing-Pointer Two new A-site ordered perovskites were synthesized, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. Black-Right-Pointing-Pointer Unusual 1D and 2D nanoscale patterns were observed. Black-Right-Pointing-Pointer Tolerance factor shown to be not enough to predict the observed morphologies. Black-Right-Pointing-Pointer High temperature x-ray diffraction data suggests a loss of stoichiometry is related to the modulations. Black-Right-Pointing-Pointer Z-contrast imaging provides direct evidence for non-stoichiometry and a new model.

Licurse, Mark W., E-mail: mlicurse@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States); Borisevich, Albina Y., E-mail: albinab@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Davies, Peter K., E-mail: davies@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104 (United States)

2012-07-15T23:59:59.000Z

313

Louisiana Prime Supplier Sales Volumes of Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

314

AlSb thin films as negative electrodes for Li-ion and Na-ion batteries  

SciTech Connect

The electrochemical reactions between Li and Na with amorphous/nanocrystalline AlSb thin films prepared by magnetron sputtering are reported for the first time. The films are composed of AlSb and Sb nanoparticles embedded into an amorphous matrix with an overall Sb/Al ratio of 1.13. The reaction with Li proceeds with an average reaction potential of 0.65 V, a reversible capacity of 750 mAh g-1, and very fast reaction kinetics. For instance, a storage capacity close to 500 mAh g-1, corresponding to 70% of the maximum capacity, is achieved at 125 C-rate. In addition, there is only a small increase in overpotentials with increasing current: ~0.15 V at 12 C and ~0.7 V at 125 C. In contrast, the reaction with Na results in average reaction potential of 0.5 V and a storage capacity of 500 mAh g-1 obtained at low currents. The capacity retention and reaction kinetics are presently not satisfactory with pronounced capacity losses upon cycling and large overpotentials with increasing current. The capacity retention can be improved by using fluoroethylene carbonate additive in the Na-ion electrolyte, which highlights that the Solid Electrolyte Interphase plays an important role for the electrode cycling stability. The reaction kinetics is relatively poor and an increase in overpotentials of about 0.9 V at 2 C is observed (retained capacity of about 350 mAh g-1 or 66% of the maximum). The study of the reaction mechanism on thick films (3-5 m) by X-ray diffraction reveals that the electrode material remains amorphous at all potentials. The presence of broad humps, located at the positions expected for Li-Al and Li-Sb line compounds, suggests that during the reaction with Li the atomic short range ordering is similar to the expected phases.

Baggetto, Loic [ORNL; Marszewski, Michal [Kent State University; Gorka, Joanna [ORNL; Jaroniec, Mietek [Kent State University; Veith, Gabriel M [ORNL

2013-01-01T23:59:59.000Z

315

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Coalition Louisiana Clean Fuels Coalition The Louisiana Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Louisiana Clean Fuels coalition Contact Information Ann Vail Shaneyfelt 225-334-8083 ashaneyfelt@louisianacleanfuels.org Lauren Lambert-Tompkins 225-485-2522 llambert@louisianacleanfuels.org Coalition Website Clean Cities Coordinators Coord Ann Vail Shaneyfelt Coord Coord Lauren Lambert-Tompkins Coord Photo of Ann Vail Shaneyfelt Ann Vail Shaneyfelt has served as a marketing professional for over 10 years, joined the Louisiana Clean Fuels (LCF) coalition team in 2012 and was named coordinator in October, 2013. She has worked successfully across a variety of industries including oil and gas exploration, healthcare

316

Restoration Tax Abatement (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restoration Tax Abatement (Louisiana) Restoration Tax Abatement (Louisiana) Restoration Tax Abatement (Louisiana) < Back Eligibility Commercial Low-Income Residential Multi-Family Residential Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Louisiana Program Type Property Tax Incentive Provider Louisiana Economic Development Restoration Tax Abatement (RTA) Program provides five-year property tax abatement for the expansion, restoration, improvement, and development of existing commercial structures and owner-occupied residences. The program grants a five-year deferred assessment of the ad valorem property taxes on renovations and improvements. Equipment that becomes an integral part of the structure can qualify for this exemption. The structure must be located

317

Quality Jobs Program (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Jobs Program (Louisiana) Quality Jobs Program (Louisiana) Quality Jobs Program (Louisiana) < Back Eligibility Commercial Industrial Investor-Owned Utility Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Corporate Tax Incentive Rebate Program Provider Louisiana Economic Development The Quality Jobs Program provides a cash rebate to companies that create well-paid jobs and promote economic development. Benefits include a 5-6% cash rebate of annual gross payroll for new, direct jobs for up to ten years, or up to 1.5 investment tax credit for qualified expenses. Business must be in one of the following industries: Bioscience, Manufacturing, Software, Environmental Technology, Food

318

Implementing CHP in Louisiana: A Case Study  

E-Print Network (OSTI)

The objective of this research is to evaluate issues related to implementing CHP systems in Louisiana. A case study is used to show the system design, economic analysis and permitting process. The implementation process will focus on the air permitting and the utility interconnection agreements for rural Louisiana. The development of general guidelines on CHP implementation in Louisiana will provide insight to many potential CHP adopters in the state of Louisiana. The methodology used involves researching current Federal and Louisiana state policies that regulate the air permitting and utility regulation for CHP systems. After the appropriate air permits and qualification for grid connection are identified, the next step in the process of solving the problem will be to locate appropriate contacts within the appropriate agencies. The final step of the problem solving will be to interview the appropriate personnel to identify the procedures that each department follows to implement CHP systems.

Kozman, T. A.; Carriere, J. L.; Lee, J.

2009-05-01T23:59:59.000Z

319

Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste  

DOE Green Energy (OSTI)

Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

Person, J.C.

1996-05-30T23:59:59.000Z

320

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude ...  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil Reserves New Field Discoveries (Million Barrels)

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The electrochemical reactions of pure In with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance  

SciTech Connect

Indium thin films are evaluated as an anode material for Li-ion and Na-ion batteries (theoretical capacities of 1012 mAh g-1 for Li and 467 mAh g-1 for Na). The native surface oxides are responsible for the anomalous electrolyte decomposition during the first cycle while oxidized In species are found to be responsible for the electrolyte decomposition during the subsequent cycles. The presence of 5wt% FEC electrolyte additive suppresses the occurrence of the anomalous electrolyte decomposition during the first cycle but is not sufficient to prevent the decomposition upon further cycling from 0 to 2 V. Prevention of the anomalous decomposition can be achieved by restricting the charge cut-off, for instance at 1.1 V, or by using larger amounts of FEC. The In films show moderately good capacity retention with storage capacities when cycled with Li (950 mAh g-1) but significantly less when cycled with Na (125 mAh g-1). XRD data reveal that several known Li-In phases (i.e LiIn, Li3In2, LiIn2 and Li13In3) form during the electrochemical reaction. In contrast, the reaction with Na is severely limited. The largest amount of inserted Na is evidenced for cells short-circuited 40 hrs at 65C, for which the XRD data show the coexistence of NaIn, In, and an unknown phase. During cycling, mechanical degradation due to repeated expansion/shrinkage, evidenced by SEM, coupled with SEI formation is the primary source of the capacity fade. Finally, we show that the In thin films exhibit very high rate capability for both Li (100 C) and Na (30 C).

Hawks, Samantha A [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL

2014-01-01T23:59:59.000Z

322

General Order Ensuring Reliable Electric Service (Louisiana) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Safety and Operational Guidelines Provider Louisiana Public Service Commission The standards set forth herein have been developed to provide consumers, the Louisiana Public Service Commission, and jurisdictional electric utilities with a uniform method of ensuring reliable electric service. The standards shall be applicable to the distribution systems of all electric utilities under the jurisdiction of the Louisiana Public Service

323

Alternative Fuels Data Center: Louisiana Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Laws and Louisiana Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Louisiana. Your Clean Cities coordinator at

324

Alternative Fuels Data Center: Louisiana Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Points of Louisiana Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Louisiana Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Louisiana Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Louisiana Points of Contact on Google Bookmark Alternative Fuels Data Center: Louisiana Points of Contact on Delicious Rank Alternative Fuels Data Center: Louisiana Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Louisiana Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Points of Contact The following people or agencies can help you find more information about Louisiana's clean transportation laws, incentives, and funding

325

Branch-shaped NaGdF{sub 4}:Eu{sup 3+} nanocrystals: Selective synthesis, and photoluminescence properties  

SciTech Connect

The branch-shaped NaGdF{sub 4}:Eu{sup 3+} nanocrystals (NCs) were synthesized by using polyvinylpyrrolidone (PVP) as a capping agent in ethylene glycol (EG) solution. The NCs were readily dispersed into water or ethanol to form a relatively stable suspension, which may facilitate their applications in biological fields. Meanwhile, the crystal structures of the NCs were tunable from the mixture of the {alpha}-(cubic) and {beta}-(hexagonal) phases to the pure {beta}-phase by varying the F{sup -}/Ln{sup 3+} molar ratio or the reaction temperature. The pure {beta}-phase NCs were obtained at relatively high F{sup -}/Ln{sup 3+} molar ratio and reaction temperature. In addition, the Eu{sup 3+}-doping concentration-dependent optical properties of the NaGdF{sub 4}:Eu{sup 3+} NCs were investigated in detail. The result shows that the emissions from high energy level transitions (e.g., {sup 5}D{sub 1}, {sup 5}D{sub 2}, and {sup 5}D{sub 3}) are significantly impaired with increasing the Eu{sup 3+}-doping concentration due to the cross-relaxation process, and the emission at 612 nm is predominant since the doped Eu{sup 3+} ions locate in the crystal fields without inversion center.

Wang Shangbing, E-mail: wsb1978@mail.ustc.edu.cn [School of Metallurgy and Resources, Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002 (China); Li Qing; Pei Lizhai [School of Metallurgy and Resources, Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002 (China); Zhang Qianfeng, E-mail: zhangqf@ahut.edu.cn [School of Metallurgy and Resources, Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002 (China)

2010-08-15T23:59:59.000Z

326

A Expansão da Agricultura Intensiva e Pecuária na Amazônia Brasileira  

NLE Websites -- All DOE Office Websites (Extended Search)

61 a 81. 61 a 81. 1 A Expansão da Agricultura Intensiva e Pecuária na Amazônia Brasileira Robert Walker, 1 Ruth DeFries, 2 Maria Del Carmem Vera-Diaz, 3 Yosio Shimabukuro, 4 e Adriano Venturieri 5 A agropecuária na Amazônia tem, frequentemente, provocado controvérsia em função do imenso valor ecológico do meio ambiente da região. Isso ocorreu, primeiramente, com a pecuária e atualmente com o crescimento acelerado da soja, uso de tratores e criação de gado. Essas atividades têm ocupado terras que, por milênios, sustentaram somente florestas úmidas fechadas, ecossistemas naturais e povos indígenas dispersos. O presente capítulo focaliza a porção brasileira da Bacia Amazônica e trata da expansão da agropecuária nesta região, partindo da premissa de que uma efetiva política de desenvolvimento

327

Louisiana - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Oil and Gas: Louisiana Office of Conservation, First Oil Well in Louisiana ... America's Wetlands: Energy Corridor to the Nation: The Louisiana Offsho ...

328

Energy dependence of identified hadron spectra and event-by-event fluctuations in p+p interactions from NA61/SHINE at the CERN SPS  

E-Print Network (OSTI)

NA61/SHINE at the CERN SPS is a fixed-target experiment pursuing a rich physics program including measurements for heavy ion, neutrino and cosmic ray physics. The main goal of the ion program is to explore the most interesting $T, mu_{B}$ region of the phase diagram of strongly interacting matter. We plan to study the properties of the onset of deconfinement and to search for the signatures of the critical point. The search is performed by varying collision energy (13A-158A GeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La). Thanks to its large acceptance and excellent particle identification capability NA61/SHINE is well suited for performing high-precision particle production measurements as well as for studying event-by-event fluctuations in p+p, p+nucleus and nucleus+nucleus collisions. Preliminary results on p+p interactions at 20, 31, 40, 80 and 158 GeV/c are presented. They include inclusive spectra of pi+, pi-, K- and protons as a function of transverse momentum/mass and rapidity as well as event-by-event fluctuations of transverse momentum, azimuthal angle and chemical composition. The new NA61 measurements are compared with the corresponding results of NA49 on central Pb+Pb collisions and with predictions of Monte Carlo models. Finally, the future plans of NA61/SHINE are summarised.

Maciej Rybczynski

2013-01-15T23:59:59.000Z

329

Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana: Energy Resources Louisiana: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2448234,"lon":-92.1450245,"alt":0,"address":"Louisiana","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Cross sections for monitor reactions {sup 27}Al((p, x){sup 24}Na, {sup 27}Al(p, x){sup 22}Na, and {sup 27}Al(p, x){sup 7}Be at proton energies in the range 0.04-2.6 GeV  

Science Conference Proceedings (OSTI)

The cross sections for the monitor reactions {sup 27}Al(p, x){sup 24}Na, {sup 27}Al(p, x){sup 22}Na, and {sup 27}Al(p, x){sup 7}Be at 12 proton energies, 2605, 1598, 1199, 799, 600, 400, 249, 147.6, 97.2, 66.0, 44.6, and 40.8 MeV, have been determined with 72 Multiplication-Sign 72-mm square and 10.5-mm-diameter round aluminum foils. The rates of the reactions of the production of {sup 24}Na, {sup 22}Na, and {sup 7}Be in the foils in each irradiation run have been determined by {gamma} spectrometry, whereas the number of protons transmitted through these foils has been determined using calibrated fast current transformers. The cross sections have been determined as the ratios of the corresponding reaction to the average proton fluence.

Titarenko, Yu. E.; Borovlev, S. P.; Butko, M. A.; Zhivun, V. M.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Tikhonov, R. S.; Florya, S. N.; Koldobskiy, A. B. [Institute for Theoretical and Experimental Physics (Russian Federation)

2011-04-15T23:59:59.000Z

331

A Louisiana Refinery Success Story  

E-Print Network (OSTI)

"Refining 155,000 barrels of crude oil daily, a Louisiana plant markets oil products to gas stations in at least 26 states, including Washington, D.C. The plant uses 8,538 steam traps with 1,200-, 600-, 250-, 75-, 40- and 15-psi nominal pressures. Standardized with inverted bucket steam traps, the Louisiana refinery’s maintenance and energy coordinator was content with the results. The Spirax Sarco Inc (SSI) team demonstrated SSI’s Energy Service Group (ESG) capabilities and successes to the refinery manager, operations manager and production manager. From 2004 through 2006, the team presented a series of ESG seminars at the refinery site. The numerous models demonstrated quantitative savings with 3- to 12-mo paybacks. For a complete SSI turnkey program, for example, the SSI team presented an ROI with less than six months payback. The ESG survey found that only 3,952 (46.3%) of the steam traps were operating correctly. The remaining steam traps experienced a variety of failures, including: 613 (7.2%) that failed open; 2,763 (32.4%) were cold; 1,012 (11.9%) that failed closed; 6 (0.0%) exhibited rapid cycling; and 192 (2.2%) were disconnected. The team also found performance and temperature issues with the HP sulfur reactors in the SRU units, largely due to the application of inverted bucket steam traps. Plus, as a result of excessive steam leaks, the sulfur reactors were creating a safety hazard. When these results were presented, management agreed that the sulfur reactors needed process improvement. The SSI team recommended replacing the inverted bucket steam traps with 1-1/2-in. strainers and 1-1/2-in. flanged float & thermostatic steam traps. They also suggested that the existing trap discharge piping should be removed and re-piped with globe-style bypass valves and gate-style isolation valves to reduce flow velocity. Once the SSI team began negotiations, it only took one survey for the Louisiana refinery to realize all the energy savings opportunities. In fact, the ESG survey uncovered more than $1.3 million in steam losses through failed steam traps and another $1 million in steam leak opportunities and production, process, safety and environmental improvements. Impressed with the survey results, the refinery approved the estimated $110,000 turnkey project, which offered a 5.3-month payback. Further negotiations netted the team annual steam trap surveys for the next three years, as well as an approved 2008 energy budget of $600,000. Additionally, the Louisiana refinery has indicated that upon successful completion of the ESG program, SSI’s annual energy budget will increase to $1,000,000."

Kacsur, D.

2009-05-01T23:59:59.000Z

332

Frustration by competing interactions in the highly-distorted double perovskites La2NaB'O6 (B' = Ru, Os)  

Science Conference Proceedings (OSTI)

The usual classical behaviour of S = 3/2, B-site ordered double perovskites generally results in simple, commensurate magnetic ground states. In contrast, heat capacity and neutron powder diffraction measurements for the S = 3/2 systems La2NaB'O6 (B = Ru, Os) reveal an incommensurate magnetic ground state for La2NaRuO6 and a drastically suppressed ordered moment for La2NaOsO6. This behaviour is attributed to the large monoclinic structural distortions of these double perovskites. The distortions have the effect of weakening the nearest neighbour superexchange interactions, presumably to an energy scale that is comparable to the next nearest neighbour superexchange. The exotic ground states in these materials can then arise from a competition between these two types of antiferromagnetic interactions, providing a novel mechanism for achieving frustration in the double perovskite family.

Aczel, Adam A [ORNL; Bugaris, Dan [University of South Carolina; Li, Ling [University of Tennessee, Knoxville (UTK); Yan, Jiaqiang [ORNL; Dela Cruz, Clarina R [ORNL; Zur Loye, Hans-Conrad [University of South Carolina; Nagler, Stephen E [ORNL

2013-01-01T23:59:59.000Z

333

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201 11,458 10,785 9,665 2010's 9,250 8,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

334

Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells (Million Cubic Feet) Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 30,264 26,439 1980's 22,965 22,153 23,654 26,510 30,099 29,904 33,453 28,698 23,950 22,673 1990's 20,948 19,538 21,631 23,750 21,690 14,528 19,414 16,002 22,744 17,510 2000's 17,089 13,513 11,711 9,517 11,299 8,294 8,822 9,512 4,137 4,108 2010's 6,614 6,778 5,443 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals from Oil

335

Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599 2000's 492 483 427 368 389 427 415 503 471 506 2010's 499 490 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

336

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

337

Energy Incentive Programs, Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Louisiana Energy Incentive Programs, Louisiana October 29, 2013 - 11:29am Addthis Updated August 2012 What public-purpose-funded energy efficiency programs are available in my state? Louisiana has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Entergy New Orleans' Energy Smart program provides financial incentives for its small (demand less than 100 kW) and large (100 kW or greater) non-residential customers to install qualifying energy-efficient equipment including lighting, air conditioning, heat pumps, electric chillers, motors, window film and other measures that reduce electricity use. Incentive levels are based on kWh saved; small customers earn $0.14 per kWh and large customers $0.10 per kWh for qualifying lighting upgrades and

338

Entergy Louisiana Inc | Open Energy Information  

Open Energy Info (EERE)

Entergy Louisiana Inc Entergy Louisiana Inc Jump to: navigation, search Name Entergy Louisiana Inc Place Louisiana Utility Id 11241 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business Schedule - WHSH - 16 (primary voltage) Commercial Business Schedule - WHSH - 16 (transmission < 230 voltage) Commercial

339

Categorical Exclusion Determinations: Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 12, 2010 January 12, 2010 CX-000486: Categorical Exclusion Determination Project Number WH-09-119 - Replace Fiberglass Covers/Troughs on Traveling Screens at West Hackberry Raw Water Intake Structure CX(s) Applied: B1.3 Date: 01/12/2010 Location(s): West Hackberry, Louisiana Office(s): Fossil Energy, Strategic Petroleum Reserve Field Office December 20, 2009 CX-000256: Categorical Exclusion Determination Louisiana City Baton Rouge CX(s) Applied: A9, A11, B2.2, B3.6, B5.1 Date: 12/20/2009 Location(s): Baton Rouge, Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 17, 2009 CX-001263: Categorical Exclusion Determination Hire a Consultant CX(s) Applied: A9, A11, B2.5, B5.1 Date: 12/17/2009 Location(s): Livingston, Louisiana Office(s): Energy Efficiency and Renewable Energy

340

Categorical Exclusion Determinations: Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 16, 2012 August 16, 2012 CX-008862: Categorical Exclusion Determination Variable Frequency Drivers for Raw Water Intake Structure Pumps Government Furnished Equipment CX(s) Applied: B1.3 Date: 08/16/2012 Location(s): Texas, Texas, Louisiana Offices(s): Strategic Petroleum Reserve Field Office August 14, 2012 CX-008863: Categorical Exclusion Determination Dredging of the West Hackberry Raw Water Intake Structure CX(s) Applied: B1.3 Date: 08/14/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office July 26, 2012 CX-008866: Categorical Exclusion Determination Install Power Metering for Strategic Petroleum Reserve Site Buildings CX(s) Applied: B1.31 Date: 07/26/2012 Location(s): Louisiana, Texas, Texas, Louisiana Offices(s): Strategic Petroleum Reserve Field Office

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal seam natural gas producing areas (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

342

Louisiana Tech University EMERGENCY RESPONSE PLAN  

E-Print Network (OSTI)

/or Residential Life, whichever appropriate, after a disaster. #12;Emergency Response Plan for Students 4 CriticalLouisiana Tech University Part III EMERGENCY RESPONSE PLAN FOR STUDENTS JANUARY, 2013 #12;Emergency Response Plan for Students 2 SECTION I. INTRODUCTION

Selmic, Sandra

343

Louisiana/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources Louisiana/Wind Resources < Louisiana Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

344

Density functional theory studies on theelectronic, structural, phonon dynamicaland thermo-stability properties of bicarbonates MHCO3, M D Li, Na, K  

Science Conference Proceedings (OSTI)

The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M D Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy .FPH/ calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the HCO􀀀 3 groups in LiHCO3 and NaHCO3 form an infinite chain structure through O#1; #1; #1;H#1; #1; #1;O hydrogen bonds. In contrast, the HCO􀀀 3 anions form dimers, .HCO􀀀 3 /2, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical–transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0–900 K, the FPH and the entropies (S) of MHCO3 (M D Li, Na, K) systems vary as FPH.LiHCO3/ > FPH.NaHCO3/ > FPH.KHCO3/ and S.KHCO3/ > S.NaHCO3/ > S.LiHCO3/, respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, Karl; Majzoub, Eric H; Luebke, David R.

2012-07-01T23:59:59.000Z

345

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

346

..&rrbt, Chief, Industrial Hy&na Branch, HerlthbrSas8byLaboratoly  

Office of Legacy Management (LM)

tf..@ tf..@ ..&rrbt, Chief, Industrial Hy&na Branch, HerlthbrSas8byLaboratoly ;,.; , ' 1 ' @@w-w 3, 1954 P. B. Klevin, Indurtrial Hygiexn J5rantah, Barrlei &'afelky Lab0raM~ : . .A , 3 t :;p,: . NATIONAL LEiD OF OHIO ROLLINO OFERATIONS AT SIHONr>s SAW 6 STEEL- Amm', +I& y9, <: '.. SmBoLt HSHtPBK ' -: - St. Louis Area Office at the Simnds Saw and Steel Co., k&port, NJ., on tha &boVe clrtm, I oblruloed tb Mat;Lonal Uad umu&m and thorium roll- ing operations which were In pogress at the 16" and 10" mills respectively. Althm& hhls+urV8y w&d: ma& wltbout Qte dlx' aet request of the National Lead Co., I am reporting the results for your information. At the W aill whem 38 fh&m ingots were r&lad into lmgthaned rods,

347

Viscosity of NaCl and other solutions up to 350{sup 0}C and 50 MPa pressures  

DOE Green Energy (OSTI)

Experimental values for the viscosity of sodium chloride solutions are critically reviewed for application to geothermal energy. Data published recently by Kestin, Los, Pepinov, and Semenyuk as well as earlier data are included. A theoretically based equation for calculating relative viscosity was developed, and used to generate tables of smoothed values over the ranges 20{sup 0}C to 350{sup 0}C, 0 to 5 m and pressures up to 50 MPa. The equation reproduces selected data to an average of better than 2 percent over the entire range of temperatures and pressures. Selected tables of data are included for KCl up to 150{sup 0}C, CaCl{sub 2} solutions up to 100{sup 0}C, and for mixtures of NaCl with KCl and CaCl{sub 2}. Recommendations are given for additional data needs.

Phillips, S.L.; Ozbek, H.; Igbene, A.; Litton, G.

1980-11-01T23:59:59.000Z

348

Evidence for the onset of deconfinement and quest for the critical point by NA49 at the CERN SPS  

Science Conference Proceedings (OSTI)

The NA49 results on hadron production obtained in PbPb collisions at SPS energies from 20 to 158 A GeV are shown and discussed as evidence for the onset of deconfinement. The primary measures are the pion yield, the kaon-to-pion ratio and the slope parameter of transverse mass distributions. The possible indication of the QCD critical point signatures was investigated in the event-by-event fluctuations of various observables such as the mean transverse momentum, particle multiplicity and azimuthal angle distributions as well as in the particle ratio fluctuations. The energy dependence of these observables was measured in central PbPb collisions in the full SPS energy range while for analysis of the system size dependence data from pp, CC, SiSi, and PbPb collisions at the top SPS energy were used.

Melkumov, G. L., E-mail: georgui.melkoumov@cern.ch [Joint Institute for Nuclear Research (Russian Federation); Anticic, T. [Rudjer Boskovic Institute (Croatia); Baatar, B. [Joint Institute for Nuclear Research (Russian Federation); Barna, D. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Bartke, J. [Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics (Poland); Beck, H. [Fachbereich Physik der Universitaet (Germany); Betev, L. [CERN (Switzerland); Bialkowska, H. [Institute for Nuclear Studies (Poland); Blume, C. [Fachbereich Physik der Universitaet (Germany); Bogusz, M. [Warsaw University of Technology, Faculty of Physics (Poland); Boimska, B. [Institute for Nuclear Studies (Poland); Book, J. [Fachbereich Physik der Universitaet (Germany); Botje, M. [NIKHEF (Netherlands); Buncic, P. [CERN (Switzerland); Cetner, T. [Warsaw University of Technology, Faculty of Physics (Poland); Christakoglou, P. [NIKHEF (Netherlands); Chung, P. [Stony Brook University (SUNYSB), Department of Chemistry (United States); Chvala, O. [Charles University, Institute of Particle and Nuclear Physics (Czech Republic); Cramer, J. G. [University of Washington, Nuclear Physics Laboratory (United States); Eckardt, V. [Max-Planck-Institut fuer Physik (Germany); and others

2012-05-15T23:59:59.000Z

349

Final Report for the Study on S-Implanted Alloy 22 in 1 M NaCl Solutions  

Science Conference Proceedings (OSTI)

The objective of this study was to examine the effects of high levels of S in the near-surface region on the passivity of Alloy 22, a corrosion resistant Ni-Cr-Mo alloy, in deaerated 1 M NaCl solution. Near-surface concentrations of S up to 2 at.% were achieved in Alloy 22 test specimens by implanting them with S. The S-implanted samples were then evaluated in short-term electrochemical tests in the salt solution and subsequently analyzed with X-ray Photoelectron Spectroscopy (XPS) for film thickness and composition. Specimens tested included non-implanted and annealed Alloy 22 samples, samples implanted with S, and “blanks” implanted with Ar as an ion that would simulate the “damage” of S implantation without the chemical effect. A sample of S-implanted Alloy 22 was also exposed to solution for 29 days and analyzed for evidence of S accumulation at the surface over longer times.

Windisch, Charles F.; Baer, Donald R.; Jones, R. H.; Engelhard, Mark H.

2005-11-01T23:59:59.000Z

350

High temperature oxidation and NaCl-induced accelerated corrosion of hot-dip aluminized 9Cr-1Mo and 310 stainless steel  

E-Print Network (OSTI)

The behaviors of high temperature corrosion on hot-dip aluminized on 9Cr-1Mo and 310 stainless steels when catalyzed by NaCl and cyclic heating environment were studied experimentally. The corrosion behavior and morphological development were investigated by weight gain kinetics, metallographs, depths of attack, metal losses, and X-ray analyses. The results of 310SS deposited with salt mixtures show that weight gain kinetics in simple oxidation reveals a steady-state parabolic rate law after 3 hr, while the kinetics with salt deposits display multi-stage growth rates. NaCl is the main corrosive specie in high-temperature corrosion involving mixtures of NaCl/Na2SO4 and is responsible for the formation of internal attack. Uniform internal attack is the typical morphology of NaCl-induced hot corrosion, while the extent of intergranular attack is more pronounced as the content of Na2SO4 in the mixture is increased. The thermal-cycling test results of 310SS deposited NaCl and coated 7wt%Si/93wt%Al show that the aluminized layers have good corrosion resistance during the first four cycles of testing, while degradation occurs after testing for five cycles. The reason for degradation of aluminized layers is attributed to the formation of interconnecting voids caused by aluminum inward diffusion, chloridation/oxidation cyclic reactions and the penetration of molten NaCl through the voids into the alloy substrate. The 9Cr-1Mo steels coated with 7wt%Si/93wt%Al oxidized at 750, 850, and 950°C in static air show that oxidation kinetics followed a parabolic rate law at 750 and 850 °C. The cracks propagated through the FexAly layer due to the growth of brittle FeAl2 and Fe2Al5 at 750 and 850°C. The voids condensed in the interface of intermetallics and substrate are attributed to the Kirkendall effect. At 950°C, the fast growing aluminide layer has a different expansion coefficient than oxide scale, leading to scale cracking, oxygen penetration, and internal oxidized, evidenced by a rapid mass gain.

Tsaur, Charng-Cheng

2004-12-01T23:59:59.000Z

351

Two Homologous Intermetallic Phases in the Na-Au-Zn System with Sodium Bound in Unusual Paired Sites within 1D Tunnels  

SciTech Connect

The Na-Au-Zn system contains the two intermetallic phases Na(0.97(4))Au(2)Zn(4)(I) and Na(0.72(4))Au(2)Zn(2)(II) that are commensurately and incommensurately modulated derivatives of K(0.37)Cd(2), respectively. Compound I crystallizes in tetragonal space group P4/mbm (No. 127), a = 7.986(1) Å, c = 7.971(1) Å, Z = 4, as a 1 × 1 × 3 superstructure derivative of K(0.37)Cd(2)(I4/mcm). Compound II is a weakly incommensurate derivative of K(0.37)Cd(2) with a modulation vector q = 0.189(1) along c. Its structure was solved in superspace group P4/mbm(00g)00ss, a = 7.8799(6) Å, c = 2.7326(4) Å, Z = 2, as well as its average structure in P4/mbm with the same lattice parameters.. The Au-Zn networks in both consist of layers of gold or zinc squares that are condensed antiprismatically along c ([Au(4/2)Zn(4)Zn(4)Au(4/2)] for I and [Au(4/2)Zn(4)Au(4/2)] for II) to define fairly uniform tunnels. The long-range cation dispositions in the tunnels are all clearly and rationally defined by electron density (Fourier) mapping. These show only close, somewhat diffuse, pairs of opposed, ?50% occupied Na sites that are centered on (I)(shown) or between (II) the gold squares. Tight-binding electronic structure calculations via linear muffin-tin-orbital (LMTO) methods, assuming random occupancy of ? ?100% of nonpaired Na sites, again show that the major Hamilton bonding populations in both compounds arise from the polar heteroatomic Au-Zn interactions. Clear Na-Au (and lesser Na-Zn) bonding is also evident in the COHP functions. These two compounds are the only stable ternary phases in the (Cs,Rb,K,Na)-Au-Zn systems, emphasizing the special bonding and packing requirements in these sodium structures

Samal, Saroj L.; Lin, Qisheng; Corbett, John D.

2012-08-20T23:59:59.000Z

352

NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis  

DOE Green Energy (OSTI)

Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

1994-06-01T23:59:59.000Z

353

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

354

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Partnership Coalition Louisiana Clean Fuels Partnership Coalition The Southeast Louisiana Clean Fuels Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Louisiana Clean Fuels Partnership coalition Contact Information Rebecca Otte 504-483-8513 slcfp@norpc.org Coalition Website Clean Cities Coordinator Rebecca Otte Photo of Rebecca Otte Rebecca Otte is the Environmental Programs Coordinator at the Regional Planning Commission (RPC) which includes five parishes (counties) in southeast Louisiana: Orleans, Jefferson, Plaquemines, St. Bernard and St. Tammany. Otte has served as the coordinator for the Southeast Louisiana Clean Fuel Partnership since 2007. In addition, she manages the Brownfield

355

Optical properties of a solar-absorbing molten salt heat transfer fluid. [Eutectic mixture of KNO3, NaNO2, and NaNO3 with particle suspensions of cobalt oxides or copper oxides  

DOE Green Energy (OSTI)

The optical absorption properties of a high temperature molten salt heat transfer fluid were measured from 0.35 ..mu..m to 2.5 ..mu..m using both hemispherical transmission and reflection techniques. This fluid has application as a direct-absorbing working fluid in a high temperature central receiver solar energy facility. The absorption spectrum of the pure molten fluid--a eutectic mixture of KNO/sub 3/, NaNO/sub 2/, and NaNO/sub 3/, known as Hitec (Du Pont trade name)--displays a fundamental absorption edge near 410 nm, which was found to shift to longer wavelength linearly with temperature. Throughout the remainder of the visible spectrum, the fluid is transparent. To enhance its solar absorption, particulate metallic oxides of Co or Cu were introduced into the fluid. Absorption spectra of these oxide particle suspensions in the molten salt were determined as a function of dopant concentration ranging from 0 to 0.1 wt% metal nitrate added to the Hitec. These measurements were carried out at 200/sup 0/C under flow conditions to cause a homogeneous suspension of particles. Special transmission and reflection flow cells were designed and constructed to handle 200/sup 0/C fluids. The suspended particles cause an additional optical absorption throughout the visible spectrum which is characteristic of the particular metallic oxide and closely follows a Beer-Lambert concentration dependence. The solar averaged absorption in a fixed layer thickness was calculated for various concentrations of the fluid-oxide mixtures. The fluid without oxide particles absorbs approximately 8% of the solar spectrum per cm of path length. Addition of 0.1 wt% of Co(NO/sub 3/)/sub 2/.6H/sub 2/O increases this absorption to approximately 90% per cm. Of the oxides studied, Co/sub 3/O/sub 4/ particle suspensions offer better solar absorption characteristics than CuO. Effects of particulate scattering on the measurements are discussed.

Drotning, W.D.

1977-06-01T23:59:59.000Z

356

Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

2000-04-01T23:59:59.000Z

357

Prototype Tests for the Recovery and Conversion of UF6Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide (U{sub 3}O{sub 8})], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.

2000-06-07T23:59:59.000Z

358

JOURNAL DE PHYSIQUE Colloque C4, supplkment au no 4 , Tome 40, avril 1979, page C4-19 Band structures of NaCl structure uranium compounds  

E-Print Network (OSTI)

structures of NaCl structure uranium compounds R. Allen and M. S. S. Brooks Commission of the European Karlsruhe 1, F.R.G. R6sum6. -Des calculs de structure de bande ont BtC accomplis pour les monopnictures d'uranium been made for the uranium monopnictides and for the monochalcogenide US. The band structures were

Paris-Sud XI, Université de

359

Measurement of the Low Energy Nuclear Response in NaI(Tl) Crystals for Use in Dark Matter Direct Detection Experiments  

E-Print Network (OSTI)

The response of low energy nuclear recoil in NaI(Tl) is investigated in the following experiment. Such detectors have been used recently to search for evidence of dark matter in the form of weakly interacting massive particles (WIMPs). NaI(Tl) crystal response to nuclear recoil energy deposition is a key element in these searches. I discuss the cosmological and experimental motivations for these experiments, followed by an overview of the physics of direct detection and current relevant WIMP search experiments. With the experiment motivations covered, the details of NaI(Tl) detectors are reviewed. The specifics of our experiment are laid out including the neutron production, neutron beam calibration, shielding optimization, experimental design and setup. Then the crystal response calibration studies and Geant4 simulations are discussed followed by the final quenching factor values and uncertainties. This experiment measured quenching factors for sodium recoils in the energy range of (9 keV-40 keV) of 19%-27% QF. These results are similar to current published measurements. Interesting features of the QF measurements include an increase at low energies and a dip in the values at 30 keV, the iodine K-shell absorption edge. The goal of this experiment was to add valuable measurements of nuclear recoils at low energies that are relevant to low-mass WIMP experiments. Future plans will improve and expand on these measurements in order to better understand the response of NaI(Tl) at low energies.

Stiegler, Tyana Michele

2013-08-01T23:59:59.000Z

360

Simulation of the Bishop Steam Foam Pilot by T.W. Patzek and N.A. h4yhiil, Shell Development Co.  

E-Print Network (OSTI)

,.. SEW SPE 18786 Simulation of the Bishop Steam Foam Pilot by T.W. Patzek and N.A. h4yhiil, Shell a simple model of steam foam transport and apply it to the Shell Kern River Bishop pilot. The only an incremental 5.5 percent OOIP recovery due to steam foam and additional 3 percent OOIP due to infill wells

Patzek, Tadeusz W.

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Louisiana's 2nd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

2nd congressional district 2nd congressional district 2 Registered Energy Companies in Louisiana's 2nd congressional district 3 Energy Incentives for Louisiana's 2nd congressional district 4 Utility Companies in Louisiana's 2nd congressional district US Recovery Act Smart Grid Projects in Louisiana's 2nd congressional district Entergy New Orleans, Inc. Smart Grid Project Entergy Services, Inc. Smart Grid Project Registered Energy Companies in Louisiana's 2nd congressional district GT Energy Green Coast Enterprises New Orleans Preservation Research Center Sun Energy Group LLC Wayne Troyer & Associates Energy Incentives for Louisiana's 2nd congressional district Climate Action Plan (New Orleans) JOB1 Workforce Development and Business Support (New Orleans, Louisiana) Net Metering (New Orleans, Louisiana)

362

Louisiana Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Louisiana are supporting a broad range of clean energy projects, from energy efficiency and smart grid to solar and geothermal, advanced battery manufacturing and biofuels. Through these investments, Louisiana's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Louisiana to play an important role in the new energy economy of the future. Louisiana Recovery Act State Memo

363

Louisiana's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district 1st congressional district 2 Registered Energy Companies in Louisiana's 1st congressional district 3 Energy Incentives for Louisiana's 1st congressional district 4 Utility Companies in Louisiana's 1st congressional district US Recovery Act Smart Grid Projects in Louisiana's 1st congressional district Entergy New Orleans, Inc. Smart Grid Project Entergy Services, Inc. Smart Grid Project Registered Energy Companies in Louisiana's 1st congressional district GT Energy Green Coast Enterprises New Orleans Preservation Research Center Sun Energy Group LLC Wayne Troyer & Associates Energy Incentives for Louisiana's 1st congressional district Climate Action Plan (New Orleans) JOB1 Workforce Development and Business Support (New Orleans, Louisiana) Net Metering (New Orleans, Louisiana)

364

Alternative Fuels Data Center: Louisiana Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives Listed below are the summaries of all current Louisiana laws, incentives, regulations, funding opportunities, and other initiatives related to

365

Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Grants The list below contains summaries of all Louisiana laws and incentives

366

Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for NEVs The list below contains summaries of all Louisiana laws and incentives

367

Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Exemptions The list below contains summaries of all Louisiana laws and incentives

368

Alternative Fuels Data Center: Louisiana Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Other The list below contains summaries of all Louisiana laws and incentives

369

Alternative Fuels Data Center: Louisiana Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Other The list below contains summaries of all Louisiana laws and incentives

370

EXAMINING PREFERENCES FOR PREVENTION OF LOUISIANAS WETLAND LOSS.  

E-Print Network (OSTI)

?? This study analyzed preferences for wetland-loss prevention in coastal Louisiana. Data were obtained through a contingent-valuation mail survey of a random sample of Louisiana… (more)

Moore, Ross Gordon

2010-01-01T23:59:59.000Z

371

,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

3:31:46 PM" "Back to Contents","Data 1: Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSLAMMCF" "Date","Louisiana...

372

Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for EVs The list below contains summaries of all Louisiana laws and incentives

373

Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Biodiesel The list below contains summaries of all Louisiana laws and incentives

374

Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Ethanol The list below contains summaries of all Louisiana laws and incentives

375

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural ...  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels)

376

Louisiana - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Maps by energy source and topic, ... Wind › Geothermal › ... Indiana Iowa Kansas: Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota

377

LouisianaTechUniversity P.O.Box3155  

E-Print Network (OSTI)

LouisianaTechUniversity P.O.Box3155 RustonLA71272-0001 BOUndPRinTedmATTeRPResORTed U.s.POsTAgePAid RUsTOn,LOUisiAnA71270 PeRmiTnO.104 LouisianaTechuniversiTy2007-2008caTaLog Louisiana Tech universiTy 2007-2008 caTaLog #12;Directory Whom to Contact at Louisiana Tech for Information About: Admissions

Selmic, Sandra

378

Thermodynamic Model for SnO2(cr) and SnO2(am) Solubility in the Aqueous Na+-H+ -OH- -Cl- -H2O System  

SciTech Connect

The solubility of SnO2(cassiterite) was studied at 23 ? 2?C as functions of time (7 – 49 days) and pH value (0-14.5). Steady state concentrations were reached in < 7 days. The data were interpreted using the SIT model. The data shows that SnO2(cassiterite) is the stable phase at pH values of < ~11.7. These extensive data provided a log10 K0 value of -64.39 ± 0.30 for the reaction (SnO2(cassiterite) + 2H2O = Sn4+ + 4OH-) and values of 1.86 ± 0.30, ? -0.62, -9.20 ± 0.34, and -20.28 ± 0.34 for the reaction (Sn4+ + nH2O = Sn(OH)n4-n + nH+) with values of “n” equal to 1, 4, 5, and 6 respectively. These thermodynamic hydrolysis constants were used to reinterpret the extensive literature data for SnO2(am) solubility, which provided a log10 K0 value of -61.80 ± 0.29 for the reaction (SnO2(am) + 2H2O = Sn4+ + 4OH-). SnO2(cassiterite) is unstable under highly alkaline conditions (NaOH concentrations > 0.003 mol.dm-3) and transforms to a double salt of SnO2 and NaOH. Although additional well-focused studies will be required for confirmation, the experimental data in the highly alkaline region (0.003 to 3.5 mol.dm-3 NaOH) can be well described with log10 K0 of -5.29 ± 0.35 for the reaction (Na2Sn(OH)6(s) = Na2Sn(OH)6(aq)).

Rai, Dhanpat; Yui, Mikazu; Schaef, Herbert T.; Kitamura, Akira

2011-08-01T23:59:59.000Z

379

Rapid gasification of nascent char in steam atmosphere during the pyrolysis of Na- and Ca-ion-exchanged brown coals in a drop-tube reactor  

Science Conference Proceedings (OSTI)

Several recent studies on in situ steam gasification of coal suggest a possibility of extremely fast steam gasification of char from rapid pyrolysis of pulverized brown coal. The unprecedented rate of char steam gasification can be achieved by exposing nascent char, that is, after tar evolution (temperature range >600{sup o}C), but before devolatilization (coal samples, that is, H-form coal with Na/Ca contents coal with Na content = 2.8 wt % and Ca-form coal with Ca content = 3.2 wt %. These samples were pyrolyzed in an atmospheric drop-tube reactor at a temperature of 900{sup o}C, inlet steam concentration of 50 vol. %, and a particle residence times of 2.8 s. The char yields from the pyrolysis of Na-form and Ca-form coals were as low as 12 and 33% on the respective coal carbon bases, and accounted for only 18 and 53% of the char yields from the full devolatilization of the respective coals at 900{sup o}C. In addition, the pyrolysis also consumed as much as 0.7-1.1 mol of H{sub 2}O per mol of coal C. On the other hand, the nascent char from the H-form coal allowed carbon deposition from the nascent tar, resulting in a char yield as high as 115% of that from the full devolatilization. The chars from the Na-form and Ca-form coals also acted as catalysts for steam reforming of tar, which was evidenced by significant negative synergistic effects of blending of H-form coal with Na-form coal or Ca-form coal on the tar and soot yields. 57 refs., 6 figs.

Ondej Maek; Sou Hosokai; Koyo Norinaga; Chun-Zhu Li; Jun-ichiro Hayashi [Hokkaido University, Kita-ku (Japan). Center for Advanced Research of Energy Conversion Materials

2009-09-15T23:59:59.000Z

380

IDENTIFYING COMMUNITIES ASSOCIATED WITH THE FISHING INDUSTRY IN LOUISIANA  

E-Print Network (OSTI)

approximately 2,200 oil wells in the parish (Louisiana Mid-Continent Oil and Gas Association 2001). Over 19 twentieth century. By 2001, there were approximately 7,000 oil wells in St. Mary Parish (Louisiana Mid, the Berwick-Morgan City shrimp fleet was one of the largest in Louisiana. Oil production was also economically

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

IDENTIFYING COMMUNITIES ASSOCIATED WITH THE FISHING INDUSTRY IN LOUISIANA  

E-Print Network (OSTI)

.......................................................11 2.3 A Brief Cultural Geography of Coastal Louisiana of the offshore oil and gas industry to Louisiana, and the now lengthy history of economic and social interactionVolume I IDENTIFYING COMMUNITIES ASSOCIATED WITH THE FISHING INDUSTRY IN LOUISIANA - FINAL REPORT

382

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

541,055 2,443,946 2,550,349 2,546,415 2,466,292 2,574,401 541,055 2,443,946 2,550,349 2,546,415 2,466,292 2,574,401 1973-2013 Federal Offshore Gulf of Mexico 114,382 103,384 110,472 103,769 106,596 102,840 1997-2013 Alabama NA NA NA NA NA NA 1991-2013 Alaska 261,026 234,298 241,910 231,276 247,528 261,351 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1991-2013 Colorado NA NA NA NA NA NA 1991-2013 Florida NA NA NA NA NA NA 1991-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1991-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana 207,497 197,842 207,415 197,786 182,508 181,677 1991-2013 Maryland NA NA NA NA NA NA 1991-2013

383

Categorical Exclusion Determinations: Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 23, 2011 August 23, 2011 CX-006542: Categorical Exclusion Determination American Recovery and Reinvestment Act Energy Efficiency Conservation Block Grant - State of Louisiana Saint James Parish CX(s) Applied: B5.1 Date: 08/23/2011 Location(s): Saint James Parish, Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 8, 2011 CX-006606: Categorical Exclusion Determination Recoat RPX Spools at Bayou Choctaw CX(s) Applied: B1.3 Date: 08/08/2011 Location(s): Baton Rouge, Louisiana Office(s): Strategic Petroleum Reserve Field Office July 29, 2011 CX-006271: Categorical Exclusion Determination American Recovery and Reinvestment Act State Energy Program - Known Geothermal Resource Area at Linerboard and Newsprint Mill CX(s) Applied: B5.1 Date: 07/29/2011

384

Categorical Exclusion Determinations: Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 23, 2010 November 23, 2010 CX-004750: Categorical Exclusion Determination West Hackberry Site Building Upgrades, Phase II CX(s) Applied: B1.3 Date: 11/23/2010 Location(s): Louisiana Office(s): Strategic Petroleum Reserve Field Office November 23, 2010 CX-004719: Categorical Exclusion Determination Upgrade Communication/Control Systems to BC Brine Disposal Well (Government Furnished Equipment and Install) CX(s) Applied: B1.7 Date: 11/23/2010 Location(s): Louisiana Office(s): Strategic Petroleum Reserve Field Office November 16, 2010 CX-004441: Categorical Exclusion Determination Recovery Act - State Energy Program CX(s) Applied: B5.1 Date: 11/16/2010 Location(s): Louisiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 20, 2010 CX-004289: Categorical Exclusion Determination

385

Categorical Exclusion Determinations: Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 21, 2010 June 21, 2010 CX-002829: Categorical Exclusion Determination West Hackberry Brine Disposal Wells Control Systems Upgrade CX(s) Applied: B1.7 Date: 06/21/2010 Location(s): West Hackberry, Louisiana Office(s): Fossil Energy, Strategic Petroleum Reserve Field Office June 18, 2010 CX-002733: Categorical Exclusion Determination Computer Simulation and Experimental Study on Novel Chromium-Based High Temperature Alloys CX(s) Applied: B3.6 Date: 06/18/2010 Location(s): Baton Rouge, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory June 18, 2010 CX-002730: Categorical Exclusion Determination Computer Simulation and Experimental Validation on Novel Chromium-Based High Temperature Alloys CX(s) Applied: A9 Date: 06/18/2010 Location(s): Baton Rouge, Louisiana

386

Laboratory Test Report for Fujitsu 12RLS and Mitsubishi FE12NA Mini-Split Heat Pumps  

Science Conference Proceedings (OSTI)

Mini-split heat pumps are being proposed as a new retrofit option to replace resistance heating in the Pacific Northwest. NREL has previously developed a field test protocol for mini-split systems to ensure consistent results from field tests. This report focuses on the development of detailed system performance maps for mini-split heat pumps so that the potential benefits of mini-split systems can be accurately analyzed for different climate regions and housing types. This report presents laboratory test results for two mini-split heat pumps. Steady-state heating and cooling performance for the Fujitsu 12RLS and Mitsubishi FE12NA was tested under a wide range of outdoor and indoor temperatures at various compressor and fan speeds. Cycling performance for each unit was also tested under both modes of operation. Both systems performed quite well under low loads and the experimental test data aligned with manufacturer reported values. Adequate datasets were attained to promote performance modeling of these two systems in the future.

Winkler, J.

2011-09-01T23:59:59.000Z

387

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids  

Science Conference Proceedings (OSTI)

Chemical imaging analysis of internally mixed sea salt/organic particles collected on board the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy techniques. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and especially hydration-dehydration cycles of mixed sea salt/organic particles may result in formation of organic salts that will modify acidity, hygroscopic and optical properties of aged particles.

Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, P.; Shutthanandan, Janani I.

2012-08-03T23:59:59.000Z

388

Orleans Local Coastal Program (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orleans Local Coastal Program (Louisiana) Orleans Local Coastal Program (Louisiana) Orleans Local Coastal Program (Louisiana) < Back Eligibility Commercial Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Natural Resources The Local Coastal Programs Section provides technical assistance, guidance, and management to parishes in the development, approval, and implementation of local coastal programs (LCP). Once an LCP has received federal and state approval, the parish becomes the permitting authority for coastal uses of

389

Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Propane (LPG)

390

Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Natural Gas

391

Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Driving / Idling

392

Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for HEVs / PHEVs

393

Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Tax Incentives

394

REQUEST FOR PROPOSALS LOUISIANA TRANSPORTATION RESEARCH CENTER  

E-Print Network (OSTI)

1 REQUEST FOR PROPOSALS LOUISIANA TRANSPORTATION RESEARCH CENTER LTRC PROJECT NO. 14-3PF, SIO NO. 30001422 SOUTHEASTERN TRANSPORTATION CONSORTIUM SYNTHESES OF STATE-OF-PRACTICE Transportation Funding Sources and Alternatives in the Southeastern States Now and in the Future PROBLEM STATEMENT According

Harms, Kyle E.

395

The generation of HCl in the system NaCl-KCl-H{sub 2}O-quartz at 600{degrees}C: Implications regarding HCl in natural systems at lower temperatures  

SciTech Connect

In experiments at 600°C in the system NaCI-KCI-H2O, within the analytical uncertainty, stoichiometric quantities of Cl and total alkali metals (Na+K) appear to dissolve in steam coexisting with chloride-rich brine at high pressures in the absence of solid salt. In contrast, at lower pressures, where steam coexists with precipitated salts, significant excess chloride as associated hydrogen chloride (HCI°) dissolves in steam. The HCI° appears to be generated by the reaction of solid NaCl(s) (halite) with steam, producing solid NaOH(s) that diffuses into halite, forming a solid solution. Where HCI° is present highly associated NaOH° as well as associated NaCI° appear to dissolve in steam, and the solubility of each is increased as the mole fraction of NaOH(s) in halite increases. In our quasi-static experiments, compared to dynamic flow-through experiments of others, higher initial ratios of H2O/NaCI have resulted in higher mole fractions of NaOH(s) in solid solution in halite and, accordingly, higher solubilities of NaCI" and NaOH" dissolved in steam. Addition of quartz to the system NaCI-KCI-H2O results in the formation of sodium disilicate by reaction of silica with NaOH(s) and an order of magnitude increase in the concentration of HCl° dissolved in steam. In natural hydrothermal systems at lower temperatures where brine or brine plus steam are present in the absence of precipitated salt, the pH of the brine is controlled mainly by base exchange reactions involving a variety of silicates that fix Na+/H+ and K+/H+ activity ratios. Where feldspars are present pH values generally are near neutral. Where mica, but no feldspar is present pH values may become only moderately acid. High acidity in salt-absent brine systems occurs only where all feldspars and mica have been altered to other minerals (generally pyrophyllite/ kaolinite or alunite). The situation changes significantly when salt precipitates. Hydrolysis produces HCI° by the reaction of water with NaCl when halite is present. The NaOH(s) that is produced as a byproduct is likely to react with quartz plus various alumino-silicates, producing a variety of alteration products and allowing steam to become greatly enriched in HCl° compared to the composition of steam that is attained in the simple system NaCI-KCI-H2O with halite present. Also, when a natural high-temperature hydrothermal system changes from one in which the pore fluid is brine to one in which the pore fluid is dry steam there is a drastic change in Na+/H+ and K+/H+ activity ratios in the pore fluid because the hydrogen ions that were predominantly dissociated species in the brine become predominantly associated species in steam. The net result is the stabilization of alkali feldspars in contact with steam that may contain appreciable HCI° that is produced by the reaction of precipitated salt with the steam.

Fournier, Robert O.; Thompson, J. Michael

1993-01-28T23:59:59.000Z

396

Na-Batteries  

Science Conference Proceedings (OSTI)

Oct 19, 2011... friction using nanolubricants between moving parts 3) Transfer: Improved thermal management using nanofluids in heat transfer applications ...

397

Correlation of the Na/K ratio in geothermal well waters with the thermodynamic properties of low albite and potash feldspar  

DOE Green Energy (OSTI)

The Na/K ratio in geothermal well waters provides a better estimate of the relative stability of low albite and potash feldspar than do predictions from calorimetry and high temperature phase equilibria. The calculated saturation indices from field data for low albite, potash feldspar suggest that [Delta]G[sub f,298][sup o] for the latter should be revised to [minus]3748.6[plus minus]3.7 kJ.mol[sup [minus]1].

Apps, J.A.; Chang, G.M.

1992-03-01T23:59:59.000Z

398

JOURNAL DE PHYSIQUE Colloque C4, supplment au n 4, Tome 40, avril 1979, page C4-77 Shake-up satellites in the U4f E.S.C.A. spectra of NaCl-type uranium  

E-Print Network (OSTI)

-up satellites in the U4f E.S.C.A. spectra of NaCl-type uranium monocompounds: UN, UP, UAs and US E. Thibaut quatre composés d'uranium, tous de structure NaCl, sont décrits et discutés en vue d'une approche du caractère de la liaison chimique. Abstract. -- The U4f E.S.C.A. spectra of four NaCl-type uranium

Paris-Sud XI, Université de

399

Synthesis, characterization, and ion exchange properties of a sodium nonatitanate, Na4Ti9O20.xH2O  

E-Print Network (OSTI)

During the Cold War, the Hanford Weapons Site in Richland, Washington, produced weapons grade plutonium which first needed to be separated from the other products using the PUREX process (plutonium and uranium extraction). As a by product of this process, millions of cubic meters of highly acidic radioactive waste were produced which are now stored in million gallon tanks at the Hanford site. Over the years, some tanks have been known to leak and some are even in danger of exploding. Because of these problems, the waste needs to be removed from these tanks and given permanent, safe storage. The purpose of this research is to produce a more efficient ion exchanger to separate the highly radioactive isotopes (9oSr, 137 Cs and transuranics) from the large quantities of inert salts. The smaller volume of high level waste produced can then be vitrified in glass and stored, while the low level waste can be poured into less expensive cement and glass. In this work, different parameters of the synthesis of the sodium nonatitanate ion exchanger, Na4Ti9O2OoxH20, such as the Na and Ti reactants, the heating time, oven temperature, Na:Ti mole ratio, and heating method, were altered and their effects on Sr2' ion exchange selectivity were examined. For example, the heating time was varied from I day to 2, 3, 7, and 30 days. Although the crystallinity remained the same from the I day to the 2 day sample, as the heating time further increased, the crystallinity improved. The most Sr selective material was the 2 day sample with a Kd (distribution coefficient) of 1.22x 106 MI/g in O.lM Na/ O.OOIM Sr solution. The Kd's steadily decreased as the sample crystallinity increased with a maximum Kd of only 1.6OxlO5 in O.OIM Na/ O.OO I M Sr solution after a heating time of 30 days. However, in a simulated waste such as NCAW, the 2 day sample gave a Kd of only 1.44x 105 MI/g, while the I day sample gave a value of 2.50x 105 . This indicates that the nonatitanate synthesis needs to be uniquely designed to optimize Sr 2+ removal in each specific type of waste to be remediated.

Graziano, Gina Marie

1998-01-01T23:59:59.000Z

400

Neutron and X-ray diffraction studies on the high temperature phase of Mn{sub 3}(VO{sub 4}){sub 2}, the new isostructural compound NaMn{sub 4}(VO{sub 4}){sub 3} and their mixed crystals Na{sub x}Mn{sub 4.5-x/2}(VO{sub 4}){sub 3} (0{<=}x{<=}1)  

SciTech Connect

This paper presents a detailed structure analysis (combined Rietveld analysis of X-ray and neutron powder diffraction data as well as quantum mechanical calculations) of the high temperature phase of Mn{sub 3}(VO{sub 4}){sub 2} (space group I4 Macron 2d). Special attention is directed to the analysis of the local coordination around Mn{sup 2+} ions or vacancies within a stella quadrangula configuration of anions. Furthermore, the new compound NaMn{sub 4}(VO{sub 4}){sub 3} is described as well as a range of mixed crystals between NaMn{sub 4}(VO{sub 4}){sub 3} and Mn{sub 3}(VO{sub 4}){sub 2} (described by the formula Na{sub x}Mn{sub 4.5-x/2}(VO{sub 4}){sub 3}, 0{<=}x{<=}1) which were synthesized by a solid state route. All compounds were shown to be isostructural to the high temperature phase Mn{sub 3}(VO{sub 4}){sub 2}. - Graphical abstract: The crystal structure of the new compound NaMn{sub 4}(VO{sub 4}){sub 3}. Highlights: Black-Right-Pointing-Pointer We present neutron and X-ray diffraction studies on high temperature-Mn{sub 3}(VO{sub 4}){sub 2}. Black-Right-Pointing-Pointer Structural details of partly filled stellae quadrangulae positions are discussed. Black-Right-Pointing-Pointer Refined structural parameters and theoretical calculations are compared. Black-Right-Pointing-Pointer We investigate the mixed crystal system Mn{sub 3}(VO{sub 4}){sub 2}-NaMn{sub 4}(VO{sub 4}){sub 3}.

Clemens, Oliver [Universitaet des Saarlandes, Institut fuer Anorganische und Analytische Chemie und Radiochemie, Am Markt, Zeile 5, 66125 Saarbruecken (Germany)] [Universitaet des Saarlandes, Institut fuer Anorganische und Analytische Chemie und Radiochemie, Am Markt, Zeile 5, 66125 Saarbruecken (Germany); Haberkorn, Robert [Universitaet des Saarlandes, Anorganische Festkoerperchemie, Am Markt, Zeile 3, 66125 Saarbruecken (Germany)] [Universitaet des Saarlandes, Anorganische Festkoerperchemie, Am Markt, Zeile 3, 66125 Saarbruecken (Germany); Springborg, Michael [Universitaet des Saarlandes, Physikalische und Theoretische Chemie, Campus B2 2, 66123 Saarbruecken (Germany)] [Universitaet des Saarlandes, Physikalische und Theoretische Chemie, Campus B2 2, 66123 Saarbruecken (Germany); Beck, Horst Philipp, E-mail: hp.beck@mx.uni-saarland.de [Universitaet des Saarlandes, Institut fuer Anorganische und Analytische Chemie und Radiochemie, Am Markt, Zeile 5, 66125 Saarbruecken (Germany)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

402

Alternative Fuels Data Center: Louisiana Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal State Advanced Search

403

Louisiana's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Louisiana's 3rd congressional district: Energy Resources Louisiana's 3rd congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Louisiana. Registered Energy Companies in Louisiana's 3rd congressional district Wind Energy Systems Technologies LLC WEST Energy Generation Facilities in Louisiana's 3rd congressional district Jeanerette Biomass Facility Retrieved from "http://en.openei.org/w/index.php?title=Louisiana%27s_3rd_congressional_district&oldid=192539" Categories: Places Stubs Congressional Districts What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

404

Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

405

Alternative Fuels Data Center: Louisiana Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search

406

Alternative Fuels Data Center: Louisiana Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search

407

Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

408

Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Climate Change / Energy Initiatives on

409

Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

410

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Production / Quality to someone by E-mail Fuel Production / Quality to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Production / Quality on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Production / Quality on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Production / Quality on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Production / Quality on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Production / Quality on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Production / Quality on AddThis.com... More in this section... Federal State

411

Alternative Fuels Data Center: Louisiana Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

412

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

413

Alternative Fuels Data Center: Louisiana Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

414

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search

415

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State

416

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fueling / TSE Infrastructure Owner on

417

"Item","Full Service Providers",,,,,"Other Providers",,"Total"  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Number of Entities",5,21,"NA",13,"NA","NA","NA",39 "Number of Retail Customers",1670178,166576,"NA",428748,"NA","NA","NA",2265502 "Retail Sales (thousand megawatthours)",70785,4818,"NA",9477,"NA","NA","NA",85080 "Percentage of Retail Sales",83.2,5.66,"NA",11.14,"NA","NA","NA",100 "Revenue from Retail Sales (million dollars)",5516,371,"NA",753,"NA","NA","NA",6640 "Percentage of Revenue",83.07,5.59,"NA",11.34,"NA","NA","NA",100 "Average Retail Price (cents/kWh)",7.79,7.7,"NA",7.95,"NA","NA","NA",7.8

418

Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas  

DOE Green Energy (OSTI)

This document covers the activities of monitoring environmental aspects at designated geothermal wells in Texas and Louisiana during the second quarter of 1990 by the Louisiana Geological Survey, Louisiana State University under contract with US DOE. 1 fig. (FSD)

Not Available

1990-01-01T23:59:59.000Z

419

Zachary, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Zachary, Louisiana: Energy Resources Zachary, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.6485191°, -91.1564961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.6485191,"lon":-91.1564961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Louisiana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Waggaman, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waggaman, Louisiana: Energy Resources Waggaman, Louisiana: Energy Resources (Redirected from Waggaman, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.9185388°, -90.2109093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9185388,"lon":-90.2109093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Iota, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Iota, Louisiana: Energy Resources Iota, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3313143°, -92.4956909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3313143,"lon":-92.4956909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Louisiana Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Alaska Federal Offshore Gulf of Mexico Louisiana New Mexico Oklahoma Texas Wyoming Other States Total Alabama Arizona Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Maryland Michigan Mississippi Missouri Montana Nebraska Nevada New York North Dakota Ohio Oregon Pennsylvania South Dakota Tennessee Utah Virginia West Virginia Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 203,544 207,497 197,842 207,415 197,786 181,231 1991-2013 From Gas Wells

424

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 588,711 615,858 651,968 670,880 690,295 699,646 1988-2012

425

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

426

Basile, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Basile, Louisiana: Energy Resources Basile, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4852012°, -92.5959723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.4852012,"lon":-92.5959723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Simmesport, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Simmesport, Louisiana: Energy Resources Simmesport, Louisiana: Energy Resources (Redirected from Simmesport, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.983516°, -91.8001194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.983516,"lon":-91.8001194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Lydia, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lydia, Louisiana: Energy Resources Lydia, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.924494°, -91.782375° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.924494,"lon":-91.782375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Metairie, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Metairie, Louisiana: Energy Resources Metairie, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.9840922°, -90.1528519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9840922,"lon":-90.1528519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Louisiana Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 481,448 506,368 537,381 569,532 588,760 616,097 1990-2013

431

Duson, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Duson, Louisiana: Energy Resources Duson, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.2357577°, -92.1854035° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2357577,"lon":-92.1854035,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Avondale, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana: Energy Resources Louisiana: Energy Resources (Redirected from Avondale, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.9129834°, -90.2036868° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9129834,"lon":-90.2036868,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Crowley, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Crowley, Louisiana: Energy Resources Crowley, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.2140928°, -92.3745761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2140928,"lon":-92.3745761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Waterproof, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waterproof, Louisiana: Energy Resources Waterproof, Louisiana: Energy Resources (Redirected from Waterproof, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8048847°, -91.383449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8048847,"lon":-91.383449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Estherwood, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Estherwood, Louisiana: Energy Resources Estherwood, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.1807606°, -92.4643012° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1807606,"lon":-92.4643012,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

437

Brownfields, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brownfields, Louisiana: Energy Resources Brownfields, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5465772°, -91.1206617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5465772,"lon":-91.1206617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Monticello, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana: Energy Resources Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5965262°, -91.394004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5965262,"lon":-91.394004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Addis, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Addis, Louisiana: Energy Resources Addis, Louisiana: Energy Resources (Redirected from Addis, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3538043°, -91.2653865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3538043,"lon":-91.2653865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Killona, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Killona, Louisiana: Energy Resources Killona, Louisiana: Energy Resources (Redirected from Killona, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.0060367°, -90.482862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0060367,"lon":-90.482862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gardere, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gardere, Louisiana: Energy Resources Gardere, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3457487°, -91.1401055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3457487,"lon":-91.1401055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Edgard, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edgard, Louisiana: Energy Resources Edgard, Louisiana: Energy Resources (Redirected from Edgard, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.0432578°, -90.5600869° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0432578,"lon":-90.5600869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Morse, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Morse, Louisiana: Energy Resources Morse, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.1218726°, -92.4981911° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1218726,"lon":-92.4981911,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Eunice, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eunice, Louisiana: Energy Resources Eunice, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4943669°, -92.4176324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.4943669,"lon":-92.4176324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Ama, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ama, Louisiana: Energy Resources Ama, Louisiana: Energy Resources (Redirected from Ama, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.9521491°, -90.2964674° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9521491,"lon":-90.2964674,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Maurice, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maurice, Louisiana: Energy Resources Maurice, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.1085368°, -92.1245688° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1085368,"lon":-92.1245688,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Jeanerette, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jeanerette, Louisiana: Energy Resources Jeanerette, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.9110378°, -91.6634483° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9110378,"lon":-91.6634483,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Louisiana Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Natural Gas in Storage 506,368 537,381 569,532 588,760 616,097 641,658 1990-2013

449

Mermentau, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mermentau, Louisiana: Energy Resources Mermentau, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.1899281°, -92.5826383° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1899281,"lon":-92.5826383,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Morganza, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Morganza, Louisiana: Energy Resources Morganza, Louisiana: Energy Resources (Redirected from Morganza, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.738518°, -91.5942819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.738518,"lon":-91.5942819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Merrydale, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Merrydale, Louisiana: Energy Resources Merrydale, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5013004°, -91.1084389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5013004,"lon":-91.1084389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Inniswold, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Inniswold, Louisiana: Energy Resources Inniswold, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4049139°, -91.0834377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.4049139,"lon":-91.0834377,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Baker, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Baker, Louisiana: Energy Resources Baker, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.6485191°, -91.1564961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.6485191,"lon":-91.1564961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Delcambre, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delcambre, Louisiana: Energy Resources Delcambre, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.948261°, -91.9887327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.948261,"lon":-91.9887327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

SV_Jurij.qxd 19/07/2002 08:59 Page 1 Podru`ni~na cerkev v Tacnu je posve~ena sv. Juriju, mu~encu.  

E-Print Network (OSTI)

tronu je cerkveni zavetnik sv. Jurij, rimski vojak, ki s sulico prebada zmaja. Slike za zapiranje trona ni. Ob stenah trona so stirje evangelisti: desno ob njem sv. Marko, na obhodnem loku sv. Matej, levo

Silc, Jurij

456

Big storage facilities eyed in Texas, Louisiana  

SciTech Connect

Two large oil natural gas storage facilities are planned in U.S. Gulf Coast states. This paper reports that two Houston companies propose to construct a storage facility in Louisiana with more than 50 bcf of working gas capacity. And units of ARCO and Plains Resources have signed a letter of intent expected to lead to construction of a 600,000 bbl crude oil storage facility on the Houston ship channel.

Not Available

1992-03-09T23:59:59.000Z

457

Regional and local subsidence in Louisiana  

DOE Green Energy (OSTI)

The measurement of local, man-induced subsidence is especially critical in areas with high rates of land loss. To measure this subsidence, absolute historical geodetic movements have been estimated by adjusting all movements along the first-order vertical control network from northeast to southwest Louisiana as related to the Monroe uplift. The adjustment will serve as a base line by which local subsidence or uplift can be measured. A generalized trend of increasing subsidence to the south in Louisiana probably reflects increasing sediment thickness and weight toward the axis of the Gulf Coast basin. Anomalous values as low as -17.6 mm/y (-0.7 in./y) occur in areas overlying Pleistocene and Holocene fluvial elements. Positive movement as high as +4.1 mm/y (+0.2 in./y), has been found to be associated with the Iberian structural axis in south-central Louisiana. Land subsidence due to natural causes may far outweigh subsidence resulting from fluid withdrawal or depressurization of geopressured aquifers. The effects of regional and local natural processes should not be underestimated in any systematic approach to measuring subsidence.

Trahan, D.B.

1984-01-01T23:59:59.000Z

458

EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Lake Charles Liquefaction Project, Calcasieu Parish, 91: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2013 EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana September 25, 2012

459

,"Louisiana--State Offshore Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2011 ,"Release Date:","10...

460

Louisiana - Compare - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

Note: This page contains sample records for the topic "louisiana na na" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

462

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

463

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

464

,"Louisiana--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

465

,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

466

,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

467

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

468

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

469

,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

470

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

471

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million...

472

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

473

,"Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

474

Louisiana - North Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

475

Louisiana Crude Oil + Lease Condensate Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

476

Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

477

Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

478

Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Condensate, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

479

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

480

Louisiana--North Natural Gas Liquids Lease Condensate, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...