National Library of Energy BETA

Sample records for louisiana ashrae 169-2006

  1. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  2. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  3. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  4. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  5. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  6. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  7. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Atkinson County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atkinson County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  8. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

  9. Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  10. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  11. Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Berkeley County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  12. Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone ...

    Open Energy Info (EERE)

    Berkeley County, West Virginia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Berkeley County, West Virginia ASHRAE Standard ASHRAE 169-2006...

  13. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate...

  14. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  15. Anderson County, South Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Anderson County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, South Carolina ASHRAE Standard ASHRAE 169-2006...

  16. Alameda County, California ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County, California ASHRAE Standard ASHRAE 169-2006 Climate...

  17. Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Bernalillo County, New Mexico ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bernalillo County, New Mexico ASHRAE Standard ASHRAE 169-2006...

  18. Androscoggin County, Maine ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit History Androscoggin County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place...

  19. Baltimore County, Maryland ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search County...

  20. Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Baltimore City County, Maryland ASHRAE 169-2006 Climate Zone Jump to: navigation, search...

  1. Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone |...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Belknap County, New Hampshire ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone...

  2. Adams County, Wisconsin ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  3. Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  4. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baxter County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  5. Anderson County, Kansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Anderson County, Kansas ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kansas ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  6. Bacon County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Bacon County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bacon County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  7. Anson County, North Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anson County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anson County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  8. Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  9. Baca County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Baca County, Colorado ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baca County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  10. Bates County, Missouri ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Bates County, Missouri ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Bates County, Missouri ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  11. Aiken County, South Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Aiken County, South Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Aiken County, South Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  12. Barrow County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Barrow County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barrow County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  13. Apache County, Arizona ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Apache County, Arizona ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Apache County, Arizona ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  14. Adams County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Indiana ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Indiana ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  15. Adams County, Idaho ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Idaho ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Idaho ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  16. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

  17. Adams County, Illinois ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Illinois ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Illinois ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  18. Adams County, Nebraska ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Nebraska ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Nebraska ASHRAE Standard ASHRAE 169-2006 Climate Zone Number...

  19. Adams County, Ohio ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Adams County, Ohio ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Ohio ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

  20. Anderson County, Texas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Texas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone Number...

  1. Ben Hill County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Ben Hill County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ben Hill County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  2. Aroostook County, Maine ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Aroostook County, Maine ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place...

  3. Adams County, Iowa ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Adams County, Iowa ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate...

  4. Property:ASHRAE 169 Standard | Open Energy Information

    Open Energy Info (EERE)

    169-2006 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + ASHRAE 169-2006 + Adams County, Idaho...

  5. ASHRAE 169-2006 | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Standard for Weather Data for Building Design Standards created by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc....

  6. Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information

    Open Energy Info (EERE)

    A + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adams County,...

  7. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  8. Louisiana

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana

  9. Category:ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The...

  10. About ASHRAE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers Over 53,000 members ASHRAE "seeks to advance human well-being through sustainable ...

  11. Louisiana - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  12. Louisiana - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  13. Louisiana - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  14. ASHRAE Building EQ

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.

    2009-12-01

    This ASHRAE Journal article provides an overview of the evolution of ASHRAE Standard 90.1 from its inception in 1975 to the current year. Key milestones in the life of the standard are highlighted and the article presents a closer look at recent versions of the standard.

  15. ASHRAE Standard 152 Spreadsheet

    Broader source: Energy.gov [DOE]

    ASHRAE Standard 152 quantifies the delivery efficiency of duct systems, based on factors including location, leakage, and insulation of ductwork. This spreadsheet tool developed by Lawrence Berkeley National Laboratory (LBNL) and modified by the National Renewable Energy Laboratory, assists with the calculation of seasonal distribution system efficiency, This calculation is required by the House Simulation Protocols when the simulation tool being used does not permit detailed duct modeling.

  16. Terrebonne Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Terrebonne Parish, Louisiana Bayou Cane, Louisiana Chauvin, Louisiana Dulac, Louisiana Gray, Louisiana Houma, Louisiana Montegut, Louisiana Schriever, Louisiana Retrieved from...

  17. Livingston Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana French Settlement, Louisiana Killian, Louisiana Livingston, Louisiana Port Vincent, Louisiana Springfield, Louisiana Walker, Louisiana Retrieved from "http:...

  18. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much...

  19. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and...

    Energy Savers [EERE]

    ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American ...

  20. NREL Engineer Named ASHRAE Vice President - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Named ASHRAE Vice President August 10, 2010 Sheila J. Hayter, a senior research ... the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). ...

  1. ASHRAE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of all natural gas consumption nationwide. Because buildings consume more electricity and natural gas than any ... By communicating with end- users in real-time, the future grid ...

  2. Jefferson Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Estelle, Louisiana Grand Isle, Louisiana Gretna, Louisiana Harahan, Louisiana Harvey, Louisiana Jean Lafitte, Louisiana Jefferson, Louisiana Kenner, Louisiana Lafitte,...

  3. Lafourche Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Galliano, Louisiana Golden Meadow, Louisiana Larose, Louisiana Lockport, Louisiana Mathews, Louisiana Raceland, Louisiana Thibodaux, Louisiana Retrieved from "http:...

  4. St. Landry Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Leonville, Louisiana Melville, Louisiana Opelousas, Louisiana Palmetto, Louisiana Port Barre, Louisiana Sunset, Louisiana Washington, Louisiana Retrieved from "http:...

  5. ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges ASHRAE draft regarding Smart Grid RFI: Addressing Policy and Logistical Challenges The American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc. (ASHRAE), founded in 1894, is an international organization of over 50,000 members. ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning and refrigeration to serve humanity and promote a

  6. A HISTORY OF ASHRAE STANDARDS 152P.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2003-10-31

    The American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) has been developing a standard test method for evaluating the efficiency of ducts and other types of thermal distribution systems in single-family residential buildings. This report presents an overview of the structure, function, and historical development of this test method.

  7. Evangeline Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Basile, Louisiana Chataignier, Louisiana Mamou, Louisiana Pine Prairie, Louisiana Turkey Creek, Louisiana Ville Platte, Louisiana Retrieved from "http:en.openei.orgw...

  8. Union Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Farmerville, Louisiana Junction City, Louisiana Lillie, Louisiana Marion, Louisiana Spearsville, Louisiana Retrieved from "http:en.openei.orgw...

  9. De Soto Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Longstreet, Louisiana Mansfield, Louisiana South Mansfield, Louisiana Stanley, Louisiana Stonewall, Louisiana Retrieved from "http:en.openei.orgw...

  10. Caddo Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Panhandle Energies LLC Places in Caddo Parish, Louisiana Belcher, Louisiana Blanchard, Louisiana Gilliam, Louisiana Greenwood, Louisiana Hosston, Louisiana Ida, Louisiana...

  11. Acadia Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Acadia Parish, Louisiana Basile, Louisiana Church Point, Louisiana Crowley, Louisiana Duson, Louisiana Estherwood, Louisiana Eunice, Louisiana Iota, Louisiana...

  12. Building America Top Innovations 2014 Profile: ASHRAE Standard...

    Energy Savers [EERE]

    consumption. BUILDING AMERICA TOP INNOVATIONS 2014 PROFILE Building America research and support were instrumental in developing and gaining adoption of ASHRAE 62.2, a residential ...

  13. Passive-Solar-Heating Analysis: a new ASHRAE manual

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    The forthcoming ASHRAE book, Passive Solar Heating Analysis, is described. ASHRAE approval procedures are discussed. An overview of the contents is given. The development of the solar load ratio correlations is described, and the applicability of the analysis method is discussed.

  14. Assumption Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Assumption Parish, Louisiana Belle Rose, Louisiana Labadieville, Louisiana Napoleonville, Louisiana Paincourtville, Louisiana...

  15. Plaquemines Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana Boothville-Venice, Louisiana Buras-Triumph, Louisiana Empire, Louisiana Port Sulphur, Louisiana Retrieved from "http:en.openei.orgwindex.php?titlePlaqueminesP...

  16. St. Mary Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in St. Mary Parish, Louisiana Amelia, Louisiana Baldwin, Louisiana Bayou Vista, Louisiana Berwick, Louisiana Charenton, Louisiana Franklin, Louisiana Morgan City,...

  17. St. Charles Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana Montz, Louisiana New Sarpy, Louisiana Norco, Louisiana Paradis, Louisiana St. Rose, Louisiana Taft, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleSt.C...

  18. Rapides Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Cleco Power LLC Places in Rapides Parish, Louisiana Alexandria, Louisiana Ball, Louisiana Boyce, Louisiana Cheneyville, Louisiana Deville, Louisiana Forest Hill,...

  19. Property:ASHRAE 169 Start Date | Open Energy Information

    Open Energy Info (EERE)

    Start Date Jump to: navigation, search This is a property of type Date. Pages using the property "ASHRAE 169 Start Date" Showing 25 pages using this property. (previous 25) (next...

  20. Property:ASHRAE 169 End Date | Open Energy Information

    Open Energy Info (EERE)

    End Date Jump to: navigation, search This is a property of type Date. Retrieved from "http:en.openei.orgwindex.php?titleProperty:ASHRAE169EndDate&oldid21585...

  1. Iberville Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Tete, Louisiana Maringouin, Louisiana Plaquemine, Louisiana Rosedale, Louisiana St. Gabriel, Louisiana White Castle, Louisiana Retrieved from "http:en.openei.orgw...

  2. East Feliciana Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in East Feliciana Parish, Louisiana Clinton, Louisiana Jackson, Louisiana Norwood, Louisiana Slaughter, Louisiana Wilson, Louisiana Retrieved from...

  3. Bossier Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bossier City, Louisiana Eastwood, Louisiana Haughton, Louisiana Plain Dealing, Louisiana Red Chute, Louisiana Shreveport, Louisiana Retrieved from "http:en.openei.orgw...

  4. St. Martin Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Broussard, Louisiana Cecilia, Louisiana Henderson, Louisiana Morgan City, Louisiana Parks, Louisiana St. Martinville, Louisiana Retrieved from "http:en.openei.orgw...

  5. Allen Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Allen Parish, Louisiana Elizabeth, Louisiana Kinder, Louisiana Oakdale, Louisiana Oberlin, Louisiana Reeves, Louisiana...

  6. Sabine Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Places in Sabine Parish, Louisiana Converse, Louisiana Fisher, Louisiana Florien, Louisiana Many, Louisiana Noble, Louisiana Pleasant Hill,...

  7. National Cost-effectiveness of ANSI/ASHRAE/IES Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Athalye, Rahul A.; Halverson, Mark A.; Loper, Susan A.; Rosenberg, Michael I.; Xie, YuLong; Richman, Eric E.

    2015-01-29

    The purpose of this analysis is to examine the cost-effectiveness of the 2013 edition of ANSI/ASHRAE/IES1 Standard 90.1 (ANSI/ASHRAE/IES 2013).

  8. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State...

    Office of Scientific and Technical Information (OSTI)

    Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of North Carolina Citation Details In-Document Search Title: Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the ...

  9. Louisiana Offshore Natural Gas Processed in Louisiana (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  10. Madison Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Madison Parish, Louisiana Delta, Louisiana Mound, Louisiana Richmond, Louisiana Tallulah, Louisiana Retrieved from "http:en.openei.orgw...

  11. Webster Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Webster Parish, Louisiana Cotton Valley, Louisiana Cullen, Louisiana Dixie Inn, Louisiana Doyline, Louisiana Dubberly,...

  12. St. Tammany Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Madisonville, Louisiana Mandeville, Louisiana Pearl River, Louisiana Slidell, Louisiana Sun, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleSt.TammanyParish,L...

  13. Vernon Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hornbeck, Louisiana Leesville, Louisiana New Llano, Louisiana Rosepine, Louisiana Simpson, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleVernonParish,Loui...

  14. South Louisiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  15. Lafayette, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Lafayette, Louisiana Lafayette Consolidated Government, LA Smart Grid Project Utility Companies in Lafayette, Louisiana City of Lafayette, Louisiana...

  16. Louisiana/Incentives | Open Energy Information

    Open Energy Info (EERE)

    (Louisiana) Sales Tax Incentive No DEMCO - Touchstone Energy Home Program (Louisiana) Utility Rebate Program Yes Energy Fund (Louisiana) State Bond Program No Entergy New...

  17. Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2006-01-01

    Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2001a, 2004). A summary of the method is included in the 2005 ASHRAE Handbook--Fundamentals (ASHRAE 2005). This paper describes the ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to ASHRAE Standard 140 and related research recommendations.

  18. ANSI/ASHRAE/IESNA Standard 90.1-2007 Preliminary Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2010-05-25

    A preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

  19. Trends in Data Center Design - ASHRAE Leads the Way to Large Energy Savings (Presentation)

    SciTech Connect (OSTI)

    Van Geet, O.

    2013-06-01

    Energy savings strategies for data centers are described, including best practices, ASHRAE standards, and examples of successful strategies for incorporating energy savings.

  20. Louisiana: Louisiana's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Louisiana.

  1. Warren County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Warren County, Missouri Foristell, Missouri Innsbrook, Missouri Marthasville, Missouri...

  2. Murray County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Murray County, Minnesota Avoca, Minnesota Chandler, Minnesota Currie, Minnesota Dovray, Minnesota...

  3. Boone County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Registered Energy Companies in Boone County, Missouri AFuels Technologies LLC Renewable Alternatives...

  4. Bristol Bay Borough, Alaska: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    as an ASHRAE 169-2006 Climate Zone Number 7. Places in Bristol Bay Borough, Alaska King Salmon, Alaska Naknek, Alaska South Naknek, Alaska Retrieved from "http:...

  5. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100

    SciTech Connect (OSTI)

    Sharp, Terry R

    2014-06-01

    The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.

  6. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Rosenberg, Michael I.

    2010-11-01

    The United States (U.S.) Department of Energy (DOE) conducted a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The preliminary analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s preliminary determination. However, out of the 109 addenda, 34 were preliminarily determined to have measureable and quantifiable impact.

  7. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Wang, Weimin; Zhang, Jian; Mendon, Vrushali V.; Athalye, Rahul A.; Xie, YuLong; Hart, Reid; Goel, Supriya

    2014-03-01

    This report provides a preliminary quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IES Standard 90.1-2010.

  8. Ascension Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    2 Climate Zone Subtype A. Places in Ascension Parish, Louisiana Donaldsonville, Louisiana Gonzales, Louisiana Sorrento, Louisiana Retrieved from "http:en.openei.orgw...

  9. West Baton Rouge Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in West Baton Rouge Parish, Louisiana Addis, Louisiana Brusly, Louisiana Port Allen, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleWestBatonRoug...

  10. Analysis of Daylighting Requirements within ASHRAE Standard 90.1

    SciTech Connect (OSTI)

    Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

    2013-08-01

    Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

  11. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings- Building America Top Innovation

    Office of Energy Efficiency and Renewable Energy (EERE)

    This 2014 Top Innovation describes Building America research and support in developing and gaining adoption of ASHRAE 62.2.

  12. Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2006-07-01

    Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140 (ANSI/ASHRAE 2001, 2004), Method of Test for the Evaluation of Building Energy Analysis Computer Programs. A summary of the method is included in the ASHRAE Handbook of Fundamentals (ASHRAE 2005). This paper describes the ANSI/ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to Standard 140 and related research recommendations.

  13. Louisiana Onshore Natural Gas Processed in Louisiana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 938,635 822,216 818,942 724,016 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Louisiana Onshore-Louisiana

  14. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  15. DEVELOPMENT OF A REFRIGERANT DISTRIBUTION SECTION FOR ASHRAE STANDARD 152.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    2001-09-07

    In a recent draft report titled ''Impacts of Refrigerant Line Length on System Efficiency in Residential Heating and Cooling Systems Using Refrigerant Distribution,'' (Andrews 2000) some baseline calculations were performed to estimate various impacts on system efficiency of long refrigerant distribution lines. Refrigerant distribution refers to ''mini-splits'' and other types of space beating and cooling equipment that utilize refrigerant lines, rather than ducts or pipes, to transport heat and cooling effect from the outdoor unit to the building spaces where this heat or cooling is used. Five factors affecting efficiency were studied in each of the space conditioning modes (heating and cooling) for a total of ten factors in all. Temperature changes and pressure drops in each of the two refrigerant lines accounted for four of the factors, with the remaining one being elevation of the indoor unit relative to the outdoor unit. Of these factors, pressure drops in the suction line in cooling showed by far the largest effect. This report builds on these baseline calculations to develop a possible algorithm for a refrigerant distribution section of ASHRAE Standard 152. It is based on the approximate treatment of the previous report, and is therefore subject to error that might be corrected using a more detailed analysis, possibly including computer modeling and field testing. However, because the calculated efficiency impacts are generally small (a few percent being typical) it may be that the approximate treatment is sufficient. That question is left open for discussion. The purpose of this report is not to advocate the adoption of the methodology developed, but rather to present it as an option that could either be adopted as-is or used as a starting point for further analysis. It is assumed that the reader has available and is familiar with ASHRAE Standard 152P and with the previous analysis referred to above.

  16. 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE/IES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard 90.1-2013; Preliminary Determination | Department of Energy 5-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE/IES Standard 90.1-2013; Preliminary Determination 2014-05-08 Issuance: Energy Efficiency Improvements in ANSI/ASHRAE/IES Standard 90.1-2013; Preliminary Determination This document is a pre-publication Federal Register notice of preliminary determination regarding energy savings for ANSI/ASHRAE/IES 90.1-2013, as issued by the Deputy Assistant Secretary for Energy

  17. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-06-18

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  18. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-11-30

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  19. Louisiana Offshore-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,100 3,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL

  20. Louisiana Onshore-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 32,212 33,735 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  1. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of South Carolina

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of South Carolina.

  2. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  3. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

  4. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Massachusetts

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Massachusetts.

  5. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Arkansas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-26

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Arkansas.

  6. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Colorado

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Colorado.

  7. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Iowa

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Iowa.

  8. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New Jersey

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New Jersey.

  9. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Texas

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Texas.

  10. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

  12. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of North Carolina

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of North Carolina.

  13. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New York

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New York.

  14. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Rhode Island

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Rhode Island.

  15. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

  16. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Virginia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Virginia.

  17. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Wisconsin

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Wisconsin.

  18. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

  19. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Georgia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Georgia.

  20. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Broader source: Energy.gov (indexed) [DOE]

    a 50% reduction in building energy consumption. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings (890.97 KB) More Documents & ...

  1. Cost Effectiveness of ASHRAE Standard 90.1-2010 for the State of Connecticut

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in teh State of Connecticut.

  2. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the District of Columbia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the District of Columbia.

  3. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Nebraska

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-12-13

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Nebraska.

  4. End-Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Xie, YuLong

    2015-02-05

    This report and an accompanying spreadsheet (PNNL 2014a) compile the end use building simulation results for prototype buildings throughout the United States. The results represent he energy use of each edition of ASHRAE Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004, 2007, 2010, 2013). PNNL examined the simulation results to determine how the remaining energy was used.

  5. Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York

    SciTech Connect (OSTI)

    Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

    2007-08-03

    The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOE’s Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

  6. Louisiana STEP Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 475,615 415,395 446,189 427,529 421,558 394,184 392,974 396,947 399,564 436,848 434,276 458,989 1992 453,270 402,327 420,967 411,917 431,327 417,000 427,388 382,708 381,170 414,845 406,315 428,235 1993 423,076 382,554 406,496 395,723 411,114 394,868 412,879 420,433 417,563 440,892 458,579 482,445 1994 441,368 402,280

  7. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  8. Metairie, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana.1 Registered Energy Companies in Metairie, Louisiana Pontchartrain Mechanical Company References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  9. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-05-01

    The United States (U.S.) Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2004. The final analysis considered each of the 44 addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were reviewed by DOE, and their combined impact on a suite of 15 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 44 addenda, 9 were preliminarily determined to have measureable and quantifiable impact.

  10. Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is Appliance Standards Update and Review of Certification, Compliance and Enforcement Powerpoint Presentation for ASHRAE Conference, January 31, 2011

  11. St. James Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Energy Generation Facilities in St. James Parish, Louisiana IMC Phosphates Company Uncle Sam Biomass Facility Places in St. James Parish, Louisiana Gramercy, Louisiana Lutcher,...

  12. Louisiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Louisiana Region High School Regional Louisiana Louisiana Regional High School...

  13. Energy Incentive Programs, Louisiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisiana Energy Incentive Programs, Louisiana Updated June 2015 Louisiana utilities collectively budgeted over $5 million for energy efficiency programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Louisiana has no public-purpose-funded energy efficiency programs; however, in 2013 the Louisiana Public Service Commission (LSPC) created a framework for voluntary energy efficiency programs. Investor-owned electric utilities began offering programs in

  14. ANSI/ASHRAE/IESNA Standard 90.1-2007 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2011-01-01

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2004 that were included in ANSI/ASHRAE/IESNA Standard 90.1-2007 was conducted. All 44 addenda processed by ASHRAE in the creation of Standard 90.1-2007 from Standard 90.1-2004 were evaluated by the U.S. Department of Energy (DOE) for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency. Table S.1 shows the number of positive and negative changes for each section of Standard 90.1.

  15. ANSI/ASHRAE/IES Standard 90.1-2010 Final Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Williamson, Jennifer L.; Richman, Eric E.; Liu, Bing

    2011-10-31

    A final qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE determined whether each addendum would have a positive, neutral, or negative impact on overall building efficiency.

  16. ANSI/ASHRAE/IESNA Standard 90.1-2010 Preliminary Qualitative Determination

    SciTech Connect (OSTI)

    Halverson, Mark A.; Williamson, Jennifer L.; Liu, Bing; Rosenberg, Michael I.; Richman, Eric E.

    2010-11-01

    A preliminary qualitative analysis of all addenda to American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007 (Standard 90.1-2007 or 2007 edition) that were included in ANSI/ASHRAE/IESNA Standard 90.1-2010 (Standard 90.1-2010 or 2010 edition) was conducted. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were evaluated by DOE for their impact on energy efficiency. DOE preliminarily determined whether that addenda would have a positive, neutral, or negative impact on overall building efficiency.

  17. ANSI/ASHRAE/IES Standard 90.1-2013 Preliminary Determination: Qualitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Hart, Reid; Athalye, Rahul A.; Rosenberg, Michael I.; Richman, Eric E.; Winiarski, David W.

    2014-03-01

    Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. When the U.S. Department of Energy (DOE) issues an affirmative determination on Standard 90.1, states are statutorily required to certify within two years that they have reviewed and updated the commercial provisions of their building energy code, with respect to energy efficiency, to meet or exceed the revised standard. This report provides a preliminary qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition).

  18. Entergy Gulf States Louisiana LLC | Open Energy Information

    Open Energy Info (EERE)

    States Louisiana LLC Jump to: navigation, search Name: Entergy Gulf States Louisiana LLC Place: Louisiana Phone Number: 1-800-368-3749 Website: www.entergy-louisiana.com Twitter:...

  19. Evaluation of ANSI/ASHRAE/USGBC/IES Standard 189.1-2009

    SciTech Connect (OSTI)

    Long, N.; Bonnema, E.; Field, K.; Torcellini, P.

    2010-07-01

    The National Renewable Energy Laboratory (NREL) evaluated ANSI/ASHRAE/USGBC/IES Standard 189.1-2009, 'The Standard for High-Performance Green Buildings Except Low-Rise Residential Buildings'. NREL performed this evaluation by examining the results of predictions for site energy use from a comprehensive set of EnergyPlus models. NREL has conducted an 'order-of-magnitude' analysis in this study to identify the likely overall impact of adopting Standard 189.1-2009 over ANSI/ASHRAE/IESNA Standard 90.1-2007.

  20. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Qualitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Hart, Philip R.; Richman, Eric E.; Athalye, Rahul A.; Winiarski, David W.

    2014-09-04

    This report provides a final qualitative analysis of all addenda to ANSI/ASHRAE/IES Standard 90.1-2010 (referred to as Standard 90.1-2010 or 2010 edition) that were included in ANSI/ASHRAE/IES Standard 90.1-2013 (referred to as Standard 90.1-2013 or 2013 edition). All addenda in creating Standard 90.1-2013 were evaluated for their projected impact on energy efficiency. Each addendum was characterized as having a positive, neutral, or negative impact on overall building energy efficiency.

  1. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  2. Update and Overview of the U.S. Department of Energy's Rulemakings for ASHRAE 90.1 Equipment Presentation, dated June 26, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program eere.energy.gov BUILDING TECHNOLOGIES PROGRAM Update and Overview of DOE Rulemakings for ASHRAE 90.1 Equipment Ashley Armstrong Department of Energy Energy Efficiency & Renewable Energy 6/26/2011 Introduction and Background 1 Introduction and Background Status of Current DOE ASHRAE 90.1 Equipment Rulemaking 2 Update and Overview for Individual ASHRAE 90.1 Equipment Types 3 2 | Building Technologies Program eere.energy.gov Introduction and Background * The "ASHRAE Trigger":

  3. Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004

    SciTech Connect (OSTI)

    Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

    2006-12-01

    This document presents the qualitative comparison of DOE’s formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term “qualitative” is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOE’s determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOE’s determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where “xx” is either “99” for 1999 or “01” for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy

  4. ASHRAE Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product categories. Download the tables below to incorporate FEMP and ENERGY STAR purchasing requirements into federal product acquisition documents.

  5. ANSI/ASHRAE/IES Standard 90.1-2010 Final Determination Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Rosenberg, Michael I.; Liu, Bing

    2011-10-31

    The U.S. Department of Energy (DOE) conducted a final quantitative analysis to assess whether buildings constructed according to the requirements of the American National Standards Institute (ANSI)/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1-2010 (ASHRAE Standard 90.1-2010, Standard 90.1-2010, or 2010 edition) would result in energy savings compared with buildings constructed to ANSI/ASHRAE/IESNA Standard 90.1-2007(ASHRAE Standard 90.1-2007, Standard 90.1-2007, or 2007 edition). The final analysis considered each of the 109 addenda to ASHRAE Standard 90.1-2007 that were included in ASHRAE Standard 90.1-2010. All 109 addenda processed by ASHRAE in the creation of Standard 90.1-2010 from Standard 90.1-2007 were reviewed by DOE, and their combined impact on a suite of 16 building prototype models in 15 ASHRAE climate zones was considered. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE's final determination. However, out of the 109 addenda, 34 were preliminarily determined to have a measureable and quantifiable impact. A suite of 240 computer energy simulations for building prototypes complying with ASHRAE 90.1-2007 was developed. These prototypes were then modified in accordance with these 34 addenda to create a second suite of corresponding building simulations reflecting the same buildings compliant with Standard 90.1-2010. The building simulations were conducted using the DOE EnergyPlus building simulation software. The resulting energy use from the complete suite of 480 simulation runs was then converted to energy use intensity (EUI, or energy use per unit floor area) metrics (Site EUI, Primary EUI, and energy cost intensity [ECI]) results for each simulation. For each edition of the standard, these EUIs were then aggregated to a national basis for each prototype using weighting factors based on

  6. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  7. ANSI/ASHRAE/IES Standard 90.1-2013 Determination of Energy Savings: Quantitative Analysis

    SciTech Connect (OSTI)

    Halverson, Mark A.; Athalye, Rahul A.; Rosenberg, Michael I.; Xie, YuLong; Wang, Weimin; Hart, Philip R.; Zhang, Jian; Goel, Supriya; Mendon, Vrushali V.

    2014-09-04

    This report provides a final quantitative analysis to assess whether buildings constructed according to the requirements of ANSI/ASHRAE/IES Standard 90.1-2013 would result in improved energy efficiency in commercial buildings. The final analysis considered each of the 110 addenda to Standard 90.1-2010 that were included in Standard 90.1-2013. PNNL reviewed all addenda included by ASHRAE in creating Standard 90.1-2013 from Standard 90.1-2010, and considered their combined impact on a suite of prototype building models across all U.S. climate zones. Most addenda were deemed to have little quantifiable impact on building efficiency for the purpose of DOE’s final determination. However, out of the 110 total addenda, 30 were identified as having a measureable and quantifiable impact.

  8. A rating procedure for solar domestic hot water systems based on ASHRAE-95 test results

    SciTech Connect (OSTI)

    Minnerly, B.V.; Klein, S.A.; Beckman, W.A. )

    1991-01-01

    A rating method for solar domestic hot water (SDHW) systems is presented that provides site-specific annual performance estimates based on ASHRAE-95 test results. An overall loss and overall gain coefficient are estimated by lumping the entire thermal behavior of the actual system exhibited during the ASHRAE-95 test into the collector parameters of a simplified system model. The performance of the simplified model can then be predicted using either the F-chart or TRNSYS and presented as an estimate of the annual performance of the actual system. Experimental performance measurements taken from relevant literature as well as extensive simulations, indicate that this method is capable of predicting the annual performance of a wide range of SDHW system types to within 5%, independent of location.

  9. Louisiana DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    Louisiana DNR Oil and Gas Division Jump to: navigation, search Name: Louisiana DNR Oil and Gas Division Address: P.O. Box 94396 Place: Louisiana Zip: 70804-9396 Website:...

  10. Louisiana's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Louisiana's 2nd congressional district Entergy New Orleans Inc Retrieved from "http:en.openei.orgwindex.php?titleLouisiana%27s2ndcongressionaldistrict&oldid192538...

  11. Louisiana's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Louisiana's 1st congressional district Entergy New Orleans Inc Retrieved from "http:en.openei.orgwindex.php?titleLouisiana%27s1stcongressionaldistrict&oldid192537...

  12. ,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After ... to Contents","Data 1: Louisiana State Offshore Nonassociated Natural Gas, Wet After ...

  13. ,"Louisiana (with State Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic ... Contents","Data 1: Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic ...

  14. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Crude Oil Reserves in Nonproducing ... to Contents","Data 1: Louisiana--State Offshore Crude Oil Reserves in Nonproducing ...

  15. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future ... to Contents","Data 1: Louisiana State Offshore Dry Natural Gas Expected Future ...

  16. ,"Federal Offshore--Louisiana Natural Gas Marketed Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Marketed ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana Natural Gas Marketed ...

  17. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ...

  18. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves ... Contents","Data 1: Louisiana (with State Offshore) Coalbed Methane Proved Reserves ...

  19. ,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected ...

  20. Louisiana--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed ... Natural Gas Marketed Production Louisiana State Offshore Natural Gas Gross Withdrawals and ...

  1. ,"Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Gross Withdrawals ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)" ...

  2. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas ...

  3. ,"Louisiana--State Offshore Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Marketed Production (MMcf)" ...

  4. ,"Louisiana State Offshore Associated-Dissolved Natural Gas,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ... to Contents","Data 1: Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ...

  5. ,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, ... Contents","Data 1: Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, ...

  6. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana ... Lease Condensate Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  7. ,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana Natural Gas Gross Withdrawals ...

  8. ,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation ... to Contents","Data 1: Louisiana State Offshore Natural Gas, Wet After Lease Separation ...

  9. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana State Offshore Crude Oil + Lease Condensate Proved ... to Contents","Data 1: Louisiana State Offshore Crude Oil + Lease Condensate Proved ...

  10. ,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Liquids Lease Condensate, ...

  11. New Orleans, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. Smart Grid Project Registered Energy Companies in New Orleans, Louisiana GT Energy Sun Energy Group LLC Energy Incentives for New Orleans, Louisiana Climate Action Plan (New...

  12. Orleans Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Smart Grid Project Registered Energy Companies in Orleans Parish, Louisiana GT Energy Sun Energy Group LLC Energy Incentives for Orleans Parish, Louisiana Climate Action Plan...

  13. Louisiana's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Louisiana's 5th congressional district Cleco Power LLC Smart Grid Project Registered Energy Companies in Louisiana's 5th congressional district...

  14. Louisiana's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Projects in Louisiana's 7th congressional district Lafayette Consolidated Government, LA Smart Grid Project Energy Generation Facilities in Louisiana's 7th congressional district...

  15. Lafayette Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Smart Grid Projects in Lafayette Parish, Louisiana Lafayette Consolidated Government, LA Smart Grid Project Utility Companies in Lafayette Parish, Louisiana City of Lafayette,...

  16. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Reserves ...

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated ...

  18. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  19. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves ... Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  20. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  1. Gulf of Mexico Federal Offshore - Louisiana and AlabamaAssociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved ...

  2. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  3. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama ... AM" "Back to Contents","Data 1: Gulf of Mexico Federal Offshore - Louisiana and Alabama ...

  4. ,"Louisiana--North Natural Gas Liquids Lease Condensate, Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Natural Gas Liquids Lease Condensate, ... "Back to Contents","Data 1: Louisiana--North Natural Gas Liquids Lease Condensate, ...

  5. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  6. Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet ... Wet After Lease Separation, as of Dec. 31 North Louisiana Associated-Dissolved Natural Gas ...

  7. Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil ... Referring Pages: Proved Nonproducing Reserves of Crude Oil North Louisiana Proved ...

  8. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane ... Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved ...

  9. ,"Louisiana - North Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Nonassociated Natural Gas, Wet After Lease ... "Back to Contents","Data 1: Louisiana - North Nonassociated Natural Gas, Wet After Lease ...

  10. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  11. ,"Louisiana - North Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Natural Gas, Wet After Lease Separation ... "Back to Contents","Data 1: Louisiana - North Natural Gas, Wet After Lease Separation ...

  12. Louisiana - North Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Louisiana Crude Oil ...

  13. Louisiana--North Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion ... Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana Shale Gas Proved Reserves, ...

  14. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet ... "Back to Contents","Data 1: Louisiana - North Associated-Dissolved Natural Gas, Wet ...

  15. ,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Louisiana--North Coalbed Methane Proved Reserves (Billion ...

  16. ,"Louisiana--North Shale Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Shale Proved Reserves (Billion Cubic ... "Back to Contents","Data 1: Louisiana--North Shale Proved Reserves (Billion Cubic ...

  17. Louisiana - North Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Louisiana ...

  18. Louisiana--North Natural Gas Liquids Lease Condensate, Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--North Natural Gas ... Lease Condensate Proved Reserves as of Dec. 31 North Louisiana Lease Condensate Proved ...

  19. Louisiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Louisiana Region Middle School Regional Louisiana Arkansas Regional Middle...

  20. EIS-0501: Golden Pass LNG Export Project; Texas and Louisiana...

    Office of Environmental Management (EM)

    1: Golden Pass LNG Export Project; Texas and Louisiana EIS-0501: Golden Pass LNG Export Project; Texas and Louisiana Summary The Federal Energy Regulatory Commission (FERC) is ...

  1. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  2. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  3. ,"Louisiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Louisiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. Louisiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  7. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. Washington Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Washington Parish, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.6163073, -92.057063 Show Map Loading map......

  9. Crowley, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crowley, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.2140928, -92.3745761 Show Map Loading map... "minzoom":false,"mappingser...

  10. Louisiana Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  11. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  12. Recovery Act State Memos Louisiana

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  14. Beaufort County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Beaufort County is a county in North Carolina. Its FIPS County Code is 013. It is classified as ASHRAE 169-2006 Climate...

  15. Avery County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Avery County is a county in North Carolina. Its FIPS County Code is 011. It is classified as ASHRAE 169-2006 Climate...

  16. Bertie County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Bertie County is a county in North Carolina. Its FIPS County Code is 015. It is classified as ASHRAE 169-2006 Climate...

  17. Midland County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in Midland County, Michigan Dow Chemical Co Dow Kokam LXE Places in...

  18. Bay County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in Bay County, Michigan Dow Chemical Co Dow Kokam Places in Bay County,...

  19. Indian River County, Florida: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 2 Climate Zone Subtype A. Registered Energy Companies in Indian River County, Florida Climatic Solar Places in Indian River...

  20. Green County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Registered Energy Companies in Green County, Wisconsin Badger State Ethanol LLC Places in Green...

  1. Tift County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Its FIPS County Code is 277. It is classified as ASHRAE 169-2006 Climate Zone Number 3 Climate Zone Subtype A. Registered Energy Companies in Tift County, Georgia Biomass...

  2. Iron County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype B. Registered Energy Companies in Iron County, Utah Solar Unlimited USA Places in Iron County, Utah...

  3. White County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Indiana. Its FIPS County Code is 181. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Utility Companies in White County, Indiana White County...

  4. Traill County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 097. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Places in Traill County, North Dakota Buxton, North...

  5. Jefferson County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nebraska. Its FIPS County Code is 095. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Places in Jefferson County, Nebraska Daykin, Nebraska...

  6. Grand Forks County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 035. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Registered Energy Companies in Grand Forks County, North...

  7. Reynolds County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Missouri. Its FIPS County Code is 179. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype A. Places in Reynolds County, Missouri Bunker, Missouri...

  8. Mercer County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Illinois. Its FIPS County Code is 131. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Places in Mercer County, Illinois Aledo, Illinois Alexis,...

  9. Edwards County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Edwards County is a county in Kansas. Its FIPS County Code is 047. It is classified as ASHRAE 169-2006 Climate Zone Number 4...

  10. Lewis County, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is 041. It is classified as ASHRAE 169-2006 Climate Zone Number 4 Climate Zone Subtype C. Utility Companies in Lewis County, Washington City of Centralia, Washington (Utility...

  11. Columbia County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Columbia County is a county in Arkansas. Its FIPS County Code is 027. It is classified as ASHRAE 169-2006 Climate Zone Number 3...

  12. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  13. Sabine County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    help OpenEI by expanding it. Sabine County is a county in Texas. Its FIPS County Code is 403. It is classified as ASHRAE 169-2006 Climate Zone Number 3 Climate Zone Subtype A....

  14. Delaware County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a county in New York. Its FIPS County Code is 025. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Delaware County, New York...

  15. Labs21 Laboratory Modeling Guidelines using ASHRAE 90.1-1999

    SciTech Connect (OSTI)

    Reilly, Susan; Walsh, Michael; Graham, Carl; Maor, Itzhak; Mathew, Paul; Porter, Fred; Sartor, Dale; Van Geet, Otto

    2005-10-01

    The following is a guideline for energy modeling of laboratory spaces in a building in accordance with the Energy Cost Budget method described in ASHRAE 90.1-1999 Energy Standard for Buildings Except Low-Rise Residential Buildings. For the purposes of this document, a laboratory is defined as any space requiring once through ventilation systems (recirculation of air to other spaces in a building is not allowed). To accomplish this, ventilation systems in laboratories typically provide 100% outside air to the occupied space. The guideline is structured similarly to the ASHRAE 90.1-99 standard. Only those sections being clarified or modified are discussed in the guideline; all other sections should be followed as defined in the standard. Specifically, those sections that are affected include the following: (1) 6.3.3.1 - Fan Power Limitation (modification); (2) 6.3.7.2 - Fume Hoods (modification); (3) 11.3.11 - Schedules (modification); (4) 11.4.3 - HVAC Systems (clarification); (5) 11.4.3 (h) Budget Supply-Air-to-Room Air Temperature Difference (modification); (6) 11.4.3(i) - Fan system efficiency (modification); and (7) Table 11.4.3A - Budget System Descriptions (modification). For energy efficiency measures that are not explicitly addressed by the standard, we recommend application of Section 11.5, Exceptional Calculation Methods. This guideline does not cover the details of such calculation methods.

  16. EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

  17. Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004

    SciTech Connect (OSTI)

    Richman, Eric E.

    2006-09-29

    This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

  18. New Orleans, Louisiana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    NOLA WISE Location: New Orleans, Louisiana Seed Funding: 2.4 million-a portion of SEEA ... In fall 2011, Global Green USA launched NOLA WISE in partnership with the City of New ...

  19. Workplace Charging Challenge Partner: Louisiana State University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. ...

  20. Analysis of IECC (2003, 2006, 2009) and ASHRAE 90.1-2007 Commercial Energy Code Requirements for Mesa, AZ.

    SciTech Connect (OSTI)

    Huang, Yunzhi; Gowri, Krishnan

    2011-02-28

    This report summarizes code requirements and energy savings of commercial buildings in Climate Zone 2B built to the 2009 IECC and ASHRAE Standard 90.1-2007 when compared to the 2003 IECC and the 2006 IECC. In general, the 2009 IECC and ASHRAE Standard 90.1-2007 have higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment. HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted. The energy analysis results show that commercial buildings meeting the 2009 IECC requirements save 4.4% to 9.5% site energy and 4.1% to 9.9% energy cost when compared to the 2006 IECC; and save 10.6% to 29.4% site energy and 10.3% to 29.3% energy cost when compared to the 2003 IECC. Similar analysis comparing ASHRAE Standard 90.1-2007 requirements to the 2006 IECC shows that the energy savings are in the 4.0% to 10.7% for multi-family and retail buildings, but less than 2% for office buildings. Further comparison of ASHRAE Standard 90.1-2007 requirements to the 2003 IECC show site energy savings in the range of 7.7% to 30.6% and energy cost savings range from 7.9% to 30.3%. Both the 2009 IECC and ASHRAE Standard 90.1-2007 have the potential to save energy by comparable levels for most building types.

  1. Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. South Louisiana Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Louisiana Elec Coop Assn Place: Louisiana Phone Number: Houma Office: (985) 876-6880 or Amelia Office: (985) 631-3605 Website: www.sleca.com Facebook:...

  3. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:44 AM" "Back to Contents","Data 1: Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035LA3" "Date","Louisiana...

  4. Panola-Harrison Elec Coop, Inc (Louisiana) | Open Energy Information

    Open Energy Info (EERE)

    Louisiana) Jump to: navigation, search Name: Panola-Harrison Elec Coop, Inc Place: Louisiana Phone Number: (318) 933-5096 Outage Hotline: (318) 933-5096 References: EIA Form...

  5. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas Plant ...

  6. Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  7. Entergy (Louisiana and Gulf States)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Residential customers of Entergy Louisiana, and Entergy Gulf States Louisiana can participate in energy efficiency programs designed to help offset cost of installing energy efficient equipment and...

  8. Louisiana Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",713,827,1064,1236,1109 "Solar","-","-","-","-","-" "Wind","-","-","-","-",...

  9. Alternative Fuels Data Center: Louisiana Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Louisiana Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Louisiana Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Louisiana Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Louisiana Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data

  10. Louisiana: Louisiana’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Louisiana.

  11. EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana Summary The Federal Energy Regulatory Commission (FERC) prepared an EIS that assesses the potential environmental impacts in the states of Arkansas, Mississippi, and Louisiana, of a proposal 1) to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas

  12. Louisiana Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",192,192,192,192,192 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" ...

  13. Development of the design climatic data for the 1997 ASHRAE Handbook -- Fundamentals

    SciTech Connect (OSTI)

    Colliver, D.G.; Burks, T.F.; Gates, R.S.; Zhang, H.

    2000-07-01

    This paper describes the process used to revise the design weather data tables in the 1997 ASHRAE Handbook--Fundamentals. Design conditions were determined for 509 US, 134 Canadian, 339 European, 293 Asian, and 169 other worldwide locations. Thirty-three years of hourly weather data were used for approximately half of the US and all of the Canadian locations. Twelve years of data were used for the other locations. The data went through quality checking and short-term linear interpolation filling processes. Months that had sufficient data were then used in the analysis. The data were analyzed to produce annual frequency-of-occurrence design dry-bulb (DB), wet-bulb (WB), and dew-point (DP) temperatures with mean coincident values at the design conditions. A comparison with the previous design values indicated that the new dry-bulb and wet-bulb design conditions are slightly less extreme than the values previously published. However, the new design dew-point values indicate the potential for significantly more extreme dehumidification design conditions than would be found by using the old extreme dry-bulb temperature with mean coincident wet-bulb temperature. Software was also developed so users could extract the design values, cumulative frequencies, and DB/DP, DB/WB, DB/H, and DB/WS coincident matrices for 1444 locations from a CD-ROM.

  14. Twenty Years On!: Updating the IEA BESTEST Building Thermal Fabric Test Cases for ASHRAE Standard 140: Preprint

    SciTech Connect (OSTI)

    Judkoff, R.; Neymark, J.

    2013-07-01

    ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs applies the IEA BESTEST building thermal fabric test cases and example simulation results originally published in 1995. These software accuracy test cases and their example simulation results, which comprise the first test suite adapted for the initial 2001 version of Standard 140, are approaching their 20th anniversary. In response to the evolution of the state of the art in building thermal fabric modeling since the test cases and example simulation results were developed, work is commencing to update the normative test specification and the informative example results.

  15. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a

  16. MiniBooNE: Up and Running Morgan Wascko Morgan Wascko Louisiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Louisiana State University Louisiana State University Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 MiniBooNE detector at Fermi National Accelerator...

  17. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana ...

    Energy Savers [EERE]

    environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating agency in preparing...

  18. Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  19. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  20. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  1. President Louisiana State Building and Construction Trades Council

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robert "Tiger" Hammond President Louisiana State Building and Construction Trades Council ... unions of North America's Building and Construction Trades Unions, I want to thank ...

  2. City of Lafayette, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    (Redirected from Lafayette Consolidated Government, LA) Jump to: navigation, search Name: City of Lafayette Place: Lafayette, Louisiana References: EIA Form EIA-861 Final Data File...

  3. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  4. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  5. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  7. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  8. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  9. Krotz Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Krotz Springs, Louisiana: Energy Resources (Redirected from Krotz Springs, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5368592, -91.7528931 Show Map...

  10. Abita Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Abita Springs, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4785257, -90.0375755 Show Map Loading map... "minzoom":false,"mapp...

  11. City of Natchitoches, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Twitter: @natchitoches Facebook: https:www.facebook.comnatchitoches.louisiana.56 Outage Hotline: (318) 357-3880 References: EIA Form EIA-861 Final Data File for 2010 -...

  12. Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  13. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

  14. Louisiana Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    7 Louisiana (Million Cubic Feet)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,100 3,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  15. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  16. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstratio...

    Broader source: Energy.gov (indexed) [DOE]

    operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to ... The demonstration plant operated for 12 months and demonstrated considerable success in ...

  17. South Louisiana Enhanced Oil Recovery/Sequestration Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Louisiana Enhanced Oil Recovery Sequestration Demonstration Project Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is ...

  18. Louisiana Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Louisiana are ...

  19. Louisiana State Offshore Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion ... Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore ...

  20. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  1. Louisiana--State Offshore Crude Oil Reserves in Nonproducing...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore ... Referring Pages: Proved Nonproducing Reserves of Crude Oil LA, State Offshore Proved ...

  2. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisian... Proved Nonproducing Reserves of Crude Oil Federal Offshore, Gulf of Mexico, Louisiana & ...

  3. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  4. Louisiana--State Offshore Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--State Offshore ... Lease Condensate Proved Reserves as of Dec. 31 LA, State Offshore Lease Condensate Proved ...

  5. Louisiana State Offshore Nonassociated Natural Gas, Wet After...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After ... Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved ...

  6. Federal Offshore--Louisiana Natural Gas Withdrawals from Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  7. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet ... Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved ...

  8. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  9. Federal Offshore--Louisiana Natural Gas Withdrawals from Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  10. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore ... Dry Natural Gas Proved Reserves as of Dec. 31 LA, State Offshore Dry Natural Gas Proved ...

  11. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  12. Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Offshore Gross ...

  13. Louisiana State Offshore Crude Oil + Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 LA, State Offshore Crude ...

  14. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade ...

  15. Alternative Fuels Data Center: Louisiana State University: The...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Louisiana State University: The State's First Workplace Charging Challenge Partner " Since the installation of the EV charging stations on campus, we have seen a dramatic rise in ...

  16. ,"Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  17. ,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  18. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease ...

  19. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal ... Dry Natural Gas Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana ...

  20. Louisiana - North Nonassociated Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Proved ...

  1. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  2. ,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ... Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Net Withdrawals ...

  3. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. ... and export of natural gas, including LNG, unless it finds that the import or export ...

  4. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production ...

  5. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production ...

  6. ,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production ...

  7. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Louisiana Company Makes Switch to CNG, Helps Transform Local...

    Energy Savers [EERE]

    courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Cedric ...

  9. SEP Success Story: Louisiana Company Makes Switch to CNG, Helps...

    Broader source: Energy.gov (indexed) [DOE]

    courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture A ...

  10. Heavy rains hamper Louisiana gas line

    SciTech Connect (OSTI)

    Horner, C.

    1983-06-01

    Despite heavy rains and flooding a 36-mile gas pipeline loop for Transcontinental Gas Pipe Line Corp. was completed from north of Starks (at the end of Transco's south Louisiana lateral) to the Lake Charles area. Somastic-coated, 42-in. grade X-60 pipe comprises 90% of the route. The contract included multiple 30-42 in. fabrications, installation of six 42-in. gate valves, and expansion of the Gillis compressor station.

  11. Regional and local subsidence in Louisiana

    SciTech Connect (OSTI)

    Trahan, D.B.

    1984-01-01

    The measurement of local, man-induced subsidence is especially critical in areas with high rates of land loss. To measure this subsidence, absolute historical geodetic movements have been estimated by adjusting all movements along the first-order vertical control network from northeast to southwest Louisiana as related to the Monroe uplift. The adjustment will serve as a base line by which local subsidence or uplift can be measured. A generalized trend of increasing subsidence to the south in Louisiana probably reflects increasing sediment thickness and weight toward the axis of the Gulf Coast basin. Anomalous values as low as -17.6 mm/y (-0.7 in./y) occur in areas overlying Pleistocene and Holocene fluvial elements. Positive movement as high as +4.1 mm/y (+0.2 in./y), has been found to be associated with the Iberian structural axis in south-central Louisiana. Land subsidence due to natural causes may far outweigh subsidence resulting from fluid withdrawal or depressurization of geopressured aquifers. The effects of regional and local natural processes should not be underestimated in any systematic approach to measuring subsidence.

  12. Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.; Bandyopadhyay, Gopal K.

    2010-01-21

    Detailed construction data from the McGraw Hill Construction Database was used to develop construction weights by climate zones for use with DOE Benchmark Buildings and for the ASHRAE Standard 90.1-2010 development. These construction weights were applied to energy savings estimates from simulation of the benchmark buildings to establish weighted national energy savings.

  13. Building America Top Innovations 2014 Profile: ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This 2014 Top Innovations profile describes Building America research and support in developing and gaining adoption of ASHRAE 62.2, a residential ventilation standard that is critical to transforming the U.S. housing industry to high-performance homes.

  14. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D� experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  15. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. Cameron Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Cameron Parish is a county in Louisiana. Its FIPS County Code is 023. It is classified as...

  17. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  18. Louisiana Natural Gas Input Supplemental Fuels (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Jackson Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson Parish is a county in Louisiana. Its FIPS County Code is 049. It is classified as...

  20. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  1. Louisiana--North Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1...

  2. Louisiana (with State Offshore) Shale Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shale Production (Billion Cubic Feet) Louisiana (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  3. Louisiana--South Onshore Shale Production (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shale Production (Billion Cubic Feet) Louisiana--South Onshore Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. Red River Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red River Parish is a county in Louisiana. Its FIPS County Code is 081. It is classified as...

  5. ,"Louisiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:50 AM" "Back to Contents","Data 1: Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  6. City of Kaplan, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Phone Number: 337-643-8604 or 337-643-8811 Website: www.kaplanla.comcontacts.html Outage Hotline: 337-643-3505 References: EIA Form EIA-861 Final Data File for 2010 -...

  7. City of Jonesville, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Place: Louisiana Phone Number: 318.339.6638 Website: townofjonesville.net6085.html Outage Hotline: 318.339.9886 References: EIA Form EIA-861 Final Data File for 2010 -...

  8. Town of Vinton, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Town of Vinton Place: Louisiana Phone Number: (337) 589-7453 Website: cityofvinton.comhtmlservices Outage Hotline: (337) 589-7453 References: EIA Form EIA-861 Final Data File...

  9. La Salle Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. La Salle Parish is a county in Louisiana. Its FIPS County Code is 059. It is classified as...

  10. West Carroll Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Carroll Parish is a county in Louisiana. Its FIPS County Code is 123. It is classified...

  11. West Feliciana Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Feliciana Parish is a county in Louisiana. Its FIPS County Code is 125. It is...

  12. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  13. Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  14. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  15. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,273 1,150 ...

  16. North Vacherie, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. North Vacherie is a census-designated place in St. James Parish, Louisiana.1 References US Census Bureau 2005 Place to 2006 CBSA...

  17. Federal Offshore--Louisiana Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. Abstract Testimony of Dan S. Born* President, Louisiana Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana Chemical Association 2040 One American Place Baton Rouge, LA 70825 dan@lca.org 225.376.7660 Presented to the Quadrennial Energy Review Task Force May 27, 2014 LSU...

  19. Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  20. EECBG Success Story: LEDs Ready for Takeoff at Louisiana Airport

    Broader source: Energy.gov [DOE]

    About 250 lights along the taxiway at Hammond Northshore Regional Airport in Louisiana are being replaced with light-emitting diodes (LEDs) with funds from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  1. Louisiana Save Energy Now Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Accomplishments Louisiana's program completed 26 one-day industrial energy assessments over the course of the grant period, as well as one in-plant training session, which included ...

  2. Geopressured-geothermal well activities in Louisiana

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  3. New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency & Renewable Energy (EERE) | Department of Energy Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) New Orleans, Louisiana: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community.

  4. Building envelope thermal and daylighting analysis in support of recommendations to upgrade ASHRAE/IES Standard 90. Final report

    SciTech Connect (OSTI)

    Johnson, R.; Sullivan, R.; Nozaki, S.; Selkowitz, S.; Conner, C.; Arasteh, D.

    1983-09-01

    Fenestration design can greatly affect the energy requirements for space conditioning and electric lighting in buildings. The net annual effect greatly depends on the effectiveness of daylight utilization with specific results being a complex function of the interaction among building design features, building operating characteristics, and climate. The object of this study was to isolate the energy effects of fenestration and electric lighting design, quantify these effects, and develop simplified analysis tools for compliance use in the building envelopes section of ASHRAE/IES Standard 90. Envelope thermal conductivity, fenestration design, and electric lighting characteristics are parametrically varied through a wide range of values and in a diversity of climates. For these parametric variations, annual energy consumption is calculated with the DOE-2.1B energy analysis program. The numerical results are collected and stored on tape. From this data base statistical analysis is performed using multiple regression techniques leading to simplified correlation expressions characterize annual energy performance trends for cooling, heating, and cooling peak so that users can easily ascertain the energy implications of design options for fenestration, daylighting, and electric lighting.

  5. SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO...

    Energy Savers [EERE]

    Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 PDF icon October 2014 PDF icon ...

  6. EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATVM ATVM Environmental Compliance EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in Monroe, LA EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle ...

  7. EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monroe, LA | Department of Energy ATVM » ATVM Environmental Compliance » EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in Monroe, LA EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in Monroe, LA January 3, 2011 EA-1732: Final Environmental Assessment Loan To Next Autoworks Louisiana, LLC, For An Advanced Technology Gasoline Vehicle Manufacturing Project In Monroe, Louisiana January 24, 2011 EA-1732: Finding of No Significant Impact Next

  8. Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 597 496 594 622 935 224 500 2,303 1,069 127 2010's 738 5,583 352 1,049 2,478 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Louisiana Dry Natural

  9. Louisiana Natural Gas Exports From All Countries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    From All Countries (Million Cubic Feet) Louisiana Natural Gas Exports From All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 22,814 38,552 7,655 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Exports (Summary) Louisiana U.S. Natural Gas Imports &

  10. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals

  11. Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Louisiana

  12. Louisiana Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,020 4,583 4,920 4,936 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Louisiana Onshore-Texas

  13. Louisiana--North Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved

  14. Louisiana--South Onshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,473 12,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana Shale

  15. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  16. Non-profit Making a Difference in Louisiana

    Broader source: Energy.gov [DOE]

    Change is in the air at SMILE Community Action Agency. The non-profit received a $3 million American Recovery and Reinvestment Act grant for its weatherization program. With the needed boost in funding Louisiana-based SMILE can increase its reach.

  17. Evaluation of potential geopressure geothermal test sites in southern Louisiana

    SciTech Connect (OSTI)

    Bassiouni, Z.

    1980-04-01

    Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

  18. EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) prepared an EIS for a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export LNG. DOE, a cooperating agency, adopted the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Additional information is available at http://energy.gov/fe/services/natural-gas-regulation.

  19. Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies

    Broader source: Energy.gov [DOE]

    With support from the State of Louisiana and the Energy Department, Shreveport's first public heavy duty CNG fueling station officially opened on Earth Day.

  20. SEP Success Story: Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies

    Broader source: Energy.gov [DOE]

    A Shreveport, Louisiana, company is switching to a locally-produced, cleaner source of fuel and helping other distribution fleets do the same. Learn more.

  1. Information resources: How they are utilized by Louisiana

    SciTech Connect (OSTI)

    Gardner, S.

    1990-12-31

    Louisiana, now in a developmental stage of policy and planning, has completed a project aimed at reducing hazardous releases of air toxics in thee state. The state is also conducting a Comparative Risk Project and is using risk assessment practices to develop its waste quality standards. In developing an air toxic list, Louisiana incorporated four major criteria into the ranking: emission levels, human health effects, potential population exposure, and persistence or accumulation in the environment. For the human health effects criterion, data for each substance was gathered from numerous sources, although the Integrated Risk Information System (IRIS) database was used as a primary source for toxicological information. Following guidelines established by the Environmental Protection Agency (EPA), the Office of Water Resources, Water Pollution Control Division, has developed numerical criteria for human health protection based on risk assessment procedures in the 1989 Water Quality Standards Revision. Currently over 30 toxic substances have risk-based criteria for th protection of human health in the standards. Numerical criteria were calculated for carcinogenic substances having an EPA Classification of A, B1, B2, or C. Cancer class designations along with cancer potency slopes and reference doses were extracted from the IRIS database, with the exception of those chemicals that had not been assessed in IRIS as of December 1, 1988. The parameters necessary for calculating human health criteria for the missing chemicals were taken from 1980, 1984, and 1985 ambient water quality criteria documents: data on bioconcentration factors were included. Currently, Louisiana is working on a Comparative Risk Project, a ranking of the environmental issues in the state relative to potential risk to the public, which is the basis for a widespread 1991 public outreach effort.

  2. Louisiana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 758 888 686 513 592 378 738 1,651 1,287 103 2010's 847 5,552 285 1,425 4,523 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  3. Louisiana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 205 127 156 517 328 1990's -15 -47 -273 579 557 -285 626 203 -261 509 2000's -107 322 72 281 -11 130 86 192 -71 319 2010's -612 178 605 -42 487 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  4. Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 772 7 16 23 17 1990's 3 68 75 5 25 63 13 11 57 44 2000's 45 27 68 12 18 6 27 0 191 257 2010's 48 47 5 17 57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  5. Louisiana Natural Gas Exports (Price) From All Countries (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) From All Countries (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Exports (Price) From All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.07 9.63 11.80 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural

  6. Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 287 301 294 294 1990's 324 321 317 260 281 430 381 261 234 281 2000's 241 204 186 183 167 191 176 191 201 231 2010's 216 192 189 212 243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,483 12,792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  8. Louisiana--North Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 519 420 341 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  11. Louisiana--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 10 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Shale Gas Proved Reserves, Reserves

  12. Louisiana (with State Offshore) Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 198 226 2000's 204 227 185 190 150 193 198 193 144 149 2010's 183 152 157 180 221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  13. Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 313 237 224 223 228 1990's 214 205 178 161 153 171 162 176 177 176 2000's 195 187 137 112 96 101 104 112 99 110 2010's 106 108 121 119 115 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,483 12,792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  15. Louisiana - South Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 2010's 342 328 370 396 405 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  16. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  17. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 143 146 2000's 123 134 139 150 115 148 162 164 122 129 2010's 126 113 125 155 188 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 263 1980's 267 253 243 238 229 220 208 194 193 196 1990's 182 175 151 133 123 136 127 134 138 142 2000's 159 141 107 82 66 65 65 71 64 74 2010's 68 64 70 68 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 10 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Shale Gas Proved Reserves,

  2. Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 28 33 27 39 1990's 37 41 47 21 19 16 36 12 13 23 2000's 28 41 37 35 27 31 22 25 55 43 2010's 24 44 20 16 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. EA-1983: Sabine Pass Liquefaction Expansion Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EA for a proposal to expand the existing Sabine Pass Liquefied Natural Gas Terminal in Cameron Parish, and to extend an associated existing pipeline system in Cameron, Calcasieu, Beauregard, Allen, and Evangeline Parishes in Louisiana. DOE is a cooperating agency in preparing the EA. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  4. The proposed Institute for Micro-manufacturing, Louisiana Tech University

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) DOE/EA-0958, evaluating the construction and equipping of two components of the proposed Institute for Micro-manufacturing at Louisiana Tech University (LTU), a proposed R and D facility to be located in Ruston, LA. and, the proposed installation of a beamline for micro-machining applications at the Center for Advanced Microstructures and Devices (CAMD) facility at Louisiana State University in Baton Rouge, LA. The objective of the proposed project is to focus on the applied, rather than basic research emphasizing the design and development, metrology, inspection and testing, and the assembly and production of micron and submicron structures and devices. Also, the objective of the beamline at CAMD would be the fundamental study of processing and analysis technologies, including x-ray lithography, which are important to microstructures fabrication and electronic device development. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  5. Landform technology at fort polk, louisiana: lessons learned. Final report

    SciTech Connect (OSTI)

    Smith, J.L.; Grafton, J.D.; Mann, D.K.

    1992-03-01

    Fort Polk, LA, is located in central Vernon Parish in West-Central Louisiana, about 6 miles southeast of the town of Leesville. In early 1983, a combination of factors prompted Fort Polk to explore alternatives for disposing of sewage sludge and contaminated soil. Changes in Louisiana's Solid Waste Rules and Regulations ended the practice of disposing of contaminated soil in the installation's landfill. Changing regulations were also affecting the disposal of sewage sludge. The technology investigated in this research is landfarming, a treatment process in which waste is mixed with the surface soil and is degraded, transformed, or immobilized. The surface soil is used as the treatment medium and the process is based primarily on the principle of aerobic decomposition of organic wastes. Compared to other land disposal treatments such as landfills and surface impoundments, landfarming has the potential to reduce monitoring and maintenance costs, as well as cleanup liabilities. Because of these reduced costs and liabilities, and the relatively low initial and operating costs, landfarming has received much attention as an ultimate disposal alternative.

  6. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect (OSTI)

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  7. Parallax Enterprises (NOLA) LLC- (Formerly Louisiana LNG Energy LLC) FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  8. Parallax Enterprises (NOLA) LLC (Formerly Louisiana LNG Energy LLC) FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  9. EIS-0010: Strategic Petroleum Reserves, Sulphur Mines Salt Dome, Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves prepared this EIS to assess the environmental impacts of the proposed storage of 24 million barrels of crude oil at the Sulphur Mines salt dome located in Calcasieu Parish, Louisiana, including construction and operation impacts.

  10. Louisiana LNG Energy LLC – FE Dkt. No. 14-29-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  11. Louisiana LNG Energy LLC – FE Dkt. No. 14-19-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  12. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2

  13. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,482 1,741 1,625 1,691 1,687 1990's 1,596 1,527 1,494 1,457 1,453 1,403 1,521 1,496 1,403 1,421 2000's 1,443 1,479 1,338 1,280 1,322 1,206 1,309 1,257 1,319 1,544 2010's 2,189 2,985 3,057 2,344 1,960 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Louisiana Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 932 729 414 461 680 1990's 674 445 206 284 510 627 575 754 631 316 2000's 596 1,427 647 1,584 1,940 1,560 1,026 1,247 1,848 9,807 2010's 10,989 5,793 3,151 1,023 2,740 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  15. Louisiana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,419 1,962 1,414 1,555 4,434 1990's 1,663 1,696 1,222 1,527 1,239 1,404 975 1,360 2,034 2,297 2000's 1,277 1,696 1,853 1,159 1,229 849 1,417 1,104 1,376 3,105 2010's 3,184 5,843 12,816 3,787 3,389 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Louisiana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (No intransit Receipts) (Million Cubic Feet) Louisiana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,114 96,945 0 0 0 3,934 1990's 30,750 33,284 12,637 30,790 17,887 5,149 7,042 30,596 42,922 67,362 2000's 127,198 145,157 102,130 238,237 163,738 108,967 144,060 268,714 18,110 70,099 2010's 90,867 60,554 20,132 5,750 5,880 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.74 1990's 1.88 1.70 1.73 1.70 1.71 1.85 2.22 2.63 2.67 2.43 2000's 3.61 4.42 3.42 5.00 5.61 9.04 6.64 6.98 9.76 3.89 2010's 4.84 7.57 7.98 14.40 14.59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  18. Louisiana Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Louisiana Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 22,711 96,945 0 0 0 0 0 0 1990's 27,903 33,284 12,545 30,677 17,823 5,032 7,016 30,419 30,385 0 2000's 0 0 0 0 0 0 0 0 1,446 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  19. Louisiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 18,720 94,323 3,556 0 0 0 0 0 1990's 26,206 32,726 12,097 32,033 18,252 4,723 7,056 28,245 16,515 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  20. Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153,850 179,291 153,777 141,098 178,271 150,519 121,991 1990's 175,439 111,793 134,088 147,888 140,571 133,825 144,486 156,387 131,595 111,203 2000's 130,550 37,811 34,285 51,254 48,308 45,543 49,124 61,368 52,941 56,656 2010's 59,336 80,983 54,463 57,549 58,034 - = No Data Reported; -- = Not Applicable; NA =

  1. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  3. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 71,523 60,400 48,214 2000's 50,647 48,257 50,711 47,019 44,963 41,812 47,979 52,244 53,412 49,937 2010's 46,892 51,897 49,235 36,737 45,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  5. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 34,179 30,527 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908

  7. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Louisiana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,661,061 1,569,190 1,495,478 2000's 1,536,725 1,219,013 1,341,444 1,233,505 1,281,428 1,254,370 1,217,871 1,289,421 1,238,661 1,189,744 2010's 1,354,641 1,420,264 1,482,343 1,396,261 1,460,031 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,869 1980's 3,160 3,358 2,988 3,008 2,546 2,650 2,567 2,350 2,442 2,705 1990's 2,640 2,435 2,363 2,376 2,599 2,863 3,189 3,156 2,943 3,127 2000's 3,344 3,927 4,283 5,137 5,841 6,768 6,795 6,437 7,966 17,273 2010's 26,136

  9. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916

  10. Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 279,258 320,034 322,360 2000's 304,791 243,017 323,804 236,408 245,361 285,022 195,927 224,419 236,543 222,486 2010's 270,528 293,245 322,632 267,629 290,020 342,742 Thousand Cubic Feet)

    (Price) From All Countries (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Exports (Price) From All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  11. Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463

  12. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's

  13. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 773 870 908

  14. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  15. Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 3,991 2,622 -3,556 0 0 0 0 0 1990's 1,697 558 448 -1,356 -429 308 -39 2,174 13,871 0 2000's 0 0 0 0 0 0 0 1,446 2010's 0 0 -24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  16. Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 377,554 379,627 371,519 372,188 379,245 393,418 407,240 421,000 435,705 450,886 459,955 452,883 1991 405,740 373,892 361,085 367,797 387,769 411,591 425,349 435,719 453,303 477,425 464,906 433,184 1992 387,456 358,639 345,049 348,097 369,129 388,728 403,713 413,375 432,171 452,989 447,115 411,919 1993 365,128 321,651

  17. Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Base Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 1991 264,324 264,324 264,304 264,497 265,121 265,448 265,816 266,390 262,350 266,030 267,245 267,245 1992 267,245 267,245 265,296 262,230 262,454 263,788 266,852 260,660 257,627 258,575 259,879 262,144 1993 261,841 255,035 251,684

  18. Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616

  19. Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 22,135 20,389 23,258 - = No Data Reported;

  20. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838

  1. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  2. Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,511,271 1,517,415 1,531,493 1,589,019 1,437,037 1,325,445 1,360,141 1,403,510 2000's 1,314,375 1,350,494 1,226,613 1,219,627 1,226,268 1,189,611 1,264,850 1,293,590 1,292,366 1,472,722 2010's 2,140,525 2,958,249 2,882,193 2,282,452 1,918,626 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Technical support for geopressured-geothermal well activities in Louisiana

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    Continuous recording microearthquake monitoring networks have been established around US Department of Energy (DOE) geopressured-geothermal design wells in southwestern Louisiana and southeastern Texas since summer 1980 to assess the effects well development may have had on subsidence and growth-fault activation. This monitoring has shown several unusual characteristics of Gulf Coast seismic activity. The observed activity is classified into two dominant types, one with identifiable body phases (type 1) and the other with only surface-wave signatures (type 2). During this reporting period no type 1 or body-wave events were reported. A total of 230 type 2 or surface-wave events were recorded. Origins of the type 2 events are still not positively understood; however, little or no evidence is available to connect them with geopressured-geothermal well activity. We continue to suspect sonic booms from military aircraft or some other human-induced source. 37 refs., 16 figs., 6 tabs.

  4. Surviving the toxics in south Louisiana: A minority perspective

    SciTech Connect (OSTI)

    Wright, B.

    1995-12-01

    The Louisiana industrial corridor along the Mississippi River is lined with 136 petro-chemical plants and serves oil refineries. This approximates nearly one plant or refinery for every half mile of the river. The air, ground, and water along this corridor are so full or carcinogens that it has been described as a massive human experiment. Poor blacks live in river towns near the brunt of this discharge. Total mortality rates and cancer mortality rates in counties along the Mississippi River are significantly higher than in the rest of the nation`s counties. Moreover, the areas of greatest toxic discharge. Findings of disproportionately high mortality rates along the Mississippi, especially in communities on the lower river where toxic discharge minority and poor communities along the Mississippi River chemical corridor.

  5. Louisiana Regional Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Louisiana Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Louisiana Regional Science Bowl Print Text Size: A A

  6. Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  7. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 2016 1,024 1,025 1,022 1,021 1,022 1,023

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  8. Risk assessment for produced water discharges to Louisiana Open Bays

    SciTech Connect (OSTI)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1995-06-23

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks from radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.

  9. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 1 1 1 1 1 1 1 1 1 1 1 1 2012 1 1 1 1 1 1 1 1 1 1 1 1 2013 4 4 4 4 4 4 4 4 4 4 4 4 2014 5 4 5 4 5 4 5 5 4 5 4 5 2015 1 1 1 1 1 4 5 5 4 5 4 5 2016 5 5 5 5 5 5

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.24 3.56 4.30 3.47 2.36 2.99 3.53 5.57

  10. Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not

  11. EERE's Building Technologies PowerPoint Presentation Template

    U.S. Energy Information Administration (EIA) Indexed Site

    08 1 Application of Building Energy Consumption Data in Low-Energy Building Research Drury B. Crawley U. S. Department of Energy April 2008 2 Key Areas of Interest * Energy Use Intensity * What is energy use per floor area? * Floor-area weighting * What is average square foot vs. average building? * End use * What equipment is using the energy? * Climate zone distributions * How are buildings distributed in climate zones per ASHRAE Standard 169-2006? April 2008 3 * Mechanical equipment detail *

  12. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 51,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Louisia

  13. National Uranium Resource Evaluation: Palestine Quadrangle, Texas and Louisiana

    SciTech Connect (OSTI)

    McGowen, M.; Basciano, J.; Fose, F.G. Jr.; Fisher, W.L.

    1982-09-01

    The uranium resource potential of the Palestine Quadrangle, Texas and Louisiana, was evaluated to a depth of 1500 m (5000 ft) using criteria established for the National Uranium Resource Evaluation program. Data derived from geochemical analyses of surface samples (substrate, soil, and stream sediment) in conjunction with hydrochemical data from water wells were used to evaluate geologic environments as being favorable or unfavorable for the occurrence of uranium deposits. Two favorable environments have been identified in the Palestine Quadrangle: potential deposits of modified Texas roll-type in fluvial channels and associated facies within the Yegua Formation, and potential occurrences along mineralization fronts associated with the Elkhart Graben and Mount Enterprise fault system. Unfavorable environments include: Cretaceous shales and limestones, Tertiary fine-grained marine sequences, Tertiary sandstone units that exhibit favorable host-rock characteristics but fail to show significant syngenetic or epigenetic mineralization, and Quaternary sands and gravels. Unevaluated units include the Woodbine Group (Upper Cretaceous), Jackson Group (Tertiary), and Catahoula Formation (Tertiary). The subsurface interval of the Jackson Group and Catahoula Formation contains depositional facies that may represent favorable environments; however, the evaluation of these units is inconclusive because of the general lack of shallow subsurface control and core material. The Woodbine Group, restricted to the subsurface except for a small exposure over Palestine Dome, occurs above 1500 m (5000 ft) in the northwest quarter of the quadrangle. The unit exhibits favorable host-rock characteristics, but the paucity of gamma logs and cores, as well as the lack of hydrogeochemical and stream-sediment reconnaissance data, makes evaluation of the unit difficult.

  14. U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  15. Base line for determining local, small-scale vertical movements in Louisiana

    SciTech Connect (OSTI)

    Trahan, D.B.

    1983-01-01

    Subsidence in Louisiana is a result of many factors ranging from local, man-induced to regional, large-scale processes. The measurement of local, man-induced subsidence is especially critical in areas with high rates of land loss. In order to measure local vertical movement, absolute historical geodetic movements have been estimated by adjusting all movements along the first-order vertical control network from northeast to southwest Louisiana as related to the Monroe Uplift. The adjustment will serve as a base line by which local subsidence or uplift can be measured. A generalized trend of increasing subsidence to the south in Louisiana is probably a reflection of increasing sediment thickness and weight toward the AXIS of the Gulf Coast Basin. Anomalous values as low as -17.6 mm/y occur superjacent to the position of Pleistocene and Holocene fluvial elements. Positive movement, up to +4.1 mm/y, has been found associated with the Iberian structural axis in south-central Louisiana. Land subsidence due to natural causes may far outweigh subsidence resulting from fluid withdrawal or depressurization of geopressured aquifers. The effects of regional and local natural processes should not be underestimated in any systematic approach to measuring subsidence. 13 references, 7 figures.

  16. International Conference to be Held in Honor of LSU Professor (Louisiana

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Media Center) | Jefferson Lab International Conference to be Held in Honor of LSU Professor (Louisiana State University Media Center) External Link: http://www.lsu.edu/ur/ocur/lsunews/MediaCenter/News/2012/06/item48547.html By jlab_admin on Mon, 2012-06-0

  17. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    SciTech Connect (OSTI)

    Mendell, Mark J.; Apte, Mike G.

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These

  18. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  19. Comparison of Methods for Estimating the NOx Emission Impacts of Energy Efficiency and Renewable Energy Projects: Shreveport, Louisiana Case Study (Revised)

    SciTech Connect (OSTI)

    Chambers, A.; Kline, D. M.; Vimmerstedt, L.; Diem, A.; Dismukes, D.; Mesyanzhinov, D.

    2005-07-01

    This is a case study comparing methods of estimating the NOx emission impacts of energy efficiency and renewable energy projects in Shreveport, Louisiana.

  20. Uranium Resource Evaluation Project. Hydrochemical and stream-sediment reconnaissance basic data for Palestine, Alexandria, and Natchez Quadrangles, Texas; Louisiana; Mississippi

    SciTech Connect (OSTI)

    Not Available

    1982-06-07

    Data are compiled for hydrochemical and stream sediment reconnaissance of the Palestine, Alexandria and Natchez quadrangles in Texas, Louisiana and Mississippi.

  1. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  2. State of Louisiana Department of Energy EPSCoR. Final project report

    SciTech Connect (OSTI)

    Gershey, J.S.; Glass, G.A.; Koplitz, B.; Ford, R.

    2001-12-31

    The Louisiana Board of Regents (BoR) was awarded a Department of Energy (DOE) Experimental Program to Stimulate Competitive Research (EPSCoR) Planning Grant in September, 1991. Through this grant, the BoR surveyed Louisiana's energy-related science and engineering research capabilities, and determined which research areas were best suited for development through the EPSCoR program. Louisiana's DOE/EPSCoR program supported three research clusters concentrating on the basic energy sciences, environmental restoration and waste management, and environmental health sciences. More specifically, the topics dealt with by the clusters were (1) inorganic synthesis and laser-induced photochemistry relevant to the fabrication of electronic materials, (2) using high-energy ion beams and synchrotron radiation for modification and analysis of corrosion and wear-inhibiting coating of metallic alloys, and (3) development of mammalian and non-mammalian toxicological indices of risk associated with energy-related wastes. Each of the clusters involved multiple universities using an interdisciplinary approach to energy-related research and human resource development. Reprints of significant publications are attached.

  3. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"Louisiana Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  5. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  6. ,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290la2m.xls"

  7. ,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  8. ,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  9. ,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  10. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  14. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    SciTech Connect (OSTI)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  15. Energy engineering analysis program, Fort Polk, Louisiana. Pre-final executive summary, increment `f`

    SciTech Connect (OSTI)

    1987-11-01

    Executive Order 12003, dated 19 July 1977, initiated the U.S. Army`s energy conservation effort. Specifically, the Executive Order led to the development of the Army Facilities Energy Plan which directs Army Staff and Major Army Commands to develop detailed implementation plans for energy conservation. As a result of these directives, the Fort Worth District of the U.S. Army Corps of Engineers contracted for an Energy Engineering Analysis Program (EEAP) at Fort Polk, Louisiana. The EEAP included Increments `A`, `B`, `E`, and `O`.

  16. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  17. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  18. Safety Evaluation Report for the Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This report documents the US Nuclear Regulatory Commission (NRC) staff review and safety evaluation of the Louisiana Energy Services, L.P. (LES, the applicant) application for a license to possess and use byproduct, source, and special nuclear material and to enrich natural uranium to a maximum of 5 percent U-235 by the gas centrifuge process. The plant, to be known as the Claiborne Enrichment Center (CEC), would be constructed near the town of Homer in Claiborne Parish, Louisiana. At full production in a given year, the plant will receive approximately 4,700 tonnes of feed UF{sub 6} and produce 870 tonnes of low-enriched UF{sub 6}, and 3,830 tonnes of depleted UF{sub 6} tails. Facility construction, operation, and decommissioning are expected to last 5, 30, and 7 years, respectively. The objective of the review is to evaluate the potential adverse impacts of operation of the facility on worker and public health and safety under both normal operating and accident conditions. The review also considers the management organization, administrative programs, and financial qualifications provided to assure safe design and operation of the facility. The NRC staff concludes that the applicant`s descriptions, specifications, and analyses provide an adequate basis for safety review of facility operations and that construction and operation of the facility does not pose an undue risk to public health and safety.

  19. The dominant processes responsible for subsidence of coastal wetlands in south Louisiana

    SciTech Connect (OSTI)

    Kuecher, G.J.

    1995-12-31

    Wetland loss in coastal areas of Terrebonne and Lafourche Parishes, Louisiana, largely results from two subsurface processes: (1) consolidation of recently deposited Holocene deltaic sediments and (2) active growth faulting. Locally, settlement is high where the thickness of valley fill is great and in broad interdistributary basins where the thickness of consolidation-prone, peaty soils is great. The delta cycle is identified as the fundamental sedimentologic unit that constitutes the lower delta plain. Peaty soils from the waning phase of the delta cycle are identified as the deltaic facies most subject to consolidation settlement. Data indicate direct relationships between the thickness of deltaic sediments in individual delta cycles, and the thickness of peaty soils capping these cycles, with present patterns of coastal tract land loss. In addition, active growth faulting is correlated with new areas of interior tract wetland loss. Consolidation and faulting largely explain the curious nature of wetland loss patterns in south Louisiana. Subsidence in The Netherlands has been attributed to similar causes, i.e. thick deposits of consolidation-prone sediments that accumulate on the downthrown sides of basin margin faults.

  20. Sinkhole progression at the Weeks Island, Louisiana, Strategic Petroleum Reserve (SPR) site

    SciTech Connect (OSTI)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.

    1995-11-01

    A sinkhole measuring 11 m (36 ft) across and 9 m (30 ft) deep was first observed in alluvium overlying the Weeks Island, Louisiana, salt dome in May 1992, but it was about a year old, based on initial surface appearance and subsequent reverse extrapolation of growth rates. A second and much smaller sinkhole was identified in early 1995, nearly three years later. Their position directly over the edges of the SPR oil storage chamber, a former room-and-pillar salt mine, caused apprehension. The association of sinkholes over mines is well established and this occurrence suggested that groundwater influx undoubtedly was causing salt dissolution at shallow depth, and associated collapse of soil at the surface. Leaks of groundwater into other salt mines in Louisiana and elsewhere led to flooding and eventual abandonment (Coates et al., 1981). Consequently, much attention has been and continues to be given to characterizing these sinkholes, and to mitigation. This paper summarizes current engineering geologic concepts, and briefly describes diagnostic and risk mitigation efforts being conducted by the US Department of Energy, operator of the Strategic Petroleum Reserve (Bauer et al., 1994).

  1. Audit Report on "Management Controls over the Department of Energy's American Recovery and Reinvestment Act - Louisiana State Energy Program"

    SciTech Connect (OSTI)

    2010-05-01

    The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories and the District of Columbia (states) to support their energy priorities through the State Energy Program (SEP). Federal funding is based on a grant formula that considers the population and energy consumption in each state, and amounted to $25 million for Fiscal Year (FY) 2009. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP by authorizing an additional $3.1 billion to states using the existing grant formula. EERE made grant awards to states after reviewing plans that summarize the activities states will undertake to achieve SEP Recovery Act objectives, including preserving and creating jobs; saving energy; increasing renewable energy sources; and, reducing greenhouse gas emissions. EERE program guidance emphasizes that states are responsible for administering SEP within each state, and requires each state to implement internal controls over the use of Recovery Act funds. The State of Louisiana received $71.6 million in SEP Recovery Act funds; a 164-fold increase over its FY 2009 SEP grant of $437,000. As part of the Office of Inspector General's strategy for reviewing the Department's implementation of the Recovery Act, we initiated this review to determine whether the Louisiana State Energy Office had internal controls in place to efficiently and effectively administer Recovery Act funds provided for its SEP program. Louisiana developed a strategy for SEP Recovery Act funding that focused on improving energy efficiency in state buildings, housing and small businesses; increasing Energy Star appliance rebates; and, expanding the use of alternative fuels and renewable energy. Due to a statewide hiring freeze, Louisiana outsourced management of the majority of its projects ($63.3 million) to one general contractor. Louisiana plans to internally manage one project, Education and Outreach ($2

  2. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect (OSTI)

    Pilger, R.H. Jr.

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  3. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared an EIS that analyzes the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near Lake Charles, Louisiana. The EIS also analyzes the potential environmental impacts of constructing and operating the proposed Lake Charles Expansion Project, which would reconfigure an existing pipeline system to serve the LNG terminal site. DOE was a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  4. Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data

  5. Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,309 1990's 16,889 15,271 13,512 15,569 12,958 14,169 15,295 14,958 18,399 16,717 2000's 15,700 16,350 17,100 16,939 20,734 18,838 17,459 18,145 19,213 18,860 2010's 19,137 21,235 19,792 19,528 19,251 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.24 3.56 4.30 3.47 2.36 2.99 3.53 5.57 4.75 4.47 2000's 5.74 8.11 5.57 7.64 9.73 13.83 12.59 12.00 13.02 8.58 2010's 11.14 10.58 10.53 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  7. Geopressured-geothermal well activities in Louisiana. Annual report, 1 January 1991--31 December 1991

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  8. Energy Engineering Analysis Program - Fort Polk, Louisiana. Executive summary. Final report

    SciTech Connect (OSTI)

    1986-03-01

    The CRS Group, Inc. is pleased to submit this Final Report covering Increments A, B, E, and G of the Energy Engineering Analysis Program (EEAP) for Fort Polk, Louisiana work accomplished under Contract DACA63-80-C-0166 plus modifications with the Fort Worth District, Corps of Engineers. The work presented in these volumes presents the results in which 32 energy conserving measures (ECM`s) have been investigated for ECIP potential for Increments A (existing buildings including Family Housing) and B (existing utilities and energy distribution systems and a centralized Energy Monitoring and Control System-EMCS). Additionally, five scenarios for implementation of a Central Energy Plant (CEP) were studied under Increment E and an analysis of using waste POL as a fuel source in three scenarios was made. Four projects were analyzed under Increment G to identify additional energy savings.

  9. Turtle Bayou - 1936 to 1983: case history of a major gas field in south Louisiana

    SciTech Connect (OSTI)

    Cronquist, C.

    1983-01-01

    Turtle Bayou field, located in the middle Miocene trend in S. Louisiana, is nearing the end of a productive life which spans over 30 yr. Discovered by Shell Oil Co. in 1949 after unsuccessful attempts by 2 other majors, the field is a typical, low relief, moderately faulted Gulf Coast structure, probably associated with deep salt movement. The productive interval includes 22 separate gas-bearing sands in a regressive sequence of sands and shales from approx. 6500 to 12,000 ft. Now estimated to have contained ca 1.2 trillion scf of gas in place, cumulative production through 1982 was 702 billion scf. Cumulative condensate-gas ratio has been 20 bbl/million. Recovery mechanisms in individual reservoirs include strong bottom water drive, partial edgewater drive, and pressure depletion. Recovery efficiencies in major reservoirs range from 40 to 75% of original gas in place.

  10. Louisiana Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Louisiana Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 18 16 1990's 0 233 3,552 479 505 464 451 1,048 1,287 1,528 2000's 948 861 251 299 344 342 350 487 362 1,902 2010's 4,367 4,260 5,778 6,434 6,581 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    SciTech Connect (OSTI)

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

  12. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect (OSTI)

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  13. ,"Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone Number 3 Zone 3A Zone 3B Zone...

  15. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  16. Technical/economical feasibility study for the Apex Oil Company alcohol/gasohol plant near Carville, Louisiana

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The results of a study conducted to determine the feasibility of constructing and operating a 33 million gallon-per-year ethanol plant in Carville, Louisiana are presented. Under current market conditions the 33 million gallon per year ethanol plant under consideration by Apex at its Carville, Louisiana site does not appear to be attractive at this time. There are five major factors which contribute to this outcome: (1) the market for ethanol/gasohol is not developed to the point where there is sufficient demand to assure full plant utilization in the near future; (2) the price required to provide a reasonable rate of return is 80 cents per barrel above the current estimated market clearing price of $1.50 per gallon; (3) the capital costs to construct a plant of this size has increased from $30 million at the onset of the study to $86 million; (4) Louisiana gasohol blending incentives cannot be assured since there is insufficient local feedstock production to meet the minimum import requirements; and (5) lack of participation by major oil companies in the gasohol program limits both the distribution and potential retail outlets for the product. Apex plans to place the project on hold pending satisfactory resolution of these items.

  17. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Zeitoun, A.

    1994-08-01

    This two-volume Final Environmental Impact Statement (FEIS) was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA). Volume 1 contains the assessment of the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana, by Louisiana Energy Services, LP. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are construction, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning (D&D)- of the site. Issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment. The FEIS supports issuance of a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility.

  18. Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia

    SciTech Connect (OSTI)

    Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

    2011-01-01

    Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities

  19. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0

  20. Health-hazard evaluation report HETA 91-338-2187, IMC Corporation, Sterlington, Louisiana

    SciTech Connect (OSTI)

    Kiefer, M.; Tepper, A.; Miller, R.

    1992-03-01

    In response to a request from an authorized representative of the Construction and General Laborers Union, Local 762, an investigation was made of potential hazards for asbestos abatement contract workers at IMC Corporation, (SIC-2869), Sterlington, Louisiana. The IMC facility consisted of two ammonia facilities, a nitroparaffin (NP) facility, and a NP derivatives facility. An explosion occurred on May 1, 1991 in the NP facility, caused by a faulty compressor. During the post explosion renovation activities, an asbestos abatement firm was working on site due to the large amounts of asbestos (1332214) insulation which had been disturbed by the explosion. Records indicated that several workers complained of ill effects and odors on June 17 and 19. The incidents were investigated but no chemical exposure explanation was found. Routine and complaint based industrial hygiene monitoring was primarily area monitoring and not substance specific. Of the 25 workers interviewed, 22 had symptoms they felt were related to their work at IMC. The symptoms included those of the upper respiratory tract, central nervous system, and gastrointestinal system. The most common included diarrhea, nausea, headache, dizziness, and cough, each experienced by significantly more than half the subjects. The symptoms could not be linked conclusively to any specific chemical release, job task, work location, or food or drink source.