Sample records for lotus format energy

  1. Lotus Energy Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee, Oklahoma: Energy Resources Jump to:Lotus

  2. LotusWorks | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1LotusWorks Jump to:

  3. U-198: IBM Lotus Expeditor Multiple Vulnerabilities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| Department ofServicesPointsInjection198: IBM Lotus

  4. Lotus Systems GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuanInformationLoremo AG Jump to:LosLotus

  5. Lotus Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxing Wind Power Investment Co Ltd

  6. V-118: IBM Lotus Domino Multiple Vulnerabilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivileges | Department

  7. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

  8. Step- vs. kink-formation energies on Pt(111)

    SciTech Connect (OSTI)

    FEIBELMAN,PETER J.

    2000-05-01T23:59:59.000Z

    Ab-initio kink-formation energies are about 0.25 and 0.18 eV on the (100)- and (111)-microfacet steps of Pt(111), while the sum of the step-formation energies is 0.75 eV/atom. These results imply a specific ratio of formation energies for the two step types, namely 1.14, in excellent agreement with experiment. If kink-formation costs the same energy on the two step types, an inference recently drawn from scanning probe observations of step wandering, this ratio ought to be 1.

  9. RESEARCH Open Access Genome of the long-living sacred lotus (Nelumbo

    E-Print Network [OSTI]

    Downie, Stephen R.

    and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes-cleaning industrial paint, Lotusan. Results: The genome of the China Antique variety of the sacred lotus was sequenced plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins

  10. Help:Formatting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei Sungrow Power SupplyProvidingsearches

  11. Help:FormattingResults | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei Sungrow Power SupplyProvidingsearchesHelp

  12. Tribal Utility Formation Forum | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success| Department ofServicesPoints of ContactsUtility

  13. Category:Formatting Templates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jumppage?Elkins,FOAFFlow

  14. Property:DataFormat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to: navigation, searchto Computational Models

  15. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs ValleyCity,ForkedAdd a MarineAdd

  16. Use of Lotus Notes to manage environmental activities

    SciTech Connect (OSTI)

    Heigel, G.K.

    1999-07-01T23:59:59.000Z

    Whether you have a large dedicated environmental staff or a small multi-tasking environmental staff, environmental regulations and their requirements are on the rise. With this trend, it is critical to systematically identify these requirements and track them to completion. Honda has developed a Lotus Notes based system with various forms and views to identify responsibility, time frames and procedures to complete these activities. Recurring activities are automatically regenerated to show up as a new activity with a new completion date. It allows an environmental staff to review activities to be done, prioritize work on them and identify completed activities. With the various sorting criteria for each action item, management can easily review regulatory compliance issues, their status and provide the ability to plan for their timely completion. This system is intended to provide ongoing support to environmental staffs on ongoing activities and easy access to procedures relating to activities. Honda also has a library database to house environmental procedures, as well as regulatory guidance to aid in regulatory interpretations. The Lotus Notes system allows the activities identified above to link to the library as a direct reference. This system is designed to provide a higher level of confidence that a company is meeting all its requirements on an ongoing basis, and giving management a tool to get a clear picture of the status of regulatory compliance activities.

  17. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site...

    Energy Savers [EERE]

    to be executed by the target user's browser. The code will originate from the site running the IBM Lotus iNotes software and will run in the security context of that site....

  18. Crystal Structure Representations for Machine Learning Models of Formation Energies

    E-Print Network [OSTI]

    Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard

    2015-01-01T23:59:59.000Z

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...

  19. Structure formation in inhomogeneous Early Dark Energy models

    SciTech Connect (OSTI)

    Batista, R.C. [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, Rio Grande do Norte (Brazil); Pace, F., E-mail: rbatista@ect.ufrn.br, E-mail: francesco.pace@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)

    2013-06-01T23:59:59.000Z

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ?CDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on ?{sub c} parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ?CDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ?CDM model than its homogeneous counterparts.

  20. Energy Secretary Moniz Announces Formation of Nuclear Energy...

    Energy Savers [EERE]

    of Nuclear Energy (NE) in October 2013, which focused on topics such as the management of spent nuclear fuel and high-level radioactive waste, to include transportation and related...

  1. 752 MRS BULLETIN VOLUME 33 AUGUST 2008 www.mrs.org/bulletin Recent experiments have revealed that the wax on the lotus leaf surface, by itself,

    E-Print Network [OSTI]

    texture" (that is, a multivalued surface topography) on the surface of the lotus leaf. We exploit revealed that the wax on the lotus leaf surface, by itself, is weakly hydrophilic, even though the lotus leaf is known to be superhydrophobic. Conventional understanding suggests that a surface of such waxy

  2. Energy Secretary Moniz Announces Formation of Nuclear Energy Tribal Working

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014 Outdoor solar|| Department ofGroup

  3. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Abstract: In this study, porous silicon...

  4. Structure formation in modified gravity models alternative to dark energy

    E-Print Network [OSTI]

    Kazuya Koyama

    2006-01-10T23:59:59.000Z

    We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \

  5. Structure formation in modified gravity models alternative to dark energy

    E-Print Network [OSTI]

    Koyama, K

    2006-01-01T23:59:59.000Z

    We study structure formation in phenomenological models in which the Friedmann equation receives a correction of the form $H^{\\alpha}/r_c^{2-\\alpha}$, which realize an accelerated expansion without dark energy. In order to address structure formation in these model, we construct simple covariant gravitational equations which give the modified Friedmann equation with $\\alpha=2/n$ where $n$ is an integer. For $n=2$, the underlying theory is known as a 5D braneworld model (the DGP model). Thus the models interpolate between the DGP model ($n=2, \\alpha=1$) and the LCDM model in general relativity ($n \\to \\infty, \\alpha \\to 0$). Using the covariant equations, cosmological perturbations are analyzed. It is shown that in order to satisfy the Bianchi identity at a perturbative level, we need to introduce a correction term $E_{\\mu \

  6. First-principles calculations of step formation energies and step interactions on TiN(001)

    E-Print Network [OSTI]

    Ciobanu, Cristian

    First-principles calculations of step formation energies and step interactions on TiN(001) Cristian the formation energies and repulsive interactions of monatomic steps on the TiN(001) surface, using den- sity studies on different aspects related to thin film growth on TiN surfaces, few atomistic studies have been

  7. Relation between thermal expansion and interstitial formation energy in pure Fe and Cr

    E-Print Network [OSTI]

    Relation between thermal expansion and interstitial formation energy in pure Fe and Cr Janne potentials give lower interstitial formation energy, but predict too small thermal expansion. We also show University, Uppsala, Sweden Abstract By fitting a potential of modified Finnis­Sinclair type to the thermal

  8. Effect of elastic strain energy on self-organized pattern formation

    E-Print Network [OSTI]

    Pan, Ernie

    Effect of elastic strain energy on self-organized pattern formation E Pan1*, R Zhu1 , and P W Chung2 1 Department of Civil Engineering, University of Akron, Akron, Ohio, USA 2 US Army Research in the calculation of the binding energy among atoms. The elastic strain energy is accurately evaluated

  9. Seasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian Ocean

    E-Print Network [OSTI]

    Qiu, Bo

    energy and exert profound impacts on large-scale ocean circulations. Satellite altimeter ob- servations- sociations with the large-scale oceanic circulations and the climate. The global eddy kinetic energy (EKESeasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian

  10. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds

    E-Print Network [OSTI]

    Ceder, Gerbrand

    We compare the accuracy of conventional semilocal density functional theory (DFT), the DFT+U method, and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional for structural parameters, redox reaction energies, and formation ...

  11. Rapid Gas Hydrate Formation Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cureEnergy Storage Energy

  12. Gibbs Free Energy of Formation of Zircon from Measurement of Solubility in H2O

    E-Print Network [OSTI]

    Manning, Craig

    Gibbs Free Energy of Formation of Zircon from Measurement of Solubility in H2O Robert C. Newton, the data constrain the Gibbs free energy of zircon from its oxides at 298 K, 105 Pa, to be À19.3071.16 k

  13. 1st-Principles Step- and Kink-Formation Energies on Cu(111)

    SciTech Connect (OSTI)

    Feibelman, Peter J.

    1999-05-26T23:59:59.000Z

    In rough agreement with experimental values derived from Cu island shapes vs. temperature, ab-initio calculations yield formation energies of 0.27 and 0.26 eV/ step-edge-atom for (100)- and (111)-micro facet steps on Cu(lll), and 0.09 and 0.12 eV per kink in those steps. Comparison to ab-initio results for Al and Pt shows that as a rule, the average formation energy of straight steps on a close-packed metal surface equals -7% of the metal's cohesive energy.

  14. Formation Micro-Imager Logs (FMI) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana,dataset name below

  15. Geologic Study of the Coso Formation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002) |

  16. Category:Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.png

  17. Hydride Rim Formation in Unirradiated Zircaloy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, Protection |purpose of this

  18. Energy and Financial Markets Overview: Crude Oil Price Formation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15 1

  19. Energy and Financial Markets Overview: Crude Oil Price Formation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15 1Richard Newell,

  20. A study of vorticity formation in high energy nuclear collisions

    E-Print Network [OSTI]

    Becattini, F; Rolando, V; Beraudo, A; Del Zanna, L; De Pace, A; Nardi, M; Pagliara, G; Chandra, V

    2015-01-01T23:59:59.000Z

    We present a quantitative study of vorticity formation in peripheral ultrarelativistic heavy ion collisions at sqrt(s_NN) = 200 GeV by using the ECHO-QGP numerical code, implementing relativistic dissipative hydrodynamics in the causal Israel-Stewart framework in 3+1 dimensions with an initial Bjorken flow profile. We consider and discuss different definitions of vorticity which are relevant in relativistic hydrodynamics. After demonstrating the excellent capabilities of our code, we show that, with the initial conditions needed to reproduce the measured directed flow in peripheral collisions corresponding to an average impact parameter b=11.6 fm and with the Bjorken flow profile for a viscous Quark Gluon Plasma with eta/s=0.16 fixed, a vorticity of up to 0.05 c/fm can develop at freezeout. The ensuing polarization of Lambda baryons is at most of the order of 1% at midrapidity. We show that the amount of developed directed flow is sensitive to both the initial angular momentum of the plasma and its viscosity.

  1. A model for materials scientists: Water runs off the surface of a lotus leaf without a trace. Researchers

    E-Print Network [OSTI]

    on the water, not only dry but, most importantly, clean. As the water runs off, it rinses away the dirt, whichA model for materials scientists: Water runs off the surface of a lotus leaf without a trace. Researchers in Mainz use this concept to develop coatings that repel both water and oil. #12;TEXT ROLAND

  2. Restoring Superhydrophobicity of Lotus Leaves with Vibration-Induced Dewetting Jonathan B. Boreyko and Chuan-Hua Chen*

    E-Print Network [OSTI]

    Chen, Chuan-Hua

    Restoring Superhydrophobicity of Lotus Leaves with Vibration-Induced Dewetting Jonathan B. Boreyko to achieve antidew superhydrophobicity. DOI: 10.1103/PhysRevLett.103.174502 PACS numbers: 47.55.dr Antidew superhydrophobicity is a highly desired prop- erty for water-repellent materials [1]. When vapor con- denses

  3. Ab-Initio Step- and Kink-Formation Energies on Pb(111)

    SciTech Connect (OSTI)

    FEIBELMAN,PETER J.

    2000-07-20T23:59:59.000Z

    Ab-initio formation energies for (100)- and (111)-microfacet steps on Pb(111) are in satisfactory agreement with measured values, given that these values are known only as well as the Pb(111) surface energy; the calculated step-energy ratio, 1.29, is within {approximately}8% of experiment. In contrast, calculated kink-formation energies, 41 and 60 meV for the two step types, are 40--50% below published experimental values derived from STM images. The discrepancy results from interpreting the images with a step-stiffness vs. kink-energy relation appropriate to (100) but not (111) surfaces. Good agreement is found when the step-stiffness data are reinterpreted, taking proper account of the trigonal symmetry of Pb(111).

  4. PIA - Savannah River Operations Office Lotus Domino/Notes System |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMakeEducation Programs BusinessRECORDS

  5. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike; Detwiler, Russell L; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13T23:59:59.000Z

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  6. Influence of Cohesive Energy and Chain Stiffness on Polymer Glass Formation

    E-Print Network [OSTI]

    Wen-Sheng Xu; Karl F. Freed

    2014-09-24T23:59:59.000Z

    The generalized entropy theory is applied to assess the joint influence of the microscopic cohesive energy and chain stiffness on glass formation in polymer melts using a minimal model containing a single bending energy and a single (monomer averaged) nearest neighbor van der Waals energy. The analysis focuses on the combined impact of the microscopic cohesive energy and chain stiffness on the magnitudes of the isobaric fragility parameter $m_P$ and the glass transition temperature $T_g$. The computations imply that polymers with rigid structures and weak nearest neighbor interactions are the most fragile, while $T_g$ becomes larger when the chains are stiffer and/or nearest neighbor interactions are stronger. Two simple fitting formulas summarize the computations describing the dependence of $m_P$ and $T_g$ on the microscopic cohesive and bending energies. The consideration of the combined influence of the microscopic cohesive and bending energies leads to the identification of some important design concepts, such as iso-fragility and iso-$T_g$ lines, where, for instance, iso-fragility lines are contours with constant $m_P$ but variable $T_g$. Several thermodynamic properties are found to remain invariant along the iso-fragility lines, while no special characteristics are detected along the iso-$T_g$ lines. Our analysis supports the widely held view that fragility provides more fundamental insight for the description of glass formation than $T_g$.

  7. Free energy of cluster formation and a new scaling relation for the nucleation rate

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Diemand, Jürg; Angélil, Raymond [Institute for Computational Science, University of Zürich, 8057 Zürich (Switzerland)] [Institute for Computational Science, University of Zürich, 8057 Zürich (Switzerland)

    2014-05-21T23:59:59.000Z

    Recent very large molecular dynamics simulations of homogeneous nucleation with (1 ? 8) ×?10{sup 9} Lennard-Jones atoms [J. Diemand, R. Angélil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. 139, 074309 (2013)] allow us to accurately determine the formation free energy of clusters over a wide range of cluster sizes. This is now possible because such large simulations allow for very precise measurements of the cluster size distribution in the steady state nucleation regime. The peaks of the free energy curves give critical cluster sizes, which agree well with independent estimates based on the nucleation theorem. Using these results, we derive an analytical formula and a new scaling relation for nucleation rates: ln?J{sup ?}/? is scaled by ln?S/?, where the supersaturation ratio is S, ? is the dimensionless surface energy, and J{sup ?} is a dimensionless nucleation rate. This relation can be derived using the free energy of cluster formation at equilibrium which corresponds to the surface energy required to form the vapor-liquid interface. At low temperatures (below the triple point), we find that the surface energy divided by that of the classical nucleation theory does not depend on temperature, which leads to the scaling relation and implies a constant, positive Tolman length equal to half of the mean inter-particle separation in the liquid phase.

  8. New Classes of Cosmic Energy and Primordial Black-Hole Formation

    E-Print Network [OSTI]

    K. Ichiki; M. Orito; T. Kajino

    2003-06-01T23:59:59.000Z

    It has recently been suggested that the formation of horizon-size primordial black hole (PBH) from pre-existing density fluctuations is effective during the cosmic QCD phase transition. In this Letter we discuss the dependence of PBH formation on effective relativistic degrees of freedom, $g_{\\rm eff}$ during the cosmic QCD phase transition. Our finding is important in the light of recent cosmological arguments of several new classes of cosmic energy that appear from universal neutrino degeneracy, quintessential inflation, and dark radiation in brane world cosmology. Extra-energy component from the standard value in these new cosmological theories is represented as an effective radiation in terms of $g_{\\rm eff}$. We conclude that the PBH formation during QCD phase transition becomes more efficient if negative extra-component of the cosmic energy is allowed because of the increase of the duration of the QCD phase transition, which leads to smaller mass scale of PBHs. This suggests larger probability of finding more PBHs if the dark radiation exists as allowed in the brane world cosmology.

  9. FMI-HD High-Definition Formation Microimager | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HD High-Definition Formation

  10. Alternating minimal energy approach to ODEs and conservation laws in tensor product formats

    E-Print Network [OSTI]

    Dolgov, Sergey V

    2014-01-01T23:59:59.000Z

    We propose an algorithm for solution of high-dimensional evolutionary equations (ODEs and discretized time-dependent PDEs) in tensor product formats. The solution must admit an approximation in a low-rank separation of variables framework, and the right-hand side of the ODE (for example, a matrix) must be computable in the same low-rank format at a given time point. The time derivative is discretized via the Chebyshev spectral scheme, and the solution is sought simultaneously for all time points from the global space-time linear system. To compute the solution adaptively in the tensor format, we employ the Alternating Minimal Energy algorithm, the DMRG-flavored alternating iterative technique. Besides, we address the problem of maintaining system invariants inside the approximate tensor product scheme. We show how the conservation of a linear function, defined by a vector given in the low-rank format, or the second norm of the solution may be accurately and elegantly incorporated into the tensor product metho...

  11. Vehicle Technologies Office Merit Review 2014: Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    Presentation given by XALT Energy LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of large format...

  12. Tritium assay of Li sub 2 O pellets in the LBM/LOTUS experiments

    SciTech Connect (OSTI)

    Quanci, J.; Azam, S.; Bertone, P.

    1986-01-01T23:59:59.000Z

    One of the objectives of the Lithium Blanket Module (LBM) program is to test the ability of advanced neutronics codes to model the tritium breeding characteristics of a fusion blanket exposed to a toroidal fusion neutron source. The LBM consists of over 20,000 cylindrical lithium oxide pellets and numerous diagnostic pellets and wafers. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a Haefely sealed neutron generator that gives a point deuterium-tritium neutron source up to 5 {times} 10{sup 12} 14-MeV n/s. Both Princeton Plasma Physics Laboratory (PPL) and EPFL assayed the tritium bred at various positions in the LBM. EPFL employed a dissolution technique while PPL recovered the tritium by a thermal extraction method. EPFL uses 0.38-g, 75% TD, lithium oxide diagnostic wafers to evaluate the tritium bred in the LBM. PPPL employs a thermal extraction method to determine the tritium bred in lithium oxide samples. In the initial experiments, diagnostic pellets and wafers were placed at five locations in the LBM central removable test rod at distances of 3, 9, 21, 36, and 48 cm from the front face of the module. The two sets of data for the tritium bred in the LBM along its centerline as a function of distance from the front face of the module were compared with each other, and with the predictions of two-dimensional neutronics codes. 1 ref.

  13. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOE Patents [OSTI]

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08T23:59:59.000Z

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  14. Jet-fluid string formation and decay in high-energy heavy-ion collisions

    E-Print Network [OSTI]

    M. Isse; T. Hirano; R. Mizukawa; A. Ohnishi; K. Yoshino; Y. Nara

    2007-02-22T23:59:59.000Z

    We propose a new hadronization mechanism, jet-fluid string (JFS) formation and decay, to understand observables in intermediate to high-$p_{T}$ regions comprehensively. In the JFS model, hard partons produced in jet lose their energy in traversing the QGP fluid, which is described by fully three-dimensional hydrodynamic simulations. When a jet parton escapes from the QGP fluid, it picks up a partner parton from a fluid and forms a color singlet string, then it decays to hadrons. We find that high-$p_T$ $v_2$ values in JFS are about two times larger than in the independent fragmentation model.

  15. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect (OSTI)

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30T23:59:59.000Z

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  16. Energy Efficient ClusterFormation in WirelessSensor Malka N.Halgamuge,*SiddeswaraMayura Guru and Andrew Jennings

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    Energy Efficient ClusterFormation in WirelessSensor Networks Malka N the amount of bandwidth per user and innovative design techniques and protocols to increase energy efficiency.Halgamuge,*SiddeswaraMayura Guru and Andrew Jennings Schoolof Electrical and Computer Systems Engineering,RMIT University,Melbourne,Australia

  17. Scale-dependent Energy Transfer Rate as a Tracer for Star Formation in Cosmological N-Body Simulations

    E-Print Network [OSTI]

    M. Hoeft; J. P. Muecket; P. Heide

    2002-01-14T23:59:59.000Z

    We investigate the energy release due to the large-scale structure formation and the subsequent transfer of energy from larger to smaller scales. We calculate the power spectra for the large-scale velocity field and show that the coupling of modes results in a transfer of power predominately from larger to smaller scales. We use the concept of cumulative energy for calculating which energy amount is deposited into the small scales during the cosmological structure evolution. To estimate the contribution due to the gravitational interaction only we perform our investigations by means of dark matter simulations. The global mean of the energy transfer increases with redshift $\\sim (z+1)^{3}$; this can be traced back to the similar evolution of the merging rates of dark matter halos. The global mean energy transfer can be decomposed into its local contributions, which allows to determine the energy injection per mass into a local volume. The obtained energy injection rates are at least comparable with other energy sources driving the interstellar turbulence as, e.g. by the supernova kinetic feedback. On that basis we make the crude assumption that processes causing this energy transfer from large to small scales, e.g. the merging of halos, may contribute substantially to drive the ISM turbulence which may eventually result in star formation on much smaller scales. We propose that the ratio of the local energy injection rate to the energy already stored within small-scale motions is a rough measure for the probability of the local star formation efficiency applicable within cosmological large-scale n-body simulations.

  18. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29T23:59:59.000Z

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  19. Inter-Machine Comparison of the Termination Phase and Energy Conversion in Tokamak Disruptions with Runaway Current Plateau Formation and Implications for ITER

    E-Print Network [OSTI]

    Inter-Machine Comparison of the Termination Phase and Energy Conversion in Tokamak Disruptions with Runaway Current Plateau Formation and Implications for ITER

  20. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    SciTech Connect (OSTI)

    Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Burgess, D.; Clemens, A. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)] [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Ciardi, A. [LERMA, Observatoire de Paris and École Normale Supérieure Université Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France)] [LERMA, Observatoire de Paris and École Normale Supérieure Université Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France); Sheng, L. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Yuan, J. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); and others

    2014-05-15T23:59:59.000Z

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M}???50, M{sub S}???5, M{sub A}???8, V{sub flow}???100?km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ?c/?{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

  1. Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2011-10-01T23:59:59.000Z

    An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

  2. FIRST-PRINCIPLES CALCULATIONS OF CHARGE STATES AND FORMATION ENERGIES OF Mg, Al, and Be TRANSMUTANTS IN 3C-SiC

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Setyawan, Wahyu; Jiang, Weilin; Henager, Charles H.; Kurtz, Richard J.

    2014-08-28T23:59:59.000Z

    The Vienna Ab-initio Simulation Package (VASP) is employed to calculate charge states and the formation energies of Mg, Al and Be transmutants at different lattice sites in 3C-SiC. The results provide important information on the dependence of the most stable charge state and formation energy of Mg, Al, Be and vacancies on electron potentials.

  3. Tribal Leader Forum on Tribal Energy and Economic Development: Tribal Utility Formation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) Office of Indian Energy is hosting the 11th in a series of planned strategic energy development forums for tribal leaders and interested staff on “Tribal Energy...

  4. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    E-Print Network [OSTI]

    Lianyi He

    2014-11-26T23:59:59.000Z

    We investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.

  5. Loudon County, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole,Lotsee, Oklahoma: Energy Resources Jump to:LotusLoudon

  6. Gibbs and Helmholtz energies of formation of sI clathrate hydrates from CO$_2$, CH$_4$ and water

    E-Print Network [OSTI]

    K. S. Glavatskiy; T. J. H. Vlugt; S. Kjelstrup

    2013-07-26T23:59:59.000Z

    We determine thermodynamic stability conditions in terms of Helmholtz and Gibbs energies for sI clathrate hydrates with CH$_4$ and CO$_2$ at 278 K. Helmholtz energies are relevant for processing from porous rocks (constant volume), while Gibbs energies are relevant for processing from layers on the ocean floor (constant pressure). We define three steps leading to hydrate formation, and find Helmholtz energy differences from molecular simulations for two of them using grand-canonical Monte Carlo simulations at constant temperature and volume; while the third step was calculated from literature data. The Gibbs energy change for the same steps are also determined. From the variations in the total Helmholtz and Gibbs energies we suggest thermodynamic paths for exchange of CH$_4$ by CO$_2$ in the isothermal hydrate, for constant volume or pressure, respectively. We show how these paths for the mixed hydrate can be understood from single-component occupancy isotherms, where CO$_2$, but not CH$_4$, can distinguish between large and small cages. The strong preference for CH$_4$ for a range of compositions can be explained by these.

  7. Understanding the Fundamental Properties of Dark Matter and Dark Energy in Structure Formation and Cosmology

    SciTech Connect (OSTI)

    Ellis, Richard S.

    2012-09-30T23:59:59.000Z

    The program was concerned with developing and verifying the validity of observational methods for constraining the properties of dark matter and dark energy in the Universe.

  8. Formation of Superdense Hadronic Matter in High-Energy Heavy-Ion Collisions

    E-Print Network [OSTI]

    Li, Ba0-An; Ko, Che Ming.

    1995-01-01T23:59:59.000Z

    We present the detail of a newly developed relativistic transport model (ART 1.0) for high energy heavy-ion collisions. Using this model, we first study the general collision dynamics between heavy ions at the AGS energies. We then show...

  9. Formation of light exotic nuclei in low-energy multinucleon transfer reactions

    E-Print Network [OSTI]

    V. I. Zagrebaev; B. Fornal; S. Leoni; Walter Greiner

    2014-04-17T23:59:59.000Z

    Low-energy multinucleon transfer reactions are shown to be very effective tool for the production and spectroscopic study of light exotic nuclei. The corresponding cross sections are found to be significantly larger as compared with high energy fragmentation reactions. Several optimal reactions for the production of extremely neutron rich isotopes of elements with Z=6-14 are proposed.

  10. Galaxy clusters and structure formation in quintessence versus phantom dark energy universe

    E-Print Network [OSTI]

    Zacharias Roupas; Minos Axenides; George Georgiou; Emmanuel N. Saridakis

    2014-04-13T23:59:59.000Z

    The self-gravitating gas in the Newtonian limit is studied in the presence of dark energy with a linear and constant equation of state. Entropy extremization associates to the isothermal Boltzmann distribution an effective density that includes `dark energy particles', which either strengthen or weaken mutual gravitational attraction, in case of quintessence or phantom dark energy, respectively, that satisfy a linear equation of state. Stability is studied for microcanonical (fixed energy) and canonical (fixed temperature) ensembles. Compared to the previously studied cosmological constant case, in the present work it is found that quintessence increases, while phantom dark energy decreases the instability domain under gravitational collapse. Thus, structures are more easily formed in a quintessence rather than in a phantom dominated Universe. Assuming that galaxy clusters are spherical, nearly isothermal and in hydrostatic equilibrium we find that dark energy with a linear and constant equation of state, for fixed radius, mass and temperature, steepens their total density profile. In case of a cosmological constant, this effect accounts for a 1.5% increase in the density contrast, that is the center to edge density ratio of the cluster. We also propose a method to constrain phantom dark energy.

  11. Age of the Coso Formation Inyo County California | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam, Massachusetts: Energy Resources

  12. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | Department of Energy 9: IBM

  13. Spontaneous energy-barrier formation in an entropy-driven glassy dynamics

    E-Print Network [OSTI]

    Chiara Cammarota; Enzo Marinari

    2014-10-08T23:59:59.000Z

    The description of activated relaxation of glassy systems in the multidimensional configurational space is a long-standing open problem. We develop a phenomenological description of the out-of-equilibrium dynamics of a model with a rough potential energy landscape and we analyse it both numerically and analytically. The model provides an example of dynamics where typical relaxation channels go over finite potential energy barriers despite the presence of less-energy-demanding escaping paths in configurational space; we expect this phenomenon to be also relevant in the thermally activated regime of realistic models of glass-formers. In this case, we found that typical dynamical paths episodically reach an high fixed threshold energy unexpectedly giving rise to a simple thermally activated aging phenomenology. In order to unveil this peculiar aging behavior we introduce a novel description of the dynamics in terms of spontaneously emerging dynamical basins.

  14. Louisiana's 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1LotusWorks

  15. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01T23:59:59.000Z

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

  16. Soft X-ray irradiation of methanol ice: Formation of products as a function of photon energy

    SciTech Connect (OSTI)

    Chen, Y.-J.; Juang, K.-J.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Ciaravella, A.; Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy); Muñoz Caro, G. M.; Jiménez-Escobar, A., E-mail: aciaravella@astropa.unipa.it [Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain)

    2013-12-01T23:59:59.000Z

    Pure methanol ices have been irradiated with monochromatic soft X-rays of 300 and 550 eV close to the 1s resonance edges of C and O, respectively, and with a broadband spectrum (250-1200 eV). The infrared (IR) spectra of the irradiated ices show several new products of astrophysical interest such as CH{sub 2}OH, H{sub 2}CO, CH{sub 4}, HCOOH, HCOCH{sub 2}OH, CH{sub 3}COOH, CH{sub 3}OCH{sub 3}, HCOOCH{sub 3}, and (CH{sub 2}OH){sub 2}, as well as HCO, CO, and CO{sub 2}. The effect of X-rays is the result of the combined interactions of photons and electrons with the ice. A significant contribution to the formation and growth of new species in the CH{sub 3}OH ice irradiated with X-rays is given by secondary electrons, whose energy distribution depends on the energy of X-ray photons. Within a single experiment, the abundances of the new products increase with the absorbed energy. Monochromatic experiments show that product abundances also increase with the photon energy. However, the abundances per unit energy of newly formed species show a marked decrease in the broadband experiment as compared to irradiations with monochromatic photons, suggesting a possible regulatory role of the energy deposition rate. The number of new molecules produced per absorbed eV in the X-ray experiments has been compared to those obtained with electron and ultraviolet (UV) irradiation experiments.

  17. File:Minorpermforms format 8-30-04.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdfMFSA flowchart

  18. Development of Large Format Lithium Ion Cells with Higher Energy Density

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterialsDepartment of EnergyDie

  19. Mixture Formation in a Light-Duty Diesel Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergyAERMOD-PRIME,Department ofMixed

  20. The role of couplings in nuclear rainbow formation at energies far above the barrier

    SciTech Connect (OSTI)

    Pereira, D.; Linares, R. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Instituto de Fisica da Universidade Federal Fluminense, Rio de Janeiro, Niteroi, RJ (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); and others

    2012-10-20T23:59:59.000Z

    A study of the {sup 16}O+{sup 28}Si elastic and inelastic scattering is presented in the framework of Coupled Channel theory. The Sao Paulo Potential is used in the angular distribution calculations and compared with the existing data at 75 MeV bombarding energy. A nuclear rainbow pattern is predicted and becomes more clear above 100 MeV.

  1. Bose-Einstein correlations and thermal cluster formation in high-energy collisions

    E-Print Network [OSTI]

    Andrzej Bialas; Wojciech Florkowski; Kacper Zalewski

    2014-09-15T23:59:59.000Z

    The blast wave model is generalized to include the production of thermal clusters, as suggested by the apparent success of the statistical model of particle production at high energies. The formulae for the HBT correlation functions and the corresponding HBT radii are derived.

  2. Decentralised stable coalition formation among energy consumers in the smart grid

    E-Print Network [OSTI]

    Southampton, University of

    with complementary needs. To this ends, we present an agent-based Java simulation of a social network of energy. The amount of de- mand required on a continuous basis is usually carried by the baseload stations owing for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved. that exceed this baseload

  3. Shock waves in a Z-pinch and the formation of high energy density plasma

    SciTech Connect (OSTI)

    Rahman, H. U. [Magneto-Inertial Fusion Technologies Inc. (MIFTI), Irvine, California 92612 (United States) and Department of Physics, University of California Irvine, Irvine, California 92697 (United States); Wessel, F. J. [Department of Physics, University of California Irvine, Irvine California 92697 (United States); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States); Presura, R. [University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557-0208 (United States); Ellahi, Rahmat [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan) and Department of Mechanical Engineering, University of California Riverside, Riverside, California 92521 (United States); Shukla, P. K. [Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

    2012-12-15T23:59:59.000Z

    A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

  4. V-147: IBM Lotus Notes Mail Client Lets Remote Users Execute Java Applets |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivileges |VulnerabilitiesCode |Disclosure

  5. Chinese Religiosities: Afflictions of Modernity and State Formation

    E-Print Network [OSTI]

    Yang, Mayfair Mei-hui

    2008-01-01T23:59:59.000Z

    Teachings/Sect Baiyunguan White Cloud Daoist Monastery inWhite Lotus Society, the White Cloud Society, Maitreyanism,1936), the abbot of the White Cloud Monastery (Baiyunguan),

  6. Modulation of DNA loop lifetimes by the free energy of loop formation

    E-Print Network [OSTI]

    Chen, Yi-Ju; Mulligan, Peter; Spakowitz, Andrew J; Phillips, Rob

    2015-01-01T23:59:59.000Z

    Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, ...

  7. Energy Production in the Formation of a Finite Thickness Cosmic String

    E-Print Network [OSTI]

    I. Brevik; A. G. Frøseth

    1999-09-29T23:59:59.000Z

    The classical electromagnetic modes outside a long, straight, superconducting cosmic string are calculated, assuming the string to be surrounded by a superconducting cylindric surface of radius R. Thereafter, by use of a Bogoliubov-type argument, the electromagnetic energy W produced per unit length in the lowest two modes is calculated when the string is formed "suddenly". The essential new element in the present analysis as compared with prior work of Parker [Phys. Rev. Lett. {\\bf 59}, 1369 (1987)] and Brevik and Toverud [Phys. Rev. D {\\bf 51}, 691 (1995)], is that the radius {\\it a} of the string is assumed finite, thus necessitating Neumann functions to be included in the fundamental modes. We find that the theory is changed significantly: W is now strongly concentrated in the lowest mode $(m,s)=(0,1)$, whereas the proportionality $W \\propto (G\\mu /t)^2$ that is characteristic for zero-width strings is found in the next mode (1,1). Here G is the gravitational constant, $\\mu$ the string mass per unit length, and t the GUT time.

  8. Search for a signal on intermediate baryon systems formation in hadron-nuclear and nuclear-nuclear interactions at high energies

    E-Print Network [OSTI]

    Y. H. Huseynaliyev; M. K. Suleymanov; E. U. Khan; A. Kravchakova; S. Vokal

    2007-08-20T23:59:59.000Z

    We have analyzed the behavior of different characteristics of hadron-nuclear and nuclear-nuclear interactions as a function of centrality to get a signal on the formation of intermediate baryon systems. We observed that the data demonstrate the regime change and saturation. The angular distributions of slow particles exhibit some structure in the above mentioned reactions at low energy. We believe that the structure could be connected with the formation and decay of the percolation cluster. With increasing the mass of colliding nuclei, the structure starts to become weak and almost disappears ultimately. This shows that the number of secondary internuclear interactions increases with increasing the mass of the colliding nuclei. The latter could be a reason of the disintegration of any intermediate formations as well as clusters, which decrease their influence on the angular distribution of the emitted particles.

  9. Louisiana DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) Wind Farm Jump1LotusWorks Jump

  10. Triggered or Self-Regulated Star Formation within Intermediate Redshift Luminous Infrared Galaxies (I). Morphologies and Spatially Resolved Spectral Energy Distributions

    E-Print Network [OSTI]

    J. Melbourne; M. Ammons; S. A. Wright; A. Metevier; E. Steinbring; C. Max; D. C. Koo; J. E. Larkin; M. Barczys

    2008-01-07T23:59:59.000Z

    We imaged a set of 15 intermediate redshift (z~0.8) luminous infrared galaxies (LIRGs) with the Keck Laser Guide Star (LGS) AO facility. These galaxies were selected from the GOODS-S field, allowing us to combine the high spatial resolution HST optical (B, V, i, and z-bands) images with our near-infrared (K'-band) images to study the LIRG morphologies and spatially resolved spectral energy distributions (SEDs). Two thirds of the LIRGs are disk galaxies, with only one third showing some evidence for interactions, minor, or major mergers. In contrast with local LIRG disks (which are primarily barred systems), only 10% of the LIRG disks in our sample contain a prominent bar. While the optical bands tend to show significant point-like substructure, indicating distributed star formation, the AO K-band images tend to be smooth. The SEDs of the LIRGs are consistent with distributed dusty star formation, as exhibited by optical to IR colors redder than allowed by old stellar populations alone. This effect is most pronounced in the galaxy cores, possibly indicating central star formation. We also observed a set of 11 intermediate redshift comparison galaxies, selected to be non-ellipticals with apparent K-band magnitudes comparable to the LIRGs. The "normal" (non-LIRG) systems tended to have lower optical luminosity, lower stellar mass, and more irregular morphology than the LIRGs. Half of the "normal" galaxies have SEDs consistent with intermediate aged stellar populations and minimal dust. The other half show evidence for some dusty star formation, usually concentrated in their cores. Our work suggests that the LIRG disk galaxies are similar to large disk systems today, undergoing self regulated star formation, only at 10 - 20 times higher rates. (Abridged)

  11. Parton showers as sources of energy-momentum deposition in the QGP and their implication for shockwave formation at RHIC and at the LHC

    E-Print Network [OSTI]

    R. B. Neufeld; Ivan Vitev

    2011-05-10T23:59:59.000Z

    We derive the distribution of energy and momentum transmitted from a primary fast parton and its medium-induced bremsstrahlung gluons to a thermalized quark-gluon plasma. Our calculation takes into account the important and thus far neglected effects of quantum interference between the resulting color currents. We use our result to obtain the rate at which energy is absorbed by the medium as a function of time and find that the rate is modified by the quantum interference between the primary parton and secondary gluons. This Landau-Pomeranchuk-Migdal type interference persists for time scales relevant to heavy ion phenomenology. We further couple the newly derived source of energy and momentum deposition to linearized hydrodynamics to obtain the bulk medium response to realistic parton propagation and splitting in the quark-gluon plasma. We find that because of the characteristic large angle in-medium gluon emission and the multiple sources of energy deposition in a parton shower, formation of well defined Mach cones by energetic jets in heavy ion reactions is not likely.

  12. Toxic Release Inventory (TRI), Puerto Rico, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Toxic Release Inventory (TRI), Kansas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  14. Toxic Release Inventory (TRI), Nebraska, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  15. Toxic Release Inventory (TRI), New Hampshire, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  16. Toxic Release Inventory (TRI), Montana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. Toxic Release Inventory (TRI), Utah, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Toxic Release Inventory (TRI), Texas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  19. Toxic Release Inventory (TRI), Idaho, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  20. Toxic Release Inventory (TRI), Rhode Island, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  1. Toxic Release Inventory (TRI), Florida, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  2. Toxic Release Inventory (TRI), Oklahoma, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  3. Toxic Release Inventory (TRI), West Virginia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  4. Toxic Release Inventory (TRI), South Dakota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  5. Toxic Release Inventory (TRI), Missouri, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  6. Toxic Release Inventory (TRI), New Mexico, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  7. Toxic Release Inventory (TRI), Washington, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  8. Toxic Release Inventory (TRI), Maryland, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  9. Toxic Release Inventory (TRI), Arizona, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  10. Toxic Release Inventory (TRI), Alaska, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  11. Toxic Release Inventory (TRI), Connecticut, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  12. Toxic Release Inventory (TRI), Pennsylvania, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Toxic Release Inventory (TRI), Minnesota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  14. Toxic Release Inventory (TRI), Iowa, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  15. Toxic Release Inventory (TRI), Oregon, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  16. Toxic Release Inventory (TRI), Georgia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. Toxic Release Inventory (TRI), Wyoming, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Toxic Release Inventory (TRI), North Dakota, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  19. Toxic Release Inventory (TRI), Arkansas, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  20. Toxic Release Inventory (TRI), Louisiana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  1. Toxic Release Inventory (TRI), Virgin Islands, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  2. Toxic Release Inventory (TRI), Indiana, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  3. Toxic Release Inventory (TRI), California, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  4. Toxic Release Inventory (TRI), New Jersey, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  5. Toxic Release Inventory (TRI), Vermont, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  6. Toxic Release Inventory (TRI), Wisconsin, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  7. Toxic Release Inventory (TRI), Maine, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  8. Toxic Release Inventory (TRI), Illinois, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  9. Toxic Release Inventory (TRI), Virginia, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  10. Toxic Release Inventory (TRI), Tennessee, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  11. Toxic Release Inventory (TRI), Massachusetts, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  12. Toxic Release Inventory (TRI), Ohio, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  13. Toxic Release Inventory (TRI), American Samoa, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  14. Toxic Release Inventory (TRI), Alabama, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  15. Toxic Release Inventory (TRI), Hawaii, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  16. Toxic Release Inventory (TRI), South Carolina, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  17. Toxic Release Inventory (TRI), Mississippi, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  18. Toxic Release Inventory (TRI), Delaware, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  19. Toxic Release Inventory (TRI), Michigan, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  20. Toxic Release Inventory (TRI), Kentucky, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  1. Toxic Release Inventory (TRI), Nevada, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  2. Toxic Release Inventory (TRI), North Carolina, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  3. Toxic Release Inventory (TRI), Colorado, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  4. Toxic Release Inventory (TRI), New York, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  5. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  6. Alternate Thesis & Dissertation Formats Manuscript Format Guidelines

    E-Print Network [OSTI]

    Mayfield, John

    Alternate Thesis & Dissertation Formats Manuscript Format Guidelines In addition to the standard format for dissertation/thesis, the Graduate School allows for the use of an alternative format. The manuscript format refers to the use of articles and/or book chapters to replace the standard dissertation

  7. Threshold displacement energies and defect formation energies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    value along three directions determined is 35.1, 35.4, 17.0 and 16.2 eV for yttrium, titanium, O48f and O8b atoms, respectively. Cation interstitials at vacant 8a sites, which are...

  8. Recovery Act: Site Characterization of Promising Geologic Formations...

    Broader source: Energy.gov (indexed) [DOE]

    Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the Office of Fossil Energy's (FE's) Coal Program...

  9. Utility Formation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohn

  10. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1991-01-01T23:59:59.000Z

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  11. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27T23:59:59.000Z

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  12. Geant4 simulation of the PSI LEM beam line: energy loss and muonium formation in thin foils and the impact of unmoderated muons on the $\\mu$SR spectrometer

    E-Print Network [OSTI]

    Khaw, Kim Siang; Crivelli, Paolo; Kirch, Klaus; Morenzoni, Elvezio; Salman, Zaher; Suter, Andreas; Prokscha, Thomas

    2015-01-01T23:59:59.000Z

    The PSI low-energy $\\mu$SR spectrometer is an instrument dedicated to muon spin rotation and relaxation measurements. Knowledge of the muon beam parameters such as spatial, kinetic energy and arrival-time distributions at the sample position are important ingredients to analyze the $\\mu$SR spectra. We present here the measured energy losses in the thin carbon foil of the muon start detector deduced from time-of-flight measurements. Muonium formation in the thin carbon foil (10 nm thickness) of the muon start detector also affect the measurable decay asymmetry and therefore need to be accounted for. Muonium formation and energy losses in the start detector, whose relevance increase with decreasing muon implantation energy ($<10$ keV), have been implemented in Geant4 Monte Carlo simulation to reproduce the measured time-of-flight spectra. Simulated and measured time-of-flight and beam spot agrees only if a small fraction of so called "unmoderated" muons which contaminate the mono-energetic muon beam of the $...

  13. On star formation rate and turbulent dissipation in galactic models

    E-Print Network [OSTI]

    E. P. Kurbatov

    2007-12-10T23:59:59.000Z

    The models of star formation function and of dissipation of turbulent energy of interstellar medium are proposed. In star formation model the feedback of supernovae is taken into account. It is shown that hierarchical scenario of galaxy formation with proposed models is able to explain the observable star formation pause in the Galaxy.

  14. Computer modeling and simulation of Black Warrior Basin formation: Annual report for the 1987--1988 SOMED (School of Mines and Energy Development) project year

    SciTech Connect (OSTI)

    Visscher, P.B.

    1988-01-01T23:59:59.000Z

    Computer simulations have been performed, aimed at achieving a better understanding of the geological and physical processes involved in the formation of sedimentary basins in general and the Black Warrior basin of Alabama and Mississippi in particular. Microscopic-level computer modeling of sandstone porosity reduction has been done, elucidating the detailed small-scale dynamics which lead to the geological phenomenon of pressure solution. A new technique has been developed for 1D burial and thermal modeling of sedimentary basins based on stratigraphic data from test wells. It is significantly faster than previous methods, and can be used in interactive menu-oriented program requiring relatively little learning time or prior computer experience. This allows a geologist to rapidly determine the results of various different hypotheses about basin formation, providing insight which may help determine which is correct. A program has also been written to simulate tectonic-plate collisions and rifting processes using viscoelastic hydrodynamics.

  15. (Non) formation of methanol by direct hydrogenation of formate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Non) formation of methanol by direct hydrogenation of formate on copper catalysts. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts. Abstract: We...

  16. S-OO bond dissociation energies and enthalpies of formation of the thiomethyl peroxyl radicals CH{sub 3}S(O){sub n}OO (n=0,1,2)

    SciTech Connect (OSTI)

    Salta, Zoi; Kosmas, Agnie Mylona [Department of Chemistry, University of Ioannina, Ioannina 45110 (Greece); Lesar, Antonija [Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana (Slovenia)

    2014-10-06T23:59:59.000Z

    Optimized geometries, S-OO bond dissociation energies and enthalpies of formation for a series of thiomethyl peroxyl radicals are investigated using high level ab initio and density functional theory methods. The results show that the S-OO bond dissociation energy is largest in the methylsulfonyl peroxyl radical, CH{sub 3}S(O){sub 2}OO, which contains two sulfonic type oxygen atoms followed by the methylthiyl peroxyl radical, CH{sub 3}SOO. The methylsulfinyl peroxyl radical, CH{sub 3}S(O)OO, which contains only one sulfonic type oxygen shows the least stability with regard to dissociation to CH{sub 3}S(O)+O{sub 2}. This stabilization trend is nicely reflected in the variations of the S-OO bond distance which is found to be shortest in CH{sub 3}S(O){sub 2}OO and longest in CH{sub 3}S(O)OO.

  17. European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2CO.15.5 IMPACT OF CRYSTAL GROWTH ON BORON-OXYGEN DEFECT FORMATION

    E-Print Network [OSTI]

    27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2CO of light-induced degradation (LID) has been known for more than 30 years and has since then been mechanism of the recombination centre is still not unambiguously solved. For photovoltaic applications

  18. aberration formation interaction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee: Dr. Christopher C. Mathewson The U. S. Department of Energy's Hanford Site lies in the heart of the Columbia Plateau. The basalt formations beneath the Hanford...

  19. accelerate thrombus formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a function of time as structure formation proceeds, which mimics the effect of "dark energy" with negative pressure. Hence, the "acceleration" may be merely a mirage. We...

  20. ABSTRACT & DISSERTATION FORMAT GUIDELINES

    E-Print Network [OSTI]

    Lu, Yi

    2 ABSTRACT & DISSERTATION FORMAT GUIDELINES The Knowledge Navigation Center (second floor these guidelines. The most up-to-date version of the Abstract and Dissertation Format Guidelines is available;2 Abstract Format Guidelines ABSTRACT Title of the Dissertation by by Student's Name Chair: Chair's name Text

  1. Quantum mechanical calculations on the potential energy surface for the formation of xenon dichloride and the nature of the (n5-cyclopentadienyl) dicarbonyliron-arene bond

    E-Print Network [OSTI]

    Richardson, Nancy Arline

    1993-01-01T23:59:59.000Z

    in the gas phase. This work reports the testing of reliable ab initio methods which use Gaussian basis sets for calculating the geometry and energy of noble gas halides. The accurate determination of the properties for the experimentally well-known XeF2... given value of ml, separated from the other mt values by a slash. A simple example for fluorine would be (43/3) where four primitives describe the ls, three describe the 2s, and three describe the 2p. A more complex example for fluorine would be (621...

  2. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  3. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    None

    1981-09-01T23:59:59.000Z

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  4. The initial conditions of isolated star formation. V: ISOPHOT imaging and the temperature and energy balance of pre-stellar cores

    E-Print Network [OSTI]

    D. Ward-Thompson; P. Andre; J. M. Kirk

    2001-09-11T23:59:59.000Z

    ISO data taken with the long-wavelength imaging photo-polarimeter ISOPHOT are presented of 18 pre-stellar cores at three far-infrared wavelengths - 90, 170 and 200 microns. Most of the cores are detected clearly at 170 and 200 but only one is detected strongly at 90 microns, indicating that mostly they are very cold, with typical temperatures of only 10-20K. Colour temperature images are constructed for each of the cores. Most of the cores are seen to be either isothermal, or to have associated temperature gradients from the core centres to their edges, with all except one being cooler at the centre. We compare the data with previous ISOCAM absorption data and calculate the energy balance for those cores in common between the two samples. We find that the energy radiated by each core in the far-IR is similar to that absorbed at shorter wavelengths. Hence there is no evidence for a central heating source in any of the cores - even those for which previous evidence for core contraction exists. This is all consistent with external heating of the cores by the local interstellar radiation field, confirming their pre-stellar nature.

  5. Tribal Leader Forum on Tribal Energy and Economic Development...

    Office of Environmental Management (EM)

    Leader Forum on Tribal Energy and Economic Development: Tribal Utility Formation Tribal Leader Forum on Tribal Energy and Economic Development: Tribal Utility Formation July 27,...

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  7. Significant Reduction in NiO Band Gap upon Formation of LixNi1?xO Alloys: Applications to Solar Energy Conversion

    SciTech Connect (OSTI)

    Alidoust, Nima; Toroker, Maytal; Keith, John A.; Carter, Emily A.

    2014-01-01T23:59:59.000Z

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ?1.5–2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO’s large band gap (?4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ?2.0 eV when NiO is alloyed with Li2O. We show that LixNi1?xO alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO’s desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode.

  8. Toxic Release Inventory (TRI), United States and Territories, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

  9. Photophoresis boosts giant planet formation

    E-Print Network [OSTI]

    Teiser, Jens

    2013-01-01T23:59:59.000Z

    In the core accretion model of giant planet formation, a solid protoplanetary core begins to accrete gas directly from the nebula when its mass reaches about 5 earth masses. The protoplanet has at most a few million years to reach runaway gas accretion, as young stars lose their gas disks after 10 million years at the latest. Yet gas accretion also brings small dust grains entrained in the gas into the planetary atmosphere. Dust accretion creates an optically thick protoplanetary atmosphere that cannot efficiently radiate away the kinetic energy deposited by incoming planetesimals. A dust-rich atmosphere severely slows down atmospheric cooling, contraction, and inflow of new gas, in contradiction to the observed timescales of planet formation. Here we show that photophoresis is a strong mechanism for pushing dust out of the planetary atmosphere due to the momentum exchange between gas and dust grains. The thermal radiation from the heated inner atmosphere and core is sufficient to levitate dust grains and to ...

  10. Formation of double-$?$ hypernuclei at PANDA

    E-Print Network [OSTI]

    T. Gaitanos; A. B. Larionov; H. Lenske; U. Mosel

    2012-01-17T23:59:59.000Z

    We study the formation of single- and double-$\\Lambda$ hypernuclei in antiproton-induced reactions relevant for the forthcoming PANDA experiment at FAIR. We use the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model with relativistic mean-fields for the description of non-equilibrium dynamics and the statistical multifragmentation model (SMM) for fragment formation. This combined approach describes the dynamical properties of strangeness and fragments in low energy $\\bar{p}$-induced reactions fairly well. We then focus on the formation of double-$\\Lambda$ hypernuclei in high energy $\\bar{p}$-nucleus collisions on a primary target including the complementary $\\Xi$-induced reactions to a secondary one, as proposed by the PANDA collaboration. Our results show that a copious production of double-$\\Lambda$ hyperfragments is possible at PANDA. In particular, we provide first theoretical estimations on the double-$\\Lambda$ production cross section, which strongly rises with decreasing energy of the secondary $\\Xi$-beam.

  11. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  12. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase II Report (1397) Energy, Climate, &...

  13. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  14. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  15. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01T23:59:59.000Z

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  16. Observing Massive Galaxy Formation

    E-Print Network [OSTI]

    Christopher J. Conselice

    2002-12-20T23:59:59.000Z

    A major goal of contemporary astrophysics is understanding the origin of the most massive galaxies in the universe, particularly nearby ellipticals and spirals. Theoretical models of galaxy formation have existed for many decades, although low and high redshift observations are only beginning to put constraints on different ideas. We briefly describe these observations and how they are revealing the methods by which galaxies form by contrasting and comparing fiducial rapid collapse and hierarchical formation model predictions. The available data show that cluster ellipticals must have rapidly formed at z > 2, and that up to 50% of all massive galaxies at z ~ 2.5 are involved in major mergers. While the former is consistent with the monolithic collapse picture, we argue that hierarchal formation is the only model that can reproduce all the available observations.

  17. Isolating Triggered Star Formation

    SciTech Connect (OSTI)

    Barton, Elizabeth J.; Arnold, Jacob A.; /UC, Irvine; Zentner, Andrew R.; /KICP, Chicago /Chicago U., EFI; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo

    2007-09-12T23:59:59.000Z

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to 'field' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than 'field' galaxies is primarily a selection effect. We use our simulations to devise a means to select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N= 2 halos) and to select a control sample of isolated galaxies (N= 1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M{sub B,j} {le} -19 and obtain the first clean measure of the typical fraction of galaxies affected by triggered star formation and the average elevation in the star formation rate. We find that 24% (30.5 %) of these L* and sub-L* galaxies in isolated 50 (30) h{sup -1} kpc pairs exhibit star formation that is boosted by a factor of {approx}> 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. Our orbit models suggest that 12% (16%) of 50 (30) h{sup -1} kpc close pairs that are isolated according to our definition have had a close ({le} 30 h{sup -1} kpc) pass within the last Gyr. Thus, the data are broadly consistent with a scenario in which most or all close passes of isolated pairs result in triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star formation in a cosmological context.

  18. JPEG File Interchange Format

    E-Print Network [OSTI]

    Hamilton, Eric

    2004-03-30T23:59:59.000Z

    interchange format compressed image representation • PC or Mac or Unix workstation compatible • Standard color space: one or three components. For three components, YCbCr (CCIR 601-256 levels) • APP0 marker used to specify Units, X pixel density, Y pixel... by the Macintosh but not by PCs or workstations. JPEG File Interchange Format, Version 1.02 2 Standard color space The color space to be used is YCbCr as defined by CCIR 601 (256 levels). The RGB components calculated by linear conversion from YCbCr shall...

  19. Network Formation: Neighborhood Structures, Establishment Costs, and Distributed Learning

    E-Print Network [OSTI]

    Shamma, Jeff S.

    1 Network Formation: Neighborhood Structures, Establishment Costs, and Distributed Learning desirable properties such as connectivity, bounded-hop diameter and efficiency (i.e., minimum number several issues related to energy conservation, information and computational complexity. Thus, recent

  20. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  1. Hair follicle Formation of

    E-Print Network [OSTI]

    Chuong, Cheng-Ming

    Hair follicle Formation of new follicles Bud Healed skin Hair bulge Open wound Epidermis a b Dermis 1950s and help to explain the controversy. What is the origin of the cells that make up these new hair follicles? Are they derived from existing hair follicles located at the wound edge

  2. Hubble Energy

    E-Print Network [OSTI]

    Alasdair Macleod

    2004-03-25T23:59:59.000Z

    Light received from a cosmological source is redshifted with an apparent loss of energy, a problem first pointed out by Edwin Hubble in 1936. A new type of energy called Hubble Energy is introduced to restore the principle of energy conservation. The energy has no inertial or gravitational effect but retards radial motion in a manner consistent with the anomalous acceleration experienced by the Pioneer probes leaving the solar system. The energy is predicted to have important effects on the scale of galaxies, and some of these effects are qualitatively examined: for example, with Hubble Energy, flat rotation curves are found to be an inevitable consequence of spiral galaxy formation. The Hubble Energy is incorporated into the Friedmann Equation and shown to add a term similar to the cosmological term, with a magnitude of order 10^-35 s^-2.

  3. Planning and Search Exam format

    E-Print Network [OSTI]

    Alechina, Natasha

    is the frame problem. Revision 5 #12;Exam topics: planning Classical planning. How the problem definitionPlanning and Search Revision Revision 1 #12;Outline Exam format Exam topics How to revise Revision 2 #12;Exam format 4 questions out of 6 same format as 2010-2011 and 2011-2012 exams (on G52PAS

  4. Formation of Carbon Dwarfs

    E-Print Network [OSTI]

    Charles L. Steinhardt; Dimitar D. Sasselov

    2012-01-27T23:59:59.000Z

    We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

  5. Quantum origin of an anomalous isotope effect in ozone formation

    E-Print Network [OSTI]

    Reid, Scott A.

    Quantum origin of an anomalous isotope effect in ozone formation D. Babikov *, B.K. Kendrick, R mechanical calculations of the ðJ ¼ 0Þ energies and lifetimes of the metastable states of ozone on a new effect in the reaction that forms ozone because of their role in the energy transfer mechanism, in which

  6. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mexico Geology and Petroleum System: Overview and Literature Review in Support of Risk and Resource Assessments 16 July 2015 Office of Fossil Energy NETL-TRS-4-2015...

  7. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Localized Corrosion and Fatigue Behavior of Ultra-Deep Drilling Alloys 4 March 2014 Office of Fossil Energy NETL-TRS-1-2014 Disclaimer This report was prepared as an account of...

  8. Formation, characterization and reactivity of adsorbed oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Abstract: The formation...

  9. On water ice formation in interstellar clouds

    E-Print Network [OSTI]

    Renaud Papoular

    2005-07-06T23:59:59.000Z

    A model is proposed for the formation of water ice mantles on grains in interstellar clouds. This occurs by direct accretion of monomers from the gas, be they formed by gas or surface reactions. The model predicts the existence of a threshold in interstellar light extinction, A(v), which is mainly determined by the adsorption energy of water molecules on the grain material; for hydrocarbon material, chemical simulation places this energy between 0.5 and 2 kcal/mole, which sets the visible exctinction threshold at a few magnitudes, as observed. Once the threshold is crossed, all available water molecules in the gas are quickly adsorbed, forming an ice mantle, because the grain cools down and the adsorption energy on ice is higher than on bare grain. The model also predicts that the thickness of the mantle, and, hence, the optical thickness at 3 mu, grow linearly with A(v), as observed, with a slope which depends upon the total amount of water in the gas. Chemical simulation was also used to determine the adsorption sites and energies of O and OH on hydrocarbons, and study the dynamics of formation of water molecules by surface reactions with gaseous H atoms, as well as their chances of sticking in situ.

  10. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Using MapsUsing

  11. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Using MapsUsingControl

  12. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Using MapsUsingControla

  13. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Using

  14. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Usingion heating from

  15. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Usingion heating

  16. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Usingion

  17. Using PHP format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures UsingionTUTORIAL PAPERS

  18. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures UsingionTUTORIAL

  19. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures

  20. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futurescharge exchange

  1. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futurescharge exchangeStatus of

  2. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futurescharge exchangeStatus

  3. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futurescharge

  4. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futureschargeelectron transport

  5. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futureschargeelectron

  6. Using RSI format

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar FutureschargeelectronRutherford

  7. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525Adapting the National Energy

  8. Method for ion implantation induced embedded particle formation via reduction

    DOE Patents [OSTI]

    Hampikian, Janet M (Decatur, GA); Hunt, Eden M (Atlanta, GA)

    2001-01-01T23:59:59.000Z

    A method for ion implantation induced embedded particle formation via reduction with the steps of ion implantation with an ion/element that will chemically reduce the chosen substrate material, implantation of the ion/element to a sufficient concentration and at a sufficient energy for particle formation, and control of the temperature of the substrate during implantation. A preferred embodiment includes the formation of particles which are nano-dimensional (<100 m-n in size). The phase of the particles may be affected by control of the substrate temperature during and/or after the ion implantation process.

  9. Formation of molecular hydrogen on amorphous silicate surfaces

    E-Print Network [OSTI]

    Ling Li; Giulio Manico; Emanuele Congiu; Joe Roser; Sol Swords; Hagai B. Perets; Adina Lederhendler; Ofer Biham; John Robert Brucato; Valerio Pirronello; Gianfranco Vidali

    2007-09-16T23:59:59.000Z

    Experimental results on the formation of molecular hydrogen on amorphous silicate surfaces are presented and analyzed using a rate equation model. The energy barriers for the relevant diffusion and desorption processes are obtained. They turn out to be significantly higher than those obtained for polycrystalline silicates, demonstrating the importance of grain morphology. Using these barriers we evaluate the efficiency of molecular hydrogen formation on amorphous silicate grains under interstellar conditions. It is found that unlike polycrystalline silicates, amorphous silicate grains are efficient catalysts of H_2 formation in diffuse interstellar clouds.

  10. BEDES Beta | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Beta BEDES Beta The Building Energy Data Exchange Specification was originally developed for use by the Department of Energy (DOE). A uniform format is intended to make it easier...

  11. BEDES Beta | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    BEDES Beta BEDES Beta The Building Energy Data Exchange Specification was originally developed for use by the Department of Energy (DOE). A uniform format is intended to make it...

  12. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1987-11-17T23:59:59.000Z

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  13. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  14. Low voltage arc formation in railguns

    DOE Patents [OSTI]

    Hawke, R.S.

    1985-08-05T23:59:59.000Z

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  15. NEWS & VIEWS PATTERN FORMATION

    E-Print Network [OSTI]

    Loss, Daniel

    to reproduce statistical properties of the dams. These statistical properties are in themselves of interest no apologies for investing energy into problems of specific application to a particular process in nature, understand and appreciate this almost aesthetical aspect of science very well, funding bodies sometimes less

  16. FORMATION GESTION DU STRESS CONTEXTE, PUBLIC, FINALITE DE LA FORMATION

    E-Print Network [OSTI]

    Brest, Université de

    FORMATION GESTION DU STRESS CONTEXTE, PUBLIC, FINALITE DE LA FORMATION La vie moderne et le stress : mettre en place des stratégies de gestion , étudier quelques aspects essentiels de la et cas cliniques composés par les participants ou fournis par le formateur . - Jeux de rôle en sous

  17. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525

  18. Star formation in the multiverse

    SciTech Connect (OSTI)

    Bousso, Raphael; Leichenauer, Stefan [Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720-7300 (United States) and Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States)

    2009-03-15T23:59:59.000Z

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  19. Star Formation and Galaxy Environment

    E-Print Network [OSTI]

    H. K. C. Yee

    2000-04-05T23:59:59.000Z

    The dependence of star formation rate on galaxian environment is a key issue in the understanding of galaxy formation and evolution. However, the study of this subject is complex and observationally challenging. This paper reviews some of the current results, drawing mostly from recent large redshift surveys such the LCRS, the MORPH collaboration, and the CNOC1 and CNOC2 redshift surveys.

  20. Formation depths of Fraunhofer lines

    E-Print Network [OSTI]

    Gurtovenko, E A

    2015-01-01T23:59:59.000Z

    We have summed up our investigations performed in 1970--1993. The main task of this paper is clearly to show processes of formation of spectral lines as well as their distinction by validity and by location. For 503 photospheric lines of various chemical elements in the wavelength range 300--1000 nm we list in Table the average formation depths of the line depression and the line emission for the line centre and on the half-width of the line, the average formation depths of the continuum emission as well as the effective widths of the layer of the line depression formation. Dependence of average depths of line depression formation on excitation potential, equivalent widths, and central line depth are demonstrated by iron lines.

  1. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31T23:59:59.000Z

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  2. Level Diagram Format Choice

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count the ways. We've13, 2009 InFormWhich

  3. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525Adapting the National

  4. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525Adapting the

  5. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525Adapting theFirst-Generation

  6. NETL Report format template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate -AdvancedMIRTBD525Adapting

  7. The Formation History of Globular Clusters

    E-Print Network [OSTI]

    Dean E. McLaughlin

    2000-02-03T23:59:59.000Z

    The properties of old globular cluster systems in galaxy halos are used to infer quantitative constraints on aspects of generic star (cluster) formation. First, the spatial distribution of globulars in three large galaxies, together with trends in total cluster population vs. galaxy luminosity for 97 early-type systems plus the halo of the Milky Way, imply that bound stellar clusters formed with a universal efficiency throughout early protogalaxies: by mass, always 0.26% of star-forming gas was converted into globulars rather than halo field stars. That this fraction is so robust in the face of extreme variations in local and global galaxy environment suggests that any parcel of gas needs primarily to exceed a relative density threshold in order to form a bound cluster of stars. Second, it is shown that a strict, empirical scaling of total binding energy with luminosity and Galactocentric position is a defining equation for a fundamental plane of Galactic globular clusters. The characteristics of this plane, which subsumes all other observable correlations between the structural parameters of globulars, provide a small but complete set of facts that must be explained by theories of cluster formation and evolution in the Milky Way. It is suggested that the E_b(L,r_{\\rm gc}) relation specifically resulted from star formation efficiencies having been systematically higher inside more massive protoglobular gas clumps.

  8. Black holes, cuspy atmospheres, and galaxy formation

    E-Print Network [OSTI]

    James Binney

    2004-07-12T23:59:59.000Z

    In cuspy atmospheres, jets driven by supermassive black holes (BHs) offset radiative cooling. The jets fire episodically, but often enough that the cuspy atmosphere does not move very far towards a cooling catastrophe in the intervals of jet inactivity. The ability of energy released on the sub-parsec scale of the BH to balance cooling on scales of several tens of kiloparsecs arises through a combination of the temperature sensitivity of the accretion rate and the way in which the radius of jet disruption varies with ambient density. Accretion of hot gas does not significantly increase BH masses, which are determined by periods of rapid BH growth and star formation when cold gas is briefly abundant at the galactic centre. Hot gas does not accumulate in shallow potential wells. As the Universe ages, deeper wells form, and eventually hot gas accumulates. This gas soon prevents the formation of further stars, since jets powered by the BH prevent it from cooling, and it mops up most cold infalling gas before many stars can form. Thus BHs set the upper limit to the masses of galaxies. The formation of low-mass galaxies is inhibited by a combination of photo-heating and supernova-driven galactic winds. Working in tandem these mechanisms can probably explain the profound difference between the galaxy luminosity function and the mass function of dark halos expected in the cold dark matter cosmology.

  9. 1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION

    E-Print Network [OSTI]

    was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP

  10. Collisionless Weibel shocks: Full formation mechanism and timing

    SciTech Connect (OSTI)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15T23:59:59.000Z

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  11. Rapid Gas Hydrate Formation Processes: Will They Work?

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.P.

    2010-01-01T23:59:59.000Z

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve (see Figure 1).

  12. Physical regimes for feedback in galaxy formation

    E-Print Network [OSTI]

    P. Monaco

    2004-04-13T23:59:59.000Z

    We present a new (semi-)analytic model for feedback in galaxy formation. The ISM is modeled as a two-phase medium in pressure equilibrium. The remnants of exploding type II SNe percolate into super-bubbles (SBs) that sweep the ISM, heating the hot phase (if the SB is adiabatic) or cooling it (in the snowplow stage, when the interior gas of the SB has cooled). The resulting feedback regimes occur in well-defined regions of the space defined by vertical scale-length and surface density of the structure. When SBs blow out in the adiabatic regime, the efficiency of SNe in heating the ISM is ~5 per cent, with \\~80 per cent of the energy budget injected into the external halo, and the outcoming ISM is self-regulated to a state similar to that found in the Milky Way. Feedback is most efficient when SBs are pressure-confined in the adiabatic regime. In some significant regions of the parameter space confinement takes place in the snowplow stage; then the hot phase has a lower temperature and star formation is quicker. In some critical cases, the hot phase is strongly depleted and the cold phase percolates the whole volume, giving rise to a sudden burst of star formation. Strong galactic winds are predicted to happen only in critical cases. This model provides a starting point for constructing a realistic grid of feedback solutions to be used in galaxy formation codes. The predictive power of this model extends to many properties of the ISM, so that most parameters can be constrained by reproducing the main properties of the Milky Way. (Abridged)

  13. Energy Week presentations

    SciTech Connect (OSTI)

    NONE

    2006-07-01T23:59:59.000Z

    Topics covered include: energy security; clean energy and low carbon; energy for growth and poverty reduction in Africa; financing of energy efficiency; SMEs for decentralised energy service provision; potential for biofuels in developing countries; clean energy and sustainable development; clean energy finance and private equity funds; power generation and low carbon technologies; beyond traditional finance; rehabilitation and emission control in thermal power plants; and carbon finance. The presentations are mainly in ppt (Power Point) or pdf (Acrobat) format. Some videos of the conference are also available on the website.

  14. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  15. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an 

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  16. Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an

    E-Print Network [OSTI]

    Ma, B.; Yan, Z.; Gui, Z.; He, J.

    2006-01-01T23:59:59.000Z

    Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

  17. Use-driven concept formation

    E-Print Network [OSTI]

    Roberts, Jennifer M. (Jennifer Marie)

    2010-01-01T23:59:59.000Z

    When faced with a complex task, humans often identify domain-specific concepts that make the task more tractable. In this thesis, I investigate the formation of domain-specific concepts of this sort. I propose a set of ...

  18. Graphene defect formation by extreme ultraviolet generated photoelectrons

    SciTech Connect (OSTI)

    Gao, A., E-mail: a.gao@utwente.nl; Lee, C. J.; Bijkerk, F. [FOM-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands and XUV Optics Group, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands)

    2014-08-07T23:59:59.000Z

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy lower than 80?eV. After e-beam irradiation, it is found that the D peak, I(D), appears in the Raman spectrum, indicating defect formation in graphene. The evolution of I(D)/I(G) follows the amorphization trajectory with increasing irradiation dose, indicating that graphene goes through a transformation from microcrystalline to nanocrystalline and then further to amorphous carbon. Further, irradiation of graphene with increased water partial pressure does not significantly change the Raman spectra, which suggests that, in the extremely low energy range, e-beam induced chemical reactions between residual water and graphene are not the dominant mechanism driving defect formation in graphene. Single layer graphene, partially suspended over holes was irradiated with EUV radiation. By comparing with the Raman results from e-beam irradiation, it is concluded that the photoelectrons, especially those from the valence band, contribute to defect formation in graphene during irradiation.

  19. Cloud and Star Formation in Disk Galaxy Models with Feedback

    E-Print Network [OSTI]

    Rahul Shetty; Eve C. Ostriker

    2008-05-26T23:59:59.000Z

    We include feedback in global hydrodynamic simulations in order to study the star formation properties, and gas structure and dynamics, in models of galactic disks. We extend previous models by implementing feedback in gravitationally bound clouds: momentum is injected at a rate proportional to the star formation rate. This mechanical energy disperses cloud gas back into the surrounding ISM, truncating star formation in a given cloud, and raising the overall level of ambient turbulence. Propagating star formation can however occur as expanding shells collide, enhancing the density and triggering new cloud and star formation. By controlling the momentum injection per massive star and the specific star formation rate in dense gas, we find that the negative effects of high turbulence outweigh the positive ones, and in net feedback reduces the fraction of dense gas and thus the overall star formation rate. The properties of the large clouds that form are not, however, very sensitive to feedback, with cutoff masses of a few million solar masses, similar to observations. We find a relationship between the star formation rate surface density and the gas surface density with a power law index ~2 for our models with the largest dynamic range, consistent with theoretical expectations for our model of disk flaring. We point out that the value of the "Kennicutt-Schmidt" index depends on the thickness of the disk. With our simple feedback prescription (a single combined star formation event per cloud), we find that global spiral patterns are not sustained; less correlated feedback and smaller scale turbulence appear to be necessary for spiral patterns to persist.

  20. Austin Energy- Commercial New Construction Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Austin Energy offers incentives for the construction and major renovation of commercial buildings within its service territory. The program rewards customers by using a tiered payment format, which...

  1. Ice Formation in Gas-Diffusion Layers

    E-Print Network [OSTI]

    Dursch, Thomas

    2013-01-01T23:59:59.000Z

    the University of California. Ice Formation in Gas-Diffusionsub-freezing conditions, ice forms in the gas-diffusionstrategies exist to prevent ice formation, there is little

  2. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  3. Dmitri Babikov (dmitri.babikov@mu.edu; 288-3538) Quantum Origin of Anomalous Isotope Effect in Ozone Formation

    E-Print Network [OSTI]

    Reid, Scott A.

    -Function Analyses of photocatalytic hybrid materials for solar energy conversion James Kincaid Effect in Ozone Formation · Mixed Quantum/Classical Theory for Collisional Energy Transfer: The Intriguing Story of the Iso-Halons Mark Steinmetz (mark

  4. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS

    SciTech Connect (OSTI)

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

    2002-05-01T23:59:59.000Z

    The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

  5. Formation of ozone: Metastable states and anomalous isotope effect Dmitri Babikov,a)

    E-Print Network [OSTI]

    Reid, Scott A.

    Formation of ozone: Metastable states and anomalous isotope effect Dmitri Babikov,a) Brian K for an anomalous isotope effect in ozone formation is given in terms of the energy transfer mechanism, where the metastable states of ozone are formed first, and then stabilized by collisions with other atoms. Unusual

  6. CONSTRAINTS ON THE FORMATION OF THE PLANET IN HD 188753 Hannah Jang-Condell

    E-Print Network [OSTI]

    for planet formation. In this paper we attempt to model a protoplanetary disk around HD 188753A using around an iso- lated star, these models provide good fits to observed spectral energy distributions (SEDs that planet formation cannot occur in the more quiescent -disk model puts a strong constraint on planet

  7. South Mississippi's Hosston, Sligo formations

    SciTech Connect (OSTI)

    Not Available

    1981-08-24T23:59:59.000Z

    The Hosston and Sligo formations, of Early Cretaceous age, lie above the Cotton Valley group and below the Pine Island formation. The beds dip southwesterly and become thicker within the Mississippi Interior Salt basin, where virtually all of the Hosston/Sligo oil and gas production occurs. The 3500 ft of alternating sands and shales found at 10,000-17,000 ft depths have the attributes of fluvial deltaic sediments. The Newsom, Bowie Creek, and Seminary fields are representative of recent gas discoveries in the Hosston/Sligo.

  8. Constraints on Cluster Formation from Old Globular CLuster Systems

    E-Print Network [OSTI]

    Dean E. McLaughlin

    2000-02-03T23:59:59.000Z

    The properties of old globular cluster systems (GCSs) in galaxy halos offer unique insight into the physical processes that conspire to form any generic star cluster, at any epoch. Presented here is a summary of the information obtained from (1) the specific frequencies (total populations) and spatial structures (density vs. galactocentric radius) of GCSs in early-type galaxies, as they relate to the efficiency (or probability) of bound cluster formation, and (2) the fundamental role of a scaling between cluster mass and energy among Galactic globulars in setting their other structural correlations, and the possible implications for star formation efficiency as a function of mass in gaseous protoclusters.

  9. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    SciTech Connect (OSTI)

    Rosvick, J. M. [Department of Physical Sciences, Thompson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8 (Canada); Majaess, D. [Department of Astronomy and Physics, Saint Mary's University, Halifax, NS B3H 3C3 (Canada)

    2013-12-01T23:59:59.000Z

    A group of suspected protostars in a dark cloud northwest of the young (?2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 ?m) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  10. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  11. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01T23:59:59.000Z

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  12. Colloid Formation at Waste Plume Fronts

    SciTech Connect (OSTI)

    Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

    2004-05-22T23:59:59.000Z

    Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

  13. Kinetics and morphology of erbium silicide formation

    SciTech Connect (OSTI)

    Knapp, J.A.; Picraux, S.T.; Wu, C.S.; Lau, S.S.

    1985-11-15T23:59:59.000Z

    The growth kinetics and surface morphology of erbium silicide formation from Er layers on Si(100) substrates are examined using both fast e-beam annealing and furnace annealing. Very smooth erbium silicide layers have been grown using a line-source e beam to heat and react the Er overlayers with the substrate. This contrasts to the severe pitting observed when Er layers are reacted with Si in conventional furnace annealing. The pitting phenomenon can be explained by a thin contaminant layer at the interface between Er and Si. Our results suggest the contamination barrier is not due to oxygen, as usually assumed, but may be related to the presence of carbon. Rapid e-beam heating to reaction temperatures of approx.1200 K permits dispersion of the barrier layer before substantial silicide growth can occur, allowing smooth silicide growth. Heating to shorter times to just disperse the interface barrier allows uniform layer growth by subsequent furnace annealing and has permitted measurement of the kinetics of erbium silicide formation on crystalline Si. The reaction obeys (time)/sup 1//sup ///sup 2/ kinetics but is shown to be not totally diffusion limited by the ability to sustain multiple interface growth from a single Si source. The growth rates are nearly an order of magnitude slower for the Er/Si(100) interface than for the Er/amorphous-Si, but with a similar activation energy near 1.75 eV in both cases.

  14. Treating tar sands formations with dolomite

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  15. Formation Interuniversitaire de Physique Hydrodynamics

    E-Print Network [OSTI]

    Balbus, Steven

    Formation Interuniversitaire de Physique Module : Hydrodynamics S. Balbus 1 #12;TO LEARN.8.3 Piston Driven into Gas Cylinder . . . . . . . . . . . . . 73 4.8.4 Driven Acoustic Modes . . . . . . . . . . . . . . . . 110 6.2.3 Inertial Drag of a Sphere by an Ideal Fluid . . . . . . . 113 6.3 Line Vortices and Flow

  16. Structurally Electromagnetic Formation Flight (EMFF)

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Structurally connected secondary mirror EMFF secondary mirror EMFF Design Electromagnetic Formation for a smaller, simpler system. µEMFF investigates the use of conventional conductors, capacitors, and solar propellants that often limit lifetime, the EMFF system uses solar power to energize a magnetic field

  17. Star Formation in the Multiverse

    E-Print Network [OSTI]

    Raphael Bousso; Stefan Leichenauer

    2008-10-17T23:59:59.000Z

    We develop a simple semi-analytic model of the star formation rate (SFR) as a function of time. We estimate the SFR for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  18. Earth and Terrestrial Planet Formation

    E-Print Network [OSTI]

    Jacobson, Seth A

    2015-01-01T23:59:59.000Z

    The growth and composition of Earth is a direct consequence of planet formation throughout the Solar System. We discuss the known history of the Solar System, the proposed stages of growth and how the early stages of planet formation may be dominated by pebble growth processes. Pebbles are small bodies whose strong interactions with the nebula gas lead to remarkable new accretion mechanisms for the formation of planetesimals and the growth of planetary embryos. Many of the popular models for the later stages of planet formation are presented. The classical models with the giant planets on fixed orbits are not consistent with the known history of the Solar System, fail to create a high Earth/Mars mass ratio, and, in many cases, are also internally inconsistent. The successful Grand Tack model creates a small Mars, a wet Earth, a realistic asteroid belt and the mass-orbit structure of the terrestrial planets. In the Grand Tack scenario, growth curves for Earth most closely match a Weibull model. The feeding zon...

  19. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  20. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  1. Rapid Gas Hydrate Formation Processes: Will They Work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-01T23:59:59.000Z

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formationmore »of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  2. Primordial Black Hole Formation during First-Order Phase Transitions

    E-Print Network [OSTI]

    K. Jedamzik; J. C. Niemeyer

    1999-01-21T23:59:59.000Z

    Primordial black holes (PBHs) may form in the early universe when pre-existing adiabatic density fluctuations enter into the cosmological horizon and recollapse. It has been suggested that PBH formation may be facilitated when fluctuations enter into the horizon during a strongly first-order phase transition which proceeds in approximate equilibrium. We employ general-relativistic hydrodynamics numerical simulations in order to follow the collapse of density fluctuations during first-order phase transitions. We find that during late stages of the collapse fluctuations separate into two regimes, an inner part existing exclusively in the high-energy density phase with energy density $\\epsilon_{\\rm h}$, surrounded by an outer part which exists exclusively in the low-energy density phase with energy density $\\epsilon_{\\rm h}-L$, where $L$ is the latent heat of the transition. We confirm that the fluctuation density threshold $\\delta\\epsilon /\\epsilon$ required for the formation of PBHs during first-order transitions decreases with increasing $L$ and falls below that for PBH formation during ordinary radiation dominated epochs. Our results imply that, in case PBHs form at all in the early universe, their mass spectrum is likely dominated by the approximate horizon masses during epochs when the universe undergoes phase transitions.

  3. CARBON NANOTUBE USED FOR ENERGY STORAGE David S. Lashmore, PhD CTO, co-founder

    E-Print Network [OSTI]

    New Hampshire, University of

    -energy batteries, super capacitors and thermoelectric devices. [1] http://www.nanocomptech.com/formats.html [2] ACS

  4. Absorption and elimination of formate following oral administration of calcium formate in female human subjects

    E-Print Network [OSTI]

    Hanzlik, Robert P.; Fowler, Stephen C.; Eells, Janis T.

    2005-02-01T23:59:59.000Z

    Published abstract: Calcium formate is a water-soluble salt of an essential mineral nutrient with potential for use as a dietary calcium supplement. Formate ion is a product of endogenous and xenobiotic metabolism, but sustained high plasma formate...

  5. Formation of polar ring galaxies

    E-Print Network [OSTI]

    F. Bournaud; F. Combes

    2003-02-04T23:59:59.000Z

    Polar ring galaxies are peculiar systems in which a gas rich, nearly polar ring surrounds an early-type or elliptical host galaxy. Two formation scenarios for these objects have been proposed: they are thought to form either in major galaxy mergers or by tidal accretion of the polar material from a gas rich donor galaxy. Both scenarios are studied through N-body simulations including gas dynamics and star formation. Constraints on physical parameters are drawn out, in order to determine which scenario is the most likely to occur. Polar ring galaxies from each scenario are compared with observations and we discuss whether the accretion scenario and the merging scenario account for observational properties of polar ring galaxies. The conclusion of this study is that the accretion scenario is both the most likely and the most supported by observations. Even if the merging scenario is rather robust, most polar ring galaxies are shown to be the result of tidal gas accretion events.

  6. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15T23:59:59.000Z

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  7. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09T23:59:59.000Z

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  8. Shock Formation in Lovelock Theories

    E-Print Network [OSTI]

    Harvey S. Reall; Norihiro Tanahashi; Benson Way

    2014-09-12T23:59:59.000Z

    We argue that Lovelock theories of gravity suffer from shock formation, unlike General Relativity. We consider the propagation of (i) a discontinuity in curvature, and (ii) weak, high frequency, gravitational waves. Such disturbances propagate along characteristic hypersurfaces of a "background" spacetime and their amplitude is governed by a transport equation. In GR the transport equation is linear. In Lovelock theories, it is nonlinear and its solutions can blow up, corresponding to the formation of a shock. We show that this effect is absent in some simple cases e.g. a flat background spacetime, and demonstrate its presence for a plane wave background. We comment on weak cosmic censorship, the evolution of shocks, and the nonlinear stability of Minkowski spacetime, in Lovelock theories.

  9. Kinetic models of opinion formation

    E-Print Network [OSTI]

    G. Toscani

    2006-05-17T23:59:59.000Z

    We introduce and discuss certain kinetic models of (continuous) opinion formation involving both exchange of opinion between individual agents and diffusion of information. We show conditions which ensure that the kinetic model reaches non trivial stationary states in case of lack of diffusion in correspondence of some opinion point. Analytical results are then obtained by considering a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of opinion among individuals.

  10. Monte Carlo simulation to investigate the formation of molecular hydrogen and its deuterated forms

    E-Print Network [OSTI]

    Sahu, DIpen; Majumdar, Liton; Chakrabarti, Sandip K

    2015-01-01T23:59:59.000Z

    $H_2$ is the most abundant interstellar species. Its deuterated forms ($HD$ and $D_2$) are also significantly abundant. Huge abundances of these molecules could be explained by considering the chemistry occurring on the interstellar dust. Because of its simplicity, Rate equation method is widely used to study the formation of grain-surface species. However, since recombination efficiency of formation of any surface species are heavily dependent on various physical and chemical parameters, Monte Carlo method would be best method suited to take care of randomness of the processes. We perform Monte Carlo simulation to study the formation of $H_2$, $HD$ and $D_2$ on interstellar ices. Adsorption energies of surface species are the key inputs for the formation of any species on interstellar dusts but binding energies of deuterated species are yet to known with certainty. A zero point energy correction exists between hydrogenated and deuterated species which should be considered while modeling the chemistry on the ...

  11. A General Systems Theory for Rain Formation in Warm Clouds

    E-Print Network [OSTI]

    A. M. Selvam

    2014-08-15T23:59:59.000Z

    A cumulus cloud model which can explain the observed characteristics of warm rain formation in monsoon clouds is presented. The model is based on classical statistical physical concepts and satisfies the principle of maximum entropy production. Atmospheric flows exhibit selfsimilar fractal fluctuations that are ubiquitous to all dynamical systems in nature, such as physical, chemical, social, etc and are characterized by inverse power law form for power (eddy energy) spectrum signifying long-range space-time correlations. A general systems theory model for atmospheric flows developed by the author is based on the concept that the large eddy energy is the integrated mean of enclosed turbulent (small scale) eddies. This model gives scale-free universal governing equations for cloud growth processes. The model predicted cloud parameters are in agreement with reported observations, in particular, the cloud dropsize distribution. Rain formation can occur in warm clouds within 30minutes lifetime under favourable conditions of moisture supply in the environment.

  12. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z {approx} 3

    SciTech Connect (OSTI)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Lutz, Dieter; Nordon, Raanan; Berta, Stefano; Genzel, Reinhard; Magnelli, Benjamin; Poglitsch, Albrecht [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Altieri, Bruno [Herschel Science Centre, ESAC, Villanueva de la Canada, 28691 Madrid (Spain); Andreani, Paola [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, Herve; Daddi, Emanuele; Elbaz, David [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d'Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, Angel; Cepa, Jordi; Garcia, Ana Perez [Instituto de Astrofisica de Canarias, 38205 La Laguna (Spain); Cimatti, Andrea [Departamento di Astronomia, Universita di Bologna, via Ranzani 1, 40127 Bologna (Italy); Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Maiolino, Roberto [INAF, Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); McGrath, Elizabeth J. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2011-09-01T23:59:59.000Z

    We compare multi-wavelength star formation rate (SFR) indicators out to z {approx} 3 in the GOODS-South field. Our analysis uniquely combines U to 8 {mu}m photometry from FIREWORKS, MIPS 24 {mu}m and PACS 70, 100, and 160 {mu}m photometry from the PEP, and H{alpha} spectroscopy from the SINS survey. We describe a set of conversions that lead to a continuity across SFR indicators. A luminosity-independent conversion from 24 {mu}m to total infrared luminosity yields estimates of L{sub IR} that are in the median consistent with the L{sub IR} derived from PACS photometry, albeit with significant scatter. Dust correction methods perform well at low-to-intermediate levels of star formation. They fail to recover the total amount of star formation in systems with large SFR{sub IR}/SFR{sub UV} ratios, typically occuring at the highest SFRs (SFR{sub UV+IR} {approx}> 100 M{sub sun} yr{sup -1}) and redshifts (z {approx}> 2.5) probed. Finally, we confirm that H{alpha}-based SFRs at 1.5 < z < 2.6 are consistent with SFR{sub SED} and SFR{sub UV+IR} provided extra attenuation toward H II regions is taken into account (A{sub V,neb} = A{sub V,continuum}/0.44). With the cross-calibrated SFR indicators in hand, we perform a consistency check on the star formation histories inferred from spectral energy distribution (SED) modeling. We compare the observed SFR-M relations and mass functions at a range of redshifts to equivalents that are computed by evolving lower redshift galaxies backward in time. We find evidence for underestimated stellar ages when no stringent constraints on formation epoch are applied in SED modeling. We demonstrate how resolved SED modeling, or alternatively deep UV data, may help to overcome this bias. The age bias is most severe for galaxies with young stellar populations and reduces toward older systems. Finally, our analysis suggests that SFHs typically vary on timescales that are long (at least several 100 Myr) compared to the galaxies' dynamical time.

  13. Formation damage in underbalanced drilling operations

    E-Print Network [OSTI]

    Reyes Serpa, Carlos Alberto

    2003-01-01T23:59:59.000Z

    Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

  14. Structure formation: Models, Dynamics and Status

    E-Print Network [OSTI]

    T. Padmanabhan

    1995-08-25T23:59:59.000Z

    The constraints on the models for the structure formation arising from various cosmological observations at different length scales are reviewed. The status of different models for structure formation is examined critically in the light of these observations.

  15. Dynamics and control of electromagnetic satellite formations

    E-Print Network [OSTI]

    Ahsun, Umair, 1972-

    2007-01-01T23:59:59.000Z

    Satellite formation flying is an enabling technology for many space missions, especially for space-based telescopes. Usually there is a tight formation-keeping requirement that may need constant expenditure of fuel or at ...

  16. Treating nahcolite containing formations and saline zones

    DOE Patents [OSTI]

    Vinegar, Harold J

    2013-06-11T23:59:59.000Z

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  17. Autonomous Helicopter Formation using Model Predictive Control

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Autonomous Helicopter Formation using Model Predictive Control Hoam Chung and S. Shankar Sastry are required to fly in tight formations and under harsh conditions. The starting point for safe autonomous into a formation, so that each vehicle can safely maintain sufficient space between it and all other vehicles

  18. Dynamical Treatment of Virialization Heating in Galaxy Formation

    E-Print Network [OSTI]

    Peng Wang; Tom Abel

    2007-09-11T23:59:59.000Z

    In a hierarchical picture of galaxy formation virialization continually transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously allowing an estimate of the gas temperature to be derived from the the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semi-analytical models of galaxy formation. Our method explicitly conserves energy unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semi-analytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.

  19. Gas Cooling Through Galaxy Formations

    E-Print Network [OSTI]

    Mariwan A. Rasheed; Mohamad A. Brza

    Abstract-- Gas cooling was studied in two different boxes of sizes and by simulation at same redshifts. The gas cooling is shown in four different redshifts (z=1.15, 0.5, 0.1 and 0). In the simulation the positions of the clumps of cooled gas were studied with slices of the two volumes and also the density of cooled gas of the two volumes shown in the simulation. From the process of gas cooling it is clear that this process gives different results in the two cases. Index Term- Gas Cooling, Simulation, galaxy Formation. I.

  20. Petrophysical evaluation of subterranean formations

    DOE Patents [OSTI]

    Klein, James D; Schoderbek, David A; Mailloux, Jason M

    2013-05-28T23:59:59.000Z

    Methods and systems are provided for evaluating petrophysical properties of subterranean formations and comprehensively evaluating hydrate presence through a combination of computer-implemented log modeling and analysis. Certain embodiments include the steps of running a number of logging tools in a wellbore to obtain a variety of wellbore data and logs, and evaluating and modeling the log data to ascertain various petrophysical properties. Examples of suitable logging techniques that may be used in combination with the present invention include, but are not limited to, sonic logs, electrical resistivity logs, gamma ray logs, neutron porosity logs, density logs, NRM logs, or any combination or subset thereof.

  1. Electrochemical formation of field emitters

    DOE Patents [OSTI]

    Bernhardt, Anthony F. (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  2. 2012 Renewable Energy Data Book (Book)

    SciTech Connect (OSTI)

    Gelman, R.

    2013-10-01T23:59:59.000Z

    This Renewable Energy Data Book for 2012 provides facts and figures in a graphical format on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  3. COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES DRHRS / SCP

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES DRHRS / SCP BUREAU DES STAGES DE LONGUE DUREE EN ENTREPRISE LAURENCE LOURS / CEA Saclay 01.69.08.20.90 stages@cea.fr http://www.cea.fr/ressources_humaines/stages_et_formation_en_alternance le site Internet du CEA : http://www.cea.fr/ressources_humaines/stages_et_formation_en_alternance

  4. Development of Large Format Lithium Ion Cells with Higher Energy...

    Broader source: Energy.gov (indexed) [DOE]

    We plan on expanding our options with respect to suppliers of the silicon-carbon composite materials. 06162014 This presentation does not contain any proprietary,...

  5. OpenEI Community - formatting

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff<div/0 en The Energy

  6. Heating tar sands formations while controlling pressure

    DOE Patents [OSTI]

    Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

    2010-01-12T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  7. A Random Walk through Star and Planet Formation

    E-Print Network [OSTI]

    Maness, Holly

    2010-01-01T23:59:59.000Z

    and its Neptune-Mass Planet 3.1 Introduction . . . . . . .of Low Mass Star Formation . . . . . 1.3 Planet FormationConstraining Theories of Planet Formation and Evolution .

  8. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect (OSTI)

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko [Ruder Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia); Saguy, Cecile; Kalish, Rafi [Physics Department and Solid State Institute, Technion, Haifa 32000 (Israel); Djerdj, Igor [Department of Materials, Swiss Federal Institute of Technology (ETH) Zuerich, Wolfgang-Pauli-Str. 10, CH-8093 Zuerich (Switzerland); Tonejc, Andelka [Faculty of Science, Department of Physics, University of Zagreb, 10000 Zagreb (Croatia); Gamulin, Ozren [School of Medicine, Zagreb University, 10000 Zagreb (Croatia)

    2008-08-01T23:59:59.000Z

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  9. Feedback from Protostellar Outflows in Star and Star Cluster Formation

    E-Print Network [OSTI]

    Christopher D. Matzner

    2000-07-13T23:59:59.000Z

    Magnetic stresses collimate protostellar winds into a common distribution of force with angle. Sweeping into the ambient medium, such winds drive bipolar molecular outflows whose properties are insensitive to the distribution of ambient gas and to the details of how the wind is launched, and how its intensity varies over time. Moreover, these properties are in accord with the commonly observed features of outflows. This model is simple enough to permit a quantitative study of the feedback effects from low-mass star formation. It predicts the rate at which star-forming gas is ejected by winds, and hence the efficiency with which stars form. Applied to individual star formation, it relates the stellar initial mass function to the distribution of pre-stellar cores. Applied to cluster formation, it indicates whether the resulting stellar system will remain gravitationally bound. Using the energy injection and mass ejection implied by this model, we investigate the dynamical evolution of a molecular clump as a stellar cluster forms within it. This depends critically on the rate at which turbulence decays: it may involve equilibrium star formation (slow decay), overstable oscillations, or collapse (fast decay).

  10. Homogeneous Hydrogenation of CO? to Methyl Formate Utilizing Switchable Ionic Liquids

    SciTech Connect (OSTI)

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.; Van Der Eide, Edwin F.; Heldebrant, David J.

    2014-09-15T23:59:59.000Z

    Capture of CO? and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO? to methylformate in one pot. The conversion of CO? proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H?, 140 °C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 °C yields formate salts, 140 °C promotes methylformate. The authors acknowledge internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  11. Formation of Cooper pairs as a consequence of exchange interaction

    E-Print Network [OSTI]

    Stanislav Dolgopolov

    2015-04-13T23:59:59.000Z

    The pairing of two electrons with antiparallel spins may minimize the energy of each of the paired electrons. Thus the exchange interaction and the Pauli Exclusion Principle cause a bond between two electrons in a crystal. This can be proved analyzing the energy of each conduction electron in the field of a crystal on assumption that all other kinds of magnetic spin ordering in the crystal are weak. The superconductivity in a metallic crystal occurs only if conduction electrons before the pairing are put closely on the Fermi surface in the momentum space. The motion of conduction electrons in the crystal may disturb the formation of Cooper pairs, because the kinetic energy of the motion is usually much larger than the energy gap of superconductor. The conduction electrons as standing waves have a zero momentum, hence their momentums are synchronous; consequently the formation of Cooper pairs is more probable than in case of electrons with nonzero momentums. The total momentum of the pair of two electrons as standing waves is zero.

  12. Adaptive Optics in Star Formation

    E-Print Network [OSTI]

    Wolfgang Brandner

    2003-09-29T23:59:59.000Z

    Over the past ten years, the concept of adaptive optics has evolved from early experimental stages to a standard observing tool now available at almost all major optical and near-infrared telescope facilities. Adaptive optics will also be essential in exploiting the full potential of the large optical/infrared interferometers currently under construction. Both observations with high-angular resolution and at high contrast, and with a high point source sensitivity are facilitated by adaptive optics. Among the areas which benefit most from the use of adaptive optics are studies of the circumstellar environment (envelopes, disks, outflows), substellar companions and multiple systems, and dense young stellar populations. This contribution highlights some of the recent advances in star formation studies facilitated by adaptive optics, and gives a brief tutorial on optimized observing and data reduction strategies.

  13. Zonal Flow as Pattern Formation

    E-Print Network [OSTI]

    Parker, Jeffrey B

    2015-01-01T23:59:59.000Z

    In this section, we examine the transition from statistically homogeneous turbulence to inhomogeneous turbulence with zonal flows. Statistical equations of motion can be derived from the quasilinear approximation to the Hasegawa-Mima equation. We review recent work that finds a bifurcation of these equations and shows that the emergence of zonal flows mathematically follows a standard type of pattern formation. We also show that the dispersion relation of modulational instability can be extracted from the statistical equations of motion in a certain limit. The statistical formulation can thus be thought to offer a more general perspective on growth of coherent structures, namely through instability of a full turbulent spectrum. Finally, we offer a physical perspective on the growth of large-scale structures.

  14. Star-formation histories of local luminous infrared galaxies

    E-Print Network [OSTI]

    Pereira-Santaella, Miguel; Colina, Luis; Miralles-Caballero, Daniel; Pérez-González, Pablo G; Arribas, Santiago; Bellocchi, Enrica; Cazzoli, Sara; Díaz-Santos, Tanio; López, Javier Piqueras

    2015-01-01T23:59:59.000Z

    We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$\\alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$\\alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$\\alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enha...

  15. Methanol Masers and Star Formation

    E-Print Network [OSTI]

    A. M. Sobolev; A. B. Ostrovskii; M. S. Kirsanova; O. V. Shelemei; M. A. Voronkov; A. V. Malyshev

    2006-01-12T23:59:59.000Z

    Methanol masers which are traditionally divided into two classes provide possibility to study important parts of the star forming regions: Class~II masers trace vicinities of the massive YSOs while class~I masers are likely to trace more distant parts of the outflows where newer stars can form. There are many methanol transitions which produce observed masers. This allows to use pumping analysis for estimation of the physical parameters in the maser formation regions and its environment, for the study of their evolution. Extensive surveys in different masing transitions allow to conclude on the values of the temperatures, densities, dust properties, etc. in the bulk of masing regions. Variability of the brightest masers is monitored during several years. In some cases it is probably caused by the changes of the dust temperature which follow variations in the brightness of the central YSO reflecting the character of the accretion process. A unified catalogue of the class II methanol masers consisting of more than 500 objects is compiled. Analysis of the data shows that: physical conditions within the usual maser source vary considerably; maser brightness is determined by parameters of some distinguished part of the object - maser formation region; class II methanol masers are formed not within the outflows but in the regions affected by their propagation. It is shown that the "near" solutions for the kinematic distances to the sources can be used for statistical analysis. The luminosity function of the 6.7 GHz methanol masers is constructed. It is shown that improvement of the sensitivity of surveys can increase number of detected maser sources considerably.

  16. Building Consensus in the Formation of Science Strategy: Reflections on the U.S. Fusion Science Program

    E-Print Network [OSTI]

    . Energy Imports at 30% U.S. Energy Imports Decline to 16% DOE Approves LNG Export from Cove Point EnergyBuilding Consensus in the Formation of Science Strategy: Reflections on the U.S. Fusion Science consensus #12;Examples of UFA Action: Facilitating Consensus through Letters and Forums · U.S. fusion

  17. On the formation of massive stellar clusters

    E-Print Network [OSTI]

    Tenorio-Tagle, G; Silich, S A; Medina-Tanco, G A; Muñoz-Tunón, C; Tenorio-Tagle, Guillermo; Palous, Jan; Silich, Sergiy; Medina-Tanco, Gustavo A.; Munoz-Tunon, Casiana

    2003-01-01T23:59:59.000Z

    Here we model a star forming factory in which the continuous creation of stars results in a highly concentrated, massive (globular cluster-like) stellar system. We show that under very general conditions a large-scale gravitational instability in the ISM, which triggers the collapse of a massive cloud, leads with the aid of a spontaneous first generation of massive stars, to a standing, small-radius, cold and dense shell. Eventually, as more of the collapsing matter is processed and incorporated, the shell becomes gravitationally unstable and begins to fragment, allowing the formation of new stars, while keeping its location. This is due to a detailed balance established between the ram pressure from the collapsing cloud which, together with the gravitational force exerted on the shell by the forming cluster, acts against the mechanical energy deposited by the collection of new stars. We analyze the mass spectrum of fragments that result from the continuous fragmentation of the standing shell and show that it...

  18. formatting | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel's Home Kyoung's pictureexampleflora

  19. Formatting your paper-06.doc

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451DOE/SC0002390 Technical Report

  20. Dust Formation Events in Colliding Winds: an application to eta Car

    E-Print Network [OSTI]

    D. Falceta-Goncalves; V. Jatenco-Pereira; Z. Abraham

    2002-10-29T23:59:59.000Z

    Recent IR observations indicate that many massive binary systems present dust formation episodes, in regions close to the stars, during the periastron passage. These systems are known to be high-energy sources, and it is believed that wind collisions are the origin of the emission. In this work we show that wind collisions not only increase the X-ray emission but also allow dust formation. As an application we study eta Car, which presents, near periastron, an increase in the X-ray emission followed by a sudden decrease that lasts for about a month. We reproduce this feature calculating the optical depth due to dust formation along the orbital period.

  1. Radio Triggered Star Formation in Cooling Flows

    E-Print Network [OSTI]

    B. R. McNamara

    1999-11-08T23:59:59.000Z

    The giant galaxies located at the centers of cluster cooling flows are frequently sites of vigorous star formation. In some instances, star formation appears to have been triggered by the galaxy's radio source. The colors and spectral indices of the young populations are generally consistent with short duration bursts or continuous star formation for durations much less than 1 Gyr, which is less than the presumed ages of cooling flows. The star formation properties are inconsistent with fueling by a continuously accreting cooling flow, although the prevalence of star formation is consistent with repeated bursts and periodic refueling. Star formation may be fueled, in some cases, by cold material stripped from neighboring cluster galaxies.

  2. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  3. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  4. Modelling Pattern Formation in Dip-Coating Experiments

    E-Print Network [OSTI]

    Markus Wilczek; Walter B. H. Tewes; Svetlana V. Gurevich; Michael H. Köpf; Lifeng Chi; Uwe Thiele

    2015-02-12T23:59:59.000Z

    We briefly review selected mathematical models that describe the dynamics of pattern formation phenomena in dip-coating and Langmuir-Blodgett transfer experiments, where solutions or suspensions are transferred onto a substrate producing patterned deposit layers with structure length from hundreds of nanometres to tens of micrometres. The models are presented with a focus on their gradient dynamics formulations that clearly shows how the dynamics is governed by particular free energy functionals and facilitates the comparison of the models. In particular, we include a discussion of models based on long-wave hydrodynamics as well as of more phenomenological models that focus on the pattern formation processes in such systems. The models and their relations are elucidated and examples of resulting patterns are discussed before we conclude with a discussion of implications of the gradient dynamics formulation and of some related open issues.

  5. Formation of hydroxylamine on dust grains via ammonia oxidation

    E-Print Network [OSTI]

    He, Jiao; Lemaire, Jean-Louis; Garrod, Robin T

    2015-01-01T23:59:59.000Z

    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH$_2$OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH$_2$OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH$_2$OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH$_2$OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH$_3$. Suggestions of conditions for future observations are provided.

  6. Formation of superheavy nuclei in cold fusion reactions

    E-Print Network [OSTI]

    Zhao-Qing Feng; Gen-Ming Jin; Jun-Qing Li; Werner Scheid

    2007-10-17T23:59:59.000Z

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  7. Formation of superheavy nuclei in cold fusion reactions

    E-Print Network [OSTI]

    Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

    2007-01-01T23:59:59.000Z

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  8. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29T23:59:59.000Z

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  9. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

  10. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  11. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  12. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  13. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  14. Treating tar sands formations with dolomite

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2013-10-15T23:59:59.000Z

    A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.

  15. Theoretical Investigations on the Formation and Dehydrogenation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of boron-nitrogen-hydrogen (BNHx) compounds that are promising materials for chemical hydrogen storage. Understanding the kinetics and reaction pathways of formation of these...

  16. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    E-Print Network [OSTI]

    J. Marvin Herndon

    2007-01-02T23:59:59.000Z

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.

  17. The Ratio of Retrograde to Prograde Orbits: A Test for Kuiper Belt Binary Formation Theories

    E-Print Network [OSTI]

    Hilke E. Schlichting; Re'em Sari

    2008-07-03T23:59:59.000Z

    With the discovery of Kuiper Belt binaries that have wide separations and roughly equal masses new theories were proposed to explain their formation. Two formation scenarios were suggested by Goldreich and collaborators: In the first, dynamical friction that is generated by a sea of small bodies enables a transient binary to become bound ($L^2s$ mechanism); in the second, a transient binary gets bound by an encounter with a third body ($L^3$ mechanism). We show that these different binary formation scenarios leave their own unique signatures in the relative abundance of prograde to retrograde binary orbits. This signature is due to stable retrograde orbits that exist much further out in the Hill sphere than prograde orbits. It provides an excellent opportunity to distinguish between the different binary formation scenarios observationally. We predict that if binary formation proceeded while sub-Hill velocities prevailed, the vast majority of all comparable mass ratio binaries have retrograde orbits. This dominance of retrograde binary orbits is a result of binary formation via the $L^2s$ mechanism, or any other mechanism that dissipates energy in a smooth and gradual manner. For super-Hill velocities binary formation proceeds via the $L^3$ mechanism which produces a roughly equal number of prograde and retrograde binaries. These predictions assume that subsequent orbital evolution due to dynamical friction and dynamical stirring of the Kuiper belt did not alter the sense of the binary orbit after formation.

  18. Format requirements of thermal neutron scattering data in a nuclear data format to succeed the ENDF format

    SciTech Connect (OSTI)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-31T23:59:59.000Z

    In November 2012, the Working Party on Evaluation Cooperation Subgroup 38 (WPEC-SG38) began with the task of developing a nuclear data format and supporting infrastructure to replace the now nearly 50 year old ENDF format. The first step in this process is to develop requirements for the new format and infrastructure. In this talk, I will review the status of ENDF's Thermal Scattering Law (TSL) formats as well as support for this data in the GND format (from which the new format is expected to evolve). Finally, I hope to begin a dialog with members of the thermal neutron scattering community so that their data needs can be accurately and easily accommodated by the new format and tools, as captured by the requirements document. During this discussion, we must keep in mind that the new tools and format must; Support what is in existing data files; Support new things we want to put in data files; and Be flexible enough for us to adapt it to future unanticipated challenges.

  19. Le logiciel "Tigre" en formation PLC 1 Grtice J. Vincent Le logiciel Tigre en formation PLC

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    "Tigre" en formation PLC 1 Grétice J. Vincent Le logiciel « Tigre » en formation PLC J. Vincent Le;______________________________________________________________________________________ Le logiciel "Tigre" en formation PLC 2 Grétice J. Vincent 1.1. La lecture Voici l'écran d;______________________________________________________________________________________ Le logiciel "Tigre" en formation PLC 3 Grétice J. Vincent Figure 3 1.2. La démonstration Voici l

  20. Shell Formation and Bone Strength Laying Hens

    E-Print Network [OSTI]

    Shell Formation and Bone Strength in Laying Hens Effects of Age, Daidzein and Exogenous Estrogen Cover aquarelle: E. Spörndly-Nees #12;Shell Formation and Bone Strength in Laying Hens Effects of Age eggshells as shell quality declines with age during the laying period. This is a concern for food safety

  1. DISSERTATION FORMATION OF THE HURRICANE EYE

    E-Print Network [OSTI]

    Schubert, Wayne H.

    DISSERTATION FORMATION OF THE HURRICANE EYE Submitted by Jonathan L. Vigh Department of Atmospheric OF THE HURRICANE EYE BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. Schubert Department Head: Richard H. Johnson ii #12;ABSTRACT OF DISSERTATION FORMATION OF THE HURRICANE EYE

  2. FAINT RADIO SOURCES AND STAR FORMATION HISTORY

    E-Print Network [OSTI]

    Waddington, Ian

    FAINT RADIO SOURCES AND STAR FORMATION HISTORY Deborah B. Haarsma 1 , R. Bruce Partridge 1 , Ian 85287­1504 USA Abstract. Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields

  3. First Structure Formation and the First Stars

    E-Print Network [OSTI]

    Michael L. Norman; Tom Abel; Greg Bryan

    2000-05-11T23:59:59.000Z

    We discuss the results of recent 3D simulations of first structure formation in relationship to the formation of the first stars. On the basis of a new, high-resolution AMR simulation (spatial dynamic range = 30,000,000), we conclude that the first stars are likely to be massive.

  4. Methods for forming wellbores in heated formations

    DOE Patents [OSTI]

    Guimerans, Rosalvina Ramona; Mansure, Arthur James

    2012-09-25T23:59:59.000Z

    A method for forming a wellbore in a heated formation includes flowing liquid cooling fluid to a bottom hole assembly in a wellbore in a heated formation. At least a portion of the liquid cooling fluid is vaporized at or near a region to be cooled. Vaporizing the liquid cooling fluid absorbs heat from the region to be cooled.

  5. Formation of Metallic Copper Nanoparticles at the Soil-Root Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorkingEnergyGoForestFormation ofFormation

  6. The Energy Messenger, Number 1, Volume 4

    SciTech Connect (OSTI)

    Stancil, J. [ed.

    1995-01-01T23:59:59.000Z

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  7. Sequentially Triggered Star Formation in OB Associations

    E-Print Network [OSTI]

    Thomas Preibisch; Hans Zinnecker

    2006-10-27T23:59:59.000Z

    We discuss observational evidence for sequential and triggered star formation in OB associations. We first review the star formation process in the Scorpius-Centaurus OB association, the nearest OB association to the Sun, where several recent extensive studies have allowed us to reconstruct the star formation history in a rather detailed way. We then compare the observational results with those obtained for other OB associations and with recent models of rapid cloud and star formation in the turbulent interstellar medium. We conclude that the formation of whole OB subgroups (each consisting of several thousand stars) requires large-scale triggering mechanisms such as shocks from expanding wind and supernova driven superbubbles surrounding older subgroups. Other triggering mechanisms, like radiatively driven implosion of globules, also operate, but seem to be secondary processes, forming only small stellar groups rather than whole OB subgroups with thousands of stars.

  8. Target Plasma Formation for Magnetic Compression/Magnetized Target Fusion

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Reinovsky, R.E.; Chrien, R.E.; Christian, J.M.; Ekdahl, C.A.; Goforth, J.H.; Haight, R.C.; Idzorek, G.; King, N.S.; Kirkpatrick, R.C.; Larson, R.E.; Morgan, G.L.; Olinger, B.W.; Oona, H.; Sheehey, P.T.; Shlachter, J.S.; Smith, R.C.; Veeser, L.R.; Warthen, B.J.; Younger, S.M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chernyshev, V.K.; Mokhov, V.N.; Demin, A.N.; Dolin, Y.N.; Garanin, S.F.; Ivanov, V.A.; Korchagin, V.P.; Mikhailov, O.D.; Morozov, I.V.; Pak, S.V.; Pavlovskii, E.S.; Seleznev, N.Y.; Skobelev, A.N.; Volkov, G.I.; Yakubov, V.A. [All-Russian Scientific Research Institute of Experimental Physics, Arzamas-16 (Russian Federation)] [All-Russian Scientific Research Institute of Experimental Physics, Arzamas-16 (Russian Federation)

    1995-09-04T23:59:59.000Z

    Experimental observations of plasma behavior in a novel plasma formation chamber are reported. Experimental results are in reasonable agreement with two-dimensional magnetohydrodynamic computations suggesting that the plasma could subsequently be adiabatically compressed by a magnetically driven pusher to yield 1 GJ of fusion energy. An explosively driven helical flux compression generator mated with a unique closing switch/opening switch combination delivered a 2.7 MA, 347 {mu}s magnetization current and an additional 5 MA, 2.5 {mu}s electrical pulse to the chamber. A hot plasma was produced and 10{sup 13} D-T fusion reactions were observed.

  9. Heating and jet formation by colliding shocks in solar atmosphere

    SciTech Connect (OSTI)

    Tarbell, T.; Ryutova, M.P.; Covington, J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Palo Alto, California 94304 (United States); Ryutova, M.P. [Lawrence Livermore National Laboratory/IGPP, Livermore, California 94550 (United States); Fludra, A. [Space Science Department, Rutherford Appleton Laboratory (United States)

    1999-06-01T23:59:59.000Z

    We show that ubiquitous small-scale magnetic flux {open_quotes}tubes{close_quotes} constantly emerging from subsurface layers, may cause the formation of plasma jets and a sporadic excess of temperature near the solar surface. Photospheric network magnetic elements collide and reconnect, creating a sling-shot effect which generates complex 3D shock waves with the curved surface. Self-focusing of these shocks occurs as they propagate upward in the rarefied atmosphere. Depending on the geometry of the shock collision, highly concentrated energy may be either converted entirely into heat or into strong jets, or be distributed between the two. {copyright} {ital 1999 American Institute of Physics.}

  10. Fusion, deep-inelastic collisions, and neck formation

    SciTech Connect (OSTI)

    Aguiar, C.E.; Barbosa, V.C.; Canto, L.F.; Donangelo, R.

    1988-07-01T23:59:59.000Z

    We use the liquid drop model to calculate the cross section for neck formation in a heavy-ion collision and show that for the recently measured /sup 58/Ni+/sup 124/Sn case this cross section is strongly related to the sum of the fusion and deep-inelastic cross sections. We note that the observation of deep-inelastic collisions at sub-Coulomb barrier energies may be classically understood by the effective barrier lowering obtained when the neck degree of freedom is considered.

  11. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  12. Format for Federal Register Notice

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary forCITIFormat for Federal

  13. Microsoft Word - Final Report - FORMATTED

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&W Portsmouth,BARACKStudy of theAudit

  14. On the formation of massive stellar clusters

    E-Print Network [OSTI]

    Guillermo Tenorio-Tagle; Jan Palous; Sergiy Silich; Gustavo A. Medina-Tanco; Casiana Munoz-Tunon

    2003-08-25T23:59:59.000Z

    Here we model a star forming factory in which the continuous creation of stars results in a highly concentrated, massive (globular cluster-like) stellar system. We show that under very general conditions a large-scale gravitational instability in the ISM, which triggers the collapse of a massive cloud, leads with the aid of a spontaneous first generation of massive stars, to a standing, small-radius, cold and dense shell. Eventually, as more of the collapsing matter is processed and incorporated, the shell becomes gravitationally unstable and begins to fragment, allowing the formation of new stars, while keeping its location. This is due to a detailed balance established between the ram pressure from the collapsing cloud which, together with the gravitational force exerted on the shell by the forming cluster, acts against the mechanical energy deposited by the collection of new stars. We analyze the mass spectrum of fragments that result from the continuous fragmentation of the standing shell and show that its shape is well approximated at the high mass end by a power law with slope -2.25, very close to the value that fits the universal IMF. The self-contamination resultant from the continuous generation of stars is shown to lead to a large metal spread in massive ($\\sim$ 10$^6$ M$_\\odot$) clusters, while clusters with a mass similar to 10$^5$ M$_\\odot$ or smaller, simply reflect the initial metalicity of the collapsing cloud. This is in good agreement with the data available for globular clusters in the Galaxy.

  15. Regulation of geothermal energy development in Colorado

    SciTech Connect (OSTI)

    Coe, B.A.; Forman, N.A.

    1980-01-01T23:59:59.000Z

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  16. TESTING TRIGGERED STAR FORMATION IN SIX H II REGIONS

    SciTech Connect (OSTI)

    Dirienzo, William J.; Indebetouw, Remy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Brogan, Crystal; Friesen, Rachel K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Cyganowski, Claudia J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Churchwell, Ed, E-mail: dirienzo@virginia.edu [Department of Astronomy, University of Wisconsin-Madison, 475 N Charter Street, Madison, WI 53706 (United States)

    2012-12-01T23:59:59.000Z

    We investigated six H II regions with infrared, bright rimmed bubble or cometary morphology, in search of quantitative evidence for triggered star formation, both collect and collapse and radiatively driven implosion (RDI). We identified and classified 458 young stellar objects (YSOs) in and around the H II regions. YSOs were determined by fitting a collection of radiative transfer model spectral energy distributions to infrared photometry for a large sample of point sources. We determined areas where there exist enhanced populations of relatively unevolved YSOs on the bright rims of these regions, suggesting that star formation has been triggered there. We further investigated the physical properties of the regions by using radio continuum emission as a proxy for ionizing flux powering the H II regions, and {sup 13}CO (1-0) observations to measure masses and gravitational stability of molecular clumps. We used an analytical model of collect and collapse triggered star formation, as well as a simulation of RDI, and thus we compare the observed properties of the molecular gas with those predicted in the triggering scenarios. Notably, those regions in our sample that show evidence of cometary, or 'blister', morphology are more likely to show evidence of triggering.

  17. Phase Field Theory of Nucleation and Polycrystalline Pattern Formation

    E-Print Network [OSTI]

    L. Granasy; T. Pusztai; T. Borzsonyi

    2007-03-26T23:59:59.000Z

    We review our recent modeling of crystal nucleation and polycrystalline growth using a phase field theory. First, we consider the applicability of phase field theory for describing crystal nucleation in a model hard sphere fluid. It is shown that the phase field theory accurately predicts the nucleation barrier height for this liquid when the model parameters are fixed by independent molecular dynamics calculations. We then address various aspects of polycrystalline solidification and associated crystal pattern formation at relatively long timescales. This late stage growth regime, which is not accessible by molecular dynamics, involves nucleation at the growth front to create new crystal grains in addition to the effects of primary nucleation. Finally, we consider the limit of extreme polycrystalline growth, where the disordering effect due to prolific grain formation leads to isotropic growth patterns at long times, i.e., spherulite formation. Our model of spherulite growth exhibits branching at fixed grain misorientations, induced by the inclusion of a metastable minimum in the orientational free energy. It is demonstrated that a broad variety of spherulitic patterns can be recovered by changing only a few model parameters.

  18. Electric-utility DSM programs: Terminology and reporting formats

    SciTech Connect (OSTI)

    Hirst, E. [Oak Ridge National Lab., TN (United States); Sabo, C. [Barakat and Chamberlin, Inc., Washington, DC (United States)

    1991-10-01T23:59:59.000Z

    The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

  19. The Formation of the Hubble Sequence

    E-Print Network [OSTI]

    Christopher J. Conselice

    2003-12-12T23:59:59.000Z

    The history of galaxy formation via star formation and stellar mass assembly rates is now known with some certainty, yet the connection between high redshift and low redshift galaxy populations is not yet clear. By identifying and studying individual massive galaxies at high-redshifts, z > 1.5, we can possibly uncover the physical effects driving galaxy formation. Using the structures of high-z galaxies, as imaged with the Hubble Space Telescope, we argue that it is now possible to directly study the progenitors of ellipticals and disks. We also briefly describe early results that suggest many massive galaxies are forming at z > 2 through major mergers.

  20. Implementing Feedback in Simulations of Galaxy Formation: A Survey of Methods

    E-Print Network [OSTI]

    R. J. Thacker; H. M. P. Couchman

    2000-01-15T23:59:59.000Z

    We present a detailed investigation of different approaches to modeling feedback in simulations of galaxy formation. Gas-dynamic forces are evaluated using Smoothed Particle Hydrodynamics (SPH) while star formation and supernova feedback are included using a three parameter model which determines the star formation rate normalization, feedback energy and lifetime of feedback regions. The star formation rate is calculated using a Lagrangian Schmidt Law for all gas particles which satisfy temperature, density and convergent flow criteria. Feedback is incorporated as thermal heating of the ISM. We compare the effects of distributing this energy over the smoothing scale or depositing it on a single particle. Radiative losses are prevented from heated particles by adjusting the density used in radiative cooling. We test the models on the formation of galaxies from cosmological initial conditions and also on isolated Milky Way and dwarf galaxies. Extremely violent feedback is necessary to produce a gas disk with angular momentum remotely close to that of observed disk galaxies. This is a result of the extreme central concentration of the dark halos in the sCDM model, and the pervasiveness of the core-halo angular momentum transport mechanism. We emphasize that the disks formed in hierarchical simulations are partially a numerical artifact produced by the minimum mass scale of the simulation acting as a highly efficient `support' mechanism. Disk formation is strongly affected by the treatment of dense regions in SPH, which along with the difficulty of representing the hierarchical formation process, means that realistic simulations of galaxy formation require far higher resolution than currently used.

  1. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  2. Formation of TiO{sub 2} nanorods by ion irradiation

    SciTech Connect (OSTI)

    Zheng, X. D.; Ren, F., E-mail: fren@whu.edu.cn; Cai, G. X.; Hong, M. Q.; Xiao, X. H.; Wu, W.; Liu, Y. C.; Li, W. Q.; Ying, J. J.; Jiang, C. Z. [School of Physics and Technology, Center for Ion Beam Application and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China)

    2014-05-14T23:59:59.000Z

    Ion beam irradiation is a powerful method to fabricate and tailor the nanostructured surface of materials. Nanorods on the surface of single crystal rutile TiO{sub 2} were formed by N{sup +} ion irradiation. The dependence of nanorod morphology on ion fluence and energy was elaborated. With increasing ion fluence, nanopores grow in one direction perpendicular to the surface and burst finally to form nanorods. The length of nanorods increases with increasing ion energy under same fluence. The development of the nanorod structure is originated from the formation of the nanopores while N{sub 2} bubbles and aggregation of vacancies were responsible for the formation of nanopores and nanorods. Combining C{sup +} ion irradiation and post-irradiation annealing experiments, two qualitative models are proposed to explain the formation mechanism of these nanorods.

  3. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    E-Print Network [OSTI]

    Benner, Linda S.

    2013-01-01T23:59:59.000Z

    NV~ August 25-29, 1980 HYDROCARBON FORMATION ON POLYMER-catalyzed reduction of CO to hydrocarbons Tropscb. Among theof CO to saturated linear hydrocarbons and appears to retain

  4. Modeling deposit formation in diesel injector nozzle

    E-Print Network [OSTI]

    Sudhiesh Kumar, Chintoo

    2009-01-01T23:59:59.000Z

    Formation of deposit in the diesel injector nozzle affects the injection behavior and hinders performance. Under running condition, deposit precursors are washed away by the ensuing injection. However, during the cool down ...

  5. Electromagnetic formation flight of satellite arrays

    E-Print Network [OSTI]

    Kwon, Daniel W., 1980-

    2005-01-01T23:59:59.000Z

    Proposed methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining ...

  6. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    new Federal buildings which begin the planning process by 2020 to achieve zero net energy by 2030zero-net

  7. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    National Harbor #12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 2 #12 · Efficiencies can be 60% (electrical) and 85% (with CHP) · > 90% reduction in criteria pollutants U.S. Department of Energy #12;7 Market Transformation Government acquisitions could significantly reduce the cost

  8. Cyclic Imide Dioxime: Formation and Hydrolytic Stability

    SciTech Connect (OSTI)

    Kang, S.O. [University of Kansas; Vukovic, Sinisa [ORNL; Custelcean, Radu [ORNL; Hay, Benjamin [ORNL

    2012-01-01T23:59:59.000Z

    Poly(acrylamidoximes) play an important role in the uranium extraction from seawater. The present work reports solution studies of simple analogs to address the formation and stability of two binding sites present in these polymers, open-chain amidoximes and cyclic imide dioximes, including: 1) conditions that maximize the formation of the cyclic form, 2) existence of a base-induced conversion from open-chain to cyclic form, and 3) degradation under acid and base conditions.

  9. Situ microbial plugging process for subterranean formations

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-12-17T23:59:59.000Z

    Subterranean paths of water flow are impeded or changed by the facilitation of microbial growth therein. Either indigenous bacterial growth may be stimulated with nutrients or the formation may be first seeded with bacteria or their spores which inhibit fluid flow after proliferation. These methods and bacteria are usable to alter the flow of water in a waterflooded oil formation and to impede the outflow of contaminated water.

  10. Formation evaluation MWD enters new capability realm

    SciTech Connect (OSTI)

    Hearn, F. (Baker Hughes INTEQ, Houston, TX (United States))

    1994-11-01T23:59:59.000Z

    Recent industry advances in formation evaluation measurement-while-drilling (FEMWD) have been achieved in well log data acquisition quality and in geosteering drilling applications. This paper presents new technology as applied by Baker Hughes INTEQ which includes: geosteering techniques which help navigate through horizontally drilled reservoirs including improved quality dual propagation resistivity, neutron-porosity and formation-density measurements; predictive modeling of tool responses in reservoir geosteering applications; environmental computer modeling which aids interpretation, including tool eccentering; and new measurement enhancements.

  11. Triggered star formation in the Magellanic Clouds

    E-Print Network [OSTI]

    B. G. Elmegreen; J. Palous; Kenji Bekki

    2006-01-01T23:59:59.000Z

    Abstract. We discuss how tidal interaction between the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC), and the Galaxy triggers galaxy-wide star formation in the Clouds for the last ? 0.2 Gyr based on our chemodynamical simulations on the Clouds. Our simulations demonstrate that the tidal interaction induces the formation of asymmetric spiral arms with high gas densities and consequently triggers star formation within the arms in the LMC. Star formation rate in the present LMC is significantly enhanced just above the eastern edge of the LMC’s stellar bar owing to the tidal interaction. The location of the enhanced star formation is very similar to the observed location of 30 Doradus, which suggests that the formation of 30 Doradus is closely associated with the last Magellanic collision about 0.2 Gyr ago. The tidal interaction can dramatically compress gas initially within the outer part of the SMC so that new stars can be formed from the gas to become intergalactic young stars in the inter-Cloud region (e.g., the Magellanic Bridge). The metallicity distribution function of the newly formed stars in the Magellanic Bridge has a peak of [Fe/H] ? ?0.8, which is significantly lower than the stellar metallicity of the SMC.

  12. TIMESCALES ON WHICH STAR FORMATION AFFECTS THE NEUTRAL INTERSTELLAR MEDIUM

    SciTech Connect (OSTI)

    Stilp, Adrienne M.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Warren, Steven R. [Department of Astronomy, University of Maryland, CSS Building, Room 1024, Stadium Drive, College Park, MD 20742-2421 (United States); Skillman, Evan [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States)

    2013-08-01T23:59:59.000Z

    Turbulent neutral hydrogen (H I) line widths are often thought to be driven primarily by star formation (SF), but the timescale for converting SF energy to H I kinetic energy is unclear. As a complication, studies on the connection between H I line widths and SF in external galaxies often use broadband tracers for the SF rate, which must implicitly assume that SF histories (SFHs) have been constant over the timescale of the tracer. In this paper, we compare measures of H I energy to time-resolved SFHs in a number of nearby dwarf galaxies. We find that H I energy surface density is strongly correlated only with SF that occurred 30-40 Myr ago. This timescale corresponds to the approximate lifetime of the lowest mass supernova progenitors ({approx}8 M{sub Sun }). This analysis suggests that the coupling between SF and the neutral interstellar medium is strongest on this timescale, due either to an intrinsic delay between the release of the peak energy from SF or to the coherent effects of many supernova explosions during this interval. At {Sigma}{sub SFR} > 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}, we find a mean coupling efficiency between SF energy and H I energy of {epsilon} = 0.11 {+-} 0.04 using the 30-40 Myr timescale. However, unphysical efficiencies are required in lower {Sigma}{sub SFR} systems, implying that SF is not the primary driver of H I kinematics at {Sigma}{sub SFR} < 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}.

  13. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Grid Modernization Resilient Electric Infrastructures Military Installation Energy Security Installation Energy SecurityTara...

  14. Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

    E-Print Network [OSTI]

    Nenes, Athanasios

    for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities technology for converting solar energy into electricity that has shown promise in recent years is the so1 Cloud Formation in the Plumes of Solar Chimney Power Generation Facilities: A Modeling Study

  15. DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test

    Broader source: Energy.gov [DOE]

    A U.S. Department of Energy team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind.

  16. Volatile organic acids and microbial processes in the Yegua formation, east-central Texas

    E-Print Network [OSTI]

    Grossman, Ethan L.

    and Geophysics, Texas A&M University, College Station, TX, 77843, USA b Institute for Energy and the EnvironmentVolatile organic acids and microbial processes in the Yegua formation, east-central Texas Joyanto production of VOAs by microorganisms in mudstones, and net consumption of VOAs by SO4 reducing bacteria (SRB

  17. Distributed Formation Control of Multiple Aircraft Using Constraint Yunfei Zou, Prabhakar R. Pagilla

    E-Print Network [OSTI]

    Pagilla, Prabhakar R.

    conducted to verify the proposed approach. I. INTRODUCTION The problem of autonomous formation flight geometries leads to many advantages and applications. For example, energy saving from vortex forces and fuel deployment of troops and vehicles. Moreover, many aircraft involved in a mission can be better managed

  18. The Roles of an Expanding Wind Field and Inertial Stability in Tropical Cyclone Secondary Eyewall Formation

    E-Print Network [OSTI]

    Kossin, James P.

    of Mesoscale Severe Weather (MOE), Department of Atmospheric Sciences, Nanjing University, Nanjing, China and Forecasting Model (WRF) is used to simulate secondary eyewall formation (SEF) in a tropical cyclone (TC) on the b plane. The simulated SEF process is accompanied by an outward expansion of kinetic energy

  19. Dmitri Babikov (dmitri.babikov@mu.edu; 288-3538) Quantum Origin of Anomalous Isotope Effect in Ozone Formation

    E-Print Network [OSTI]

    Reid, Scott A.

    of photocatalytic hybrid materials for solar energy conversion James Kincaid (james.kincaid@mu.edu; 288 in Ozone Formation Mixed Quantum/Classical Theory for Collisional Energy Transfer Computational Study-Halons Mark Steinmetz (mark.steinmetz@mu.edu; 288-3535) Photochemically Removable Protecting Groups Qadir

  20. Creating and maintaining a gas cap in tar sands formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

    2010-03-16T23:59:59.000Z

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  1. Sandia National Laboratories: mixture formation process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal Combustion Engine Division (ICED) Conference On August 28, 2013, in CRF, Energy, Energy...

  2. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    SciTech Connect (OSTI)

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28T23:59:59.000Z

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  3. METR 4553/5553 Climate and Renewable Energy

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    METR 4553/5553 Climate and Renewable Energy Spring 2013 Instructor Dr. Susan Postawko Dr. Mark to energy generated by fossil fuels. Course web site: Accessed on Desire2Learn @ http://learn.ou.edu (log of energy and climate Work with others to come to a consensus on questions of energy and climate Format

  4. University of California Energy Institute Design Choices in the

    E-Print Network [OSTI]

    California at Berkeley. University of

    Electricity Market » Transmission pricing #12;University of California Energy Institute Restructuring Goals Choices: Details · Organization of Firms · Pricing the Products ­ Energy Price Formation Process ­ Pricing, and Marketers #12;University of California Energy Institute Pricing Energy · Mandatory vs. Voluntary Pool · Day

  5. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electroche...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Abstract: Many...

  6. NO Adsorption on Ultrathin O Films: Formation of Nitrite and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorption on Ultrathin O Films: Formation of Nitrite and Nitrate Species. NO Adsorption on Ultrathin O Films: Formation of Nitrite and Nitrate Species. Abstract: Interaction of...

  7. Multifunctional, Inorganic-Filled Separators for Large Format...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries Multifunctional, Inorganic-Filled Separators for Large Format, Li-ion Batteries...

  8. Atomistic Model for the Polyamide Formation from ?-Lactam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model for the Polyamide Formation from ?-Lactam Catalyzed by Candida Antarctica Lipase B. Atomistic Model for the Polyamide Formation from ?-Lactam Catalyzed by Candida...

  9. Fayalite Dissolution and Siderite Formation in Water-Saturated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2. Abstract:...

  10. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

  11. Mixed-mode diesel HCCI with External Mixture Formation: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results Mixed-mode diesel HCCI with External Mixture Formation: Preliminary Results 2003 DEER Conference...

  12. Predicting Nickel Precipitate Formation in Contaminated Soils. (3717)

    E-Print Network [OSTI]

    Sparks, Donald L.

    Predicting Nickel Precipitate Formation in Contaminated Soils. (3717) Authors: E. Peltier* - Univ controlling precipitate formation is still needed. In this study, we have combined experimental data on nickel

  13. ash formation deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deep-water depositional systems : the upper Miocene Upper Mount messenger formation, Taranaki Basin, New Zealand and Pliocene Repetto and Pico formations, Ventura Basin,...

  14. ash deposit formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deep-water depositional systems : the upper Miocene Upper Mount messenger formation, Taranaki Basin, New Zealand and Pliocene Repetto and Pico formations, Ventura Basin,...

  15. Brown carbon formation from ketoaldehydes of biogenic monoterpenes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Abstract: Sources and chemical composition...

  16. Effects of Ambient Density and Temperature on Soot Formation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density and Temperature on Soot Formation under High-EGR Conditions Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Presentation given at...

  17. DUST EMISSION AND STAR FORMATION IN STEPHAN'S QUINTET

    SciTech Connect (OSTI)

    Natale, G.; Tuffs, R. J. [Max Planck Institute fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Xu, C. K.; Lu, N. [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Popescu, C. C. [University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Fischera, J. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 Saint George Street, Toronto, ON, M5S 3H8 (Canada); Lisenfeld, U. [Department de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Appleton, P. [NASA Herschel Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Dopita, M. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Duc, P.-A. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Dapnia/Service d'Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Reach, W. [Spitzer Science Center, IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Sulentic, J. [Instituto de Astrofisica de AndalucIa, CSIC, Apdo. 3004, 18080, Granada (Spain); Yun, M., E-mail: giovanni.natale@mpi-hd.mpg.d, E-mail: richard.buffs@mpi-hd.mpg.d [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2010-12-10T23:59:59.000Z

    We analyze a comprehensive set of MIR/FIR observations of Stephan's Quintet (SQ), taken with the Spitzer Space Telescope. Our study reveals the presence of a luminous (L{sub IR} {approx} 4.6 x 10{sup 43} erg s{sup -1}) and extended component of infrared dust emission, not connected with the main bodies of the galaxies, but roughly coincident with the X-ray halo of the group. We fitted the inferred dust emission spectral energy distribution of this extended source and the other main infrared emission components of SQ, including the intergalactic shock, to elucidate the mechanisms powering the dust and polycyclic aromatic hydrocarbon emission, taking into account collisional heating by the plasma and heating through UV and optical photons. Combining the inferred direct and dust-processed UV emission to estimate the star formation rate (SFR) for each source we obtain a total SFR for SQ of 7.5 M{sub sun} yr{sup -1}, similar to that expected for non-interacting galaxies with stellar mass comparable to the SQ galaxies. Although star formation in SQ is mainly occurring at, or external to the periphery of the galaxies, the relation of SFR per unit physical area to gas column density for the brightest sources is similar to that seen for star formation regions in galactic disks. We also show that available sources of dust in the group halo can provide enough dust to produce up to L{sub IR} {approx} 10{sup 42} erg s{sup -1} powered by collisional heating. Though a minority of the total infrared emission (which we infer to trace distributed star-formation), this is several times higher than the X-ray luminosity of the halo, so could indicate an important cooling mechanism for the hot intergalactic medium (IGM) and account for the overall correspondence between FIR and X-ray emission. We investigate two potential modes of star formation in SQ consistent with the data, fueled either by gas from a virialized hot IGM continuously accreting onto the group, whose cooling is enhanced by grains injected from an in situ population of intermediate mass stars, or by interstellar gas stripped from the galaxies. The former mode offers a natural explanation for the observed baryon deficiency in the IGM of SQ as well as for the steep L{sub X}-T{sub X} relation of groups such as SQ with lower velocity dispersions.

  18. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect (OSTI)

    Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

    2013-01-01T23:59:59.000Z

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  19. The Formation and Evolution of Prestellar Cores

    E-Print Network [OSTI]

    Philippe André; Shantanu Basu; Shu-ichiro Inutsuka

    2008-01-28T23:59:59.000Z

    Improving our understanding of the initial conditions and earliest stages of star formation is crucial to gain insight into the origin of stellar masses, multiple systems, and protoplanetary disks. We review the properties of low-mass dense cores as derived from recent millimeter/submillimeter observations of nearby molecular clouds and discuss them in the context of various contemporary scenarios for cloud core formation and evolution. None of the extreme scenarios can explain all observations. Pure laminar ambipolar diffusion has relatively long growth times for typical ionization levels and has difficulty satisfying core lifetime constraints. Purely hydrodynamic pictures have trouble accounting for the inefficiency of core formation and the detailed velocity structure of individual cores. A possible favorable scenario is a mixed model involving gravitational fragmentation of turbulent molecular clouds close to magnetic criticality. The evolution of the magnetic field and angular momentum in individual cloud cores after the onset of gravitational collapse is also discussed. In particular, we stress the importance of radiation-magnetohydrodynamical processes and resistive MHD effects during the protostellar phase. We also emphasize the role of the formation of the short-lived first (protostellar) core in providing a chance for sub-fragmentation into binary systems and triggering MHD outflows. Future submillimeter facilities such as Herschel and ALMA will soon provide major new observational constraints in this field. On the theoretical side, an important challenge for the future will be to link the formation of molecular clouds and prestellar cores in a coherent picture.

  20. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems Permalink

  1. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergyEnergy

  2. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems PermalinkEnergy Storage

  3. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho [ORISE; Seol, Yongkoo [U.S. DOE

    2013-01-01T23:59:59.000Z

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from ?2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  4. Factors of paleosol formation in a Late Cretaceous eolian sand sheet paleoenvironment, Marlia Formation, Southeastern Brazil

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Formation, Southeastern Brazil Patrick Francisco Führ Dal' Bó a, , Giorgio Basilici a , Rômulo Simões), Brazil b IG ­ Universidade Federal do Pará, 66075-110, Belém (PA), Brazil a b s t r a c ta r t i c l e i Late Cretaceous The Marília Formation, which crops out in southeastern Brazil, is interpreted as a Late

  5. Star formation bursts in isolated spiral galaxies

    E-Print Network [OSTI]

    C. Clarke; D. Gittins

    2006-07-03T23:59:59.000Z

    We study the response of the gaseous component of a galactic disc to the time dependent potential generated by N-body simulations of a spiral galaxy. The results show significant variation of the spiral structure of the gas which might be expected to result in significant fluctuations in the Star Formation Rate (SFR). Pronounced local variations of the SFR are anticipated in all cases. Bursty histories for the global SFR, however, require that the mean surface density is much less (around an order of magnitude less) than the putative threshold for star formation. We thus suggest that bursty star formation histories, normally attributed to mergers and/or tidal interactions, may be a normal pattern for gas poor isolated spiral galaxies.

  6. In situ oxidation of subsurface formations

    DOE Patents [OSTI]

    Beer, Gary Lee (Houston, TX); Mo, Weijian (Sugar Land, TX); Li, Busheng (Houston, TX); Shen, Chonghui (Calgary, CA)

    2011-01-11T23:59:59.000Z

    Methods and systems for treating a hydrocarbon containing formation described herein include providing heat to a first portion of the formation from a plurality of heaters in the first portion, producing produced through one or more production wells in a second portion of the formation, reducing or turning off heat provided to the first portion after a selected time, providing an oxidizing fluid through one or more of the heater wells in the first portion, providing heat to the first portion and the second portion through oxidation of at least some hydrocarbons in the first portion, and producing fluids through at least one of the production wells in the second portion. The produced fluids may include at least some oxidized hydrocarbons produced in the first portion.

  7. Unveiling the Formation of Massive Galaxies

    E-Print Network [OSTI]

    Christopher J. Conselice

    2004-04-21T23:59:59.000Z

    Massive galaxies, such as nearby ellipticals, have relatively low number densities, yet they host the majority of the stellar mass in the universe. Understanding their origin is a central problem of galaxy formation. Age dating of stellar populations found in modern ellipticals, and observations of star formation in high redshift galaxies, allow us to determine roughly when these systems formed. These age diagnostics however do not tell us what triggered star formation, or how galaxies form as opposed to simply when. Recent analyses of the structures of z > 2 ultraviolet selected galaxies reveal that major galaxy mergers are a likely method for forming some massive galaxies. There are however galaxy populations at high redshift (z > 2), namely infrared and sub-millimeter bright systems, whose evolutionary relationship to modern ellipticals is still uncertain. An improved characterization of these and other high redshift galaxy populations is achievable with large infrared imaging and spectroscopic surveys.

  8. Galaxy formation with radiative and chemical feedback

    E-Print Network [OSTI]

    Graziani, L; Schneider, R; Kawata, D; de Bennassuti, M; Maselli, A

    2015-01-01T23:59:59.000Z

    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We dis...

  9. The Formation of Primordial Luminous Objects

    E-Print Network [OSTI]

    Emanuele Ripamonti; Tom Abel

    2005-07-06T23:59:59.000Z

    In these lecture notes we review the current knowledge about the formation of the first luminous objects. We start from the cosmological context of hierarchical models of structure formation, and discuss the main physical processes which are believed to lead to primordial star formation, i.e. the cooling processes and the chemistry of molecules (especially H2) in a metal-free gas. We then describe the techniques and results of numerical simulations, which indicate that the masses of the first luminous objects are likely to be much larger than that of present-day stars. Finally, we discuss the scenario presented above, exposing some of the most interesting problems which are currently being investigated, such as that of the feedback effects of these objects.

  10. Formation of Cyanoformaldehyde in the interstellar space

    E-Print Network [OSTI]

    Das, Ankan; Chakrabarti, Sandip K; Saha, Rajdeep; Chakrabarti, Sonali

    2013-01-01T23:59:59.000Z

    Cyanoformaldehyde (HCOCN) molecule has recently been suspected towards the Sagittarius B2(N) by the Green Bank telescope, though a confirmation of this observation has not yet been made. In and around a star forming region, this molecule could be formed by the exothermic reaction between two abundant interstellar species, H$_2$CO and CN. Till date, the reaction rate coefficient for the formation of this molecule is unknown. Educated guesses were used to explain the abundance of this molecule by chemical modeling. In this paper, we carried out quantum chemical calculations to find out empirical rate coefficients for the formation of HCOCN and different chemical properties during the formation of HCOCN molecules. Though HCOCN is stable against unimolecular decomposition, this gas phase molecule could be destroyed by many other means, like: ion-molecular reactions or by the effect of cosmic rays. Ion-molecular reaction rates are computed by using the capture theories. We have also included the obtained rate coef...

  11. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect (OSTI)

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Rubin, Vera C. [Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Józsa, Gyula I. G.; Struve, Christian [ASTRON (Netherlands Organisation for Scientific Research NWO), Oude Hoogeveensedijk 4, 7991-PD Dwingeloo (Netherlands)

    2013-10-01T23:59:59.000Z

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep H? images. We combine these H? images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. H? traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of H? further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  12. The Efficiency of Globular Cluster Formation

    E-Print Network [OSTI]

    Dean E. McLaughlin

    1999-01-21T23:59:59.000Z

    (Abridged): The total populations of globular cluster systems (GCSs) are discussed in terms of their connection to the efficiency of globular cluster formation---the mass fraction of star-forming gas that was able to form bound stellar clusters rather than isolated stars or unbound associations---in galaxy halos. Observed variations in GCS specific frequencies (S_N=N_gc/L_gal), both as a function of galactocentric radius in individual systems and globally between entire galaxies, are reviewed in this light. It is argued that trends in S_N do not reflect any real variation in the underlying efficiency of cluster formation; rather, they result from ignoring the hot gas in many large ellipticals. This claim is checked and confirmed in each of M87, M49, and NGC 1399, for which existing data are combined to show that the volume density profile of globular clusters, rho_cl, is directly proportional to the sum of (rho_gas+rho_stars) at large radii. The constant of proportionality is the same in each case: epsilon=0.0026 +/- 0.0005 in the mean. This is identified with the globular cluster formation efficiency. The implication that epsilon might have had a universal value is supported by data on the GCSs of 97 early-type galaxies, on the GCS of the Milky Way, and on the ongoing formation of open clusters. These results have specific implications for some issues in GCS and galaxy formation, and they should serve as a strong constraint on more general theories of star and cluster formation.

  13. Parallel heater system for subsurface formations

    DOE Patents [OSTI]

    Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

    2011-10-25T23:59:59.000Z

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  14. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  15. Induction heaters used to heat subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)

    2012-04-24T23:59:59.000Z

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  16. Effects of photochemical formation of mercuric oxide

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hoffman, J.S.

    1999-12-01T23:59:59.000Z

    The photochemistry of elemental mercury and oxygen was examined using quartz flow reactors. Germicidal bulbs were used as the source of 253.7-nm ultraviolet radiation. The formation of mercuric oxide, as visually detected by yellow-brown stains on the quartz walls, was confirmed by both ICP-AES and SEM-EDX analyses. In addition, a high surface area calcium silicate sorbent was used to capture the mercuric oxide in one of the experiments. The implications of mercuric oxide formation with respect to analysis of gases for mercury content, atmospheric reactions, and direct ultraviolet irradiation of flue gas for mercury sequestration are discussed.

  17. Aromatics oxidation and soot formation in flames

    SciTech Connect (OSTI)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01T23:59:59.000Z

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  18. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  19. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    In the United States: > 200 fuel cell vehicles > 20 fuel cell buses ~ 60 fueling stations Production & Delivery biomass & solar). · Potential U.S. employment from fuel cell and hydrogen industries of up to 925,000 jobsEnergy Efficiency & Renewable Energy DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program

  20. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    None

    2014-05-27T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  1. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23T23:59:59.000Z

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  2. Small angle X-ray scattering study of coal soot formation

    SciTech Connect (OSTI)

    Winans, R. E.; Parker, J. T.; Seifert, S.; Fletcher, T. H.

    2000-02-14T23:59:59.000Z

    The objective of this study is to examine, by small angle X-ray scattering (SAXS), the formation of soot from individual coal particle combustion in a methane flat flame burner. The SAXS instrument at the Basic Energy Sciences Synchrotron Radiation Center (BESSRC) at the Advanced Photon Source (APS) can be used to observe both the formation of spherules and clusters since it can access length scales of 6--6000 {angstrom}. The high X-ray flux enables rapid acquisition of scattering data of various regions of the flame. SAXS data reveal particle size, shape, surface areas, and surface roughness.

  3. Planet formation is unlikely in equal mass binary systems with a ~ 50 AU

    E-Print Network [OSTI]

    Andrew F. Nelson

    2000-05-25T23:59:59.000Z

    We show that planet formation via both gravitational collapse and core accretion is unlikely to occur in equal mass binary systems with moderate (~ 50 AU) semi-major axes. Internal thermal energy generation in the disks is sufficient to heat the gas everywhere so that spiral structures quickly decay rather than grow or fragment. This same heating will inhibit dust coagulation because the temperatures rise above the vaporization temperatures of many volatile materials. We consider other processes not included in the model and conclude that our temperatures are conservatively estimated (low), i.e. planet formation is less likely in real systems than in the model.

  4. The taxonomy and taphonomy of fossil spiders from the Crato Formation of Brazil

    E-Print Network [OSTI]

    Downen, Matthew Ross

    2014-12-31T23:59:59.000Z

    .D., 1985, Depositional environments of oil shale in the Green River Formation, Douglas Creek Arch, Colorado and Utah, in Picard, M. D., ed., Geology and energy resources, Uinta Basin of Utah, p. 211–225. DUNLOP, J.A., MENON, F., and SELDEN, P.A., 2007... is an oil shale likely deposited in a chemically stratified lake in which saline bottom waters were overlain by tongues of fresh water (Brobst and Tucker, 1973; Cole, 1985). The Florissant Formation (34 Ma) is composed of shales and volcanic tuffs...

  5. Power systems utilizing the heat of produced formation fluid

    DOE Patents [OSTI]

    Lambirth, Gene Richard (Houston, TX)

    2011-01-11T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  6. Formation of delta ferrite in 9 wt.% Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation

    E-Print Network [OSTI]

    Mayr, P.

    In-situ X-ray diffraction (XRD) measurements using high energy synchrotron radiation were performed to monitor in real time the formation of delta ferrite in a martensitic 9 wt pct chromium steel under simulated weld thermal ...

  7. Formation mechanism of the secondary building unit in a chromium terephthalate metal-organic framework

    SciTech Connect (OSTI)

    Cantu Cantu, David; McGrail, B. Peter; Glezakou, Vassiliki Alexandra

    2014-11-25T23:59:59.000Z

    Based on density functional theory calculations and simulation, a detailed mechanism is presented on the formation of the secondary building unit (SBU) of MIL-101, a chromium terephthalate metal-organic framework (MOF). SBU formation is key to MOF nucleation, the rate-limiting step in the formation process of many MOFs. A series of reactions that lead to the formation of the SBU of MIL-101 is proposed in this work. Initial rate-limiting reactions form the metal cluster with three chromium (III) atoms linked to a central bridging oxygen. Terephthalate linkers play a key role as chromium (III) atoms are joined to linker carboxylate groups prior to the placement of the central bridging oxygen. Multiple linker addition reactions, which follow in different paths due to structural isomers, are limited by the removal of water molecules in the first chromium coordination shell. The least energy path is identified were all linkers on one face of the metal center plane are added first. A simple kinetic model based on transition state theory shows the rate of secondary building unit formation similar to the rate metal-organic framework nucleation. The authors are thankful to Dr. R. Rousseau for a critical reading of the manuscript. This research would not have been possible without the support of the Office of Fossil Energy, U.S. Department of Energy. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and the PNNL Institutional Computing (PIC) program located at Pacific Northwest National Laboratory.

  8. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  9. Composition Mixing during Blue Straggler Formation and Evolution

    E-Print Network [OSTI]

    Eric L. Sandquist; Michael Bolte; Lars Hernquist

    1996-09-25T23:59:59.000Z

    We use smoothed-particle hydrodynamics to examine differences between direct collisions of single stars and binary star mergers in their roles as possible blue straggler star formation mechanisms. We find in all cases that core helium in the progenitor stars is largely retained in the core of the remnant, almost independent of the type of interaction or the central concentration of the progenitor stars. We have also modelled the subsequent evolution of the hydrostatic remnants, including mass loss and energy input from the hydrodynamical interaction. The combination of the hydrodynamical and hydrostatic models enables us to predict that little mixing will occur during the merger of two globular cluster stars of equal mass. In contrast to the results of Proctor Sills, Bailyn, & Demarque (1995), we find that neither completely mixed nor unmixed models can match the absolute colors of observed blue stragglers in NGC 6397 at all luminosity levels. We also find that the color distribution is probably the crucial test for explanations of BSS formation - if stellar collisions or mergers are the correct mechanisms, a large fraction of the lifetime of the straggler must be spent away from the main sequence. This constraint appears to rule out the possibility of completely mixed models. For NGC 6397, unmixed models predict blue straggler lifetimes ranging from about 0.1 to 4 Gyr, while completely mixed models predict a range from about 0.6 to 4 Gyr.

  10. A Star Formation Law for Dwarf Irregular Galaxies

    E-Print Network [OSTI]

    Elmegreen, Bruce G

    2015-01-01T23:59:59.000Z

    The radial profiles of gas, stars, and far ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time give the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed HI surface densities and calculated scale heights. The radial profiles of the star formation rates are equal to about 1% of the HI surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxi...

  11. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect (OSTI)

    Bae, In-Tae; Young Jung, Dae [Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902 (United States); Chen, William T.; Du Yong [Advanced Semiconductor Engineering Inc., 1255 E Arques Ave, Sunnyvale, California 94085 (United States)

    2012-12-15T23:59:59.000Z

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  12. $J/?$ suppression in the threshold model and QGP formation time

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-09-03T23:59:59.000Z

    In the QGP motivated threshold model, in addition to the normal nuclear absorption, $J/\\psi$'s are subjected to an additional "anomalous" suppression. We have analysed the recently published PHENIX data on the participant number dependence of the nuclear modification factor for $J/\\psi$'s in Au+Au collisions and extracted the anomalous suppression required to explain the data. At mid rapidity $J/\\psi$'s are anomalously suppressed only above a threshold density $n_c$=3.73 fm$^{-2}$. The forward rapidity data on the otherhand require that $J/\\psi$'s are continuously "anomalously" suppressed. The analysis strongly indicate that in mid rapidity $J/\\psi$'s are suppressed in a deconfined medium. Using the PHENIX data on the participant number dependence of the Bjorken energy density, we have also estimated the QGP formation time. For critical temperature $T_c$=192 MeV, estimated QGP formation time ranges between 0.06-0.08 fm/c.

  13. Molecular Dynamics Simulations of CO2 Formation in Interstellar Ices

    E-Print Network [OSTI]

    Arasa, Carina; van Dishoeck, Ewine F; Kroes, Geert-Jan

    2013-01-01T23:59:59.000Z

    CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00+-0.07)x10-2), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6+-0.7)x10-4. The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventi...

  14. Gas and Star Formation in the Circinus Galaxy

    E-Print Network [OSTI]

    For, Bi-Qing; Jarrett, Tom

    2012-01-01T23:59:59.000Z

    We present a detailed study of the Circinus Galaxy, investigating its star formation, dust and gas properties both in the inner and outer disk. To achieve this, we obtained high-resolution Spitzer mid-infrared images with the IRAC (3.6, 5.8, 4.5, 8.0 micron) and MIPS (24 and 70 micron) instruments and sensitive HI data from the Australia Telescope Compact Array (ATCA) and the 64-m Parkes telescope. These were supplemented by CO maps from the Swedish-ESO Submillimetre Telescope (SEST). Because Circinus is hidden behind the Galactic Plane, we demonstrate the careful removal of foreground stars as well as large- and small-scale Galactic emission from the Spitzer images. We derive a visual extinction of Av = 2.1 mag from the Spectral Energy Distribution of the Circinus Galaxy and total stellar and gas masses of 9.5 x 10^{10} Msun and 9 x 10^9 Msun, respectively. Using various wavelength calibrations, we find obscured global star formation rates between 3 and 8 Msun yr^{-1}. Star forming regions in the inner spira...

  15. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    SciTech Connect (OSTI)

    Williams, Michael D.

    2006-09-28T23:59:59.000Z

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55?m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  16. Varying heating in dawsonite zones in hydrocarbon containing formations

    SciTech Connect (OSTI)

    Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX)

    2009-07-07T23:59:59.000Z

    A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.

  17. Format: A4_20070715 Press Release

    E-Print Network [OSTI]

    de Weck, Olivier L.

    delivery, global warming. Over the 20 year history of INCOSE Systems Engineering has developed and matured and valued for projects of all sizes and at all levels of problem solving from providing integrated to enabling holistic solutions to global challenges. INCOSE has grown significantly since its formation

  18. Formation of magnetic discontinuities through viscous relaxation

    SciTech Connect (OSTI)

    Kumar, Sanjay; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2014-05-15T23:59:59.000Z

    According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach of describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.

  19. Dynamics of Primordial Black Hole Formation

    E-Print Network [OSTI]

    J. C. Niemeyer; K. Jedamzik

    1999-01-21T23:59:59.000Z

    We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to primordial black holes (PBHs) during the radiation-dominated phase of the Early Universe. The collapse dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological PBH mass function, is found to be $\\delta_{\\rm c} \\approx 0.7$ rather than the generally employed $\\delta_{\\rm c} \\approx 1/3$, if $\\delta$ is defined as $\\Delta M/\\mh$, the relative excess mass within the initial horizon volume. In order to study the accretion onto the newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times after formation of the event horizon. In general, small black holes (compared to the horizon mass at the onset of the collapse) give rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore, the scaling of black hole mass with distance from the formation threshold, known to occur in near-critical gravitational collapse, is demonstrated to apply to primordial black hole formation.

  20. Star Formation Histories in the Local Group

    E-Print Network [OSTI]

    Thomas M. Brown

    2004-07-09T23:59:59.000Z

    Deep color magnitude diagrams extending to the main sequence provide the most direct measure of the detailed star formation history in a stellar population. With large investments of observing time, HST can obtain such data for populations out to 1 Mpc, but its field of view is extremely small in comparison to the size of Local Group galaxies. This limitation severely constrains our understanding of galaxy formation. For example, the largest galaxy in the Local Group, Andromeda, offers an ideal laboratory for studying the formation of large spiral galaxies, but the galaxy shows substructure on a variety of scales, presumably due to its violent merger history. Within its remaining lifetime, HST can only sample a few sight-lines through this complex galaxy. In contrast, a wide field imager could provide a map of Andromeda's halo, outer disk, and tidal streams, revealing the spatially-dependent star formation history in each structure. The same data would enable many secondary studies, such as the age variation in Andromeda's globular cluster system, gigantic samples of variable stars, and microlensing tracers of the galaxy's dark matter distribution.

  1. Full Additivity of the Entanglement of Formation

    E-Print Network [OSTI]

    Gerardo A. Paz-Silva; John H. Reina

    2010-09-01T23:59:59.000Z

    We present a general strategy that allows a more flexible method for the construction of fully additive multipartite entanglement monotones than the ones so far reported in the literature of axiomatic entanglement measures. Within this framework we give a proof of a conjecture of outstanding implications in information theory: the full additivity of the Entanglement of Formation.

  2. Facult de Sant Publique Formation continue

    E-Print Network [OSTI]

    Nesterov, Yurii

    Faculté de Santé Publique Formation continue en management des institutions de soins Programme 2011, management stratégique (UCL, ULB) CIPS p.16 > Certificat interuniversitaire en management de la qualité dans) p.19 > Certificat interuniversitaire en management médical (ULB, UCL) CIMM p.19 > Certificat

  3. MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan

    E-Print Network [OSTI]

    MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan D. Kalyon S. Kovenklioglu Stevens Picatinny Arsenal's process for making alumina coated nanoparticles of aluminum involves the conversion of gaseous aluminum, in the presence of helium carrier gas, to solid nanoparticles and their subsequent

  4. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01T23:59:59.000Z

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  5. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  6. Formation of super-heavy elements in astrophysical nucleosynthesis

    SciTech Connect (OSTI)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter [Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Moscow Region (Russian Federation); Frankfurt Institute for Advanced Studies, J.W. Goethe-Universitaet, Frankfurt (Germany)

    2012-10-20T23:59:59.000Z

    The unexplored area of heavy neutron-rich nuclides is extremely important for the understanding of the r process of astrophysical nucleogenesis. For elements with Z>100 only neutron deficient isotopes (located to the left of the stability line) have been synthesized so far. The 'north-east' area of the nuclear map can be reached neither in fusion reactions nor in fragmentation processes. Low energy multi-nucleon transfer reactions are quite promising for the production and study of neutron-rich heavy nuclei including those located at the superheavy (SH) island of stability [1]. The neutron capture process is considered here as an alternative method for the production of SH nuclei. Requirements for the pulsed reactors of the next generation that could be used for the synthesis of long-living neutron rich SH nuclei are formulated. Formation of SH nuclei in supernova explosions is also discussed and the abundance of SH elements in nature is estimated.

  7. Method for formation of thin film transistors on plastic substrates

    DOE Patents [OSTI]

    Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

    1998-10-06T23:59:59.000Z

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  8. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect (OSTI)

    Jing Dapeng; He Jiao; Vidali, Gianfranco [Physics Department, Syracuse University, Syracuse, NY 13244 (United States); Brucato, John Robert; Tozzetti, Lorenzo [Osservatorio Astrofisico di Arcetri, INAF, I-50125 Florence (Italy); De Sio, Antonio [Department of Physics and Astronomy, University of Florence, I-50125 Florence (Italy)

    2012-09-01T23:59:59.000Z

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  9. Characterising the acceleration phase of blast wave formation

    SciTech Connect (OSTI)

    Fox, T. E., E-mail: tef503@york.ac.uk; Pasley, J. [York Plasma Institute, University of York, York YO10 5DD (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2014-10-15T23:59:59.000Z

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

  10. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home Stationary Power EnergyRenewable Energy

  11. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware HometdheinrWater/Energy

  12. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergy Surety Home

  13. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia'sEventNotECWillie LukEnergy

  14. International District Energy Association

    Broader source: Energy.gov [DOE]

    Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

  15. Sandia Energy - Renewable Energy Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need to integrate renewable energy, improve energy efficiency, and allow consumers more control over their energy consumption. One of the challenges of renewable power generation...

  16. Department of Energy - Energy Sources

    Broader source: Energy.gov (indexed) [DOE]

    295 en Using Passive Solar Design to Save Money and Energy http:energy.govenergysaverarticlesusing-passive-solar-design-save-money-and-energy

  17. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. |...

  18. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Mainstream: The Growth of the Global Clean Energy Marketplace Analyzing the past, present and future of the global clean energy marketplace. January 17, 2013 The Energy...

  19. Renewable Energy | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

  20. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Future On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S....

  1. Energy Sources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 13, 2013 Energy Analysis Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy...

  2. Symmetry Energy

    E-Print Network [OSTI]

    P. Danielewicz

    2006-07-15T23:59:59.000Z

    Examination of symmetry energy is carried out on the basis of an elementary binding-energy formula. Constraints are obtained on the energy value at the normal nuclear density and on the density dependence of the energy at subnormal densities.

  3. (Non) formation of methanol by direct hydrogenation of formate on copper catalysts

    SciTech Connect (OSTI)

    Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

    2010-10-14T23:59:59.000Z

    We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.

  4. Flux-Limited Diffusion Approximation Models of Giant Planet Formation by Disk Instability

    E-Print Network [OSTI]

    Boss, Alan P

    2008-01-01T23:59:59.000Z

    Both core accretion and disk instability appear to be required as formation mechanisms in order to explain the entire range of giant planets found in extrasolar planetary systems. Disk instability is based on the formation of clumps in a marginally-gravitationally unstable protoplanetary disk. These clumps can only be expected to contract and survive to become protoplanets if they are able to lose thermal energy through a combination of convection and radiative cooling. Here we present several new three dimensional, radiative hydrodynamics models of self-gravitating protoplanetary disks, where radiative transfer is handled in the flux-limited diffusion approximation. We show that while the flux-limited models lead to higher midplane temperatures than in a diffusion approximation model without the flux-limiter, the difference in temperatures does not appear to be sufficiently high to have any significant effect on the formation of self-gravitating clumps. Self-gravitating clumps form rapidly in the models both...

  5. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o

  6. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North American

  7. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall

  8. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewablesAnalysis

  9. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan

  10. Sandia Energy » Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author hasSandia StudentSandia

  11. Hopi Sustainable Energy Plan

    SciTech Connect (OSTI)

    Norman Honie, Jr.; Margie Schaff; Mark Hannifan

    2004-08-01T23:59:59.000Z

    The Hopi Tribal Government as part of an initiative to ?Regulate the delivery of energy and energy services to the Hopi Reservation and to create a strategic business plan for tribal provision of appropriate utility, both in a manner that improves the reliability and cost efficiency of such services,? established the Hopi Clean Air Partnership Project (HCAPP) to support the Tribe?s economic development goals, which is sensitive to the needs and ways of the Hopi people. The Department of Energy (DOE) funded, Formation of Hopi Sustainable Energy Program results are included in the Clean Air Partnership Report. One of the Hopi Tribe?s primary strategies to improving the reliability and cost efficiency of energy services on the Reservation and to creating alternative (to coal) economic development opportunities is to form and begin implementation of the Hopi Sustainable Energy Program. The Hopi Tribe through the implementation of this grant identified various economic opportunities available from renewable energy resources. However, in order to take advantage of those opportunities, capacity building of tribal staff is essential in order for the Tribe to develop and manage its renewable energy resources. As Arizona public utilities such as APS?s renewable energy portfolio increases the demand for renewable power will increase. The Hopi Tribe would be in a good position to provide a percentage of the power through wind energy. It is equally important that the Hopi Tribe begin a dialogue with APS and NTUA to purchase the 69Kv transmission on Hopi and begin looking into financing options to purchase the line.

  12. Energy Blog | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Blog Energy Blog RSS July 11, 2013 Climate Change: Effects on Our Energy A new report shows how a changing climate has impacted and may continue to affect our energy...

  13. Sandia Energy - Enabling Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Energy Efficiency Home Energy Research EFRCs Solid-State Lighting Science EFRC Enabling Energy Efficiency Enabling Energy EfficiencyTara Camacho-Lopez2015-03-26T16:33:50+0...

  14. Needs of Non Energy-Focused Contractors

    SciTech Connect (OSTI)

    Liaukus, C.

    2012-12-01T23:59:59.000Z

    To better understand the informational needs of non energy-focused contractors, including what information they need to motivate them to become energy-focused, the BARA team studied the type of information provided by the national programs, trade associations, and manufacturers that were researched for the related technical report: Effective Communication of Energy Efficiency. While that report focused on the delivery method, format, and strategy of the information, this study examines the content being put forward.

  15. Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

    E-Print Network [OSTI]

    G. Vidali; V. Pirronello; L. Li; J. Roser; G. Manico; R. Mehl; A. Lederhendler; H. B. Perets; J. R. Brucato; O. Biham

    2008-11-21T23:59:59.000Z

    The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.

  16. Production from multiple zones of a tar sands formation

    DOE Patents [OSTI]

    Karanikas, John Michael; Vinegar, Harold J

    2013-02-26T23:59:59.000Z

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  17. Stratified chaos in a sand pile formation

    E-Print Network [OSTI]

    Ate Poortinga; Jan G. Wesseling; Coen J. Ritsema

    2014-03-04T23:59:59.000Z

    Sand pile formation is often used to describe stratified chaos in dynamic systems due to self-emergent and scale invariant behaviour. Cellular automata (Bak-Tang-Wiesenfeld model) are often used to describe chaotic behaviour, as simulating physical interactions between individual particles is computationally demanding. In this study, we use a state-of-the-art parallel implementation of the discrete element method on the graphical processing unit to simulate sand pile formation. Interactions between individual grains were simulated using a contact model in an Euler integration scheme. Results show non-linear self-emergent behaviour which is in good agreement with experimental results, theoretical work and self organized criticality (SOC) approaches. Moreover, it was found that the fully deterministic model, where the position and forces on every individual particle can be determined every iteration has a brown noise signal in the x and y direction, where the signal is the z direction is closer to a white noise spectrum.

  18. K-Basin gel formation studies

    SciTech Connect (OSTI)

    Beck, M.A.

    1998-07-23T23:59:59.000Z

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.

  19. Reconstructing the Star Formation Histories of Galaxies

    E-Print Network [OSTI]

    Uta Fritze; Thomas Lilly

    2007-01-15T23:59:59.000Z

    We present a methodological study to find out how far back and to what precision star formation histories of galaxies can be reconstructed from CMDs, from integrated spectra and Lick indices, and from integrated multi-band photometry. Our evolutionary synthesis models GALEV allow to describe the evolution of galaxies in terms of all three approaches and we have assumed typical observational uncertainties for each of them and then investigated to what extent and accuracy different star formation histories can be discriminated. For a field in the LMC bar region with both a deep CMD from HST observations and a trailing slit spectrum across exactly the same field of view we could test our modelling results against real data.

  20. Drill-in fluids control formation damage

    SciTech Connect (OSTI)

    Halliday, W.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-12-01T23:59:59.000Z

    Several factors led to development, oil company interest in, and use of payzone drilling fluids, including operator concern about maximizing well production, increasing acceptance of horizontal drilling and openhole completion popularity. This article discusses water-base drill-in'' fluid systems and applications. Payzone damage, including fine solids migration, clay swelling and solids invasion, reduces effective formation permeability, which results in lower production rates. Formation damage is often caused by invasion of normal drilling fluids that contain barite or bentonite. Drill-in systems are designed with special bridging agents to minimize invasion. Several bridging materials designed to form effective filter cake for instantaneous leak-off control can be used. Bridging materials are also designed to minimize stages and time required to clean up wells before production. Fluids with easy-to-remove bridging agents reduce completion costs. Drill-in fluid bridging particles can often be removed more thoroughly than those in standard fluids.

  1. Translational energy dependence of reaction mechanism: Xe++CH4?XeH++CH3

    E-Print Network [OSTI]

    Miller, G. D.; Strattan, L. W.; Cole, C. L.; Hierl, Peter M.

    1981-01-01T23:59:59.000Z

    in the products. The results suggest that reaction proceeds via the formation of a long?lived complex at low collision energies (below 0.5 eV) and by a direct mechanism approaching spectator stripping at higher energies....

  2. Bubble formation in Rangely Field, Colorado

    E-Print Network [OSTI]

    Wood, J. W

    1953-01-01T23:59:59.000Z

    tc Determine the Effect of Times Of. Standing on Time &equired for Bubble Formation at 67 psi Supersaturaticns. Page 20 Tests to Determine Bubble Frequency. Average Bubble Frequency Data. 23 27 The data reported in this thesis deal... if present, or would tend to form one. However, as the pressure on the saturated oil declines, the oil becomes supersatur- ated, except as bubbles may form and diffusion take place tc eliminate the supersaturation. This research is devoted to a study...

  3. Dynamical Constraints on Disk Galaxy Formation

    E-Print Network [OSTI]

    Stacy McGaugh

    1999-09-27T23:59:59.000Z

    The rotation curves of disk galaxies exhibit a number of striking regularities. The amplitude of the rotation is correlated with luminosity (Tully-Fisher), the shape of the rotation curve is well predicted by the luminous mass distribution, and the magnitude of the mass discrepancy increases systematically with decreasing centripetal acceleration. These properties indicate a tight connection between light and mass, and impose strong constraints on theories of galaxy formation.

  4. Carboxylic acid accelerated formation of diesters

    DOE Patents [OSTI]

    Tustin, G.C.; Dickson, T.J.

    1998-04-28T23:59:59.000Z

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  5. Galactosynthesis: Halo Histories, Star Formation, and Disks

    E-Print Network [OSTI]

    Ari Buchalter; Raul Jimenez; Marc Kamionkowski

    2000-06-01T23:59:59.000Z

    We investigate the effects of a variety of ingredients that must enter into a realistic model for disk-galaxy formation, focusing primarily on the Tully-Fisher (TF) relation and its scatter in several wavebands. Our main findings are: (a) the slope, normalization, and scatter of the TF relation across various wavebands is determined {\\em both} by halo properties and star formation in the disk; (b) TF scatter owes primarily to the spread in formation redshifts. The scatter can be measurably reduced by chemical evolution, and also in some cases by the weak anti-correlation between peak height and spin; (c) multi-wavelength constraints can be important in distinguishing between models which appear to fit the TF relation in I or K; (d) successful models seem to require that the bulk of disk formation cannot occur too early (z>2) or too late (z<0.5), and are inconsistent with high values of $\\Omega_0$; (e) a realistic model with the above ingredients can reasonably reproduce the observed z=0 TF relation in {\\em all} bands (B, R, I, and K). It can also account for the z=1 B-band TF relation and yield rough agreement with the local B and K luminosity functions and B-band surface-brightness--magnitude relation. The remarkable agreement with observations suggests that the amount of gas that is expelled or poured into a disk galaxy must be small, and that the specific angular momentum of the baryons must roughly equal that of the halo; there is little room for angular momentum transfer. In an appendix we present analytic fits to stellar-population synthesis models.

  6. Dissipation, noise and DCC domain formation

    E-Print Network [OSTI]

    A. K. Chaudhuri

    1999-08-17T23:59:59.000Z

    We investigate the effect of friction on domain formation in disoriented chiral condensate. We solve the equation of motion of the linear sigma model, in the Hartree approximation, including a friction and a white noise term. For quenched initial condition, we find that even in presence of noise and dissipation domain like structure emerges after a few fermi of evolution. Domain size as large as 5 fm can be formed.

  7. Scottish Energy Research Academy Energy Industry Doctorates

    E-Print Network [OSTI]

    Painter, Kevin

    Scottish Energy Research Academy (SERA) Energy Industry Doctorates in Renewable Energy Technologies ­ Notes for Guidance 1. Introduction The Energy Technology Partnership (ETP) has established an Energy · Solar energy · Energy conversion and storage · Energy materials · Grid and networks · Energy utilisation

  8. INDUSTRIAL ENERGY DATA COLLECTION EXISTING SYSTEM AND PROPOSED FUTURE

    E-Print Network [OSTI]

    .4 Hydro Quebec 14 5.5 Energy Research Group, Simon Fraser University 14 5.6 CANMET 15 #12;Industrial. INDUSTRIAL PRIMARY ENERGY DATA COLLECTION FORMATS 27 9.1 Energy Audits 27 9.1.1 Methodology 29 9.1.2 Steps Involved in an Energy Audit 30 9.2 Surveys 31 9.2.1 Detailed Site Energy End-use Survey 32 9.2.2 Equipment

  9. PROGRAMME SPECIFICATION UNDERGRADUATE PROGRAMMES Programme name Energy Engineering

    E-Print Network [OSTI]

    Weyde, Tillman

    of Systems Reliability and Sustainability. At Part 3 the topics of energy management and renewable energy1 PROGRAMME SPECIFICATION ­ UNDERGRADUATE PROGRAMMES KEY FACTS Programme name Energy Engineering grounding in the skills and science appropriate to the formation of an engineer, as well as developing

  10. Pueblo of Laguna Utility Authority Renewable Energy Feasibility Study

    SciTech Connect (OSTI)

    Carolyn Stewart, Red Mountain Tribal Energy

    2008-03-31T23:59:59.000Z

    The project, “Renewable Energy Feasibility Study” was designed to expand upon previous work done by the Tribe in evaluating utility formation, generation development opportunities, examining options for creating self-sufficiency in energy matters, and integrating energy management with the Tribe’s economic development goals. The evaluation of project locations and economic analysis, led to a focus primarily on solar projects.

  11. Humic substance formation during wastewater infiltration

    SciTech Connect (OSTI)

    Siegrist, R.L. (Oak Ridge National Lab., TN (United States)); Hildmann-Smed, R.; Filip, Z.K. (Bundesgesundheitsamt (BGA), Langen (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. (Norges Landbrukshoegskole, Aas (Norway). Centre for Soil and Environmental Research)

    1991-01-01T23:59:59.000Z

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  12. Magnetic phase formation in irradiated austenitic alloys

    SciTech Connect (OSTI)

    Gussev, Maxim N [ORNL] [ORNL; Busby, Jeremy T [ORNL] [ORNL; Tan, Lizhen [ORNL] [ORNL; Garner, Francis A. [Radiation Effects Consulting, Richland, WA] [Radiation Effects Consulting, Richland, WA

    2014-01-01T23:59:59.000Z

    Austenitic alloys are often observed to develop magnetic properties during irradiation, possibly associated with radiation-induced acceleration of the ferrite phase. Some of the parametric sensitivities of this phenomenon have been addressed using a series of alloys irradiated in the BOR-60 reactor at 593K. The rate of development of magnetic phase appears to be sensitive to alloy composition. To the first order, the largest sensitivities to accelerate ferrite formation, as explored in this experiment, are associated with silicon, carbon and manganese and chromium. Si, C, and Mn are thought to influence diffusion rates of point defects while Cr plays a prominent role in defining the chromium equivalent and therefore the amount of ferrite at equilibrium. Pre-irradiation cold working was found to accelerate ferrite formation, but it can play many roles including an effect on diffusion, but on the basis of these results the dominant role or roles of cold-work cannot be identified. Based on the data available, ferrite formation is most probably associated with diffusion.

  13. Predictions from star formation in the multiverse

    SciTech Connect (OSTI)

    Bousso, Raphael; Leichenauer, Stefan [Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720-7300 (United States) and Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States)

    2010-03-15T23:59:59.000Z

    We compute trivariate probability distributions in the landscape, scanning simultaneously over the cosmological constant, the primordial density contrast, and spatial curvature. We consider two different measures for regulating the divergences of eternal inflation, and three different models for observers. In one model, observers are assumed to arise in proportion to the entropy produced by stars; in the others, they arise at a fixed time (5 or 10x10{sup 9} years) after star formation. The star formation rate, which underlies all our observer models, depends sensitively on the three scanning parameters. We employ a recently developed model of star formation in the multiverse, a considerable refinement over previous treatments of the astrophysical and cosmological properties of different pocket universes. For each combination of observer model and measure, we display all single and bivariate probability distributions, both with the remaining parameter(s) held fixed and marginalized. Our results depend only weakly on the observer model but more strongly on the measure. Using the causal diamond measure, the observed parameter values (or bounds) lie within the central 2{sigma} of nearly all probability distributions we compute, and always within 3{sigma}. This success is encouraging and rather nontrivial, considering the large size and dimension of the parameter space. The causal patch measure gives similar results as long as curvature is negligible. If curvature dominates, the causal patch leads to a novel runaway: it prefers a negative value of the cosmological constant, with the smallest magnitude available in the landscape.

  14. Predictions from Star Formation in the Multiverse

    E-Print Network [OSTI]

    Raphael Bousso; Stefan Leichenauer

    2009-07-28T23:59:59.000Z

    We compute trivariate probability distributions in the landscape, scanning simultaneously over the cosmological constant, the primordial density contrast, and spatial curvature. We consider two different measures for regulating the divergences of eternal inflation, and three different models for observers. In one model, observers are assumed to arise in proportion to the entropy produced by stars; in the others, they arise at a fixed time (5 or 10 billion years) after star formation. The star formation rate, which underlies all our observer models, depends sensitively on the three scanning parameters. We employ a recently developed model of star formation in the multiverse, a considerable refinement over previous treatments of the astrophysical and cosmological properties of different pocket universes. For each combination of observer model and measure, we display all single and bivariate probability distributions, both with the remaining parameter(s) held fixed, and marginalized. Our results depend only weakly on the observer model but more strongly on the measure. Using the causal diamond measure, the observed parameter values (or bounds) lie within the central $2\\sigma$ of nearly all probability distributions we compute, and always within $3\\sigma$. This success is encouraging and rather nontrivial, considering the large size and dimension of the parameter space. The causal patch measure gives similar results as long as curvature is negligible. If curvature dominates, the causal patch leads to a novel runaway: it prefers a negative value of the cosmological constant, with the smallest magnitude available in the landscape.

  15. Black hole formation in the early universe

    E-Print Network [OSTI]

    Latif, M A; Schmidt, W; Niemeyer, J

    2013-01-01T23:59:59.000Z

    Supermassive black holes with up to a $\\rm 10^{9}~M_{\\odot}$ dwell in the centers of present-day galaxies, and their presence has been confirmed at z $\\geq$ 6. Their formation at such early epochs is still an enigma. Different pathways have been suggested to assemble supermassive black holes in the first billion years after the Big Bang. Direct collapse has emerged as a highly plausible scenario to form black holes as it provides seed masses of $\\rm 10^{5}-10^{6}~M_{\\odot}$. Gravitational collapse in atomic cooling haloes with virial temperatures T$_{vir} \\geq 10^{4}$~K may lead to the formation of massive seed black holes in the presence of an intense background UV flux. Turbulence plays a central role in regulating accretion and transporting angular momentum. We present here the highest resolution cosmological large-eddy simulations to date which track the evolution of high-density regions on scales of $0.25$~AU beyond the formation of the first peak, and study the impact of subgrid-scale turbulence. The pe...

  16. Aromatics oxidation and soot formation in flames

    SciTech Connect (OSTI)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-04-01T23:59:59.000Z

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify, and to confirm or determine rate constants for, the main benzene oxidation reactions in flames, and to characterize soot and fullerenes and their formation mechanisms and kinetics. Stable and radical species profiles in the aromatics oxidation study are measured using molecular beam sampling with on-line mass spectrometry. The rate of soot formation measured by conventional optical techniques is found to support the hypotheses that particle inception occurs through reactive coagulation of high molecular weight PAH in competition with destruction by OHattack, and that the subsequent growth of the soot mass occurs through addition reactions of PAH and C[sub 2]H[sub 2] with the soot particles. During the first year of this reporting period, fullerenes C[sub 60] and C[sub 70] in substantial quantities were found in the flames being studied. The fullerenes were recovered, purified and spectroscopically identified. The yields of C[sub 60] and C[sub 70] were then determined over ranges of conditions in low-pressure premixed flames of benzene and oxygen.

  17. COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES DRHRS / SCP

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES DRHRS / SCP BUREAU DES STAGES DE LONGUE DUREE EN ENTREPRISE LAURENCE LOURS / CEA Saclay 01.69.08.20.90 stages@cea.fr http://www.cea.fr/ressources_humaines/stages_et_formation_en_alternance

  18. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied

  19. Sandia Energy - Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home Climate & Earth

  20. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Hometdheinr Home About

  1. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive Committee

  2. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeThe

  3. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive CommitteeTheCRF

  4. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executive

  5. Sandia Energy - Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem Permalink

  6. Sandia Energy - Energy Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council Executivegeochem

  7. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy Council ExecutivegeochemStorage

  8. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon Capture

  9. Sandia Energy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbon

  10. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765o (1)Tara6948sceneCarbonAssurance

  11. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department Awards

  12. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems Department

  13. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC Permalink

  14. Sandia Energy - Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems DepartmentEC

  15. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystems

  16. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter for

  17. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter forComputational

  18. Sandia Energy - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46 (1)Tara765oSystemsCenter

  19. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Posted North AmericanStudy Could

  20. Sandia Energy - Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall T.Release