National Library of Energy BETA

Sample records for lost foam metal

  1. CFD Modeling for Lost Foam White Side

    Broader source: Energy.gov [DOE]

    The lost foam casting process produces clean, high-quality castings with close tolerances. The most important advantage is that no cores (with binders) are required. One challenge in lost foam...

  2. LOST FOAM CASTING OF MAGNESIUM ALLOYS

    SciTech Connect (OSTI)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval

    2007-01-01

    The lost foam casting process has been successfully used for making aluminum and cast iron thin walled castings of complex geometries. Little work has been carried out on cast magnesium alloys using the lost foam process. The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings. The plate castings were designed to investigate the mold filling characteristics of magnesium and aluminum alloys using an infrared camera. The pate castings were then characterized for porosity distribution. The window castings were made to test the castability of the alloys under lost foam conditions. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  3. Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    None

    2004-11-01

    The project will further reduce porosity and fold defects in lost foam casting to improve production efficiency, mechanical properties, and marketability of castings.

  4. Advanced lost foam from casting technology

    SciTech Connect (OSTI)

    Bates, C. E.; Littleton, H. E.; Askeland, D.; Griffin, J.; Miller, B. A.; Sheldon, D. S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production Task 2: Pattern Coating Consistency Task 3: Sand Fill and Compaction Effects Task 4: Pattern Gating Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas in the period of October 1, 1994 through December 31, 1995. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers.

  5. Advanced Lost Foam Casting Technology - Phase V

    SciTech Connect (OSTI)

    Wanliang Sun; Harry E. Littleton; Charles E. Bates

    2004-04-29

    Previous research, conducted under DOE Contracts DE-FC07-89ID12869, DE-FC07-93ID12230 and DE-FC07-95ID113358 made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional developments were needed to improve the process and make it more functional in industrial environments. The current project focused on eight tasks listed as follows: Task 1--Computational Model for the Process and Data Base to Support the Model; Task 2--Casting Dimensional Accuracy; Task 3--Pattern Production; Task 4--Improved Pattern Materials; Task 5--Coating Control; Task 6--In-Plant Case Studies; Task 7--Energy and the Environmental Data; and Task 8--Technology Transfer. This report summarizes the work done on all tasks in the period of October 1, 1999 through September 30, 2004. The results obtained in each task and subtask are summarized in this Executive Summary and details are provided in subsequent sections of the report.

  6. Closed cell metal foam method

    DOE Patents [OSTI]

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  7. Improvement of the Lost Foam Casting Process

    Broader source: Energy.gov [DOE]

    Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than...

  8. Comparison of Lost Foam Casting of AM60B Alloy and A356 Alloy

    SciTech Connect (OSTI)

    Han, Qingyou [ORNL; Dinwiddie, Ralph Barton [ORNL; Sklad, Philip S [ORNL; Currie, Kenneth [Tennessee Technological University; Vondra, Fred [Tennessee Technological University; Abdelrahman, Mohamed [Tennessee Technological University; Walford, Graham [Walford Technologies; Nolan, Dennis J [Foseco-Morval; Nedkova, Teodora [Kaiser Aluminum

    2007-01-01

    The article describes the research activities at Oak Ridge National Laboratory and Tennessee Technological University on lost foam casting of magnesium alloys. The work was focused on castings of simple geometries such as plate castings and window castings in order to compare the difference in castability between magnesium alloys and aluminum alloy using the lost foam casting process. Significant differences between lost foam aluminum casting and lost foam magnesium casting have been observed.

  9. Metal-bonded graphite foam composites

    SciTech Connect (OSTI)

    Menchhofer, Paul A; Klett, James W

    2015-04-28

    A metal-bonded graphite foam composite includes a ductile metal continuous phase and a dispersed phase that includes graphite foam particles.

  10. Metal-doped organic foam

    DOE Patents [OSTI]

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  11. Advanced lost foam casting technology. 1995 summary report

    SciTech Connect (OSTI)

    Bates, C.E.; Littleton, H.E.; Askeland, D.; Griffin, J.; Miller, B.A.; Sheldon, D.S.

    1996-05-01

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on five areas listed as follows: Task 1: Precision Pattern Production; Task 2: Pattern Coating Consistency; Task 3: Sand Fill and Compaction Effects; Task 4: Pattern Gating; and Task 5: Mechanical Properties of Castings. This report summarizes the work done under the current contract in all five areas. Twenty-eight (28) companies jointly participate in the project. These companies represent a variety of disciplines, including pattern designers, pattern producers, coating manufacturers, plant design companies, compaction equipment manufacturers, casting producers, and casting buyers. This report summarizes the work done in the past two years and the conclusions drawn from the work.

  12. Advanced Lost Foam Casting technology: 1997 summary report

    SciTech Connect (OSTI)

    1997-12-31

    Previous research made significant advances in understanding the Lost Foam Casting (LFC) Process and clearly identified areas where additional research was needed to improve the process and make it more functional in an industrial environment. The current project focused on eight tasks listed as follows: Task 1--pyrolysis defects and sand distortion; Task 2--bronze casting technology; Task 3--steel casting technology; Task 4--sand filling and compaction; Task 5--coating technology; Task 6--precision pattern production; Task 7--computational modeling; and Task 8--project management and technology transfer. This report summarizes the work done under the current contract in all eight tasks in the period of October 1, 1995 through December 31, 1997.

  13. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect (OSTI)

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  14. Method of foaming a liquid metal

    DOE Patents [OSTI]

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  15. Final Technical Report Quantification and Standardization of Pattern Properties for the Control of the Lost Foam Casting Process

    SciTech Connect (OSTI)

    Ronald Michaels

    2005-09-30

    This project takes a fresh look at the ''white side'' of the lost foam casting process. We have developed the gel front hypothesis for foam pyrolysis behavior and the magnetic metal pump method for controlling lost foam casting metal fill event. The subject of this report is work done in the improvement of the Lost Foam Casting Process. The original objective of this project was to improve the control of metal fill by understanding the influence of foam pattern and coating properties on the metal fill event. Relevant pattern properties could then be controlled, providing control of the metal fill event. One of the original premises of this project was that the process of metal fill was relatively well understood. Considerable previous work had been done to develop fluid mechanical and heat transfer models of the process. If we could just incorporate measured pattern properties into these models we would be able predict accurately the metal fill event. As we began to study the pyrolysis behavior of EPS during the metal fill event, we discovered that the chemical nature of this event had been completely overlooked in previous research. Styrene is the most prevalent breakdown product of EPS pyrolysis and it is a solvent for polystyrene. Much of the styrene generated by foam pyrolysis diffuses into intact foam, producing a molten gel of mechanically entangled polystyrene molecules. Much of the work of our project has centered on validation of this concept and producing a qualitative model of the behavior of EPS foam undergoing pyrolysis in a confined environment. A conclusion of this report is that styrene dissolution in EPS is a key phenomenon in the pyrolysis process and deserves considerable further study. While it is possible to continue to model the metal fill event parametrically using empirical data, we recommend that work be undertaken by qualified researchers to directly characterize and quantify this phenomenon for the benefit of modelers, researchers, and

  16. Manufacturers Saving with Lost Foam Metal Casting

    Broader source: Energy.gov [DOE]

    The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes.

  17. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  18. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  19. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (“Energy SMARRT”) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU’s/year and 6.46 trillion BTU’s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  20. Bonding Low-density Nanoporous Metal Foams Using Sputtered Solder

    SciTech Connect (OSTI)

    Bono, M; Cervantes, O; Akaba, C; Hamza, A; Foreman, R; Teslich, N

    2007-08-21

    A method has been developed for bonding low-density nanoporous metal foam components to a substrate using solder that is sputtered onto the surfaces. Metal foams have unusual properties that make them excellent choices for many applications, and as technologies for processing these materials are evolving, their use in industry is increasing dramatically. Metal foams are lightweight and have advantageous dynamic properties, which make them excellent choices for many structural applications. They also provide good acoustic damping, low thermal conductivity, and excellent energy absorption characteristics. Therefore, these materials are commonly used in the automotive, aerospace, construction, and biomedical industries. The synthesis of nanoporous metal foams with a cell size of less then 1 {micro}m is an emerging technology that is expected to lead to widespread application of metal foams in microdevices, such as sensors and actuators. One of the challenges to manufacturing components from metal foams is that they can be difficult to attach to other structures without degrading their properties. For example, traditional liquid adhesives cannot be used because they are absorbed into foams. The problem of bonding or joining can be particularly difficult for small-scale devices made from nanoporous foam, due to the requirement for a thin bond layer. The current study addresses this problem and develops a method of soldering a nanoporous metal foam to a substrate with a bond thickness of less than 2 {micro}m. There are many applications that require micro-scale metal foams precisely bonded to substrates. This study was motivated by a physics experiment that used a laser to drive a shock wave through an aluminum foil and into a copper foam, in order to determine the speed of the shock in the copper foam. To avoid disturbing the shock, the interface between the copper foam and the aluminum substrate had to be as thin as possible. There are many other applications that

  1. Method of making metal-doped organic foam products

    DOE Patents [OSTI]

    Rinde, James A.

    1981-01-01

    Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  2. Pyrophoric metal-carbon foam composites and methods of making the same

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Jr., Joe H.; Simpson, Randall L.; Baumann, Theodore F.; Worsley, Marcus A.

    2012-05-08

    A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.

  3. Foam and gel methods for the decontamination of metallic surfaces

    DOE Patents [OSTI]

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  4. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect (OSTI)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  5. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOE Patents [OSTI]

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  6. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    SciTech Connect (OSTI)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  7. Effect of flask vibration time on casting integrity, Surface Penetration and Coating Inclusion in lost foam casting of Al-Si Alloy

    SciTech Connect (OSTI)

    Karimian, Majid [Dept. of Materials Engineering, Dept. of Mechanical Engineering, Khomeinishahr branch, Islamic Azad University-(Khomeinishahr- Isfahan) (Iran, Islamic Republic of); Idris, M. H. [Dept. of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, University Technology Malaysia, Johor Bauru (Malaysia); Ourdjini, A.; Muthu, Kali [Dept. of Materials Engineering, Khomeinishahr branch, Islamic Azad University-(Khomeinishahr- Isfahan) (Iran, Islamic Republic of)

    2011-01-17

    The paper presents the result of an experimental investigation conducted on medium aluminum silicon alloy casting- LM6, using no-vacuum assisted lost foam casting process. The study is directed for establishing the relationship between the flask vibrations times developed for molded sample on the casting integrity, surface penetration and coating inclusion defects of the casting. Four different flask vibration times namely 180, 120, 90 and 60 sec. were investigated. The casting integrity was investigated in terms of fulfilling in all portions and edges. The surface penetration was measured using optical microscope whilst image analyzer was used to quantify the percentage of coating inclusion in the casting. The results show that vibration time has significant influence on the fulfilling as well as the internal integrity of the lost foam casting. It was found that the lower vibration time produced comparatively sound casing.

  8. Forming foam structures with carbon foam substrates

    DOE Patents [OSTI]

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  9. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate

  10. Metal-doped organic foam and method of making same. [Patent application

    DOE Patents [OSTI]

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  11. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect (OSTI)

    Paul Chin; George W. Roberts; James J. Spivey

    2003-12-31

    Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal

  12. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    SciTech Connect (OSTI)

    Villa, Andrea; Mussi, Valerio; Strano, Matteo

    2011-05-04

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH{sub 2} blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  13. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect (OSTI)

    Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

    2005-06-01

    Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

  14. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect (OSTI)

    Mr. Paul Chin; Dr. Xiaolei Sun; Professor George W. Roberts; Professor James J. Spivey; Mr. Amornmart Sirijarhuphan; Dr. James G. Goodwin, Jr.; Dr. Richard W. Rice

    2002-12-31

    Several different catalytic reactions must be carried out in order to convert hydrocarbons (or alcohols) into hydrogen for use as a fuel for polyelectrolyte membrane (PEM) fuel cells. Each reaction in the fuel-processing sequence has a different set of characteristics, which influences the type of catalyst support that should be used for that particular reaction. A wide range of supports are being evaluated for the various reactions in the fuel-processing scheme, including porous and non-porous particles, ceramic and metal straight-channel monoliths, and ceramic and metal monolithic foams. These different types of support have distinctly different transport characteristics. The best choice of support for a given reaction will depend on the design constraints for the system, e.g., allowable pressure drop, and on the characteristics of the reaction for which the catalyst is being designed. Three of the most important reaction characteristics are the intrinsic reaction rate, the exothermicity/endothermicity of the reaction, and the nature of the reaction network, e.g., whether more than one reaction takes place and, in the case of multiple reactions, the configuration of the network. Isotopic transient kinetic analysis was used to study the surface intermediates. The preferential oxidation of low concentrations of carbon monoxide in the presence of high concentrations of hydrogen (PROX) is an important final step in most fuel processor designs. Data on the behavior of straight-channel monoliths and foam monolith supports will be presented to illustrate some of the factors involved in choosing a support for this reaction.

  15. Panelized wall system with foam core insulation

    SciTech Connect (OSTI)

    Kosny, Jan; Gaskin, Sally

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  16. Electrode Plate For An Eletrlchemical Cell And Having A Metal Foam Type Support, And A Method Of Obtaining Such An Electrode

    DOE Patents [OSTI]

    Verhoog, Roelof; Precigout, Claude; Stewart, Donald

    1996-05-21

    The electrode plate includes an active portion that is pasted with active material, and a plate head that is made up of three layers of compressed metal foam comprising: a non-pasted portion of height G of the support of the electrode plate; and two strips of non-pasted metal foam of height R on either side of the non-pasted portion of height G of the support and also extending for an overlap height h.sub.2 over the pasted portion of the support. The plate head includes a zone of reduced thickness including a portion that is maximally compressed, and a transitional portion between said maximally compressed portion and the remainder of the electrode which is of thickness e.sub.2. A portion of said plate head forms a connection tab. The method of obtaining the electrode consists in simultaneously rolling all three layers of metal foam in the plate head, and then in cutting matter away from the plates so as to obtain respective connection tabs.

  17. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    DOE Patents [OSTI]

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  18. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    SciTech Connect (OSTI)

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  19. Sticky foam

    DOE Patents [OSTI]

    Rand, Peter B.

    1980-01-01

    Access to a space is impeded by the generation of a sticky foam from a tacky polymeric resin and a low boiling solvent.

  20. Composite foams

    DOE Patents [OSTI]

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1991-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  1. Composite foams

    DOE Patents [OSTI]

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1990-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  2. Foam patterns

    DOE Patents [OSTI]

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  3. Foam Transport in Porous Media - A Review

    SciTech Connect (OSTI)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  4. Co-doped titanium oxide foam and water disinfection device

    DOE Patents [OSTI]

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  5. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  6. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  7. Development of Steel Foam Materials and Structures

    SciTech Connect (OSTI)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  8. Quantum Foam

    SciTech Connect (OSTI)

    Lincoln, Don

    2014-10-24

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isnt empty at all its a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs quantum foam. In this video, Fermilabs Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  9. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F.; Brown, John D.

    1993-01-01

    A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  10. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F.; Brown, John D.

    1994-01-01

    A microcellular carbon foam characterized by a density in the range of about 30 to 1000 mg/cm.sup.3, substantially uniform distribution of cell sizes of diameters less than 100 .mu.m with a majority of the cells being of a diameter of less than about 10 .mu.m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  11. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1993-12-07

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  12. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1993-05-04

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  13. Pitch based foam with particulate

    DOE Patents [OSTI]

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  14. Coated foams, preparation, uses and articles

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  15. Foam process models.

    SciTech Connect (OSTI)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  16. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  17. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  18. Slag foaming phenomena and its suppression techniques in BOF steelmaking process

    SciTech Connect (OSTI)

    Pak, J.J.; Min, D.J.; You, B.D.

    1996-12-31

    Some basic studies using the X-ray fluoroscopy technique were carried out to understand slag foaming phenomena in BOF process. The BOF slag in contact with hot metal showed a generation of very fine size CO bubbles at the slag-metal interface, and formed a stable foam. The lump iron ore added into BOF slag decomposed faster, but showed less foaming than sinter ore did. The anti-foaming agent and coke were added into foamed BOF slag to compare their effectiveness of foam suppression. At the same time, various attempts were made to control the excessive slag foaming during BOF operation. Practice modifications such as oxygen blowing pattern and ore addition, and the installation of the slopping control button were effective and significantly reduced slopping. The slopping detection system involving oxygen lance vibration measurements were on-line installed for prompt and accurate control of slag foaming in BOF converter.

  19. Microcellular carbon foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1994-04-05

    A microcellular carbon foam is described which is characterized by a density in the range of about 30 to 1000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m, well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  20. Thermal degradation of new and aged urethane foam and epon 826 epoxy.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Mills, Bernice E.

    2013-08-01

    Thermal desorption spectroscopy was used to monitor the decomposition as a function of temperature for the foam and epoxy as a function of temperature in the range of 60C to 170C. Samples were studied with one day holds at each of the studied temperatures. Both new (FoamN and EpoxyN) and aged (FoamP and EpoxyP) samples were studied. During these ~10 day experiments, the foam samples lost 11 to 13% of their weight and the EpoxyN lost 10% of its weight. The amount of weight lost was difficult to quantify for EpoxyP because of its inert filler. The onset of the appearance of organic degradation products from FoamP began at 110C. Similar products did not appear until 120C for FoamN, suggesting some effect of the previous decades of storage for FoamP. In the case of the epoxies, the corresponding temperatures were 120C for EpoxyP and 110C for EpoxyN. Suggestions for why the aged epoxy seems more stable than newer sample include the possibility of incomplete curing or differences in composition. Recommendation to limit use temperature to 90-100C for both epoxy and foam.

  1. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  2. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, Thomas E. (Grandview, MO); Spieker, David A. (Olathe, KS)

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  3. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  4. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  5. Foam encapsulated targets

    DOE Patents [OSTI]

    Nuckolls, John H. (Livermore, CA); Thiessen, Albert R. (Livermore, CA); Dahlbacka, Glen H. (Livermore, CA)

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  6. Lost Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Rigid zeolite containing polyurethane foams

    DOE Patents [OSTI]

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  8. Rigid zeolite containing polyurethane foams

    DOE Patents [OSTI]

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  9. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization

    SciTech Connect (OSTI)

    Darsh T. Wasan

    2002-02-20

    Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the objective of this research was to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming. Experimental and theoretical investigations of the surface phenomenon, suspension rheology, and bubble generation and interactions that lead to the formation of foam during waste processing were pursued under this EMSP project. Advanced experimental techniques including a novel capillary force balance in conjunction with the combined differential and common interferometry were developed to characterize particle-particle interactions at the foam lamella surfaces as well as inside the foam lamella. Laboratory tests were conducted using a non-radioactive simulant slurry containing high levels of noble metals and mercury similar to the High-Level Waste. We concluded that foaminess of the simulant sludge was due to the presence of colloidal particles such as aluminum, iron, and manganese. We have established the two major mechanisms of formation and stabilization of foams containing such colloidal particles: (1) structural and depletion forces; and (2) steric stabilization due to the adsorbed particles at the surfaces of the foam lamella. Based on this mechanistic understanding of foam generation and stability, an improved antifoam agent was developed by us, since commercial antifoam agents were found to be ineffective in the aggressive physical and chemical environment present in the sludge processing. The improved antifoamer was subsequently tested in a pilot plant at the Savannah River Site (SRS) and was found to be effective. Also, in the SRTC experiment, the irradiated

  10. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  11. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D.

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  12. Surfactant monitoring by foam generation

    DOE Patents [OSTI]

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  13. Long lasting decontamination foam

    DOE Patents [OSTI]

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  14. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D.

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  15. Method and apparatus for improving the insulating properties of closed cell foam

    DOE Patents [OSTI]

    Glicksman, Leon R.; Lanciani, Arlene J.

    1991-04-23

    A filler of non-metallic, light transparent material is formed into particles or flakes and coated with opaque material and dispersed in closed cell foam to reduce overall thermal conductivity and, specifically, to reduce radiation heat transfer.

  16. Stent with expandable foam (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Stent with expandable foam Title: Stent with expandable foam A stent for treating a physical anomaly. The stent includes a skeletal support structure ...

  17. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  18. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  19. Method for fabricating composite carbon foam

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  20. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  1. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  2. Mechanical Characterization of Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  3. Method of casting pitch based foam

    DOE Patents [OSTI]

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  4. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well ...

  5. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, David A.

    1994-01-01

    Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  6. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  7. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  8. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOE Patents [OSTI]

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  9. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1993-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  10. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1991-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  11. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1993-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  12. Process for making carbon foam

    DOE Patents [OSTI]

    Klett, James W.

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  13. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1993-11-09

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.

  14. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2005-03-16

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  15. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2005-01-05

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  16. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2004-06-14

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. Significant progress was made during this period on all three Tasks. Regarding Task 1, we continued comparisons of foam behavior in sandpacks with and without polymer and oil. As in our previous results, decane was moderately destabilizing to foam. Xanthan polymer did not stabilize foam in the presence of decane in this case. Rather, it appears to have destabilized foam, so that pressure gradient decreased in spite of the increase in aqueous-phase viscosity. Research on Task 2 included the first shake-down experiments with our new apparatus for gas-phase tracer tests for direct measurement of trapped-gas saturation with foam. In addition, we began to analyze CT images of gas-phase tracer in foam displacements, which offers an independent measure of trapped-gas fraction and insights into the roles of convection of tracer in flowing gas and diffusion into trapped gas. Research on Task 3 included foam generation experiments in heterogeneous sandpacks and beadpacks and modeling of discontinuous changes in state such as foam generation. The experiments found the same three regimes (coarse foam, strong foam, and intermediate regime) in heterogeneous sandpacks previously identified in homogeneous porous media. One implication is that there may be a minimum flow rate required for foam generation in even heterogeneous porous media. The dynamics in SAG foam processes in heterogeneous media are complex

  17. Math of Popping Bubbles in a Foam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math of Popping Bubbles in a Foam Math of Popping Bubbles in a Foam Berkeley Lab researchers mathematically describe the complex evolution and disappearance of foamy bubbles May 9, ...

  18. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  19. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  20. Method for making thin carbon foam electrodes

    DOE Patents [OSTI]

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  1. Method for making thin carbon foam electrodes

    DOE Patents [OSTI]

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  2. Heat exchanger using graphite foam

    DOE Patents [OSTI]

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  3. Process for epoxy foam production

    DOE Patents [OSTI]

    Celina, Mathias C. (Albuquerque, NM)

    2011-08-23

    An epoxy resin mixture with at least one epoxy resin of between approximately 60 wt % and 90 wt %, a maleic anhydride of between approximately 1 wt % and approximately 30 wt %, and an imidazole catalyst of less than approximately 2 wt % where the resin mixture is formed from at least one epoxy resin with a 1-30 wt % maleic anhydride compound and an imidazole catalyst at a temperature sufficient to keep the maleic anhydride compound molten, the resin mixture reacting to form a foaming resin which can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  4. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.

    1984-01-01

    A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  5. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, A.T.

    1982-03-03

    A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  6. Method of making a cyanate ester foam

    DOE Patents [OSTI]

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  7. Method of forming a continuous polymeric skin on a cellular foam material

    DOE Patents [OSTI]

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  8. Foam shell cryogenic ICF target

    DOE Patents [OSTI]

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  9. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  10. FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE ENVIRONMENTS

    SciTech Connect (OSTI)

    Jansik, Danielle P.; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Wu, Yuxin; Foote, Martin; Zhang, Z. F.; Hubbard, Susan

    2011-07-05

    , which readily penetrate low permeability zones. Although surfactant foams have been utilized for subsurface mobilization efforts in the oil and gas industry, so far, the concept of using foams as a delivery mechanism for transporting remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and, foam delivery mechanisms limit the volume of water (< 5% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory- / intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e. advanced geophysical techniques and advanced predictive biomarkers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments.

  11. Activated, coal-based carbon foam

    DOE Patents [OSTI]

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  12. Plugging mechanisms in a lost circulation model

    SciTech Connect (OSTI)

    Givler, R.C.

    1985-01-01

    The problem of lost circulation during the drilling of geothermal wells is recognized to be a serious impediment to well completion. A viable solution, in terms of an ''engineered'' plugging material, will be enhanced via analytical cognizance of possible down-hole plugging mechanisms. This paper investigates several plugging strategies that result from rudimentary, mathematical models of the mud rheology (with and without dispersed particulate). 10 refs., 7 figs.

  13. Pitch-based carbon foam and composites

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN)

    2001-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  14. Pitch-based carbon foam and composites

    DOE Patents [OSTI]

    Klett, James W.

    2002-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  15. Pitch-based carbon foam and composites

    DOE Patents [OSTI]

    Klett, James W.

    2003-12-02

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  16. Pitch-based carbon foam and composites

    DOE Patents [OSTI]

    Klett, James W.

    2003-12-16

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  17. Aqueous foam toxicology evaluation and hazard review

    SciTech Connect (OSTI)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  18. Process for preparing silicon carbide foam

    DOE Patents [OSTI]

    Whinnery, LeRoy Louis; Nichols, Monte Carl; Wheeler, David Roger; Loy, Douglas Anson

    1997-01-01

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.

  19. Process for preparing silicon carbide foam

    DOE Patents [OSTI]

    Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.

    1997-09-16

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.

  20. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2003-03-31

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. The most significant progress during this period was made on Tasks 2 and 3. Research on Task 2 focused on experiments on gas trapping during liquid injection. A novel apparatus, similar to that in Kibodeaux and Rossen (1997), monitors average water saturation in a core moment-by-moment by weighing the core. Our experiments find that water saturation increases more during liquid injection than previously conjectured--in other words, less gas is trapped by liquid injection than previously thought. A number of unexpected trends in behavior were observed. It appears that these can be reconciled to previous theory of gas trapping by foam (Cheng et al., 2001) given that the experimental conditions were different from previous experiments. Results will be described in detail in the PhD dissertation of Qiang Xu, expected to be completed in early 2003. Regarding Task 3, recent laboratory research in a wide range of porous media shows that creating foam in steady flow in homogeneous media requires exceeding a minimum pressure gradient (Gauglitz et al., 2002). Data fit trends predicted by a theory in which foam generation depends on attaining sufficient {del}p to mobilize liquid lenses present before foam generation. Data show three regimes: a coarse-foam regime at low {del}p, strong foam at high {del}p, and, in between, a transient regime alternating between weaker and stronger foam. We for the first

  1. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2003-01-28

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. The most significant progress during this period was made on Tasks 2 and 3. Research on Task 2 focused on simulating the effect of gas trapping on foam mobility during foam injection and during subsequent injection of liquid. Gas trapping during liquid injection is crucial both to injectivity during liquid injection in surfactant-alternating-gas foam (SAG) projects and also provides a window into trapping mechanisms that apply during foam flow. We updated our simulator for foam (Rossen et al., 1999; Cheng et al., 2000) to account explicitly for the first time for the effects of gas trapping on gas mobility in foam and in liquid injected after foam, and for the effects of pressure gradient on gas trapping. The foam model fits steady-state foam behavior in both high- and low-quality flow regimes (Alvarez et al., 2001) and steady-state liquid mobility after foam. The simulator also fits the transition period between foam and liquid injection in laboratory corefloods qualitatively with no additional adjustable parameters. Research on Task 3 focused on foam generation in homogeneous porous media. In steady gas-liquid flow in homogeneous porous media with surfactant present, there is often observed a critical injection velocity or pressure gradient {del}{sub p}{sup min} at which foam generation occurs. Earlier research on foam generation was extended with extensive data for a variety of porous

  2. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOE Patents [OSTI]

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  3. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOE Patents [OSTI]

    Jody, Bassam; Daniels, Edward; Libera, Joseph A.

    1999-01-01

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  4. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL Citation Details In-Document Search Title: SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM ...

  5. Shape memory polymer foams for endovascular therapies (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Shape memory polymer foams for endovascular therapies Citation Details In-Document Search Title: Shape memory polymer foams for endovascular therapies A system for ...

  6. Ultra Low Density Amorphous Shape Memory polymer Foams. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ultra Low Density Amorphous Shape Memory polymer Foams. Citation Details In-Document Search Title: Ultra Low Density Amorphous Shape Memory polymer Foams. You are accessing a ...

  7. Shape memory polymer foams for endovascular therapies (Patent...

    Office of Scientific and Technical Information (OSTI)

    Shape memory polymer foams for endovascular therapies Title: Shape memory polymer foams for endovascular therapies A system for occluding a physical anomaly. One embodiment ...

  8. Geophysical monitoring of foam used to deliver remediation treatments...

    Office of Scientific and Technical Information (OSTI)

    Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Citation Details In-Document Search Title: Geophysical monitoring of foam used to ...

  9. A New Generation of Building Insulation by Foaming Polymer Blend...

    Energy Savers [EERE]

    ... automotive and aviation foams 15 Project Integration: We have collaborated with two commercial partners, Hoswell and Armacell International, in factory foaming trials to ...

  10. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2003-03-31

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. Significant progress was made during this period on all three Tasks. Regarding Task 1, we studied the behavior of foam made without polymer, with low-molecular-weight and high-molecular-weight polyacrylamide, and with xanthan polymer in sandpacks. Results consistently showed that polymer does not stabilize foam in porous media per se. Rather, it destabilizes foam to some extent, but may increase the viscosity of water sufficiently to increase the resistance to flow in spite of the lower intrinsic stability of the foam. This is consistent with the hypothesis the motivated our study. Results also showed that polymer shifts behavior from the high-quality foam-flow regime toward the low-quality regime, consistent with our initial hypothesis. Other aspects of the experimental results were puzzling and are discussed in the text of this report. Research on Task 2 included building an apparatus for gas-phase tracer tests for direct measurement of trapped-gas saturation with foam. We also investigated the nature of the low-quality foam regime, which is thought to be controlled by gas trapping and mobilization. In both the studies of polymers and foam and separate studies of CO{sub 2} foam, we observed behavior that seems to be related to the low-quality regime, but shows unexpected trends: specifically, a decrease in pressure gradient with increasing liquid injection rate, at fixed gas injection rate

  11. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2003-03-31

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. The most significant progress during this period was made on Tasks 1 and 3. Research on Task 1 focused on selecting and characterizing a surfactant/polymer formulation for initial experiments. The two (high-quality and low-quality) strong-foam regimes were identified from steady-state coreflood data for the formulation without polymer, for comparison with behavior with polymer. This formulation showed unconventional behavior in the low-quality regime in that pressure gradient decreases at increasing liquid injection rate. Such behavior was not seen in most previous studies of foam, but it is consistent with dense-CO{sub 2} foam data recently obtained in our laboratory. We are considering the significance of the unconventional trend in the data and proceeding with initial experiments with polymer. Research on Task 3 focused on foam generation at limited pressure gradient in sandpacks. In these experiments liquid injection rate and pressure drop across the core are held fixed, and gas injection rate responds to creation and properties of foam. Initial experiments included three permeabilities (1.2, 3.6 and 5 darcy), three surfactant concentrations (0.12, 1.2 and 2.4 wt%) and two liquid injection rates (1.29 and 2.76 ft/day). Separating experimental artifacts from physical phenomena in these experiments is difficult and an ongoing process.

  12. Production-Intent Lost-Motion Variable Valve Actuation Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production-Intent Lost-Motion Variable Valve Actuation Systems Production-Intent Lost-Motion Variable Valve Actuation Systems Variable valve actuation with onoff IEGR pre-bump is ...

  13. Foam generator and viscometer apparatus and process

    DOE Patents [OSTI]

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  14. Method for extruding pitch based foam

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN)

    2002-01-01

    A method and apparatus for extruding pitch based foam is disclosed. The method includes the steps of: forming a viscous pitch foam; passing the precursor through an extrusion tube; and subjecting the precursor in said extrusion tube to a temperature gradient which varies along the length of the extrusion tube to form an extruded carbon foam. The apparatus includes an extrusion tube having a passageway communicatively connected to a chamber in which a viscous pitch foam formed in the chamber paring through the extrusion tube, and a heating mechanism in thermal communication with the tube for heating the viscous pitch foam along the length of the tube in accordance with a predetermined temperature gradient.

  15. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOE Patents [OSTI]

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  16. Math of Popping Bubbles in a Foam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Math of Popping Bubbles in a Foam Math of Popping Bubbles in a Foam Berkeley Lab researchers mathematically describe the complex evolution and disappearance of foamy bubbles May 9, 2013 Media Contacts: UC Berkeley: Robert Sanders, rsanders@berkeley.edu, (510) 643-6998 Berkeley Lab: Linda Vu, lvu@lbl.gov, (510) 495-2404 Written By Robert Sanders Bubble baths and soapy dishwater, the refreshing head on a beer and the luscious froth on a cappuccino. All are foams, beautiful yet ephemeral as the

  17. The physical properties of microcellular composite foams

    SciTech Connect (OSTI)

    Nyitray, A.M.; Williams, J.M.; Onn, D.; Witek, A. (Los Alamos National Lab., NM (USA); Delaware Univ., Newark, DE (USA). Applied Thermal Physics Lab.)

    1989-01-01

    Recently we reported on a method of preparing microcellular composite foams. In this procedure an open-celled polystyrene foam is prepared by the polymerization of a high-internal-phase water-in-oil emulsion containing styrene, divinylbenzene, surfactant, free-radial initiator and water. After drying, the cells of the polystyrene foam are then filled with other materials such as aerogel or resoles. The physical properties of these materials, e.g., surface area, density, thermal conductivity, and compressive strength will be presented. 10 refs., 1 fig., 3 tabs.

  18. Uniformly dense polymeric foam body

    DOE Patents [OSTI]

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  19. Carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1996-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  20. New supply for canyon fire foam system

    SciTech Connect (OSTI)

    Gainey, T.

    1995-01-01

    The raw water supply for the B-Plant Canyon fire foam system is being replaced. The 4 inche water supply line to the foam system is being rerouted from the 6 inches raw water line in the Pipe Gallery to the 10 inches raw water main in the Operating Gallery. This document states the acceptance criteria for the flushing and testing to be performed by the contractor.

  1. Carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1996-06-25

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  2. Foam Generation in Homogeneous Porous Media

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Friedman, F.; Kam, S. I.; Rossen, W. R.

    2002-10-01

    In steady gas-liquid flow in homogeneous porous media with surfactant present, there is often observed a critical injection velocity or pressure gradient ?grad p min? at which ?weak? or ?coarse? foam is abruptly converted into ?strong foam,? with reduction of one to two orders of magnitude in total mobility: i.e., ?foam generation.? Earlier research on foam generation is extended here with extensive data for a variety of porous media, permeabilities, gases (N2 and C02), surfactants, and temperatures. For bead and sandpacks, ?grad p min? scales like (1/k), where k is permeability, over 2 1/2 orders of magnitude in k; for consolidated media the relation is more complex. For dense C02 foam, ?grad p min? exists but can be less than 1 psi/ft. If pressure drop, rather than flow rates, is fixed, one observes and unstable regime between stable ?strong? and ?coarse? foam regimes; in the unstable regime ?grad p? is nonuniform in space or variable in time.

  3. Structural Analysis of Sandwich Foam Panels

    SciTech Connect (OSTI)

    Kosny, Jan; Huo, X. Sharon

    2010-04-01

    The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

  4. REQUEST FOR LOST/STOLEN BADGE REPLACEMENT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR LOST/STOLEN BADGE REPLACEMENT REQUEST FOR LOST/STOLEN BADGE REPLACEMENT Form documents the circumstances surrounding the loss of the security badge, i.e., the date the badge was Iost/stolen, location where the badge may have been Iost/stolen, attempts to find the lost badge, etc. REQUEST FOR LOST/STOLEN BADGE REPLACEMENT (10.68 KB) More Documents & Publications DOE HQ F 473.1 (fillable pdf) DOE F 5634.1 DOE F 5639.2

  5. Progress in The Lost Circulation Technology Development Program

    SciTech Connect (OSTI)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

    1991-01-01

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

  6. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  7. Modeling decomposition of rigid polyurethane foam

    SciTech Connect (OSTI)

    Hobbs, M.L.

    1998-01-01

    Rigid polyurethane foams are used as encapsulants to isolate and support thermally sensitive components within weapon systems. When exposed to abnormal thermal environments, such as fire, the polyurethane foam decomposes to form products having a wide distribution of molecular weights and can dominate the overall thermal response of the system. Decomposing foams have either been ignored by assuming the foam is not present, or have been empirically modeled by changing physical properties, such as thermal conductivity or emissivity, based on a prescribed decomposition temperature. The hypothesis addressed in the current work is that improved predictions of polyurethane foam degradation can be realized by using a more fundamental decomposition model based on chemical structure and vapor-liquid equilibrium, rather than merely fitting the data by changing physical properties at a prescribed decomposition temperature. The polyurethane decomposition model is founded on bond breaking of the primary polymer and formation of a secondary polymer which subsequently decomposes at high temperature. The bond breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA) from a single nonisothermal experiment with a heating rate of 20 C/min. Model predictions compare reasonably well with a separate nonisothermal TGA weight loss experiment with a heating rate of 200 C/min.

  8. A New Generation of Building Insulation by Foaming Polymer Blend...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2 ISTN ...

  9. Fabrication of thin-wall hollow nickel spheres and low density syntactic foams

    SciTech Connect (OSTI)

    Clancy, R.B.; Sanders, T.H. Jr.; Cochran, J.K.

    1991-12-31

    A process has been developed to fabricate thin-wall hollow spheres from conventional oxide powders at room temperature. The polymer- bonded powder shells are fired in air to sinter the walls, leaving the shells either impervious or porous. Alternatively, the oxide shells can be preferentially reduced to produce thin-wall hollow metal spheres which can be bonded together to produce an ultra light weight closed-cell foam. Processing and properties of this class of low density structures will be discussed.

  10. Method for making one-container rigid foam

    DOE Patents [OSTI]

    Aubert, James H.

    2005-04-12

    A method of making a one-container foam by dissolving a polymer in liquified gas at a pressure greater than the vapor pressure of the liquified gas and than rapidly decreasing the pressure within approximately 60 seconds to foam a foam. The foam can be rigid and also have adhesive properties. The liquified gas used is CF.sub.3 l or mixtures thereof.

  11. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites presentation at the April 2013 peer review meeting held in Denver, Colorado.

  12. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams.

    SciTech Connect (OSTI)

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  13. Foam insulated transfer line test report

    SciTech Connect (OSTI)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  14. Method of forming a foamed thermoplastic polymer

    DOE Patents [OSTI]

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  15. Experiments for foam model development and validation.

    SciTech Connect (OSTI)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F.; Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  16. Low density microcellular carbon foams and method of preparation

    DOE Patents [OSTI]

    Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.

    1989-01-01

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  17. Low density microcellular carbon foams and method of preparation

    DOE Patents [OSTI]

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  18. Sea change for foam | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea change for foam Sea change for foam Posted: May 7, 2014 - 5:37pm | Y-12 Report | Volume 10, Issue 2 | 2014 Weapon parts are packed in dense polyurethane foam. After workers noticed discrepancies in that material, Y-12 revamped a long-established foam manufacturing and inspection process. Assembly workers in Y-12's container refurbishment shop raised a concern last year that quickly put the brakes on weapon shipments across the country. Foam inserts, manufactured at Y-12 and used in packaging

  19. Center for Inverse Design: Lost SharePoint Password?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lost SharePoint Password? Enter your name and e-mail address in the boxes provided. When you are finished, click "Request Password." If you enter your e-mail address incorrectly, ...

  20. DOE - Office of Legacy Management -- Lost Creek - WY 01

    Office of Legacy Management (LM)

    Lost Creek - WY 01 FUSRAP Considered Sites Site: Lost Creek (WY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC

  1. Thermo-mechanical characterization of silicone foams

    SciTech Connect (OSTI)

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.; Lewis, Matthew W.

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  2. Thermo-mechanical characterization of silicone foams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.; Lewis, Matthew W.

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compressionmorefor ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperaturesless

  3. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOE Patents [OSTI]

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  4. Nanoparticle-stabilized CO₂ foam for CO₂ EOR application

    SciTech Connect (OSTI)

    Liu, Ning; Lee, Robert; Yu, Jianjia; Li, Liangxiong; Bustamante, Elizabeth; Khalil, Munawar; Mo, Di; Jia, Bao; Wang, Sai; San, Jingshan; An, Cheng

    2015-01-31

    The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportation of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.

  5. Net lost revenue from DSM: State policies that work

    SciTech Connect (OSTI)

    Baxter, L.W.

    1995-07-01

    A key utility regulatory reform undertaken since 1989 allows utilities to recover the lost revenue incurred through successful operation of demand-side management (DSM) programs. Net lost revenue adjustment (NLRA) mechanisms are states preferred approach to lost revenue recovery from DSM programs. This paper examines the experiences states and utilities are having with the NLRA approach. The paper has three objectives: (1) determine whether NLRA is a feasible and effective approach to the lost-revenue disincentive for utility DSM programs, (2) identify the conditions linked to effective implementation of NLRA mechanisms and assess whether NLRA has changed utility investment behavior, and (3) suggest improvements to NLRA mechanisms. Contrary to the concerns raised by some industry analysts, our results indicate NLRA is a feasible approach. Seven of the ten states we studied report no substantial problems with their approach. We observe several conditions linked to effective NLRA implementation. Observed changes in utility investment behavior occur after implementation of DSM rate reforms, which include deployment of NLRA mechanisms. Utilities in states with lost revenue recovery invest more than twice as much in DSM as do utilities in other states.

  6. Military housing foam application and analysis

    SciTech Connect (OSTI)

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), the partnership provides a unique opportunity to take technology research and development from demonstration to application in sustainable communities. This project consists of two activities conducted in Hawaii that focus on performance, integration and application of energy saving technologies. Hawaii has many energy challenges, making this location an excellent testbed for these activities. Under this project, spray foam technology was applied at military housing on Oahu and the consumption data collected. A cost benefit and operational analysis of the foam was completed. The second phase of this project included design, integration, and analysis of photovoltaic systems at a military community on Oahu. This phase of the project was conducted as part of Forest City's second Solar America Showcase Award.

  7. Value Stream Mapping: Foam Collection and Processing.

    SciTech Connect (OSTI)

    Sorensen, Christian

    2015-07-01

    The effort to collect and process foam for the purpose of recycling performed by the Material Sustainability and Pollution Prevention (MSP2) team at Sandia National Laboratories is an incredible one, but in order to make it run more efficiently it needed some tweaking. This project started in June of 2015. We used the Value Stream Mapping process to allow us to look at the current state of the foam collection and processing operation. We then thought of all the possible ways the process could be improved. Soon after that we discussed which of the "dreams" were feasible. And finally, we assigned action items to members of the team so as to ensure that the improvements actually occur. These improvements will then, due to varying factors, continue to occur over the next couple years.

  8. Spin foam model from canonical quantization

    SciTech Connect (OSTI)

    Alexandrov, Sergei

    2008-01-15

    We suggest a modification of the Barrett-Crane spin foam model of four-dimensional Lorentzian general relativity motivated by the canonical quantization. The starting point is Lorentz covariant loop quantum gravity. Its kinematical Hilbert space is found as a space of the so-called projected spin networks. These spin networks are identified with the boundary states of a spin foam model and provide a generalization of the unique Barrett-Crane intertwiner. We propose a way to modify the Barrett-Crane quantization procedure to arrive at this generalization: the B field (bivectors) should be promoted not to generators of the gauge algebra, but to their certain projection. The modification is also justified by the canonical analysis of the Plebanski formulation. Finally, we compare our construction with other proposals to modify the Barrett-Crane model.

  9. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.

    1995-07-11

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.

  10. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, Jr., Charles; Derzon, Dora K.; Nelson, Jill S.; Rand, Peter B.

    1995-01-01

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

  11. Foaming characteristics of refigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.

    1997-04-01

    The air-conditioning and refrigeration industry has moved to HFC refrigerants which have zero ozone depletion and low global warming potential due to regulations on CFC and HCFC refrigerants and concerns for the environment. The change in refrigerants has prompted the switch from mineral oil and alkylbenzene lubricants to polyolester-based lubricants. This change has also brought about a desire for lubricant, refrigerant and compressor manufacturers to understand the foaming properties of alternative refrigerant/ lubricant mixtures, as well as the mechanisms which affect these properties. The objectives of this investigation are to experimentally determine the foaming absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/ lubricant mixture after being exposed to a pressure drop. The refrigerants being examined include baseline refrigerants: CFC-12 (R-12) and HCFC-22 (R-22); alternative refrigerants: HFC-32 (R-32), R-125, R-134a, and R-143a; and blended refrigerants: R-404A, R-407C, and R-410A. The baseline refrigerants are tested with ISO 32 (Witco 3GS) and ISO 68 (4GS) mineral oils while the alternative and blended refrigerants are tested with two ISO 68 polyolesters (Witco SL68 and ICI RL68H).

  12. Hyper-dendritic nanoporous zinc foam anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  13. ENHANCEMENT OF STRUCTURAL FOAM MATERIALS BY INCORPORATION OF GASIFIER SLAG

    SciTech Connect (OSTI)

    Olin Perry Norton; Ronald A. Palmer; W. Gene Ramsey

    2006-03-15

    As advanced gasification technology is increasingly adopted as an energy source, disposal of the resulting slag will become a problem. We have shown that gasifier slag can be incorporated into foamed glass, which is currently being manufactured as an abrasive and as an insulating material. The slag we add to foamed glass does not simply act as filler, but improves the mechanical properties of the product. Incorporation of gasifier slag can make foamed glass stronger and more abrasion resistant.

  14. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan King/Greg Stillman Total budget: $300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi Sugama Co-PI; Dr. Tatiana Pyatina Presenter Name: Dr. Toshifumi Sugama This presentation does not contain any proprietary confidential, or otherwise restricted information. Microstructure developed in conventional foamed (left) and corrosion- resistant foamed cements (right) 2 | US DOE Geothermal Office

  15. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  16. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemi...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms Citation Details In-Document ...

  17. FOAM (Functional Ontology Assignments for Metagenomes): A Hidden...

    Office of Scientific and Technical Information (OSTI)

    Ontology Assignments for Metagenomes): A Hidden Markov Model (HMM) database with environmental focus Citation Details In-Document Search Title: FOAM (Functional Ontology...

  18. Shape memory polymer foams for endovascular therapies (Patent...

    Office of Scientific and Technical Information (OSTI)

    Title: Shape memory polymer foams for endovascular therapies A system for occluding a ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 59 ...

  19. Shape memory polymer foams for endovascular therapies (Patent...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Shape memory polymer foams for endovascular ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 59 ...

  20. Alloy Foam Diesel Emissions Control School Bus Implementation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, ...

  1. Controlling Foaming in Hydrogen Release from Boranes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Foaming in Hydrogen Release from Boranes Pacific Northwest National Laboratory Contact PNNL About This Technology From left to right: 100mg ammonia borane (AB) pellet;...

  2. Low density biodegradable shape memory polyurethane foams for...

    Office of Scientific and Technical Information (OSTI)

    Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Citation Details In-Document Search Title: Low density biodegradable shape memory...

  3. AmeriFlux US-Los Lost Creek

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Desai, Ankur [University of Wisconsin

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Los Lost Creek. Site Description - Shrub wetland site, chosen to be representative of the wetlands within the WLEF tall tower flux footprint. This is a deciduous shrub wetland. Coniferous and grassy stands also exist within the WLEF flux footprint. Solar power. The site has excellent micrometeorological characteristics.

  4. polyurethane foam Goods, S.H.; Neuschwanger, C.L.; Henderson...

    Office of Scientific and Technical Information (OSTI)

    Mechanical properties and energy absorption characteristics of a polyurethane foam Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M. 36 MATERIALS SCIENCE; FOAMS;...

  5. Microsoft Word - NETL-TRS-X-2015_Field-Generated Foamed Cement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The initial field-generated foamed cement testing revealed the structure of the ... The heterogeneous structure suggests the motion of the foamed cement slurry within the vessels ...

  6. Which Spray Foam Is Right For You?: Appropriate Applications for Open-Cell & Closed-Cell Foam Insulation

    SciTech Connect (OSTI)

    2009-04-03

    This guideline focuses on performance benefits and the potential performance limitations of open-cell and closed-cell spray polyurethane foam.

  7. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect (OSTI)

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  8. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect (OSTI)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn

  9. Pitch-based carbon foam and composites and uses thereof

    DOE Patents [OSTI]

    Klett, James W.; Burchell, Timothy D.; Choudhury, Ashok

    2004-01-06

    A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/m.multidot.K. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 W.multidot.cm.sup.3 /m.multidot..degree.K.multidot.gm. The foam also has a high specific surface area, typically at least about 6,000 m.sup.2 /m.sup.3. The foam is characterized by an x-ray diffraction pattern having "doublet" 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.

  10. Pitch-based carbon foam and composites and use thereof

    DOE Patents [OSTI]

    Klett, James W.; Burchell, Timothy D.; Choudhury, Ashok

    2006-07-04

    A thermally conductive carbon foam is provided, normally having a thermal conductivity of at least 40 W/mK. The carbon foam usually has a specific thermal conductivity, defined as the thermal conductivity divided by the density, of at least about 75 Wcm.sup.3/m.degree. Kgm. The foam also has a high specific surface area, typically at least about 6,000 m.sup.2/m.sup.3. The foam is characterized by an x-ray diffraction pattern having "doublet" 100 and 101 peaks characterized by a relative peak split factor no greater than about 0.470. The foam is graphitic and exhibits substantially isotropic thermal conductivity. The foam comprises substantially ellipsoidal pores and the mean pore diameter of such pores is preferably no greater than about 340 microns. Other materials, such as phase change materials, can be impregnated in the pores in order to impart beneficial thermal properties to the foam. Heat exchange devices and evaporatively cooled heat sinks utilizing the foams are also disclosed.

  11. Sandia-Power Surety Task Force Hawaii foam analysis.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-11-01

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  12. Method of forming a foamed thermoplastic polymer

    DOE Patents [OSTI]

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  13. FOAM: Expanding the horizons of climate modeling

    SciTech Connect (OSTI)

    Tobis, M.; Foster, I.T.; Schafer, C.M.

    1997-10-01

    We report here on a project that expands the applicability of dynamic climate modeling to very long time scales. The Fast Ocean Atmosphere Model (FOAM) is a coupled ocean atmosphere model that incorporates physics of interest in understanding decade to century time scale variability. It addresses the high computational cost of this endeavor with a combination of improved ocean model formulation, low atmosphere resolution, and efficient coupling. It also uses message passing parallel processing techniques, allowing for the use of cost effective distributed memory platforms. The resulting model runs over 6000 times faster than real time with good fidelity, and has yielded significant results.

  14. Materials Applications for Non-Lethal: Aqueous Foams

    SciTech Connect (OSTI)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  15. Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media

    SciTech Connect (OSTI)

    Zhang, Z. F.; Zhong, Lirong; White, Mark D.; Szecsody, James E.

    2012-11-01

    Foam has the potential to effectively carry and distribute either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. However, the transport of foam in porous media is complicated because flow characteristics such as the effective viscosity are affected not only by foam properties but also by the sediment properties and flow conditions. We determined the average effective foam viscosity via a series of laboratory experiments and found that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. These impacts are quantified with an empirical expression, which is further demonstrated with data from literature. The results show that the liquid fraction in foam and sediment permeability are two primary factors affecting effective foam viscosity. These results suggest that, when foam is used in deep vadose zone remediation, foam flow will not suffer from gravitational drainage and can distribute amendments uniformly in heterogeneous sediments.

  16. Amino resin modified xanthan polymer foamed with a chemical blowing agent

    SciTech Connect (OSTI)

    Hazlett, R.D.; Shu, P.

    1989-05-16

    A method is described for reducing the permeability in an area of a subterranean formation which consists of mixing a gellable composition containing: water, about 0.2 to about 5.0 wt.% of a cross linkable polysaccharide biopolymer having at least one functional group charide biopolymer having at least one functional group selected from a member of the group consisting of an amine, an amide, a hydroxyl, or a thiol group, and about 0.02 to about 5.0 wt.% of an aminoplast resin which reinforces the biopolymer thereby causing the polymer to become more thermally stable. Also included are sufficient transitional metal ions to form a gel of a size and strength sufficient to reduce permeability in a more permeable zone in the formation. A chemical surfactant, and an alkali metal salt of azodicarboxylic acid, are then introduced produce a gas sufficient to foam the composition described above. The composition is then injected into the desired area of the formation where the azodicarboxylic acid decomposes thereby generating nitrogen and carbon dioxide gas in an amount sufficient to form a foam which subsequently hardens and reduces the permeability in the desired area.

  17. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect (OSTI)

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  18. Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

    SciTech Connect (OSTI)

    Jablonski, Paul D.; Turner, Paul C.

    2005-09-01

    In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

  19. CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model.

    SciTech Connect (OSTI)

    Fletcher, Thomas H. (Brigham Young University, Provo, UT); Thompson, Kyle Richard; Erickson, Kenneth L.; Dowding, Kevin J.; Clayton, Daniel (Brigham Young University, Provo, UT); Chu, Tze Yao; Hobbs, Michael L.; Borek, Theodore Thaddeus III

    2003-07-01

    A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the

  20. A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

    SciTech Connect (OSTI)

    Rao, Rekha R.; Mondy, Lisa Ann; Noble, David R.; Brunini, Victor; Roberts, Christine Cardinal; Long, Kevin Nicholas; Soehnel, Melissa Marie; Celina, Mathias C.; Wyatt, Nicholas B.; Thompson, Kyle R.; Tinsley, James

    2015-09-01

    We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to

  1. WIPP Workers Reach Two Million Man-Hours Without a Lost-Time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workers Reach Two Million Man-Hours Without a Lost-Time Accident CARLSBAD, N.M., February ... a safety milestone Feb. 19 by working two million man-hours without a lost-time accident. ...

  2. Epoxy foams using multiple resins and curing agents

    DOE Patents [OSTI]

    Russick, Edward M.; Rand, Peter B.

    2000-01-01

    An epoxy foam comprising a plurality of resins, a plurality of curing agents, at least one blowing agent, at least one surfactant and optionally at least one filler and the process for making. Preferred is an epoxy foam comprising two resins of different reactivities, two curing agents, a blowing agent, a surfactant, and a filler. According to the present invention, an epoxy foam is prepared with tailorable reactivity, exotherm, and pore size by a process of admixing a plurality of resins with a plurality of curing agents, a surfactant and blowing agent, whereby a foamable mixture is formed and heating said foamable mixture at a temperature greater than the boiling temperature of the blowing agent whereby said mixture is foamed and cured.

  3. Method of making foam-encapsulated laser targets

    DOE Patents [OSTI]

    Rinde, James A.; Fulton, Fred J.

    1977-01-01

    Foam-encapsulated laser fusion targets are fabricated by suspending fusion fuel filled shells in a solution of cellulose acetate, extruding the suspension through a small orifice into a bath of ice water, soaking the thus formed shell containing cellulose acetate gel in the water to extract impurities, freezing the gel, and thereafter freeze-drying wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam containing one or more encapsulated fuel-filled shells. The thus formed material is thereafter cut and mounted on a support to provide laser fusion targets containing a fuel-filled shell surrounded by foam having a thickness of 10 to 60 .mu.m, a cell size of less than 2 .mu.m, and density of 0.08 to 0.6.times.10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by the encapsulation method are illustrated.

  4. Reducing wall plasma expansion with gold foam irradiated by laser

    SciTech Connect (OSTI)

    Zhang, Lu; Ding, Yongkun Jiang, Shaoen Yang, Jiamin; Li, Hang; Kuang, Longyu; Lin, Zhiwei; Jing, Longfei; Li, Liling; Deng, Bo; Yuan, Zheng; Chen, Tao; Yuan, Guanghui; Tan, Xiulan; Li, Ping

    2015-11-15

    The experimental study on the expanding plasma movement of low-density gold foam (∼1% solid density) irradiated by a high power laser is reported in this paper. Experiments were conducted using the SG-III prototype laser. Compared to solid gold with 19.3 g/cc density, the velocities of X-ray emission fronts moving off the wall are much smaller for gold foam with 0.3 g/cc density. Theoretical analysis and MULTI 1D simulation results also show less plasma blow-off, and that the density contour movement velocities of gold foam are smaller than those of solid gold, agreeing with experimental results. These results indicate that foam walls have advantages in symmetry control and lowering plasma fill when used in ignition hohlraum.

  5. Low-density microcellular foam and method of making same

    DOE Patents [OSTI]

    Rinde, James A.

    1977-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0.degree.-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly applicable for encapsulation of laser targets.

  6. Method of making a cellulose acetate low density microcellular foam

    DOE Patents [OSTI]

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  7. Spin-foam models and the physical scalar product

    SciTech Connect (OSTI)

    Alesci, Emanuele; Noui, Karim; Sardelli, Francesco

    2008-11-15

    This paper aims at clarifying the link between loop quantum gravity and spin-foam models in four dimensions. Starting from the canonical framework, we construct an operator P acting on the space of cylindrical functions Cyl({gamma}), where {gamma} is the four-simplex graph, such that its matrix elements are, up to some normalization factors, the vertex amplitude of spin-foam models. The spin-foam models we are considering are the topological model, the Barrett-Crane model, and the Engle-Pereira-Rovelli model. If one of these spin-foam models provides a covariant quantization of gravity, then the associated operator P should be the so-called ''projector'' into physical states and its matrix elements should give the physical scalar product. We discuss the possibility to extend the action of P to any cylindrical functions on the space manifold.

  8. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    SciTech Connect (OSTI)

    Nash, T.J.; Derzon, M.S.; Allshouse, G.; Deeney, C.; Jobe, D.; Seaman, J.; Gilliland, T.; McGurn, J. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1193 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1193 (United States); MacFarlane, J.J.; Wang, P. [University of Wisconsin, Madison, Wisconsin (United States)] [University of Wisconsin, Madison, Wisconsin (United States)

    1997-01-01

    Solid and annular silicon aerogel and agar foams were imploded on the SATURN accelerator to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 ns rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated extreme ultraviolet spectrometer measured the extent of plasma ablation off the surface of the foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of sulfur and sodium impurities in the agar were attenuated when the foam loads were coated with a conductive layer of gold. A time-resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings. {copyright} {ital 1997 American Institute of Physics.}

  9. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    SciTech Connect (OSTI)

    Nash, T.J.; Derzon, M.S.; Allshouse, G.; Deeney, C.; Jobe, D.; McGurn, J. [Sandia National Labs., Albuquerque, NM (United States); MacFarlane, J.J.; Wang, P. [Wisconsin Univ., Madison, WI (United States)

    1996-06-01

    Solid and annular silicon aerogel and agar foams were shot on the accelerator SATURN to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 nsec rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated EUV spectrometer measured the extent of plasma ablation off the surface foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of S and Na impurities in the agar were all attenuated when the foam loads were coated with a conductive layer of gold. The time resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings.

  10. Low density biodegradable shape memory polyurethane foams for embolic

    Office of Scientific and Technical Information (OSTI)

    biomedical applications (Journal Article) | SciTech Connect Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Citation Details In-Document Search Title: Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Authors: Singhal, P ; Small, W ; Cosgriff-Hernandez, E ; Maitland, D ; Wilson, T Publication Date: 2013-02-27 OSTI Identifier: 1122211 Report Number(s): LLNL-JRNL-623392 DOE Contract Number: W-7405-ENG-48

  11. Alloy Foam Diesel Emissions Control School Bus Implementation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Alloy Foam Diesel Emissions Control School Bus Implementation Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_han.pdf (407.66 KB) More Documents & Publications Diesel Injection Shear-Stress Advanced Nozzle

  12. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  13. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  14. Innovative test method for the estimation of the foaming tendency of substrates for biogas plants

    SciTech Connect (OSTI)

    Moeller, Lucie; Eismann, Frank; Wißmann, Daniel; Nägele, Hans-Joachim; Zielonka, Simon; Müller, Roland A.; Zehnsdorf, Andreas

    2015-07-15

    Graphical abstract: Display Omitted - Highlights: • Foaming in biogas plants depends on the interactions between substrate and digestate. • Foaming tests enable the evaluation of substrate foaming tendency in biogas plants. • Leipzig foam tester enables foaming tests of substrates prior to use. - Abstract: Excessive foaming in anaerobic digestion occurs at many biogas plants and can cause problems including plugged gas pipes. Unfortunately, the majority of biogas plant operators are unable to identify the causes of foaming in their biogas reactor. The occurrence of foaming is often related to the chemical composition of substrates fed to the reactor. The consistency of the digestate itself is also a crucial part of the foam formation process. Thus, no specific recommendations concerning substrates can be given in order to prevent foam formation in biogas plants. The safest way to avoid foaming is to test the foaming tendency of substrates on-site. A possible solution is offered by an innovative foaming test. With the help of this tool, biogas plant operators can evaluate the foaming disposition of new substrates prior to use in order to adjust the composition of substrate mixes.

  15. Field verification of CO{sub 2}-foam. Annual report

    SciTech Connect (OSTI)

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1992-11-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, is the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. The four-year project, jointly funded by the EVGSAU Working Interest Owners (WIO), the US Department of Energy (DOE), and the State of New Mexico, began in late 1989. The Petroleum Recovery Research Center (PRCC), a division of the New Mexico Institute of Mining and Technology (NMIMT), is providing laboratory and research support for the project. A Joint Project Advisory Team (JPAT) composed of technical representatives from several major oil companies provides input, review, and guidance for the project. This third annual report details various aspects of the CO{sub 2}-Foam Field Verification Pilot test at EVGSAU. The report presents: (1) an overview of the operating plan for the project, (2) details of the foam injection schedule and design criteria, (3) a discussion of the data collection program and performance criteria to be used in evaluating successful application of foam for mobility control in the EVGSAU CO{sub 2} project, and (4) preliminary results from the field injection test. Specific items discussed in the foam injection design include the determination of surfactant volume and concentration, selection of the surfactant-alternating-gas (SAG) injection sequence for foam generation, field facilities, operations during foam injection, and contingency plans. An extensive data collection program for the project is discussed including production testing, injection well pressure and rate monitoring, injection profiles, production well logging, observation well logging program, and both gas and water phase tracer programs.

  16. Temperature measurements of shocked silica aerogel foam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; et al

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  17. Bubbling supertubes and foaming black holes

    SciTech Connect (OSTI)

    Bena, Iosif; Warner, Nicholas P.

    2006-09-15

    We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the U(1)xU(1) invariant black ring. This singularity is resolved by a geometric transition that results in geometries without any branes sources or singularities but with nontrivial topology. These geometries are both ground states of the black ring, and nontrivial microstates of the D1-D5-P system. We also find the form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue that, in general, such geometries give a very large number of smooth bound-state three-charge solutions, parametrized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-Kaehler geometry of a certain signature, and contains a 'foam' of nontrivial two-spheres. We conjecture that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that Mathur's conjecture might reduce to counting certain hyper-Kaehler manifolds.

  18. Plackett-Burman experimental design to facilitate syntactic foam development

    SciTech Connect (OSTI)

    Smith, Zachary D.; Keller, Jennie R.; Bello, Mollie; Cordes, Nikolaus L.; Welch, Cynthia F.; Torres, Joseph A.; Goodwin, Lynne A.; Pacheco, Robin M.; Sandoval, Cynthia W.

    2015-09-14

    The use of an eight-experiment Plackett–Burman method can assess six experimental variables and eight responses in a polysiloxane-glass microsphere syntactic foam. The approach aims to decrease the time required to develop a tunable polymer composite by identifying a reduced set of variables and responses suitable for future predictive modeling. The statistical design assesses the main effects of mixing process parameters, polymer matrix composition, microsphere density and volume loading, and the blending of two grades of microspheres, using a dummy factor in statistical calculations. Responses cover rheological, physical, thermal, and mechanical properties. The cure accelerator content of the polymer matrix and the volume loading of the microspheres have the largest effects on foam properties. These factors are the most suitable for controlling the gel point of the curing foam, and the density of the cured foam. The mixing parameters introduce widespread variability and therefore should be fixed at effective levels during follow-up testing. Some responses may require greater contrast in microsphere-related factors. As a result, compared to other possible statistical approaches, the run economy of the Plackett–Burman method makes it a valuable tool for rapidly characterizing new foams.

  19. Plackett-Burman experimental design to facilitate syntactic foam development

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Zachary D.; Keller, Jennie R.; Bello, Mollie; Cordes, Nikolaus L.; Welch, Cynthia F.; Torres, Joseph A.; Goodwin, Lynne A.; Pacheco, Robin M.; Sandoval, Cynthia W.

    2015-09-14

    The use of an eight-experiment Plackett–Burman method can assess six experimental variables and eight responses in a polysiloxane-glass microsphere syntactic foam. The approach aims to decrease the time required to develop a tunable polymer composite by identifying a reduced set of variables and responses suitable for future predictive modeling. The statistical design assesses the main effects of mixing process parameters, polymer matrix composition, microsphere density and volume loading, and the blending of two grades of microspheres, using a dummy factor in statistical calculations. Responses cover rheological, physical, thermal, and mechanical properties. The cure accelerator content of the polymer matrix andmore » the volume loading of the microspheres have the largest effects on foam properties. These factors are the most suitable for controlling the gel point of the curing foam, and the density of the cured foam. The mixing parameters introduce widespread variability and therefore should be fixed at effective levels during follow-up testing. Some responses may require greater contrast in microsphere-related factors. As a result, compared to other possible statistical approaches, the run economy of the Plackett–Burman method makes it a valuable tool for rapidly characterizing new foams.« less

  20. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser irradiation of foams...

  1. Analysis of a graphite foam-NaCl latent heat storage system for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of a graphite foam-NaCl latent heat storage system for supercritical CO2 power cycles for concentrated solar power Title Analysis of a graphite foam-NaCl latent heat...

  2. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect (OSTI)

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  3. High-power Laser Interaction With Low-density C-Cu Foams (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-power Laser Interaction With Low-density C-Cu Foams Citation Details In-Document Search Title: High-power Laser Interaction With Low-density C-Cu Foams You are accessing a ...

  4. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOE Patents [OSTI]

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  5. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    SciTech Connect (OSTI)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  6. Carbon or graphite foam as a heating element and system thereof

    DOE Patents [OSTI]

    Ott, Ronald D. (Knoxville, TN) [Knoxville, TN; McMillan, April D. (Knoxville, TN) [Knoxville, TN; Choudhury, Ashok (Oak Ridge, TN) [Oak Ridge, TN

    2004-05-04

    A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.

  7. 3D-Printed Foam Outperforms Standard Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D-Printed Foam Outperforms Standard Materials 3D-Printed Foam Outperforms Standard Materials April 27, 2016 - 5:58pm Addthis News release from Lawrence Livermore Laboratory, April 27, 2016. Lawrence Livermore National Laboratory (LLNL) material scientists have found that 3D-printed foam works better than standard cellular materials in terms of durability and long-term mechanical performance. Foams, also known as cellular solids, are an important class of materials with applications ranging from

  8. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    ScienceCinema (OSTI)

    None

    2011-04-25

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

  9. Wetted foam liquid fuel ICF target experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; et al

    2016-05-01

    Here, we are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but willmore » become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  10. Ultra-low density microcellular polymer foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F.; Brown, John D.

    1996-01-01

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  11. Ultra-low density microcellular polymer foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1996-03-19

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  12. Method for epoxy foam production using a liquid anhydride

    DOE Patents [OSTI]

    Celina, Mathias

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  13. Stabilized aqueous foam systems and concentrate and method for making them

    DOE Patents [OSTI]

    Rand, Peter B.

    1984-01-01

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams.

  14. Y-12 Construction hits one million-hour mark without a lost-time accident |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has worked one million hours, covering a 633-day period, without a lost-time injury. Some 285 people including building trade crafts, non-manual staff and escorts worked without a lost-time accident during this period. The Construction team's last lost workday was in September 2010. A

  15. Portsmouth Site Plant Surpasses Five Years Without Lost-Time Accident |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Site Plant Surpasses Five Years Without Lost-Time Accident Portsmouth Site Plant Surpasses Five Years Without Lost-Time Accident November 26, 2013 - 12:00pm Addthis BWCS employees from all departments of the DUF6 project at the Portsmouth site come together to mark five years without a lost-time accident. BWCS employees from all departments of the DUF6 project at the Portsmouth site come together to mark five years without a lost-time accident. Russ Hall, environment,

  16. Method for providing a low density high strength polyurethane foam

    DOE Patents [OSTI]

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  17. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect (OSTI)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  18. Humidifier for fuel cell using high conductivity carbon foam

    DOE Patents [OSTI]

    Klett, James W.; Stinton, David P.

    2006-12-12

    A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.

  19. Toxicology evaluation and hazard review for non-CFC containing rigid foams BKC 44317 and last-a-foam MSL-02A

    SciTech Connect (OSTI)

    Greulich, K.A.; Archuleta, M.M.

    1996-06-01

    New pour-in-place, low density, rigid polyurethane foam kits have been developed to mechanically stabilize damaged explosive ordnance. Although earlier foam systems used chlorofluorocarbons as blowing agents, the current versions rely on carbon dioxide generated by the reaction of isocynates with water. In addition, these kits were developed to manually generate small quantifies of rigid foam in the field with minimal or no protective equipment. The purpose of this study was to evaluate and summarize available hazard information for the components of these rigid foam kits and to provide recommendations for personal protective equipment to be used while performing the manual combination of the components. As with most rigid foam systems, these kits consist of two parts, one a mixture of isocyanates; the other, a combination of polyols, surfactants, and amine catalysts. Once completely deployed, the rigid foam is non-toxic. The components, however, have some important health effects which must be considered when establishing handling procedures.

  20. Exotherm data acquisition in polyurethane foam formation using a microcomputer

    SciTech Connect (OSTI)

    Hebrard, M.J.; Leroux, J.

    1986-01-01

    An Apple microcomputer was used to collect exotherm data of the reactions leading to the formation of polyurethane foams, to differentiate the curves with respect to time and to measure the position and magnitude of the inflection points. Hardware, software, operations and reproducibility of this automated data acquisition system are described.

  1. Lagrangian approach to the Barrett-Crane spin foam model

    SciTech Connect (OSTI)

    Bonzom, Valentin; Livine, Etera R.

    2009-03-15

    We provide the Barrett-Crane spin foam model for quantum gravity with a discrete action principle, consisting in the usual BF term with discretized simplicity constraints which in the continuum turn topological BF theory into gravity. The setting is the same as usually considered in the literature: space-time is cut into 4-simplices, the connection describes how to glue these 4-simplices together and the action is a sum of terms depending on the holonomies around each triangle. We impose the discretized simplicity constraints on disjoint tetrahedra and we show how the Lagrange multipliers distort the parallel transport and the correlations between neighboring simplices. We then construct the discretized BF action using a noncommutative * product between SU(2) plane waves. We show how this naturally leads to the Barrett-Crane model. This clears up the geometrical meaning of the model. We discuss the natural generalization of this action principle and the spin foam models it leads to. We show how the recently introduced spin foam fusion coefficients emerge with a nontrivial measure. In particular, we recover the Engle-Pereira-Rovelli spin foam model by weakening the discretized simplicity constraints. Finally, we identify the two sectors of Plebanski's theory and we give the analog of the Barrett-Crane model in the nongeometric sector.

  2. Assessment of net lost revenue adjustment mechanisms for utility DSM programs

    SciTech Connect (OSTI)

    Baxter, L.W.

    1995-01-01

    Utility shareholders can lose money on demand-side management (DSM) investments between rate cases. Several industry analysts argue that the revenues lost from utility DSM programs are an important financial disincentive to utility DSM investment. A key utility regulatory reform undertaken since 1989 allows utilities to recover the lost revenues incurred through successful operation of DSM programs. Explicitly defined net lost revenue adjustment (NLRA) mechanisms are states` preferred approach to lost revenue recovery from DSM programs. This report examines the experiences states and utilities are having with the NLRA approach. The report has three objectives. First, we determine whether NLRA is a feasible and successful approach to removing the lost-revenue disincentive to utility operation of DSM programs. Second, we identify the conditions linked to successful implementation of NLRA mechanisms in different states and assess whether NLRA has changed utility investment behavior. Third, we suggest improvements to NLRA mechanisms. We first identify states with NLRA mechanisms where utilities are recovering lost revenues from DSM programs. We interview staff at regulatory agencies in all these states and utility staff in four states. These interviews focus on the status of NLRA, implementation issues, DSM measurement issues, and NLRA results. We also analyze regulatory agency orders on NLRA, as well as associated testimony, reports, and utility lost revenue recovery filings. Finally, we use qualitative and quantitative indicators to assess NLRA`s effectiveness. Contrary to the concerns raised by some industry analysts, our results indicate NLRA is a feasible approach to the lost-revenue disincentive.

  3. Generalized entering coefficients: A criterion for foam stability against oil in porous media

    SciTech Connect (OSTI)

    Bergeron, V.; Fagan, M.E.; Radke, C.J.

    1993-09-01

    The unique mobility-control properties of foam in porous media make it an attractive choice as an injection fluid for enhanced oil recovery. Unfortunately, in many cases oil has a major destabilizing effect on foam. Therefore, it is important to understand how oil destabilizes foam and what surfactant properties lead to increased stability against oil. To explain the stability of foam in porous media in the presence of oil, we generalize the ideas of spreading and entering behavior using Frumkin-Deryaguin wetting theory. This formulation overcomes the inherent deficiencies in the classical spreading and entering coefficients used to explain foam stability against oil. We find that oil-tolerant foam can be produced by making the oil surface ``water wet``. To test our theoretical ideas, we measure foam-flow resistance through 45--70 {mu}m glass beadpacks, surface and interfacial tensions, and disjoining pressure isotherms for foam and pseudoemulsion films for a variety of surfactant/oil systems. Most notably, we measure pseudoemulsion-film disjoining pressure isotherms for the first time and directly establish that pseudoemulsion film stability controls the stability of the foam in the systems we tested. Moreover, we demonstrate the correspondence between stable pseudoemulsion films, negative entering behavior, and oil-tolerant foams.

  4. Equipment compatibility and logistics assessment for containment foam deployment.

    SciTech Connect (OSTI)

    McRoberts, Vincent M.; Martell, Mary-Alena; Jones, Joseph A.

    2005-09-01

    The deployment of the Joint Technical Operations Team (JTOT) is evolving toward a lean and mobile response team. As a result, opportunities to support more rapid mobilization are being investigated. This study investigates three specific opportunities including: (1) the potential of using standard firefighting equipment to support deployment of the aqueous foam concentrate (AFC-380); (2) determining the feasibility and needs for regional staging of equipment to reduce the inventory currently mobilized during a JTOT response; and (3) determining the feasibility and needs for development of the next generation AFC-380 to reduce the volume of foam concentrate required for a response. This study supports the need to ensure that requirements for alternative deployment schemes are understood and in place to support improved response activities.

  5. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    SciTech Connect (OSTI)

    Schembri, Philip E.; Lewis, Matthew W.

    2014-02-27

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  6. Mechanical properties of a structural polyurethane foam and the effect of particulate loading

    SciTech Connect (OSTI)

    Goods, S.H.; Neuschwanger, C.L.; Whinnery, L.L.

    1998-04-01

    The room temperature mechanical properties of a closed-cell, polyurethane encapsulant foam have been measured as a function of foam density. Tests were performed on both unfilled and filler reinforced specimens. Over the range of densities examined, the modulus of the unloaded foam could be described by a power-law relationship with respect to density. This power-law relationship could be explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model found in the literature. The collapse stress of the foam was also found to exhibit a power-law relationship with respect to density. Additions of an aluminum powder filler increased the modulus relative to the unfilled foam.

  7. Dust control at longwalls with water infusion and foam. Technical progress report through November 30, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Foam spray equipment and materials for dust suppression on longwall double drum shearer faces have been procured. This equipment includes metering pumps, foam generators and mounting brackets, foam solutions, flow meters, real time and gravimetric sampling equipment, hoses and valve banks. Initial tests have been conducted in the laboratory with three types of generators and five types of foam solutions. Based on these tests, Senior Conflow's cluster spray and Onyx Chemical Company's millifoam solution have been selected. For pumping foam solution to the shearer, Jon Bean's 2 hp, 120 VAC single-phase ceramic lined piston pump has been selected. For field tests, equipment has been installed underground in Dobbin mine in Upper Freeport seam on Eickhoff EDW 300 double drum shearer. Foamspray tests have been conducted. Real time and gravimetric dust samples have been collected. Real time sampling results indicate a dust level reduction of up to 37 percent with foam spray compared to the base case of water sprays.

  8. Moab Project Exceeds 5 Years of Operations Without Lost-Time...

    Office of Environmental Management (EM)

    Moab Project Exceeds 5 Years of Operations Without Lost-Time Injury, Illness November 26, 2014 - 12:00pm Addthis Debris from the former mill buildings at the Moab site is excavated ...

  9. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Workers with Paducah site infrastructure contractor Swift & Staley, Inc. recently exceeded 1.5 million hours without lost time away from work due to injury or illness, representing nine years of safe performance.

  10. Y-12 Construction hits one million-hour mark without a lost-time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has ...