Powered by Deep Web Technologies
Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

2

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 10312013 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Michigan Natural Gas Gross Withdrawals and Production Nonhydrocarbon Gases Removed from...

3

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

4

Cycling with air and other nonhydrocarbon gases  

Science Conference Proceedings (OSTI)

Injecting lean gas into condensate reservoirs is a practice currently used to increase recovery. The process reduces condensation and increases liquid recovery by revaporization. However, delaying natural gas sales for long periods of time is economically unattractive. The purpose of this paper is to investigate the effectiveness of nonhydrocarbon gases (i.e., air, N/sub 2/ and CO/sub 2/) for improving recovery from retrograde condensate reservoirs. A compositional model that uses the Peng-Robinson equation of state (PR-EOS) was developed to evaluate condensate reservoir performance. A 15-component hydrocarbon system and extensive experimental data were used in the study. The simulator was tuned to match the available experimental data. The model shows that nonhydrocarbon gases can vaporize hydrocarbon liquids effectively, with CO/sub 2/ the most effective nonhydrocarbon for vaporizing heavy fractions.

Striefel, M.A.; Ahmed, T.H.; Cady, G.V.

1987-11-01T23:59:59.000Z

5

Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 513 491 515 539 557 534 541 579 574 585 558 573 1998 578 536 591 581 517 456 486 486 471 477 457 468 1999 466 438 489 495 499 510 547 557 544 555 541 579 2000 587 539 605 587 615 570 653 629 591 627 609 611 2001 658 591 677 690 718 694 692 679 686 697 688 700 2002 639 591 587 621 622 605 654 639 649 650 623 638 2003 689 624 649 676 702 691 733 732 704 734 719 748 2004 741 697 727 692 692 688 718 729 706 723 711 718

6

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

7

Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

8

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

9

,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)" "Sourcekey","N9030SD2" "Date","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0

10

,"Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:25 AM" "Back to Contents","Data 1: Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030OH2" "Date","Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0 33312,0

11

,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:27 AM" "Back to Contents","Data 1: Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030TN2" "Date","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0

12

,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030tn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030tn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:27 AM" "Back to Contents","Data 1: Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030TN2" "Date","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0 38898,0

13

,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030va2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030VA2" "Date","Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0

14

,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030PA2" "Date","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0

15

,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030VA2" "Date","Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0 38898,0

16

,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030PA2" "Date","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0

17

Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed from Natural  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

18

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1-2013 1-2013 Alaska NA NA NA NA NA NA 1996-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1996-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013 Montana NA NA NA NA NA NA 1996-2013 Nebraska NA NA NA NA NA NA 1991-2013 Nevada NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013

19

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1996-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1996-2013 Alabama NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland

20

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

661,168 718,674 721,507 836,698 867,922 761,836 1973-2012 661,168 718,674 721,507 836,698 867,922 761,836 1973-2012 Alaska 0 0 0 0 0 0 1996-2012 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2012 Louisiana 0 0 0 0 1996-2010 Louisiana Onshore NA NA NA NA NA NA 2003-2012 Louisiana State Offshore NA NA NA NA NA NA 2003-2012 New Mexico 28,962 32,444 33,997 40,191 39,333 38,358 1980-2012 Oklahoma 0 0 0 0 1996-2010 Texas 254,337 241,626 240,533 279,981 284,557 183,118 1980-2012 Texas Onshore 254,337 241,626 240,533 279,981 284,557 183,118 1992-2012 Texas State Offshore NA 0 0 0 0 0 2003-2012 Wyoming 154,157 161,952 155,366 164,221 152,421 151,288 1980-2012 Other States Other States Total 223,711 282,651 291,611 352,304 1994-2010 Alabama 16,529 17,394 16,658 14,418 18,972 NA 1980-2012

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

22

Nonhydrocarbon Gases Removed from Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1996-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013...

23

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

61,168 718,674 721,507 836,698 867,922 761,836 1973-2012 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2012 Alabama 16,529 17,394 16,658 14,418 18,972 NA 1980-2012 Alaska 0 0 0...

24

Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,713 4,103 4,177 3,429 3,291 3,200 3,548 3,901 3,708 4,067 3,907 3,971 1992 3,944 3,653 3,861 3,656 3,806 4,011 4,105 4,107 2,254 4,223 4,138 4,015 1993 4,031 3,622 3,992 3,857 4,043 4,213 4,447 4,201 4,173 4,150 3,845 3,441 1994 3,468 3,196 3,665 3,492 3,683 3,619 3,903 3,999 3,578 4,030 3,792 3,920 1995 810 747 857 816 861 846 912 935 836 942 886 916 1996 829 744 786 751 808 750 776 725 326 427 693 701 1997 718 631 684 659 641 598 633 677 752 775 723 676 1998 734 676 691 696 727 713 720 746 685 716 705 711 1999 697 637 667 553 559 532 537 516 490 525 498 493 2000 487 1,362 1,346 1,380 1,545 1,453 1,616 1,565 1,526 1,608 1,546 1,558

25

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

26

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

27

Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

28

Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 51 49 45 45 48 50 81 65 68 63 66 69 1997 69 66 79 72 70 58 67 65 67 59 57 64 1998 62 56 60 62 66 55 65 69 58 61 69 67 1999 67 58 64 59 55 51 65 74 68 68 73 65 2000 64 62 73 64 69 61 68 68 68 66 58 66 2001 59 51 56 64 57 61 71 68 63 90 49 46 2002 44 33 50 38 38 37 34 31 32 31 27 35 2003 30 26 30 27 27 36 35 30 35 38 34 37 2004 37 25 35 36 34 36 42 35 13 33 37 40 2005 43 31 37 33 36 27 12 19 26 26 25 23 2006 21 20 24 23 24 26 30 29 29 39 24 16 2007 15 15 17 17 17 19 22 21 21 29 17 12 2008 21 20 24 23 24 26 30 29 29 40 24 16 2009 2 2 3 2 3 3 3 3 3 4 3 2

29

Oregon Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 35 22 31 35 20 19 20 16 19 19 16 14 1997 15 14 14 14 14 14 14 14 12 14 13 14 1998 13 11 14 13 13 13 13 13 13 12 12 12 1999 12 12 20 19 19 19 18 13 15 21 22 23 2000 20 17 17 16 17 15 15 16 16 18 16 15 2001 1 1 1 1 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0

30

Nevada Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

31

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 9,329 15,086 15,219 13,810 10,592 8,883 6,116 6,205 5,177 3,343 2010's 1,573 778...

32

California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282 289 280 288 281 283 2006 277 256 293 283 293 280 283 286 269 284 275 285 2007 261 242 277 268 277 264 268 270 254 268 260 269

33

Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293 2,292 2,275 1997 2,336 2,076 2,333 2,284 2,206 1,787 2,210 2,225 2,387 2,564 2,349 2,447 1998 2,281 2,028 2,282 2,245 2,151 1,732 2,162 2,156 2,342 2,519 2,310 2,404

34

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

35

North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935 931 920 2009 614 540 589 564 544 513 535 536 497 479 483 349 2010 431 467 513 478 560 682 626 760 660 733 777 761

36

Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

37

Missouri Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

38

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010 12,512 12,728 5,106 12,415 12,604 12,006 13,039 12,740 13,111 1997 13,025 11,329 13,134 12,620 12,437 9,809 12,318 12,317 11,967 12,304 12,546 12,607 1998 12,808 11,567 12,745 12,011 8,083 11,668 11,325 12,323 12,368 13,077 12,714 12,051

39

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790 2005 941 861 805 815 809 731 782 764 626 627 589 533 2006 695 479 534 493 469 447 463 485 497 555 530 469 2007 500 409 462 478 548 538 563 565 563 635 540 404

40

Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

42

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790 2005 941 861 805 815 809 731 782 764 626 627 589 533 2006 695 479 534 493 469 447 463 485 497 555 530 469 2007 500 409 462 478 548 538 563 565 563 635 540 404

43

Texas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,942 13,557 14,940 12,971 14,588 14,028 14,816 14,906 15,187 15,171 14,489 14,803 1992 15,418 14,446 14,043 15,744 15,716 14,929 15,203 15,313 14,243 15,567 14,513 14,868 1993 15,307 13,813 15,250 14,590 15,480 14,914 15,983 16,468 14,486 15,673 15,868 16,426 1994 16,557 15,133 16,303 16,449 16,781 16,234 14,410 15,490 16,853 17,348 17,080 17,827 1995 16,874 15,423 16,615 16,765 17,103 16,545 14,686 15,787 17,177 17,681 17,408 18,169 1996 18,965 18,527 19,905 18,331 17,193 19,390 18,370 21,654 21,126 20,005 23,391 22,041 1997 21,201 19,430 21,726 19,323 22,294 21,770 23,348 23,536 21,611 22,478 23,411 23,268

44

California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282 289 280 288 281 283 2006 277 256 293 283 293 280 283 286 269 284 275 285 2007 261 242 277 268 277 264 268 270 254 268 260 269

45

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010 12,512 12,728 5,106 12,415 12,604 12,006 13,039 12,740 13,111 1997 13,025 11,329 13,134 12,620 12,437 9,809 12,318 12,317 11,967 12,304 12,546 12,607 1998 12,808 11,567 12,745 12,011 8,083 11,668 11,325 12,323 12,368 13,077 12,714 12,051

46

Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

47

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 2,219 1,984 2,391 2,117 2,392 2,251 2,373 2,639 2,554 2,728 2,619 2,696

48

Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

49

Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

50

California Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 349 371 540 437 95 127 5 3 832 1,103 1990's 849 788 1,142 1,130 1,126 920 932 239 726 208 2000's...

51

North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935 931 920 2009 614 540 589 564 544 513 535 536 497 479 483 349 2010 431 467 513 478 560 682 626 760 660 733 777 761

52

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

53

Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

54

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

55

West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

56

Nebraska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

57

Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

58

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

59

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 2,219 1,984 2,391 2,117 2,392 2,251 2,373 2,639 2,554 2,728 2,619 2,696

60

Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293 2,292 2,275 1997 2,336 2,076 2,333 2,284 2,206 1,787 2,210 2,225 2,387 2,564 2,349 2,447 1998 2,281 2,028 2,282 2,245 2,151 1,732 2,162 2,156 2,342 2,519 2,310 2,404

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0...

62

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,695 2,047 1,599 1,884 2,016 40 38 2,430 1,408 1,942 1990's 1,772 1,876 2,751 2,753 3,164 3,282...

63

U.S. Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 18,000 16,000 17,000 16,000 17,000 16,000 17,000 17,000 17,000 15,000 17,000 18,000 1981 20,000 18,000 18,000 18,000 18,000 19,000 20,000 18,000 18,000 18,000 17,000 20,000 1982 19,000 18,000 19,000 18,000 17,000 16,000 15,000 18,000 16,000 16,000 18,000 19,000 1983 19,994 16,995 17,995 15,995 16,995 18,995 17,995 19,994 18,995 17,995 18,995 20,994

64

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed Extraction Loss Dry Production Imports By Pipeline LNG Imports Exports...

65

Measurements of distributions of energy loss and additivity of energy loss for 50 to 150 keV protons in hydrogen and nine hydrogen gases  

DOE Green Energy (OSTI)

Detailed measurements of energy-loss distributions were made for 51, 102 and 153 keV protons traversing hydrogen, methane, ethyne, ethene, ethane, propyne, propadiene, propene, cyclopropane and propane. Less detailed measurements were made at 76.5 and 127.5 keV. To simplify comparison with theory, all of the measurements were made at a gas density that gave a 4% energy loss. The mean energy, second central moment (a measure of the width of the distribution) and the third central moment (a measure of the skew) were calculated from the measured distributions. Stopping power values, calculated using the mean energy, agreed with the predictions of the theory by Bethe. For the second and third central moments, the best agreement between measurement and theory was obtained when the classical scattering probability was used for the calculations; but the agreement was not good. In all cases, variations were found in the data that could be correlated to the type of carbon binding in the molecule.

Thorngate, J.H.

1976-01-01T23:59:59.000Z

66

Electronegative gases  

Science Conference Proceedings (OSTI)

Recent knowledge on electronegative gases essential for the effective control of the number densities of free electrons in electrically stressed gases is highlighted. This knowledge aided the discovery of new gas dielectrics and the tailoring of gas dielectric mixtures. The role of electron attachment in the choice of unitary gas dielectrics or electronegative components in dielectric gas mixtures, and the role of electron scattering at low energies in the choice of buffer gases for such mixtures is outlined.

Christophorou, L.G.

1981-01-01T23:59:59.000Z

67

Suppressant: Inert Gases  

Science Conference Proceedings (OSTI)

... Influencing the Reported Extinguishing Concentrations of Inert Gases.. ... for the Protection of Machinery Spaces and Gas Turbine Enclosures in ...

2013-05-03T23:59:59.000Z

68

Quantum Coulomb Gases  

E-Print Network (OSTI)

Lectures on Quantum Coulomb gases delivered at the CIME summer school on Quantum Many Body Systems 2010

Jan Philip Solovej

2010-12-23T23:59:59.000Z

69

Separation of polar gases from nonpolar gases  

DOE Patents (OSTI)

The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

Kulprathipanja, S.

1986-08-19T23:59:59.000Z

70

Stationary light in cold atomic gases  

E-Print Network (OSTI)

We discuss stationary light created by a pair of counter-propagating control fields in Lambda-type atomic gases with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case the secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for vanishing ground-state dephasing. The dynamics of the photon loss is in general non exponential and can be faster or slower than in hot gases.

Gor Nikoghosyan; Michael Fleischhauer

2009-03-10T23:59:59.000Z

71

MEASUREMENT OF RADIOIODINE IN PUREX STACK GASES  

SciTech Connect

The chemical behavior of iodine-131 in stack air from this site's Purex process is reported. The radioiodine in the stack gases apparently consists of variable proportions of molecular vapor and other forms of iodine, thus causing the efficiencies for most collection media to vary widely. Activated charcoal is a satisfactory collection medium although Process gases (ammonia and oxides of nitrogen) lower the efficiency of the charcoal from 99 to 88%. Ambient temperature and humidity had no effect on deposition and retention of iodine in long stainless steel sampling lines. Process conditions did have an effect and estimates of iodine released were 10 to 15% low due to this line loss. (auth)

Jacobsen, W.R.; Jolly, L. Jr.

1963-05-01T23:59:59.000Z

72

A primer on greenhouse gases  

SciTech Connect

This document provides a reference summarizing current understanding of basic information for information greenhouse gases. Each of the gases included is recognized to be important to the future state of global atmospheric chemistry and climate. Included as greenhouse gases are thoses of direct radiative importance to climate, thoses that act as radiative precursors, and those of importance as intermediate constitutents because of their chemical activities. Knowns, unknowns and uncertainties for each gas are described. This document focuses on information relevant to understanding the role of energy and atmospheric chemical and radiative processes in the determination of atmospheric concentrations of greenhouse gases.

Wuebbles, D.J.; Edmonds, J.

1988-03-01T23:59:59.000Z

73

Control of pollutants in flue gases and fuel gases  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . . 3-5 3.4 Emission

Zevenhoven, Ron

74

Voluntary Reporting of Greenhouse Gases  

Reports and Publications (EIA)

The Voluntary Reporting of Greenhouse Gases Program established a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., can report to the EIA, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

Information Center

2011-02-01T23:59:59.000Z

75

Federal Energy Management Program: Greenhouse Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gases Greenhouse Gases to someone by E-mail Share Federal Energy Management Program: Greenhouse Gases on Facebook Tweet about Federal Energy Management Program: Greenhouse Gases on Twitter Bookmark Federal Energy Management Program: Greenhouse Gases on Google Bookmark Federal Energy Management Program: Greenhouse Gases on Delicious Rank Federal Energy Management Program: Greenhouse Gases on Digg Find More places to share Federal Energy Management Program: Greenhouse Gases on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting Inventories & Performance Mitigation Planning Resources Contacts Water Efficiency Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets

76

C:\\ANNUAL\\VENTCHAP.V8\\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

Repressuring Extraction Loss Nonhydrocarbon Gases Removed Trinidad Nigeria Qatar Oman Indonesia 24.2 2.7 3.5 3.5 0.047 0.066 0.099 0.106 0.073 5.0 3.2 9.5 0.0083 3.0 19.0 0.013...

77

Greenhouse Gases | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gases Greenhouse Gases Greenhouse Gases October 7, 2013 - 9:59am Addthis Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Basics: Read an overview of greenhouse gases. Federal Requirements: Look up requirements for agency greenhouse gas management as outlined in Federal initiatives and executive orders. Guidance and Reporting: Find guidance documents and resources for greenhouse gas accounting and reporting. GHG Inventories and Performance: See detailed comprehensive GHG inventories by Federal agency and progress toward achieving Scope 1 and 2 GHG and Scope 3 GHG reduction targets. Mitigation Planning: Learn how Federal agencies can cost-effectively meet their GHG reduction goals.

78

Sampling and analysis methods for geothermal fluids and gases  

DOE Green Energy (OSTI)

The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

Watson, J.C.

1978-07-01T23:59:59.000Z

79

Sound energy loss during sonolysis  

Science Conference Proceedings (OSTI)

This paper gives an analysis of sound energy losses due to sonolysis — dissociation of the part of water molecules to radicals H? and ?OH. The value of the energy loss can be evaluated by using the concentration of hydrogen peroxide which appears in the water as a result of cross?recombination of radicals ?OH+?OH=H2O2. Data previously obtained by different authors were used for the present analysis. Data for fresh water and also for water with dissolved gases were considered. Data covered a sound frequency range from 1.5 kHz to 2 MHz and sound pressure amplitudes 0.6–2.5 atm for normal static pressure and a water temperature of 20?°C. It is shown that the rate of increasing hydrogen peroxide concentration is proportional to the intensity of sound. The rate is also propor? tional to the concentration of dissolved oxygen and argon in water while other gases (hydrogen

Dmitry A. Selivanovsky; Grigory A. Domrachev

1995-01-01T23:59:59.000Z

80

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Climate VISION: Greenhouse Gases Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Greenhouse Gases, Global Climate Change, and Energy Emissions of Greenhouse Gases in the United States 2001 [1605(a)] This report, required by Section 1605(a) of the Energy Policy Act of 1992, provides estimates of U.S. emissions of greenhouse gases, as well as information on the methods used to develop the estimates. The estimates are based on activity data and applied emissions factors, not on measured or metered emissions monitoring. Available Energy Footprints Industry NAICS* All Manufacturing Alumina & Aluminum 3313 Cement 327310 Chemicals 325 Fabricated Metals 332 Food and Beverages 311, 312 Forest Products 321, 322 Foundries 3315 Glass & Glass Products, Fiber Glass 3272, 3296 Iron & Steel Mills 331111 Machinery & Equipment 333, 334, 335, 336

82

Control of pollutants in flue gases and fuel gases  

E-Print Network (OSTI)

. Mercury typically forms the sulfide (HgS) #12;4 because of the prevalence of sulfides in volcanic gases Aq + 2e-- ´ Hg0 Atmos Equation 1 Ionic mercury can form from the oxidation of elemental mercury Coal is known to contain mercury as a result of testing done upon the flue gas emitted from power plant

Laughlin, Robert B.

83

Trace gases could double climate warming  

SciTech Connect

The atmospheric concentrations of several trace gases capable of changing the climate are increasing. Researchers are concerned about the trace gases despite their miniscule concentrations because they are such efficient absorbers of far-infrared radiation. The trace gases that concern climatologists are methane, nitrous oxide, and the chlorofluorocarbons or CFC's. The increase in atmospheric concentrations of these gases are discussed and atmospheric models predicting their greenhouse effect are described.

Kerr, R.A.

1983-06-24T23:59:59.000Z

84

Sustainability: Economics, Lifecycle Analysis, Green House Gases ...  

Science Conference Proceedings (OSTI)

Report on Linking Transformational Materials and Processing for Energy and ... LIFECYCLE ANALYSIS, GREEN HOUSE GASES, AND CLIMATE CHANGE ...

85

Greenhouse Gases Converted to Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it to fuels and chemicals. Although researchers working toward that goal demonstrated in 1992 such a reaction in the lab, a key outstanding scientific challenge was explaining the details of how the reaction took place - its "mechanism." Why it Matters: An important potential strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it electrochemically to fuels and chemicals. Accomplishments: Computation to explain how carbon dioxide can be converted to small organic molecules with little energy input. The

86

EIA-Voluntary Reporting of Greenhouse Gases Program  

U.S. Energy Information Administration (EIA)

Greenhouse Gases, Climate Change, and Energy Emissions of Greenhouse Gases in the United States. Contact the 1605(b) Program ...

87

EIA - Emissions of Greenhouse Gases in the United States 2009  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) This report-the eighteenth annual report-presents the U.S. Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. Download the GHG Report Introduction For this report, activity data on coal and natural gas consumption and electricity sales and losses by sector were obtained from the January 2011 Monthly Energy Review (MER). In keeping with current international practice, this report presents data on greenhouse gas emissions in million metric tons carbon dioxide equivalent. The data can be converted to carbon equivalent units by

88

Estimating Emissions of Other Greenhouse Gases  

U.S. Energy Information Administration (EIA)

Estimating Emissions of Other Greenhouse Gases Presentation to the Department of Energy Republic of the Philippines September 17, 1997 Arthur Rypinski Energy ...

89

Granular gases under extreme driving  

E-Print Network (OSTI)

We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

W. Kang; J. Machta; E. Ben-Naim

2010-02-04T23:59:59.000Z

90

APPARATUS FOR CATALYTICALLY COMBINING GASES  

DOE Patents (OSTI)

A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

Busey, H.M.

1958-08-12T23:59:59.000Z

91

Pipeline and Distribution Use of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

92

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

93

Total Natural Gas Gross Withdrawals (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

94

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

95

Natural Gas Vented and Flared (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

96

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

97

Natural Gas Delivered to Consumers (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

98

Natural Gas Dry Production (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG...

99

Voluntary Reporting of Greenhouse Gases Archive  

Reports and Publications (EIA)

The Voluntary Reporting of Greenhouse Gases Program established a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., can report to the EIA, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

Information Center

2013-12-24T23:59:59.000Z

100

Future of natural gas supply  

E-Print Network (OSTI)

This paper provides many data for the web reader and only some graphs will be presented at the conference.-World-production of natural gas (NG) Reliable data s very difficult to get, as very often the data does not specify if it is gross or gross minus reinjected or marketed, wet or dry values. The loss is usually hidden. Nonhydrocarbons gases are important in some fields. Production data varies from sources for what is called marketed World Production marketed 2001 2002

Jean Laherrere

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biomass Burning and the Production of Greenhouse Gases  

Science Conference Proceedings (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along ...

Levine J. S.

1994-01-01T23:59:59.000Z

102

Light Collection in Liquid Noble Gases  

SciTech Connect

Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

McKinsey, Dan [Yale University

2013-05-29T23:59:59.000Z

103

Improved correlations for retrograde gases  

E-Print Network (OSTI)

Three correlations for retrograde gases have been developed. First, a correlation was developed that relates the composition of a retrograde gas-condensate mixture at any depletion stage to the composition at its dew point pressure. This correlation is as accurate as previous correlations, and in addition, to the composition, it includes the trends for molecular weight of heptanes plus fraction (A4WC7+), specific gravity of heptanes plus fraction (SGC7+), gas produced (GP) and fraction of liquid (FL). Second, a correlation to describe the molar distribution Of C7+ of a gas-condensate mixture as a function of carbon number (CN), the C6 mole fraction and the properties Of C7+ has been developed. For comparison, the Ahmed, et aL, and Whitson methods were evaluated using a data base of 52 extended (from C]5+ and up) retrograde gascondensate samples. The evaluation of the Ahmed, et al. and Whitson methods showed that both methods are better than the new method. The Ahmed, et aL method does a better overall job than the Vvlhitson method. Comparing the relative error, Ahmed, et al. method had an error of 20.6 percent, and Whitson's method had an error of 25.1 percent. Third, a new and improved retrograde dew point pressure correlation has been developed. The new dew point correlation is an improvement of the Kennedy-Nemeth dew point correlation. Contrary to the Kennedy-Nemeth correlation, temperature is not included in the new correlation. The new dew point correlation is based on composition and the C7+ properties, molecular weight and specific gravity of the heptanes plus fraction.

Crogh, Arne

1996-01-01T23:59:59.000Z

104

Welcome to Greenhouse Gases: Science and Technology: Editorial  

E-Print Network (OSTI)

to Greenhouse Gases: Science and Technology Editorial CurtisWelcome to Greenhouse Gases: Science and Technology. Throughon greenhouse gas emissions science and technology, this

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

105

Voluntary reporting of greenhouse gases, 1995  

Science Conference Proceedings (OSTI)

The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

NONE

1996-07-01T23:59:59.000Z

106

Denitrification of combustion gases. [Patent application  

DOE Patents (OSTI)

A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

Yang, R.T.

1980-10-09T23:59:59.000Z

107

Collection and analysis of geothermal gases  

DOE Green Energy (OSTI)

Rapid, reliable procedures are described for the collection and analysis of geothermal gases at Los Alamos National Laboratory. Gases covered are H/sub 2/, He, Ar, O/sub 2/, N/sub 2/, CH/sub 4/, C/sub 2/H/sub 6/, CO/sub 2/, and H/sub 2/S. The methods outlined are suitable for geothermal exploration. 8 refs., 5 figs., 2 tabs.

Shevenell, L.; Goff, F.; Gritzo, L.; Trujillo, P.E. Jr.

1985-07-01T23:59:59.000Z

108

Biological production of products from waste gases  

DOE Patents (OSTI)

A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

Gaddy, James L. (Fayetteville, AR)

2002-01-22T23:59:59.000Z

109

The safe use of low temperature liquefied gases 1. Introduction  

E-Print Network (OSTI)

(5-10%) but the others are odourless. Liquefied gases ­ oxygen, nitrogen, argon, helium and carbonCare with cryogenics The safe use of low temperature liquefied gases #12;Index 1. Introduction 1.1 Objective 1.2 Gases considered and typical uses 2. Properties of low temperature liquefied atmospheric gases

Martin, Ralph R.

110

Purchase, Delivery, and Storage of Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchase, Delivery, and Storage of Gases Print Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab Chemical Inventory All gas bottles and cylinders at the ALS must be identified with bar code and logged into the Berkeley Lab Chemical Inventory by ALS staff. The inventory will be updated periodically; for more information contact Experiment Coordination. Gases are stored either in the racks between buildings 6 and 7; toxic and corrosive gases are stored in Building 6, room 6C across the walkway from beamline 10.0.

111

Brownian motion in granular gases of viscoelastic particles  

Science Conference Proceedings (OSTI)

A theory is developed of Brownian motion in granular gases (systems of many macroscopic particles undergoing inelastic collisions), where the energy loss in inelastic collisions is determined by a restitution coefficient {epsilon}. Whereas previous studies used a simplified model with {epsilon} = const, the present analysis takes into account the dependence of the restitution coefficient on relative impact velocity. The granular temperature and the Brownian diffusion coefficient are calculated for a granular gas in the homogeneous cooling state and a gas driven by a thermostat force, and their variation with grain mass and size and the restitution coefficient is analyzed. Both equipartition principle and fluctuation-dissipation relations are found to break down. One manifestation of this behavior is a new phenomenon of 'relative heating' of Brownian particles at the expense of cooling of the ambient granular gas.

Bodrova, A. S., E-mail: bodrova@polly.phys.msu.ru; Brilliantov, N. V.; Loskutov, A. Yu. [Moscow State University (Russian Federation)

2009-12-15T23:59:59.000Z

112

Greenhouse gases and the metallurgical process industry  

SciTech Connect

The present lecture offers a brief review of the greenhouse effect, the sources of greenhouse gases, the potential effect of these gases on global warming, the response of the international community, and the probable cost of national compliance. The specific emissions of the metallurgical process industry, particularly those of the steel and aluminum sectors, are then examined. The potential applications of life-cycle assessments and of an input-output model in programs of emissions' abatement are investigated, and, finally, a few remarks on some implications for education are presented.

Lupis, C.H.P.

1999-10-01T23:59:59.000Z

113

Composition of gases vented from a condenser  

DOE Green Energy (OSTI)

Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers. An approximation is given that appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture. The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC). More regorous relationships are available for exceptional cases.

Lyon, R.N.

1980-08-01T23:59:59.000Z

114

Zevenhoven & Kilpinen FLUE GASES and FUEL GASES 19.6.2001 2-1 Chapter 2 Flue gases and  

E-Print Network (OSTI)

is combusted in a hot fuel / bed material (mostly sand) / ash mixture which is fluidised by the combustion air.8 Principle of a fuel cell (picture OECD/IEA&ETSU, 1993) Future technologies will be based increasingly on the direct oxidation of fuel gases in fuel cells, which implies direct conversion of chemical potential

Zevenhoven, Ron

115

coastal loss | NOLA DEFENDER  

U.S. Energy Information Administration (EIA)

BP Oil Doubled Wetland Loss, Study Says Posted Tuesday, ... coastal loss; Deepwater Horizon; louisiana coast; Oil; proceedings of the national academy ...

116

Documentation for Emissions of Greenhouse Gases in the United ...  

U.S. Energy Information Administration (EIA)

Data Sources for High-GWP Gases from Aerosols..... 163 Table 4-5. Data Sources for High-GWP Gases from Solvent Applications ..... 164 Table 4-6. Data Sources for High ...

117

BOC Lienhwa Industrial Gases BOCLH | Open Energy Information  

Open Energy Info (EERE)

BOC Lienhwa Industrial Gases BOCLH BOC Lienhwa Industrial Gases BOCLH Jump to: navigation, search Name BOC Lienhwa Industrial Gases (BOCLH) Place Taipei, Taiwan Sector Solar Product BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United Kingdom and produces high-purity gases used in solar component production. References BOC Lienhwa Industrial Gases (BOCLH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BOC Lienhwa Industrial Gases (BOCLH) is a company located in Taipei, Taiwan . References ↑ "BOC Lienhwa Industrial Gases (BOCLH)" Retrieved from "http://en.openei.org/w/index.php?title=BOC_Lienhwa_Industrial_Gases_BOCLH&oldid=342956

118

Method for enhancing microbial utilization rates of gases using perfluorocarbons  

DOE Patents (OSTI)

A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

Turick, C.E.

1997-06-10T23:59:59.000Z

119

JILA Team Finds New Parallel Between Cold Gases and 'Hot' ...  

Science Conference Proceedings (OSTI)

... theorists, have discovered another notable similarity between ultracold atomic gases and high-temperature superconductors, suggesting there may ...

2010-10-05T23:59:59.000Z

120

Method for enhancing microbial utilization rates of gases using perfluorocarbons  

DOE Patents (OSTI)

A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

Turick, Charles E. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

When Do Losses Count?  

Science Conference Proceedings (OSTI)

Current global and national databases that monitor losses from natural hazards suffer from a number of limitations, which in turn lead to misinterpretation and fallacies concerning the “truthfulness” of hazard loss data. These biases often go ...

Melanie Gall; Kevin A. Borden; Susan L. Cutter

2009-06-01T23:59:59.000Z

122

Evaluating Transformer Losses  

E-Print Network (OSTI)

This paper outlines how to determine what transformer losses cost and how to evaluate transformer bids to optimize the investment.

Grun, R. L. Jr.

1989-09-01T23:59:59.000Z

123

U.S. Exports of Natural Gas Liquids and Liquid Refinery Gases ...  

U.S. Energy Information Administration (EIA)

Natural Gas Plant Liquids and Liquefied Refinery Gases Exports; Natural Gas Plant Liquids and Liquefied Refinery Gases Supply and Disposition;

124

Traveling dark solitons in superfluid Fermi gases  

SciTech Connect

Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

Liao Renyuan; Brand, Joachim [New Zealand Institute for Advanced Study and Centre for Theoretical Chemistry and Physics, Massey University, Private Bag 102904 NSMC, Auckland 0745 (New Zealand)

2011-04-15T23:59:59.000Z

125

Heat conduction in relativistic neutral gases revisited  

E-Print Network (OSTI)

The kinetic theory of dilute gases to first order in the gradients yields linear relations between forces and fluxes. The heat flux for the relativistic gas has been shown to be related not only to the temperature gradient but also to the density gradient in the representation where number density, temperature and hydrodynamic velocity are the independent state variables. In this work we show the calculation of the corresponding transport coefficients from the full Boltzmann equation and compare the magnitude of the relativistic correction.

A. L. Garcia-Perciante; A. R. Mendez

2010-09-30T23:59:59.000Z

126

Efficieny handling effluent gases through chemical scrubbing  

SciTech Connect

This paper is presented as an information source for efficiencies of chemical scrubbing. In it, we will discuss the specific problems of scrubbing silane, disilane, diborane, phosphine, hydrogen selenide and arsine. We will explain the scrubber dynamics, gases and flow rates used along with liquid mediums. The equipment and procedures used for testing, as well as the determination of the results, will be discussed. We intend to give examples of possible reactions and documentation of our efficiencies. Installation and maintenance will be touched, as well as our experiments into accidental catastrophic releases. From all of this we will derive conclusions as to the best possible means of wet chemical scrubbing.

Herman, T.; Soden, S.

1988-07-15T23:59:59.000Z

127

EIA-Voluntary Reporting of Greenhouse Gases Program - Greenhouse Gases and  

U.S. Energy Information Administration (EIA) Indexed Site

Greenhouse Gases and Global Warming Potentials (GWP) Greenhouse Gases and Global Warming Potentials (GWP) Voluntary Reporting of Greenhouse Gases Program Greenhouse Gases and Global Warming Potentials (GWP) (From Appendix E of the instructions to Form EIA-1605) GREENHOUSE GAS NAME GREENHOUSE GAS CODE FORMULA GWP TAR1 AR42 (1) Carbon Dioxide CO2 CO2 1 1 (2) Methane CH4 CH4 23 25 (3) Nitrous Oxide N2O N2O 296 298 (4) Hydroflourocarbons HFC-23 (trifluoromethane) 15 CHF3 12000 14800 HFC-32 (difluoromethane) 16 CH2F2 550 675 HFC-41 (monofluoromethane) 43 CH3F 97 -3 HFC-125 (pentafluoroethane) 17 CHF2CF3 3400 3500 HFC-134 (1,1,2,2-tetrafluoroethane) 44 CHF2CHF2 1100 -3 HFC-134a (1,1,1,2-tetrafluoroethane) 18 CH2FCF3 1300 1430 HFC-143 (1,1,2-trifluorethane) 45 CHF2CH2F 330 -3 HFC-143a (1,1,1-trifluoroethane) 46 CF3CH3 4300 4470 HFC-152 (1,2-difluorethane) 47 CH2FCH2F

128

Distribution System Losses Evaluation  

Science Conference Proceedings (OSTI)

Currently, there is not an industry standard on how utilities calculate and account for electrical losses and reductions in electric system losses. Computer models used to analyze power flows typically only include the primary components of the distribution system infrastructure. More detailed electric system models can benefit utilities by providing more accurate loss calculations as well as benefits for system planning and engineering. The utility industry could benefit from having a consistent and uni...

2008-12-16T23:59:59.000Z

129

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

130

Apparatus for recovery of heat from exhaust gases of dryer  

SciTech Connect

Apparatus and method are disclosed for recovery of heat from exhaust gases of dryers and return of heat to the dryer system. Fresh air is drawn through a plurality of tubes in heat exchange relation to heated exhaust gases and introduced into the drying system without intermingling of contaminated exhaust gases with the heated fresh air. The apparatus and method have particular utility in gas-fired commercial and industrial laundry dryers.

Winstel, F.H.

1977-06-14T23:59:59.000Z

131

Formation and Incorporation Energies of Fission Gases He, Xe, and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Formation and Incorporation Energies of Fission Gases He, Xe , ... nuclear fuels are bcc alloys of uranium that swell under fission conditions, ...

132

Emissions of Greenhouse Gases in the United States 1999  

U.S. Energy Information Administration (EIA)

Energy Information Administration / Emissions of Greenhouse Gases in the United States 1999 iii ... The 1.1-percent average annual growth in U.S. green-

133

EIA-Voluntary Reporting of Greenhouse Gases Program -Data and...  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Environment > Voluntary Reporting Program > Data and Reports Voluntary Reporting of Greenhouse Gases Program Data and Reports The first reporting cycle under the revised...

134

EIA-Voluntary Reporting of Greenhouse Gases Program - Contact  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Mail: Voluntary Reporting of Greenhouse Gases Program Energy Information Administration, EI-81 U.S. Department of Energy 1000 Independence Ave, SW Washington, DC 20585...

135

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

136

The Greenhouse Gases, Regulated Emissions, and Energy Use in...  

Open Energy Info (EERE)

Interface: Spreadsheet Website: greet.es.anl.govmain Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation...

137

Graphics: Atmospheric Trace Gases in Whole-Air Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphics graphics Graphics: Atmospheric Trace Gases in Whole-Air Samples The following links are for methane, nonmethane hydrocarbons, alkyl nitrates, and chlorinated carbon...

138

Energy losses in switches  

DOE Green Energy (OSTI)

The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF{sub 6} polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V{sub peak}I{sub peak}){sup 1.1846}. When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset.

Martin, T.H.; Seamen, J.F.; Jobe, D.O.

1993-07-01T23:59:59.000Z

139

FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS  

Office of Scientific and Technical Information (OSTI)

Bulletin 627 Bulletin 627 BUREAU o b MINES FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS By Michael G. Zabetakis DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

140

Voluntary reporting of greenhouse gases 1997  

Science Conference Proceedings (OSTI)

The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

NONE

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Adsorption of Atmospheric Gases on Pu Surfaces  

Science Conference Proceedings (OSTI)

Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

2012-03-29T23:59:59.000Z

142

Modeling the Loss Distribution  

Science Conference Proceedings (OSTI)

In this paper, we focus on modeling and predicting the loss distribution for credit risky assets such as bonds and loans. We model the probability of default and the recovery rate given default based on shared covariates. We develop a new class of default ... Keywords: Basel II, default prediction, loss distribution, recovery rates

Sudheer Chava; Catalina Stefanescu; Stuart Turnbull

2011-07-01T23:59:59.000Z

143

Quantum oscillations in ultracold Fermi gases : realizations with rotating gases or artificial gauge fields  

E-Print Network (OSTI)

We consider the angular momentum of a harmonically trapped, noninteracting Fermi gas subject to either rotation or to an artificial gauge field. The angular momentum of the gas is shown to display oscillations as a function of the particle number or chemical potential. This phenomenon is analogous to the de Haas - van Alphen oscillations of the magnetization in the solid-state context. However, key differences exist between the solid-state and ultracold atomic gases that we point out and analyze. We explore the dependence of the visibility of these oscillations on the physical parameters and propose two experimental protocols for their observation. Due to the very strong dependence of the amplitude of the oscillations on temperature, we propose their use as a sensitive thermometer for Fermi gases in the low temperature regime.

Charles Grenier; Corinna Kollath; Antoine Georges

2012-12-26T23:59:59.000Z

144

Greenhouse gases: What is their role in climate change  

SciTech Connect

This paper summarizes information relevant to understanding the role of greenhouse gases in the atmosphere. It examines the nature of the greenhouse effect, the Earth's radiation budget, the concentrations of these gases in the atmosphere, how these concentrations have been changing, natural processes which regulate these concentrations of greenhouse gases, residence times of these gases in the atmosphere, and the rate of release of gases affecting atmospheric composition by human activities. We address the issue of the greenhouse effect itself in the first section. In the second section we examine trends in atmospheric concentration of greenhouse gases and emissions sources. In the third section, we examine the natural carbon cycle and its role in determining the atmospheric residence time of carbon dioxide (CO{sub 2}). In the fourth section, we examine the role atmospheric chemistry plays in the determining the concentrations of greenhouse gases. This paper is not intended to be an exhaustive treatment of these issues. Exhaustive treatments can be found in other volumes, many of which are cited throughout this paper. Rather, this paper is intended to summarize some of the major findings, unknowns, and uncertainties associated with the current state of knowledge regarding the role of greenhouse gases in the atmosphere. 57 refs., 11 figs., 11 tabs.

Edmonds, J.A.; Chandler, W.U. (Pacific Northwest Lab., Richland, WA (USA)); Wuebbles, D. (Lawrence Livermore National Lab., CA (USA))

1990-12-01T23:59:59.000Z

145

Continuous cryopump with a method for removal of solidified gases  

DOE Patents (OSTI)

An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

Carlson, L.W.; Herman, H.

1988-05-05T23:59:59.000Z

146

EIA - Greenhouse Gas Emissions - High-GWP gases  

Gasoline and Diesel Fuel Update (EIA)

5. High-GWP gases 5. High-GWP gases 5.1. Total emissions Greenhouse gases with high global warming potential (high-GWP gases) are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6), which together represented 3 percent of U.S. greenhouse gas emissions in 2009. Emissions estimates for the high-GWP gases are provided to EIA by the EPA's Office of Air and Radiation. The estimates for emissions of HFCs not related to industrial processes or electric transmission are derived from the EPA Vintaging Model. Emissions from manufacturing and utilities are derived by the EPA from a mix of public and proprietary data, including from the EPA's voluntary emission reduction partnership programs. For this year's EIA inventory, 2008 values for HFC-23 from HCFC-22

147

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

148

EIA-Voluntary Reporting of Greenhouse Gases Program  

U.S. Energy Information Administration (EIA) Indexed Site

of Greenhouse Gases Program of Greenhouse Gases Program Voluntary Reporting of Greenhouse Gases Program ***THE VOLUNTARY REPORTING OF GREENHOUSE GASES ("1605(b)") PROGRAM HAS BEEN SUSPENDED.*** This affects all survey respondents. Please visit the What's New page for full details. What Is the Voluntary Reporting Program? logo Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases Program encourages corporations, government agencies, non-profit organizations, households, and other private and public entities to submit annual reports of their greenhouse gas emissions, emission reductions, and sequestration activities. The Program provides a means for voluntary reporting that is complete, reliable, and consistent. More information on the program...

149

Hot defluorination of reducing gases with lime pellets  

SciTech Connect

In IGCC and MCFC power generation systems the coal gas has to be purified from dust and deleterious gaseous species. Hot gas cleaning processes have advantages compared to conventional wet cleaning technologies. Losses of energy occurring during cooling and reheating of the gas can be avoided, and there is no formation of a wet slurry. In the present study the defluorination of reducing gases with dry absorbers such as calcium carbonate (CaCO{sub 3}) and calcium oxide (CaO) has been investigated in the temperature range 300--700 C. Two types of experiments were carried out to clarify the reaction kinetics: thermogravimetric experiments on single (or a few) pellets in which the weight change of the absorber due to its conversion to calcium fluoride was determined, and gas cleaning experiments using a laboratory scale fixed bed reactor in which the off-gas was analyzed. The results indicate that H{sub 2}-H{sub 2}O-HF and CO-H{sub 2}-CO{sub 2}-H{sub 2}O-HF gas mixtures can be defluorinated both with CaO and with CaCO{sub 3}. The calcium fluoride (CaF{sub 2}) forms as a shell around the unreacted core of calcium carbonate of the pellet, and the reaction rate is mainly controlled by gaseous pore diffusion. This is so also with respect to calcium oxide at high temperatures (500 C). But at low temperatures (300 C) the reaction occurs within the bulk of the pellet.

Shirai, H.; Fusch, Y.; Schwerdtfeger, K.

2000-03-01T23:59:59.000Z

150

Energy Efficiency and Greenhouse Gases | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team incorporates requirements for energy efficiency and reductions in greenhouse gases, and it advocates conserving environmental resources and improving operational capabilities and mission sustainability. Scope The team evaluates how to maintain and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner. The

151

Cryogenic method for measuring nuclides and fission gases  

DOE Patents (OSTI)

A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

Perdue, P.T.; Haywood, F.F.

1980-05-02T23:59:59.000Z

152

Gas-rich sediment and coastal wetland loss in Louisiana  

SciTech Connect

High rates of wetland loss in southern Louisiana provide the impetus for examining the role that trapped, biogenic gases play in regulating subsidence of coastal areas. A significant cause for wetland loss in this region is relative sea-level rise produced by sediment-volume reduction. Dewatering, grain reorientation and packing, and oxidation of organic-rich sediments are thought to be the main processes for volume loss. It is argued that natural and anthropogenic causes for sediment degasification play a critical role in sediment-volume reduction. Compressional wave velocities were measured at 34 sites in both the abandoned (Holocene) and modern parts of the Mssissippi Delta. A low-frequency source (<200 Hz) was used to maximize sound-wave dispersion caused by interstitial gas bubbles. Compressional wave velocities measured at low frequencies relative to the gas-bubble resonant-frequency undergo maximum change from the velocity for a gas-free sediment.

Thompson, M.D.; McGinnis, L.D.; Wilkey, P.L.; Miller, S.F.

1993-03-01T23:59:59.000Z

153

Sorption of organic gases in residential rooms  

NLE Websites -- All DOE Office Websites (Extended Search)

residential rooms residential rooms Title Sorption of organic gases in residential rooms Publication Type Journal Article LBNL Report Number LBNL-59303 Year of Publication 2007 Authors Singer, Brett C., Alfred T. Hodgson, Toshifumi Hotchi, Katherine Y. Ming, Richard G. Sextro, Emily E. Wood, and Nancy J. Brown Journal Atmospheric Environment Volume 41 Start Page Chapter Pagination 3251-3265 Keywords adsorption, hazardous air pollutants, nerve agents, sink effect, volatile organic compounds Abstract Experiments were conducted to characterize organic gas sorption in residential rooms studied ''as-is'' with furnishings and material surfaces unaltered and in a furnished chamber designed to simulate a residential room. Results are presented for 10 rooms (five bedrooms, two bathrooms, a home office, and two multi-function spaces) and the chamber. Exposed materials were characterized and areas quantified. A mixture of volatile organic compounds (VOCs) was rapidly volatilized within each room as it was closed and sealed for a 5-h Adsorb phase; this was followed by 30-min Flush and 2-h closed-room Desorb phases. Included were alkane, aromatic, and oxygenated VOCs representing a range of ambient and indoor air pollutants. Three organophosphorus compounds served as surrogates for Sarin-like nerve agents. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at a surface sink and potentially a second, embedded sink. The 3-parameter sink-diffusion model provided acceptable fits for most compounds and the 4-parameter two-sink model provided acceptable fits for the others. Initial adsorption rates and sorptive partitioning increased with decreasing vapor pressure for the alkanes, aromatics and oxygenated VOCs. Best-fit sorption parameters obtained from experimental data from the chamber produced best-fit sorption parameters similar to those obtained from the residential rooms

154

Energy Information Administration / Natural Gas Annual 2008 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

155

Energy Information Administration / Natural Gas Annual 2008 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

156

Energy Information Administration / Natural Gas Annual 2007 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Illinois, 2003-2007 Number of Wells Producing at End of Year.. 240 251 316 316 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 169 165 E 161 E 165 E 164 From Oil Wells.............................................. 5 5 E 5 E 5 E 5 Total............................................................... 174 170 E 166 E 170 E 169 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 174 E 170 E 166 E 170 E 169 Extraction Loss...............................................

157

Energy Information Administration / Natural Gas Annual 2007 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2003-2007 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss.................................................. 0 0 0 0 0

158

Energy Information Administration / Natural Gas Annual 2007 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2003-2007 Number of Wells Producing at End of Year.. 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 34 46 48 35 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 48 34 46 48 35 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 48 34 46 48 35 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

159

Energy Information Administration / Natural Gas Annual 2007 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

160

Energy Information Administration / Natural Gas Annual 2008 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Information Administration / Natural Gas Annual 2007 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2003-2007 Number of Wells Producing at End of Year.. 15 15 15 14 18 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 731 467 454 621 409 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 731 467 454 621 409 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 731 467 454 621 409 Extraction Loss............................................... 0 0 0

162

Energy Information Administration / Natural Gas Annual 2008 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2004-2008 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss..................................................

163

Energy Information Administration / Natural Gas Annual 2008 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

164

Energy Information Administration / Natural Gas Annual 2008 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

165

Energy Information Administration / Natural Gas Annual 2008 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2004-2008 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 5 5 4 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 5 5 5 5 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 5 5 5 5 4 Extraction Loss...............................................

166

Energy Information Administration / Natural Gas Annual 2007 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

167

Energy Information Administration / Natural Gas Annual 2007 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

168

Energy Information Administration / Natural Gas Annual 2007 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

169

Energy Information Administration / Natural Gas Annual 2007 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

170

Energy Information Administration / Natural Gas Annual 2008 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

171

Energy Information Administration / Natural Gas Annual 2007 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

172

Energy Information Administration / Natural Gas Annual 2007 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

173

Energy Information Administration / Natural Gas Annual 2007 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2003-2007 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 5 5 5 5 Total............................................................... 6 5 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 6 5 5 5 5 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

174

Energy Information Administration / Natural Gas Annual 2007 132  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

175

Energy Information Administration / Natural Gas Annual 2008 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

176

Energy Information Administration / Natural Gas Annual 2007 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

177

Energy Information Administration / Natural Gas Annual 2007 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2003-2007 Number of Wells Producing at End of Year . 9 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 443 331 233 611 654 From Oil Wells ............................................. * * * * * Total.............................................................. 443 331 233 611 655 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production...................................... 443 331 233 611 655 Extraction Loss .............................................. 0 0 0 0 0 Total Dry Production

178

Energy Information Administration / Natural Gas Annual 2007 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

179

Energy Information Administration / Natural Gas Annual 2008 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

180

Process for the removal of acid forming gases from exhaust gases  

DOE Patents (OSTI)

Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

Chang, S.G.; Liu, D.K.

1992-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Semi-Continuous Detection of Mercury in Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous Detection of Mercury in Gases Continuous Detection of Mercury in Gases Opportunity Research is currently active on the patented technology "Semi-Continuous Detection of Mercury in Gases." The technology, which is a spinoff of the National Energy Technology Laboratory's (NETL) GP-254 Process (U.S. patent 6,576,092), is available for licensing and/or further collaborative research from the U.S. Department of Energy's NETL. Overview This invention discloses a method for the quantitative detection of heavy metals, especially mercury, in effluent gas streams. The method employs photo-deposition and an array of surface acoustic wave sensors where each sensor monitors a specific metal. The U.S. Environmental Protection Agency issued a national regulation for mercury removal from coal-derived flue and fuel gases in December 2011,

182

Global Research Alliance on Agricultural Greenhouse Gases | Open Energy  

Open Energy Info (EERE)

Global Research Alliance on Agricultural Greenhouse Gases Global Research Alliance on Agricultural Greenhouse Gases Jump to: navigation, search Name Global Research Alliance on Agricultural Greenhouse Gases Agency/Company /Organization United States Department of Agriculture Sector Land Focus Area Agriculture Topics GHG inventory, Policies/deployment programs Resource Type Guide/manual, Lessons learned/best practices Website http://globalresearchalliance. References Global Research Alliance on Agricultural Greenhouse Gases [1] Background "The Alliance is a bottom-up network, founded on the voluntary, collaborative efforts of countries. It will coordinate research on agricultural greenhouse gas emission reductions by linking up existing and new research efforts across a range of sub-sectors and work areas. It will

183

Method for monitoring stack gases for uranium activity  

DOE Patents (OSTI)

A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

Beverly, C.R.; Ernstberger, E.G.

1985-07-03T23:59:59.000Z

184

Method for monitoring stack gases for uranium activity  

DOE Patents (OSTI)

A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

1988-01-01T23:59:59.000Z

185

Method of producing pyrolysis gases from carbon-containing materials  

DOE Patents (OSTI)

A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

1989-01-01T23:59:59.000Z

186

Sorption of organic gases in a furnished room  

E-Print Network (OSTI)

were constructed with plywood under the wallboard. Theof organic gases 20.4-m 2 plywood floor was covered firstthrough the walls with plywood yields L d = 0.017-0.05 h -

Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

2003-01-01T23:59:59.000Z

187

Studying coherence in ultra-cold atomic gases  

E-Print Network (OSTI)

This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

Miller, Daniel E. (Daniel Edward)

2007-01-01T23:59:59.000Z

188

Conference report for nuclear fusion phenomena in ionized gases  

SciTech Connect

A summary of the Conference on Phenomena in Ionized Gases, held in Eindhoven, The Netherlands, is given. In particular, the format of the conference and the content of the review papers are summarized. (auth)

Porkolab, M.

1975-10-01T23:59:59.000Z

189

Emissions of Greenhouse Gases in the United States, 2004  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2005-12-19T23:59:59.000Z

190

World Energy Projection System Plus Model Documentation: Greenhouse Gases Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) Greenhouse Gases Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

2011-09-29T23:59:59.000Z

191

Emissions of Greenhouse Gases in the United States, 2002  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2003-10-01T23:59:59.000Z

192

Emissions of Greenhouse Gases in the United States, 2005  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2006-11-14T23:59:59.000Z

193

Emissions of Greenhouse Gases in the United States, 1996  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1997-10-01T23:59:59.000Z

194

Emissions of Greenhouse Gases in the United States, 1995  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1996-10-01T23:59:59.000Z

195

Emissions of Greenhouse Gases in the United States, 1994  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1995-09-01T23:59:59.000Z

196

Emissions of Greenhouse Gases in the United States, 1999  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2000-10-01T23:59:59.000Z

197

Emissions of Greenhouse Gases in the United States, 2000  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

198

Emissions of Greenhouse Gases in the United States, 1997  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1998-10-01T23:59:59.000Z

199

Emissions of Greenhouse Gases in the United States, 1998  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

1999-10-01T23:59:59.000Z

200

Emissions of Greenhouse Gases in the United States, 2001  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Emissions of Greenhouse Gases in the United States, 2003  

Reports and Publications (EIA)

This report presents the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2004-12-01T23:59:59.000Z

202

Radio-frequency spectroscopy of ultracold atomic Fermi gases  

E-Print Network (OSTI)

This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle ...

Schirotzek, Andre

2010-01-01T23:59:59.000Z

203

Development of laser absorption sensors for combustion gases.  

E-Print Network (OSTI)

??In situ sensors based on laser absorption spectroscopy are developed to monitor key species in combustion exhaust gases. Direct absorption (DA) and wavelength-modulation-spectroscopy (WMS) strategies… (more)

Chao, Xing.

2012-01-01T23:59:59.000Z

204

Biological production of ethanol from waste gases with Clostridium ljungdahlii  

DOE Patents (OSTI)

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

Gaddy, James L. (Fayetteville, AR)

2000-01-01T23:59:59.000Z

205

Catalogue of a Loss  

E-Print Network (OSTI)

Catalogue of a Loss is a collection of sixty-two prose poems written within the past year and half. The work is printed on 4x6 cards. Each poem may be read individually from a single card or the poems can be read in ...

Berger, Larisa (Larisa A.)

2012-01-01T23:59:59.000Z

206

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents (OSTI)

An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

1998-01-01T23:59:59.000Z

207

Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases  

DOE Patents (OSTI)

An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

Gross, K.C.; Markun, F.; Zawadzki, M.T.

1998-04-28T23:59:59.000Z

208

Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid  

DOE Patents (OSTI)

Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

1992-01-01T23:59:59.000Z

209

Emissions Of Greenhouse Gases From Rice Agriculture  

SciTech Connect

This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

M. Aslam K. Khalil

2009-07-16T23:59:59.000Z

210

Voluntary Reporting of Greenhouse Gases Program - Electricity Factors  

U.S. Energy Information Administration (EIA) Indexed Site

Voluntary Reporting Program > Coefficients Voluntary Reporting Program > Coefficients Voluntary Reporting of Greenhouse Gases Program (Voluntary Reporting of Greenhouse Gases Program Fuel Carbon Dioxide Emission Coefficients) Voluntary Reporting of Greenhouse Gases Program Fuel Emission Coefficients Table 1: Carbon Dioxide Emission Factors for Stationary Combustion Table 2: Carbon Dioxide Emission Factors for Transportation Fuels Table 3: Generic Methane and Nitrous Oxide Emission Factors for Stationary Fuel Combustion Table 4: Specific Methane and Nitrous Oxide Emission Factors for Biogenic Fuel Sources Table 5: Methane and Nitrous Oxide Emissions Factors for Highway Vehicles Table 6: Methane and Nitrous Oxide Emission Factors for Alternative Fuel Vehicles Table 7: Methane and Nitrous Oxide Emission Factors for Non-Highway Mobile Combustion

211

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Agency/Company /Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov/ This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

212

NRC symposium explores links between greenhouse gases, stratospheric ozone  

SciTech Connect

Two important climatic issues stratospheric ozone depletion and greenhouse gas increase and the apparent connection between them led to the holding in March 1988 of a Joint Symposium on Ozone Depletion, Greenhouse Gases and Climate Change. This symposium was primarily concerned with the linkages between ozone depletion and increasing greenhouse gases and with their combined effect in causing climate change to occur on a global scale. The presentations review the current state of knowledge about stratospheric ozone depletion, discuss the probable effect of predicted greenhouse gas increase on future ozone trends, summarize observational data on changing atmospheric chemistry and associated atmospheric temperatures, and describe the continuing effort to model and predict future scenarios of climatic change relative to ozone and greenhouse gases in both the stratosphere and the troposphere.

1989-04-01T23:59:59.000Z

213

Lattice vibrations of pure and doped GaSe  

Science Conference Proceedings (OSTI)

The Bridgman method is used to grow especially undoped and doped single crystals of GaSe. Composition and impurity content of the grown crystals were determined using X-ray fluorescence (XRF) method. X-ray diffraction, Raman scattering, photoluminescence (PL), and IR transmission measurements were performed at room temperature. The long wavelength lattice vibrations of four modifications of GaSe were described in the framework of modified one-layer linear-chain model which also takes into consideration the interaction of the selenium (Se) atom with the second nearest neighbor gallium (Ga) atom in the same layer. The existence of an eight-layer modification of GaSe is suggested and the vibrational frequencies of this modification are explained in the framework of a lattice dynamical model considered in the present work. Frequencies and the type of vibrations (gap, local, or resonance) for the impurity atoms were calculated and compared with the experimental results.

Allakhverdiev, K. [Materials Institute, Marmara Research Center, TUBITAK, Gebze/Kocaeli 41470 (Turkey) and Institute of Physics, Azerbaijan National Academy of Sciences, Baku AZ1143 (Azerbaijan)]. E-mail: kerim.allahverdi@mam.gov.tr; Baykara, T. [Materials Institute, Marmara Research Center, TUBITAK, Gebze/Kocaeli 41470 (Turkey); Ellialtioglu, S. [Department of Physics, Middle East Technical University, Ankara 06531 (Turkey); Hashimzade, F. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku AZ1143 (Azerbaijan); Huseinova, D. [Institute of Physics, Azerbaijan National Academy of Sciences, Baku AZ1143 (Azerbaijan); Kawamura, K. [Institute of Materials Science, University of Tsukuba 305-8573 (Japan); Kaya, A.A. [Materials Institute, Marmara Research Center, TUBITAK, Gebze/Kocaeli 41470 (Turkey); Kulibekov, A.M. [Department of Physics, Mugla University, Mugla 48000 (Turkey); Onari, S. [Institute of Materials Science, University of Tsukuba 305-8573 (Japan)

2006-04-13T23:59:59.000Z

214

Finalize Historic National Program to Reduce Greenhouse Gases and Improve  

Open Energy Info (EERE)

Finalize Historic National Program to Reduce Greenhouse Gases and Improve Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Agency/Company /Organization: EPA and NHTSA Focus Area: Standards - Incentives - Policies - Regulations Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.epa.gov/oms/climate/regulations/420f10014.pdf This document establish a national program consisting of new standards for model year 2012 through 2016 light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. EPA is finalizing the first-ever national greenhouse gas (GHG) emissions standards under the

215

Spinor Bose gases: Explorations of symmetries, magnetism and quantum dynamics  

E-Print Network (OSTI)

Spinor Bose gases form a family of quantum fluids manifesting both magnetic order and superfluidity. This article reviews experimental and theoretical progress in understanding the static and dynamic properties of these fluids. The connection between system properties and the rotational symmetry properties of the atomic states and their interactions are investigated. Following a review of the experimental techniques used for characterizing spinor gases, their mean-field and many-body ground states, both in isolation and under the application of symmetry-breaking external fields, are discussed. These states serve as the starting point for understanding low-energy dynamics, spin textures and topological defects, effects of magnetic dipole interactions, and various non-equilibrium collective spin-mixing phenomena. The paper aims to form connections and establish coherence among the vast range of works on spinor Bose gases, so as to point to open questions and future research opportunities.

Stamper-Kurn, Dan M

2012-01-01T23:59:59.000Z

216

Separating hydrogen from coal gasification gases with alumina membranes  

DOE Green Energy (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

217

Raman/FTIR spectroscopy of oil shale retort gases  

DOE Green Energy (OSTI)

A Raman facility was assembled in order to aid in the evaluation of the feasibility of using Raman or FTIR spectroscopy for analyzing gas mixtures of interest in oil shale. Applications considered in oil shale research included both retort monitoring and laboratory kinetic studies. Both techniques gave limits of detection between 10 and 1000 ppM for ten representative pertinent gases. Both techniques are inferior as a general analytical technique for oil shale gas analysis in comparison with mass spectroscopy, which had detection limits between 1 and 50 ppM for the same gases. The conclusion of the feasibility study was to recommend that mass spectroscopic techniques be used for analyzing gases of interest to oil shale.

Richardson, J.H.; Monaco, S.B.; Sanborn, R.H.; Hirschfeld, T.B.; Taylor, J.R.

1982-08-01T23:59:59.000Z

218

Emissions of greenhouse gases in the United States 1997  

SciTech Connect

This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

NONE

1998-10-01T23:59:59.000Z

219

“Hard probes” of strongly-interacting atomic gases  

SciTech Connect

We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

Nishida, Yusuke [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

220

Assess Potential Agency Size Changes to Reduce Greenhouse Gases Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assess Potential Agency Size Changes to Reduce Greenhouse Gases Assess Potential Agency Size Changes to Reduce Greenhouse Gases Using Renewable Energy in Buildings Assess Potential Agency Size Changes to Reduce Greenhouse Gases Using Renewable Energy in Buildings October 7, 2013 - 11:15am Addthis To support planning for using renewable energy to reduce greenhouse gas (GHG) emissions at the Federal agency or program-level, it is important to consider what changes to the agencies building or land-holding portfolio may have on opportunities for renewable energy. Changes to consider include: Addition of new buildings or sites to the agencies portfolio Major renovations to existing buildings Office moves into or out of agency-owned or leased space. As is the case with planning energy efficiency measures, planning for renewable energy in new construction can be more cost-effective than

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hazardous Gases VASILIS M. FTHENAKIS Department of Applied Science  

Office of Scientific and Technical Information (OSTI)

Mitigation Options for Mitigation Options for Accidental Releases of Hazardous Gases VASILIS M. FTHENAKIS Department of Applied Science Brookhaven National Laboratory Upton, N Y 11973 ABSTRACT The objective of this paper is to review and compare technologies available for mitigation of unconfined releases of toxic and flammable gases. These technologies indude: secondary confinement, de- inventory, vapor barriers, foam spraying, and water sprays/monitors. Guidelines for the design and/or operation of effective post-release mitigation systems and case studies involving actual industrial mitigation systems are also presented. 1. ACCIDENT PREVENTION & MITIGATION OPTIONS Accident prevention and mitigation in the process industries is based on the military concept of defense in

222

Methods, systems, and devices for deep desulfurization of fuel gases  

DOE Patents (OSTI)

A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

Li, Liyu (Richland, WA); King, David L. (Richland, WA); Liu, Jun (Richland, WA); Huo, Qisheng (Richland, WA)

2012-04-17T23:59:59.000Z

223

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

224

Welcome to Greenhouse Gases: Science and Technology: Editorial  

SciTech Connect

This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

Oldenburg, C.M.; Maroto-Valer, M.M.

2011-02-01T23:59:59.000Z

225

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents (OSTI)

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

1994-01-01T23:59:59.000Z

226

Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases  

DOE Patents (OSTI)

This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

Senum, G.I.; Dietz, R.N.

1994-04-05T23:59:59.000Z

227

Gas Water Heater Energy Losses  

E-Print Network (OSTI)

non-firing, non- recovery mode, i.e. , during standby mode.The stack losses while in standby mode account for about 43%can be made by reducing standby heat losses. This paper

Biermayer, Peter

2012-01-01T23:59:59.000Z

228

Louisiana Wetland Loss at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

229

Ozone depletion, greenhouse gases, and climate change: Proceedings  

SciTech Connect

This symposium was primarily concerned with the linkages between ozone depletion and increasing greenhouse gases and with their combined effect in causing climate change to occur on a global scale. The presentations in these proceedings review the current state of knowledge about stratospheric ozone depletion, discuss the probable effect of predicted greenhouse gas increase on future ozone trends, summarize observational data on changing atmospheric chemistry and associated atmospheric temperatures, and describe the continuing effort to model and predict future scenarios of climatic change relative to ozone and greenhouse gases in both the stratosphere and the troposphere. Some of the questions and answers that followed the presentations have been included when they highlight noteworthy points that were not covered in the presentation itself. The request by the National Climate Program Office for a symposium on the above related issues is included. The symposium agenda and participants are given. As well as a glossary of special terms and abbreviations. In summary, the Joint Symposium on Ozone Depletion, Greenhouse Gases, and Climate Change reviewed the magnitude and causes of stratospheric ozone depletion and examined the connections that exist between this problem and the impending climate warming to increasing greenhouse gases. The presentations of these proceedings indicate that the connections are real and important, and that the stratospheric ozone depletion and tropospheric greenhouse warming problems must be studied as parts of an interactive global system rather than as more or less unconnected events.

1989-01-01T23:59:59.000Z

230

OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.  

DOE Green Energy (OSTI)

This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

FTHENAKIS,V.

2001-12-01T23:59:59.000Z

231

Very high resolution etching of magnetic nanostructures in organic gases  

Science Conference Proceedings (OSTI)

Two methods for high resolution dry etching of permalloy (NiFe) and iron (Fe) nanostructures are presented and discussed. The first involves the use of carbon monoxide (CO) and ammonia (NH"3) as etching gases, the second uses methane (CH"4), hydrogen ... Keywords: CH4/H2/O2, CO/NH3, Dry etching, Fe, NiFe

X. Kong; D. Krása; H. P. Zhou; W. Williams; S. McVitie; J. M. R. Weaver; C. D. W. Wilkinson

2008-05-01T23:59:59.000Z

232

National Waste Processing Conference Proceedings ASME 1994 ACID GASES, MERCURY,  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

233

Use of low temperature blowers for recirculation of hot gases  

DOE Patents (OSTI)

An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

Maru, H.C.; Forooque, M.

1982-08-19T23:59:59.000Z

234

Noble gases and radiocarbon in natural gas hydrates Gisela Winckler  

E-Print Network (OSTI)

Noble gases and radiocarbon in natural gas hydrates Gisela Winckler Lamont-Doherty Earth 2001; published 24 May 2002. [1] In samples of pure natural gas hydrates from Hydrate Ridge, Cascadia of rigid cages of water molecules that enclose guest gas molecules. The gas component of natural hydrates

Winckler, Gisela

235

Low Impact Weight Loss Exercises | Fish Oil Weight Loss  

U.S. Energy Information Administration (EIA)

Low Impact Weight Loss Exercises. You want to lose weight, but for whatever reason, you want to or only can perform low impact exercises. No problem.

236

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network (OSTI)

and R. E. Poulson. Mercury Emissions From A Simulated In-for the Measurement of Mercury in Oil Shale Gases D. GirvinJFOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES D. C.

Girvin, D.G.

2011-01-01T23:59:59.000Z

237

Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks  

E-Print Network (OSTI)

inventory of Xenon on noble gases in shales: the plastic bagnoble gas signature by shale, rock, gas, oil and or water byof noble gases on organic rich shales in the terrestrial

Torgersen, T.; Kennedy, B.M.; van Soest, M.C.

2004-01-01T23:59:59.000Z

238

System for trapping and storing gases for subsequent chemical reduction to solids  

DOE Patents (OSTI)

A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

Vogel, John S. (San Jose, CA); Ognibene, Ted J. (Oakland, CA); Bench, Graham S. (Livermore, CA); Peaslee, Graham F. (Holland, MI)

2009-11-03T23:59:59.000Z

239

PPPL Wins Department of Energy Award For Reducing Greenhouse Gases |  

NLE Websites -- All DOE Office Websites (Extended Search)

Wins Department of Energy Award For Reducing Greenhouse Gases Wins Department of Energy Award For Reducing Greenhouse Gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Facebook Like Google Plus One PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. (Photo by Elle Starkman, PPPL Office of Communications) PPPL's Tim Stevenson takes inventory of the SF6 levels at a power supply tank for NSTX. The U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has received a federal Sustainability Award for reducing overall greenhouse gas emissions 48 percent since 2008 - far exceeding the U.S. government's goal of a 28 percent reduction. Members of the PPPL staff were among the 20 recipients of the Sustainability Awards in a ceremony in Washington, D.C., on Thursday, Sept.

240

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Keith Paustian (keithp@nrel.colostate.edu; 970-491-1547) Natural Resource Ecology Laboratory Colorado State University Ft. Collins, CO 80523 Bruce Babcock (babcock@iastate.edu; 515-294-6785) Cathy Kling (ckling@iastate.edu; 515-294-5767) Center for Agriculture and Rural Development Iowa State University Ames, IA 50011-1070 Jerry Hatfield (hatfield@nstl.gov; 515-294-5723) USDA - National Soil Tilth Laboratory Ames, IA 50011 Rattan Lal (lal.1@osu.edu; 614-292-9069) School of Natural Resources The Ohio State University Columbus, OH 43210-1085 Bruce McCarl (mccarl@tamu.edu; 979-845-1706) Department of Agricultural Economics Texas A&M University College Station, TX 77843-2124 Sandy McLaughlin (un4@ornl.gov; 865-574-7358)

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CO2 Separation from Low-Temperature Flue Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

partners interested in implementing United States Patent Number 7,842,126 entitled "Co 2 Separation from Low-Temperature Flue Gases." Disclosed in this patent are novel methods for processing carbon dioxide (CO 2 ) from combustion gas streams. Researchers at NETL are focused on the development of novel sorbent systems that can effectively remove CO 2 and other gases in an economically feasible manner with limited impact on energy production cost. The current invention will help in reducing greenhouse gas emissions by using an improved, regenerable aqueous amine and soluble potassium carbonate sorbent system. This novel solvent system may be capable of achieving CO 2 capture from larger emission streams at lower overall cost. Overview Sequestration of CO

242

EIA-Voluntary Reporting of Greenhouse Gases Program - Getting Started  

U.S. Energy Information Administration (EIA) Indexed Site

Getting Started Getting Started Voluntary Reporting of Greenhouse Gases Program Getting Started Form EIA-1605 may seem daunting at first, even for entities that have reported under the original program. That's why EIA has developed the Getting Started page to help entities take a systematic approach to reporting their emissions and reductions. The Voluntary Reporting of Greenhouse Gases Program suggests that prospective reporters familiarize themselves with the specific requirements for reporting their entity's inventory and reductions by answering the questions embodied in the 10 steps below. In addition, EIA has prepared the interactive Getting Started tool to help reporters determine what parts of Form EIA-1605 they need to complete. Getting Started Tool Getting Started PDF Tables

243

Transporting & Shipping Hazardous Materials at LBNL: Compressed Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gases Compressed Gases Self-Transport by Hand & Foot Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Return Cylinders Self-Transport by Hand & Foot Staff may personally move (self-transport) compressed gas cylinders by hand & foot between buildings and in connecting spaces (i.e., hallways, elevators, etc.) within buildings provided it can be done safely. The following safety precautions apply: Use standard cylinder dollies to transport compressed gas cylinders. While dollies are preferred, cylinders weighing 11 Kg (25 lbs) or less may be hand-carried. Never move a cylinder with a regulator connected to it. Cylinder valve-protection caps and valve-opening caps must be in place when moving cylinders. Lecture bottles and other cylinders that are

244

Recovery of CO2 from Flue Gases: Commercial Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan G. Chapel (dan.chapel@fluor.com; 949-349-7530) Carl L. Mariz (carl.mariz@fluor.com; 949-349-7530) FluorDaniel One Fluor Drive Aliso Viejo CA, 92698 John Ernest (john.ernest@minimed.com; 818-576-4293) Advanced Quality Services Inc 11024 Balboa Blvd. PMB154, Granada Hills, CA 91344-5007 1 Recovery of CO 2 from Flue Gases: Commercial Trends Originally presented at the Canadian Society of Chemical Engineers annual meeting October 4-6, 1999, Saskatoon, Saskatchewan, Canada Authors: Dan Chapel - Fluor Daniel Inc., Senior Vice President Technology; Oil, Gas & Power John Ernest - Advanced Quality Services Inc., Validation Engineer

245

PPPL wins Department of Energy award for reducing greenhouse gases |  

NLE Websites -- All DOE Office Websites (Extended Search)

PPPL wins Department of Energy award for reducing greenhouse gases PPPL wins Department of Energy award for reducing greenhouse gases By Jeanne Jackson DeVoe October 2, 2012 Tweet Widget Facebook Like Google Plus One PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon dioxide. PPPL reduced leaks of SF6 by 65 percent over three years - reducing overall greenhouse gas emissions by 48 percent between 2008 and 2011. (Photo by Elle Starkman/PPPL Office of Communications) PPPL engineer Tim Stevenson checks for possible leaks of sulfur hexafluoride (SF6), the gas used to insulate electronic equipment that has the potential to cause global warming at many times the rate of carbon

246

Reading Comprehension - Properties of Solids, Liquids, and Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Properties of Solids, Liquids, and Gases Properties of Solids, Liquids, and Gases A solid has a definite _________ mass texture volume and a _________ 3D irregular definite shape. The particles in a solid are _________ free to move around motionless packed tightly together . Particles in a solid move by _________ sliding past one another vibrating back and forth slightly jiggling around . _________ Viscosity Amorphous Crystalline solids soften before melting. The particles in this type of solid are not arranged in regular pattern. Amorphous solids _________ do don't have a distinct melting point. Crystalline solids have a _________ distinct color and shape distinct pattern and melting point . Liquids have no _________ volume mass shape of their own. A liquid takes the shape of its container. Without a container liquids spread into a wide,

247

Volatile oils and retrograde gases - What's the difference  

Science Conference Proceedings (OSTI)

Part 1 showed that at reservoir conditions, volatile oils exhibit bubble points and retrograde gases exhibit dew points. The article contained a graph of initial producing gas-oil ratio plotted against concentration of heptanes plus in the fluid. This paper reproduces a portion of that graph with the data points indicating that the fluid had a dew point or a bubble point at reservoir conditions. The scatter in the data reflects the compositional differences among the fluids and the differences in surface separation facilities and conditions. In this graph, only three fluids have dew points and initial producing gas-oil ratios less than 3,200 scf/STB, and only one fluid reaches a bubble point above this value. Therefore, a value of 3,200 scf/STB appears to be a good cutoff between volatile oils and retrograde gases.

McCain, W.D. Jr. (S.A. Holditch and Associates, College Station, TX (United States)); Bridges, B. (Texas A M Univ., College Station, TX (United States))

1994-01-01T23:59:59.000Z

248

Measurement of biocarbon in flue gases using 14C  

SciTech Connect

A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J. [University of Helsinki, Helsinki (Finland). Radiocarbon Dating Laboratory

2007-07-01T23:59:59.000Z

249

Clostridium stain which produces acetic acid from waste gases  

DOE Patents (OSTI)

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

1997-01-01T23:59:59.000Z

250

Clostridium strain which produces acetic acid from waste gases  

DOE Patents (OSTI)

A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

Gaddy, J.L.

1997-01-14T23:59:59.000Z

251

Apparatus for the plasma destruction of hazardous gases  

DOE Patents (OSTI)

A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.

Kang, Michael (Los Alamos, NM)

1995-01-01T23:59:59.000Z

252

Comparative Analysis of Alternative Means for Removing Noncondensable Gases  

Open Energy Info (EERE)

Comparative Analysis of Alternative Means for Removing Noncondensable Gases Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants:April 1999 - March 2000 Dataset Summary Description This dataset corresponds to the final report on a screening study to compare six methods of removing noncondensable gases from direct-use geo-thermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. The specific gas-removal methods include five vacuum system configurations using the conventional approach of evacuating gas/vapor mixtures from the power plant condenser system and a system for physical separation of steam and gases upstream of the power turbine. The study focused on flashed-steam applications, but the results apply equally well to flashed-steam and dry-steam geothermal power plant configurations. Two gas-removal options appear to offer profitable economic potential. The hybrid vacuum system configurations and the reboiler process yield positive net present value results over wide-ranging gas concentrations. The hybrid options look favorable for both low-temperature and high-temperature resource applications. The reboiler looks profitable for low-temperature resource applications for gas levels above about 20,000 parts per million by volume. A vacuum system configuration using a three-stage turbocompressor battery may be profitable for low-temperature resources, but results show that the hybrid system is more profitable. The biphase eductor alternative cannot be recommended for commercialization at this time. The report is available from NREL's publication database.

253

Bose-Einstein-condensed gases with arbitrary strong interactions  

E-Print Network (OSTI)

Bose-condensed gases are considered with an effective interaction strength varying in the whole range of the values between zero and infinity. The consideration is based on the usage of a representative statistical ensemble for Bose systems with broken global gauge symmetry. Practical calculations are illustrated for a uniform Bose gas at zero temperature, employing a self-consistent mean-field theory, which is both conserving and gapless.

V. I. Yukalov; E. P. Yukalova

2007-01-17T23:59:59.000Z

254

Remote monitoring of volcanic gases using passive Fourier transform spectroscopy  

SciTech Connect

Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus at reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.

Love, S.P.; Goff, F.; Counce, D.; Schmidt, S.C. [Los Alamos National Lab., NM (United States); Siebe, C.; Delgado, H. [Univ. Nactional Autonoma de Mexico, Coyoacan (Mexico)

1999-06-01T23:59:59.000Z

255

Measurements of waste tank passive ventilation rates using tracer gases  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF{sub 6}) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF{sub 6} by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF{sub 6}, indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour.

Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

1997-09-01T23:59:59.000Z

256

Thermodynamic and hydrodynamic behaviour of interacting Fermi gases  

E-Print Network (OSTI)

data processing speed and decreased power consumption. Understanding the spin relaxation, diffusion and other transport properties is of fundamental importance this field. An important advantage of cold gases in studies of spin transport phenomena... of information [39]. Either extending conventional charge-based electronic appliances by the spin degree of free- dom, or using the spin alone can be the foundation for a new generation of “spintronic” devices. Advantages are for instance nonvolatility, increased...

Goulko, Olga

2012-01-10T23:59:59.000Z

257

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2006-04-01T23:59:59.000Z

258

Mixtures of Bose Gases Confined in a Ring Potential  

SciTech Connect

The rotational properties of a mixture of two distinguishable Bose gases that are confined in a ring potential provide novel physical effects that we demonstrate in this study. Persistent currents are shown to be stable for a range of the population imbalance between the two components at low angular momentum. At higher values of the angular momentum, even small admixtures of a second species of atoms make the persistent currents highly fragile.

Smyrnakis, J.; Kavoulakis, G. M.; Magiropoulos, M. [Technological Education Institute of Crete, P.O. Box 1939, GR-71004, Heraklion (Greece); Bargi, S.; Kaerkkaeinen, K.; Reimann, S. M. [Mathematical Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund (Sweden)

2009-09-04T23:59:59.000Z

259

Persistent currents in Bose gases confined in annular traps  

SciTech Connect

We examine the problem of stability of persistent currents in a mixture of two Bose gases trapped in an annular potential. We evaluate the critical coupling for metastability in the transition from quasi-one- to two-dimensional motion. We also evaluate the critical coupling for metastability in a mixture of two species as a function of the population imbalance. The stability of the currents is shown to be sensitive to the deviation from one-dimensional motion.

Bargi, S.; Malet, F.; Reimann, S. M. [Mathematical Physics, Lund Institute of Technology, P.O. Box 118, SE-22100 Lund (Sweden); Kavoulakis, G. M. [Technological Educational Institute of Crete, P.O. Box 1939, GR-71004, Heraklion (Greece)

2010-10-15T23:59:59.000Z

260

Emissions of greenhouse gases in the United States 1996  

Science Conference Proceedings (OSTI)

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

NONE

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chemical production from industrial by-product gases: Final report  

DOE Green Energy (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

262

EIA-Voluntary Reporting of Greenhouse Gases Program - What's New  

U.S. Energy Information Administration (EIA) Indexed Site

Environment > Voluntary Reporting Program > What's New Environment > Voluntary Reporting Program > What's New Voluntary Reporting of Greenhouse Gases Program What's New Voluntary Reporting of Greenhouse Gases Program Suspended May 2011 The U.S. Energy Information Administration (EIA) Voluntary Reporting of Greenhouse Gases ("1605(b)") Program has been suspended. The suspension is due to recent reductions in budget appropriations and is effective immediately. Survey respondents may still submit data to the 1605(b) Program using the program's Workbook Form via EIA's Secure File Transfer mechanism. However, EIA will not be able to process and review submitted data or offer respondent support on the submitted data. Should a respondant submit data under the current collection cycle to EIA, the data will be retained in our electronic records. If the 1605(b) Program resumes normal operations, your submitted data will be reviewed and processed at that time. You will be notified in the future if the 1605(b) Program resumes normal operation. If you have any questions, please contact the survey manager, Paul McArdle, at paul.mcardle@eia.gov

263

Evaluación de la generación de gases de efecto invernadero asociados al ciclo de vida de los biocombustibles colombianos = Assessment of greenhouse gases emissions associated to colombian biofuels lifecycle.  

E-Print Network (OSTI)

??Valencia Botero, Monica Julieth (2012) Evaluación de la generación de gases de efecto invernadero asociados al ciclo de vida de los biocombustibles colombianos = Assessment… (more)

Valencia Botero, Monica Julieth

2012-01-01T23:59:59.000Z

264

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

265

Sorption of organic gases in residential bedrooms and bathrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption of organic gases in residential bedrooms and bathrooms Sorption of organic gases in residential bedrooms and bathrooms Title Sorption of organic gases in residential bedrooms and bathrooms Publication Type Conference Paper LBNL Report Number LBNL-56787 Year of Publication 2005 Authors Singer, Brett C., Alfred T. Hodgson, Toshifumi Hotchi, Katherine Y. Ming, Richard G. Sextro, Emily E. Wood, and Nancy J. Brown Conference Name Proceedings of the 10th International Conference on Indoor Air Quality and Climate - Indoor Air 2005 Volume 2(9) Publisher Tsinghua University Press Conference Location Beijing, China Abstract Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied "as-is" with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapour pressure within each chemical class.

266

SORPTION OF GASES BY VAPOR-DEPOSITED TITANIUM FILMS  

DOE Green Energy (OSTI)

Results are summarized for an investigation of the sorption rates of gases on vapor-deposited titanium films. The usefulness of such films for ultrahigh speed vacuum pumping is appraised. The sorption of hydrogen, deuterium, oxygen, nitrogen, carbon monoxide, carbon dioxide, water vapor, helium, argon, and methane onto titanium films was measured for a variety of circumstances using techniques and apparatus developed for this specific purpose. The information obtained and techniques evolved in this study have shown that large-scale getter pumping is feasible and can be a very effective means of pumping many gases. Sticking fractions larger than 0.8 were obtained for hydrogen, deuterium, oxygen, nitrogen, carbon monoxide, and carbon dioxide. The experiments have shown that the sticking fraction for gases on vapor-deposited films is a function of the deposition conditions. There is strong evidence to support the supposition that conditions which favor the formation of a porous, fine-grained film structure with a large surface-to-volume ratio produce films with the highest sorption rates. The technique for measuring sticking fractions is new and in many respects unique. It utilizes a very large sorption surface, thus minimizing the perturbing effect of the instrumentation and evaporation apparatus and reducing the hazard of film contamination due to small leaks in the system or outgassing of system components. The method gives especially good accuracy for measurements of sticking fractions approaching unity. The quantity of gas adsorbed, the gas flux onto the getter surface, and the gas flux leaving the getter surface are measured directly. Any two of these three independent measurements can be used to determine the sticking fraction, thereby providing a means of checking the data. The evaporation techniques, substrate surface, and substrate area were chosen to very nearly duplicate the conditions likely to be encountered in the practical application of large-scale getter pumping. (auth)

Clausing, R.E.

1964-03-01T23:59:59.000Z

267

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

Science Conference Proceedings (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-13T23:59:59.000Z

268

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-19T23:59:59.000Z

269

Supersolid phase in atomic gases with magnetic dipole interaction  

SciTech Connect

A major obstacle for the experimental realization of a supersolid phase with cold atomic gases in an optical lattice is the weakness of the nearest-neighbor interactions achievable via magnetic dipole-dipole interactions. In this paper, we show that by using a large filling of atoms within each well, the characteristic energy scales are strongly enhanced. Within this regime, the system is well described by the rotor model, and the qualitative behavior of the phase diagram derives from mean-field theory. We find a stable supersolid phase for realistic parameters with chromium atoms.

Buehler, Adam; Buechler, Hans Peter [Institute for Theoretical Physics III, University of Stuttgart, Pfaffenwaldring 57, D-70550 (Germany)

2011-08-15T23:59:59.000Z

270

EIA-Voluntary Reporting of Greenhouse Gases Program - Reporting Guidelines  

U.S. Energy Information Administration (EIA) Indexed Site

Reporting Guidelines Reporting Guidelines Voluntary Reporting of Greenhouse Gases Program Reporting Guidelines The purpose of the guidelines is to establish the procedures and requirements for filing voluntary reports, and to ensure that the annual reports of greenhouse gas emissions, emission reductions, and sequestration activities submitted by corporations, government agencies, non-profit organizations, households, and other private and public entities to submit are complete, reliable, and consistent. Over time, it is anticipated that these reports will provide a reliable record of the contributions reporting entities have made toward reducing their greenhouse gas emissions. General Guidelines General Guidelines Technical Guidelines Technical Guidelines Appendices to the Technical Guidelines:

271

Handbook of radiative heat transfer in high-temperature gases  

Science Conference Proceedings (OSTI)

This work offers both an original method for calculating optical properties of low-temperature plasma at elevated densities ... and an effective new means for calculating radiative heat transfer in hot gases and plasma with arbitrary temperature and pressure distributions. These methods allow for automatic accounting of all details of the plasma spectrum, including the line structure. This volume contains radiant transfer in problems of heat transfer; integration over frequency; methods of partial characteristics; method of effective populations; calculation of partial characteristics; appendix: tabular data.

Soloukhin, R.I.; Golovnev, I.F.; Zamurayev, V.P.; Katsnelson, S.S.; Kovalskaya, G.A.; Sevastyanenko, V.G.; Soloukhin, R.I.

1987-01-01T23:59:59.000Z

272

Prospecting by sampling and analysis of airborne particulates and gases  

DOE Patents (OSTI)

A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

Sehmel, G.A.

1984-05-01T23:59:59.000Z

273

MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES  

DOE Patents (OSTI)

A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

Josephson, V.

1960-01-26T23:59:59.000Z

274

Quantum mechanics of one-dimensional trapped Tonks gases  

E-Print Network (OSTI)

Several experimental groups are currently working towards realizing quasi-one-dimensional (1D) atom waveguides and loading them with ultracold atoms. The dynamics becomes truly 1D in a regime (Tonks gas) of low temperatures and densities and large positive scattering lengths for which the transverse mode becomes frozen, in which case the many-body Schrodinger dynamics becomes exactly soluble via a Fermi-Bose mapping theorem. In this paper we review our recent work on the exact ground state and quantum dynamics of 1D Tonks gases and assess the possibility of approaching the Tonks regime using Bessel beam optical dipole traps.

M. D. Girardeau; E. M. Wright

2001-04-30T23:59:59.000Z

275

Apparatus for dusting off gas by filtration and aspiration cleaning of filter, and application to combustion gases  

SciTech Connect

Method and apparatus for dusting off gases by filtration and cleaning of filter by aspiration and application thereof to combustion gases are disclosed. This invention relates to the filtration of dust loaded gases, and, in particular, combustion gases in the hot state. It consists of passing gases to be dusted off from top to bottom over a bed of pulverulent material, in particular, a sand bed and cleaning the upper layer of said bed by aspiration of dusts deposited thereon. This invention is particularly adapted for dusting off combustion gases from boilers or thermal power stations or gases to be supplied to gas turbines.

Merry, J.

1982-07-06T23:59:59.000Z

276

Performance demonstration program plan for analysis of simulated headspace gases  

DOE Green Energy (OSTI)

The Performance Demonstration Program (PDP) for analysis of headspace gases will consist of regular distribution and analyses of test standards to evaluate the capability for analyzing VOCs, hydrogen, and methane in the headspace of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each distribution is termed a PDP cycle. These evaluation cycles will provide an objective measure of the reliability of measurements performed for TRU waste characterization. Laboratory performance will be demonstrated by the successful analysis of blind audit samples of simulated TRU waste drum headspace gases according to the criteria set within the text of this Program Plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAPP QAOs. The concentration of analytes in the PDP samples will encompass the range of concentrations anticipated in actual waste characterization gas samples. Analyses which are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories which have demonstrated acceptable performance in the PDP.

NONE

1995-06-01T23:59:59.000Z

277

Process for recovery of sulfur from acid gases  

DOE Patents (OSTI)

Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

1995-01-01T23:59:59.000Z

278

Emissions of greenhouse gases in the United States 1995  

Science Conference Proceedings (OSTI)

This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

NONE

1996-10-01T23:59:59.000Z

279

High temperature elemental losses and mineralogical  

E-Print Network (OSTI)

earth metals, silicon, and chlorine [1–3]. Potassium is thenoble gases, nitrogen, chlorine, and ?uorine in magmas. In:the ash. The presence of chlorine in the ash is, therefore,

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E.

2006-01-01T23:59:59.000Z

280

Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India  

SciTech Connect

Previous studies have found that atmospheric brown clouds partially offset the warming effects of greenhouse gases. This finding suggests a tradeoff between the impacts of reducing emissions of aerosols and greenhouse gases. Results from a statistical model of historical rice harvests in India, coupled with regional climate scenarios from a parallel climate model, indicate that joint reductions in brown clouds and greenhouse gases would in fact have complementary, positive impacts on harvests. The results also imply that adverse climate change due to brown clouds and greenhouse gases contributed to the slowdown in harvest growth that occurred during the past two decades.

Auffhammer, M. [Univ. of California, Berkeley, CA (United States). Dept. of Agricultural and Resource Economics; Ramanathan, V. [Scripps Institution of Oceanography, San Diego, CA (United States); Vincent, J.R. [Univ. of California, San Diego, CA (United States). Graduate School of International Relations and Pacific Studies

2007-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Potential Application of Coal-Derived Fuel Gases for the Glass...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitretek Technical Report Potential Application of Coal-Derived Fuel Gases for the Glass Industry: A Scoping Analysis December 2004 David Gray Salvatore Salerno Glen Tomlinson...

282

Utilization of the noble gases in studies of underground nuclear detonations  

SciTech Connect

From symposium on noble gases; Las Vegas, Nevada, USA (24 Sep 1973). The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases except argon have been used as tracers, as have /sup 127/Xe and /sup 85/Kr. /sup 37/Ar and /sup 85/Kr have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases and the degree to which the sampled gas truly represents the underground gas mixture can be studied with the aid of the fission- product gases. /sup 222/Ra and He are released to the cavity from the surrounding rock and are therefore useful in studies of the interaction of the detonation with the surrounding medium. (auth)

Smith, C.F.

1973-09-17T23:59:59.000Z

283

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

dry fuels were ignited using a butane pilot lighter applied4 H 8 (butene), and C 4 H 10 (n-butane) gases with a Hewlett

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

284

Gases other than carbon dioxide make up nearly 20% of U.S ...  

U.S. Energy Information Administration (EIA)

These gases are commonly used as refrigerants, aerosols, and solvents. Although PFC and SF 6 concentrations have decreased greatly since 1990, ...

285

EIA's Energy in Brief: What are greenhouse gases and how much are ...  

U.S. Energy Information Administration (EIA)

Greenhouse gases trap heat from the sun and warm the planet's surface. Of U.S. greenhouse gas emissions, 87% are related to energy consumption. Since 1990, greenhouse ...

286

Kuhn Losses Regained: Van Vleck from Spectra to Susceptibilities  

E-Print Network (OSTI)

We follow the trajectory of John H. Van Vleck from his 1926 Bulletin for the National Research Council (NRC) on the old quantum theory to his 1932 book, The Theory of Electric and Magnetic Susceptibilities. We highlight the continuity of formalism and technique in the transition from dealing with spectra in the old quantum theory to dealing with susceptibilities in the new quantum mechanics. Our main focus is on the checkered history of a numerical factor in the Langevin-Debye formula for the electric susceptibility of gases. Classical theory predicts that this factor is equal to 1/3. The old quantum theory predicted values up to 14 times higher. Van Vleck showed that quantum mechanics does away with this "wonderful nonsense" (as Van Vleck called it) and restores the classical value 1/3. The Langevin-Debye formula thus provides an instructive example of a Kuhn loss in one paradigm shift that was regained in the next. In accordance with Kuhn's expectation that textbooks sweep Kuhn losses under the rug, Van Vle...

Midwinter, Charles

2012-01-01T23:59:59.000Z

287

Assess Potential Agency Size Changes that Impact Greenhouse Gases from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Commuting Employee Commuting Assess Potential Agency Size Changes that Impact Greenhouse Gases from Employee Commuting October 7, 2013 - 1:42pm Addthis YOU ARE HERE Step 1 For employee commuting, it is important to account for any planned or expected changes in a Federal agency's size when estimating the greenhouse gas (GHG) reduction potential for different operating units or worksites. Considerations include: Are employment levels expected to change in the next decade at specific facilities or agency-wide? Are there any planned facility moves at major worksites? Employee commute coordinators may want to engage human resources and strategic planners in this effort to establish likely changes in employment numbers. Facility planners may be engaged to understand changes in commutes

288

Entanglement creation in cold molecular gases using strong laser pulses  

E-Print Network (OSTI)

While many-particle entanglement can be found in natural solids and strongly interacting atomic and molecular gases, generating highly entangled states between weakly interacting particles in a controlled and scalable way presents a significant challenge. We describe here a one-step method to generate entanglement in a dilute gas of cold polar molecules. For molecules in optical traps separated by a few micrometers, we show that maximally entangled states can be created using the strong off-resonant pulses that are routinely used in molecular alignment experiments. We show that the resulting alignment-mediated entanglement can be detected by measuring laser-induced fluorescence with single-site resolution and that signatures of this molecular entanglement also appear in the microwave absorption spectra of the molecular ensemble. We analyze the robustness of these entangled molecular states with respect to intensity fluctuations of the trapping laser and discuss possible applications of the system for quantum information processing.

Felipe Herrera; Sabre Kais; K. Birgitta Whaley

2013-02-26T23:59:59.000Z

289

Assess Potential Agency Size Changes that Impact Greenhouse Gases from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Assess Potential Agency Size Changes that Impact Greenhouse Gases from Vehicles and Mobile Equipment October 7, 2013 - 11:31am Addthis YOU ARE HERE Step 1 Planned changes in a Federal agency's size, missions, transportation needs, and vehicle inventory all impact the strategic portfolio planning efforts that target greenhouse gas (GHG) emissions mitigation for vehicles and mobile equipment. Under Section 142 of the Energy Independence and Security Act (EISA) and Section 8 of Executive Order (E.O.) 13514, agencies are required to develop a plan that will reduce fleet GHG emissions to meet Federally mandated petroleum reduction and alternative fuel increase targets. Agencies can use these plans as a basis for determining potential changes in fleet size and

290

EIA-Voluntary Reporting of Greenhouse Gases Program - Why Report  

U.S. Energy Information Administration (EIA) Indexed Site

Why Report Why Report Voluntary Reporting of Greenhouse Gases Program Why Report What Is the Purpose of Form EIA-1605? Form EIA-1605 provides the means for the voluntary reporting of greenhouse gas emissions, reductions, and sequestration under Section 1605(b) of the Energy Policy Act of 1992. The purpose of the Voluntary Reporting Program is to encourage corporations, government agencies, non-profit organizations, households, and other private and public entities to submit annual reports of their greenhouse gas emissions, emission reductions, and sequestration activities. Form EIA-1605 provides a means for voluntary reporting that is complete, reliable, and consistent. How Will My Entity Benefit From Reporting? There are a number of ways for your entity to benefit from reporting, including:

291

Simulations of Deflagration-to-Detonation Transition in Reactive Gases |  

NLE Websites -- All DOE Office Websites (Extended Search)

numerically generated pseudo-schlieren image numerically generated pseudo-schlieren image Weak ignition behind a reflected Mach=1.5 shock in a stoichiometric hydrogen-oxygen mixture at 0.1 atm initial pressure. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Alexei Khokhlov, University of Chicago; Charles Bacon, Argonne National Laboratory, Joanna Austin, Andrew Knisely, University of Illinois at Urbanna-Champaign Simulations of Deflagration-to-Detonation Transition in Reactive Gases PI Name: Alexei Khokhlov PI Email: ajk@oddjob.uchicago.edu Institution: The University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 130 Million Year: 2013 Research Domain: Chemistry Hydrogen is an abundant, environmentally friendly fuel with the potential

292

Fermi gases in one dimension: From Bethe Ansatz to experiments  

E-Print Network (OSTI)

This article reviews theoretical and experimental developments for one-dimensional Fermi gases. Specifically, the experimentally realized two-component delta-function interacting Fermi gas -- the Gaudin-Yang model -- and its generalisations to multi-component Fermi systems with larger spin symmetries. The exact results obtained for Bethe ansatz integrable models of this kind enable the study of the nature and microscopic origin of a wide range of quantum many-body phenomena driven by spin population imbalance, dynamical interactions and magnetic fields. This physics includes Bardeen-Cooper-Schrieffer-like pairing, Tomonaga-Luttinger liquids, spin-charge separation, Fulde-Ferrel-Larkin-Ovchinnikov-like pair correlations, quantum criticality and scaling, polarons and the few-body physics of the trimer state (trions). The fascinating interplay between exactly solved models and experimental developments in one dimension promises to yield further insight into the exciting and fundamental physics of interacting Fermi systems.

Xi-Wen Guan; Murray T. Batchelor; Chaohong Lee

2013-01-28T23:59:59.000Z

293

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

Amoco Oil Company is investigating the direct conversion of light hydrocarbon gases to liquid fuels via partial oxidation. This report describes work completed in the first quarter of the two-year project (first quarter FY 1990). Task 1 of the work, preparation of the Project Management Plan, has been completed. Work was started and progress made on three other tasks during this quarter: Task 2. Modification of an existing Amoco pilot plant to handle the conditions of this project. Minor modifications were made to increase the maximum operating pressure to 1500 psig. Other more extensive modifications are being designed, including addition of an oxygen compressor and recycle system. Task 3.1. Evaluation of a Los Alamos National Laboratory methane oxidation kinetic model for suitability in guiding the experimental portions of this project. Task 3.2. Process variable (e.g. temperature, pressure, residence time) studies to determine optimal partial oxidation conditions. 1 fig.

Foral, M.J.

1990-01-01T23:59:59.000Z

294

Onset of a Pseudogap Regime in Ultracold Fermi Gases  

Science Conference Proceedings (OSTI)

We show, using an ab initio approach based on Quantum Monte Carlo technique, that the pseudogap regime emerges in ultracold Fermi gases close to the unitary point. We locate the onset of this regime at a value of the interaction strength corresponding to (k{sub F}a){sup -1}{approx_equal}-0.05 (a--scattering length). We determine the evolution of the gap as a function of temperature and interaction strength in the Fermi gas around the unitary limit and show that our results exhibit a remarkable agreement with the recent wave-vector resolved radio frequency spectroscopy data. Our results indicate that a finite temperature structure of the Fermi gas around unitarity is more complicated and involves the presence of the phase with preformed Cooper pairs, which, however, do not contribute to the long range order.

Magierski, Piotr [Faculty of Physics, Warsaw University of Technology, ulica Koszykowa 75, 00-662 Warsaw (Poland); Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Wlazlowski, Gabriel [Faculty of Physics, Warsaw University of Technology, ulica Koszykowa 75, 00-662 Warsaw (Poland); Bulgac, Aurel [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

2011-09-30T23:59:59.000Z

295

Low-Value Waste Gases as an Energy Source  

E-Print Network (OSTI)

Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years. Lower quality streams, often difficult to capture and sometimes limited in quantity, have often not been utilized for their fuel value. Increasing environmental and economic concerns have led to greater interest in utilizing these marginal fuel value waste gas streams as auxiliary fuels. The combustion and heat transfer characteristics of these fuels are different from normal fuels and these differences must be considered when determining if they can be fired successfully in existing furnaces or when designing new furnaces to use them. In addition, because of the difficulties in burning them and the chemical compounds that may be included in them, the potential pollutant emissions from these waste streams is also a significant consideration.

Waibel, R. T.

1996-04-01T23:59:59.000Z

296

Fuel cell stack with internal manifolds for reactant gases  

DOE Patents (OSTI)

A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

Schnacke, A.W.

1983-10-12T23:59:59.000Z

297

Fuel cell stack with internal manifolds for reactant gases  

DOE Patents (OSTI)

A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

Schnacke, Arthur W. (Schenectady, NY)

1985-01-01T23:59:59.000Z

298

USE OF SORBENT BEDS FOR TRANSFERRING HYDROGEN GASES  

DOE Green Energy (OSTI)

The use of uranium or palladium black beds for transferring hydrogen isotopes has been described. Such beds react quantitatively and rapidly with hydrogen and its isotopes, store large volumes of gas as the solid hydride, and can evolve the gas in a controlled manner to give any reasonable pressure. The uranium bed is somewhat simpler to operate since only heat need be supplied to carry out the pumping cycle, while the palladium must be cooled to approximately - -100 deg C to sorb hydrogen and heated to evolve the gas. The palladium bed is very dependable in operation; it is poisoned only by gases like H/xub 2/S and CO and, if poisoned, can be easily reactivated. Uranium is rather easily poisoned by small amounts of air; cycling in hydrogen will reactivate the uncombined uranium but the portion reacted with air will be permanently combined. (auth)

Ahmann, D.H.; Flint, P.S.; Salmon, O.N.

1954-06-17T23:59:59.000Z

299

Free Energies of Dilute Bose gases: upper bound  

E-Print Network (OSTI)

We derive a upper bound on the free energy of a Bose gas system at density $\\rho$ and temperature $T$. In combination with the lower bound derived previously by Seiringer \\cite{RS1}, our result proves that in the low density limit, i.e., when $a^3\\rho\\ll 1$, where $a$ denotes the scattering length of the pair-interaction potential, the leading term of $\\Delta f$ the free energy difference per volume between interacting and ideal Bose gases is equal to $4\\pi a (2\\rho^2-[\\rho-\\rhoc]^2_+)$. Here, $\\rhoc(T)$ denotes the critical density for Bose-Einstein condensation (for the ideal gas), and $[\\cdot ]_+$ $=$ $\\max\\{\\cdot, 0\\}$ denotes the positive part.

Jun Yin

2009-06-07T23:59:59.000Z

300

Solubilities of gases in simulated Tank 241-SY-101 wastes  

DOE Green Energy (OSTI)

Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

Norton, J.D.; Pederson, L.R.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

302

Sorption of organic gases in a furnished room  

NLE Websites -- All DOE Office Websites (Extended Search)

a furnished room a furnished room Title Sorption of organic gases in a furnished room Publication Type Journal Article LBNL Report Number LBNL-53943 Year of Publication 2004 Authors Singer, Brett C., Kenneth L. Revzan, Toshifumi Hotchi, Alfred T. Hodgson, and Nancy J. Brown Journal Atmospheric Environment Volume 38 Start Page Chapter Issue 16 Pagination 2483-2494 Abstract We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m3 room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C8-C10 aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h-1 and partitioned 95 to >99% in the sorbed phase at equilibrium

303

Calibration of Nondispersive Infrared CO2 Analyzers with CO2-in-Air Reference Gases  

Science Conference Proceedings (OSTI)

A set of eight CO2-in-air secondary standard calibration gases has been established by NOAA/Geophysical Monitoring for Climatic Change (GMCC) for use in its global CO2 monitoring program. Use of these gases obviates the need for pressure ...

W. D. Komhyr; T. B. Harris; L. S. Waterman

1985-03-01T23:59:59.000Z

304

The control systems analyze of the Romanian refinery gases desulphurization plants  

Science Conference Proceedings (OSTI)

The paper presents the control aspects concerning Romanian gases desulphurization plants. The paper has been divided into four parts. First part presents the structure of the Romanian gases desulphurization plants. The second part contains the steady-state ... Keywords: absorption, control, hierarchical, identification, industrial, modeling, unisim

Cristian Patrascioiu; Daniel Mihaescu

2010-05-01T23:59:59.000Z

305

Helium Isotopes In Geothermal And Volcanic Gases Of The Western United  

Open Energy Info (EERE)

Helium Isotopes In Geothermal And Volcanic Gases Of The Western United Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Details Activities (1) Areas (1) Regions (0) Abstract: Helium isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat flow, but do show a correlation with magma-based thermal activity and reservoir fluid temperature (or total convective heat discharge). Gases from high-T (> 200°C) reservoirs have 3He/4He > 2 _ the atmospheric value, with high He

306

Method of recovering sulfur from the hydrogen sulfide contained in coke oven gases  

SciTech Connect

Ammonia and hydrogen sulfide are washed out of the coke oven gas and stripped from the wash liquor in the form of gases and fumes or vapors. The ammonia is decomposed in a nickel catalyzer and a small part of the decomposition gases is supplied directly to a combustion furnace, while the larger part of the combustion gases is first cooled and freed from condensate, and only then supplied to the combustion furnace. In the combustion furnace, the proportion of H/sub 2/S/SO/sub 2/ needed for the Claus process is adjusted by a partial combustion of the decomposition gases. The gases from the combustion furnace are then processed in the Claus plant to sulfur.

Laufhutte, D.

1985-04-30T23:59:59.000Z

307

Process for removal of sulfur oxides from waste gases  

Science Conference Proceedings (OSTI)

A process for removing sulfur oxides from waste gas is provided. The gas is contacted with a sorbent selected from sodium bicarbonate, trona and activated sodium carbonate and, utilizing an alkaline liquor containing borate ion so as to reduce flow rates and loss of alkalinity, the spent sorbent is regenerated with an alkaline earth metal oxide or hydroxide.

Lowell, P.S.; Phillips, J.L.

1983-05-24T23:59:59.000Z

308

Predicting extents of mercury oxidation in coal-derived flue gases  

SciTech Connect

The extent of Hg oxidation determines the portion of Hg in the flue gas from a coal-fired power station that can be removed in SO{sub 2} scrubbers. This article evaluates predicted extents of Hg oxidation from a detailed chemical reaction mechanism, emphasizing the data from 1 and 29 MW pilotscale furnaces for diverse coal types. The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O{sub 2}, H{sub 2}O, HCl), emissions (NOx, SOx, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl{sub 2} and CaCl{sub 2} injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl. 33 refs., 4 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

309

In-Situ Microbial Conversion of Sequestered Greenhouse Gases  

SciTech Connect

The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

Scott, A R; Mukhopadhyay, M; Balin, D F

2012-09-06T23:59:59.000Z

310

Transverse spin diffusion in strongly interacting Fermi gases  

E-Print Network (OSTI)

We compute spin diffusion in a dilute Fermi gas at arbitrary temperature, polarization and strong interaction in the normal phase using kinetic theory. While the longitudinal spin diffusivity depends weakly on polarization and diverges for small temperatures, the transverse spin diffusivity D_\\perp has a strong polarization dependence and approaches a finite value for T->0 in the Fermi liquid phase. For a 3D unitary Fermi gas at infinite scattering length the diffusivities reach a minimum near the quantum limit of diffusion \\hbar/m in the quantum degenerate regime and are strongly suppressed by medium scattering, and we discuss the importance of the spin-rotation effect. In two dimensions, D_\\perp attains a minimum at strong coupling -1 < ln(kFa2D) < 1 and reaches D_\\perp~0.2...0.3\\hbar/m at large polarization. These values are consistent with recent measurements of two-dimensional ultracold atomic gases in the strong coupling regime.

Tilman Enss

2013-07-19T23:59:59.000Z

311

Coal derived fuel gases for molten carbonate fuel cells  

DOE Green Energy (OSTI)

Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiers operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.

Not Available

1979-11-01T23:59:59.000Z

312

Process for removal of sulfur compounds from fuel gases  

DOE Patents (OSTI)

Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

1978-01-01T23:59:59.000Z

313

Mechanical model for ductility loss  

Science Conference Proceedings (OSTI)

A mechanical model was constructed to probe into the mechanism of ductility loss. Fracture criterion based on critical localized deformation was undertaken. Two microstructure variables were considered in the model. Namely, the strength ratio of grain boundary affected area to the matrix, ..cap omega.., and the linear fraction, x, of grain boundary affected area. A parametrical study was carried out. The study shows that the ductility is very sensitive to those microstructure parameters. The functional dependence of ductility to temperature as well as strain-rate, suggested by the model, is demonstrated to be consistent with the observation.

Hu, W.L.

1980-02-11T23:59:59.000Z

314

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Nonhydrocarbon Gases Removed from Natural Gas (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:24 AM"

315

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Nonhydrocarbon Gases Removed from Natural Gas (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:20 AM"

316

Surface interactions involved in flashover with high density electronegative gases.  

Science Conference Proceedings (OSTI)

This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

2010-01-01T23:59:59.000Z

317

Sorption of organic gases in a furnished room  

SciTech Connect

We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m{sup 3} room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C{sub 8}-C{sub 10} aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h{sup -1} and partitioned 95 to >99% in the sorbed phase at equilibrium.

Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

2003-11-30T23:59:59.000Z

318

ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS  

SciTech Connect

The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

Chialvo, Ariel A [ORNL] [ORNL; Vlcek, Lukas [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University

2013-01-01T23:59:59.000Z

319

Loss mechanisms in turbine tip clearance flows  

E-Print Network (OSTI)

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

320

Louisiana Wetland Loss Fact at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss Fact? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Corona losses dependence from the conductor diameter  

Science Conference Proceedings (OSTI)

This paper presents possibility to decrease the corona power losses in overhead transmission lines. Corona power losses can be reduced by increasing the diameter of the conductor and used bundled conductors per phase. The objectives were to determine ... Keywords: corona model, critical disruptive voltage, electric discharge, electric field, power losses, transmission line

Isuf Krasniqi; Vjollca Komoni; Avni Alidemaj; Gazmend Kabashi

2011-10-01T23:59:59.000Z

322

Shield Losses in Medium-Voltage Cables  

Science Conference Proceedings (OSTI)

Utilities can substantially reduce cable costs and circulating current losses by optimizing the design of concentric neutral conductors for underground distribution cables and by configuring installed cables to minimize energy loss. This guide shows how to design neutral conductors for maximum cost-effectiveness and includes calculations of circulating current losses and ampacities for commonly used cables.

1987-12-14T23:59:59.000Z

323

Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley  

Open Energy Info (EERE)

Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999) Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999) Abstract This report tabulates an extensive geochemical database on waters, gases, scales,rocks, and hot-spring deposits from the Dixie Valley region, Nevada. The samples fromwhich the data were obtained were collected and analyzed during 1996 to 1999. Thesedata provide useful information for ongoing and future investigations on geothermalenergy, volcanism, ore deposits, environmental issues, and groundwater quality in thisregion. Authors Los Alamos National Laboratory and NM Published

324

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early  

Open Energy Info (EERE)

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Details Activities (1) Areas (1) Regions (0) Abstract: The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He,

325

Load Preheating Using Flue Gases from a Fuel-Fired Heating System  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by using the heat in furnace flue gases to preheat material coming into the furnace to improve combustion.

Not Available

2006-01-01T23:59:59.000Z

326

Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases  

E-Print Network (OSTI)

greenhouse gases. Energy Policy (2008), doi:10.1016/j.rebound effect—a survey. Energy Policy 28 (6-7), 389–401.and climate policy. Energy Policy 32 (4), 481–491. Leiby,

2008-01-01T23:59:59.000Z

327

Chemical analysis and sampling techniques for geothermal fluids and gases at the Fenton Hill Laboratory  

DOE Green Energy (OSTI)

A general description of methods, techniques, and apparatus used for the sampling, chemical analysis, and data reporting of geothermal gases and fluids is given. Step-by-step descriptions of the procedures are included in the appendixes.

Trujillo, P.E.; Counce, D.; Grigsby, C.O.; Goff, F.; Shevenell, L.

1987-06-01T23:59:59.000Z

328

Acceleration of the Brewer–Dobson Circulation due to Increases in Greenhouse Gases  

Science Conference Proceedings (OSTI)

The acceleration of the Brewer–Dobson circulation under rising concentrations of greenhouse gases is investigated using the Whole Atmosphere Community Climate Model. The circulation strengthens as a result of increased wave driving in the ...

Rolando R. Garcia; William J. Randel

2008-08-01T23:59:59.000Z

329

In Situ Measurements of Long-Lived Trace Gases in the Lower Stratosphere by Gas Chromatography  

Science Conference Proceedings (OSTI)

Detailed information on the four-channel Airborne Chromatograph for Atmospheric Trace Species (ACATS-IV), used to measure long-lived atmospheric trace gases, is presented. Since ACATS-IV was last described in the literature, the temporal ...

P. A. Romashkin; D. F. Hurst; J. W. Elkins; G. S. Dutton; D. W. Fahey; R. E. Dunn; F. L. Moore; R. C. Myers; B. D. Hall

2001-07-01T23:59:59.000Z

330

On the Cause of the Relative Greenhouse Strength of Gases such as the Halocarbons  

Science Conference Proceedings (OSTI)

This note examines some of the factors important in determining the large radiative impact, relative to carbon dioxide, of increased concentrations of gases in the optically thin limit (such as the halocarbons at their present day concentrations)...

Keith P. Shine

1991-06-01T23:59:59.000Z

331

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a well-head; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; and separating LPG from gas vapors of the refrigerated natural gas. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for cooling the compressed gases therefrom; and a product separator downstream of the refrigeration unit for receiving cooled and compressed gases discharged from the refrigeration unit and separating LPG therein from gases remaining in vapor form.

May, R.L.; Snow, N.J. Jr.

1983-12-06T23:59:59.000Z

332

Numerical Modeling of the Turbulent Fluxes of Chemically Reactive Trace Gases in the Atmospheric Boundary Layer  

Science Conference Proceedings (OSTI)

Turbulent fluxes of chemically reactive trace gases in the neutral atmospheric boundary layer (ABL) were simulated with a one-dimensional, coupled diffusion-chemistry model. The effects of rapid chemical reactions were included with a suite of ...

W. Gao; M. L. Wesely

1994-07-01T23:59:59.000Z

333

Spatio-temporal theory of lasing action in optically-pumped rotationally excited molecular gases  

E-Print Network (OSTI)

We investigate laser emission from optically-pumped rotationally excited molecular gases confined in a metallic cavity. To this end, we have developed a theoretical framework able to accurately describe, both in the spatial ...

Chua, Song-Liang

334

Emissions of Greenhouse Gases in the United States, 2000 Executive Summary  

Reports and Publications (EIA)

Executive Summary on the Energy Information Administration's latest estimates of emissions for carbon dioxide, methane, nitrous oxide, and other greenhouse gases. These estimates are based on activity data and applied emissions factors and not on measured or metered emissions monitoring.

Perry Lindstrom

2001-11-01T23:59:59.000Z

335

Modification of the Köhler Equation to Include Soluble Trace Gases and Slightly Soluble Substances  

Science Conference Proceedings (OSTI)

A generalized reformulation of the Köhler theory to include the effect of soluble gases and slightly soluble aerosol substances is presented. A single equation is derived that takes into account 1) the Kelvin effect; 2) the Raoult effect caused ...

Ari Laaksonen; Pekka Korhonen; Markku Kulmala; Robert J. Charlson

1998-03-01T23:59:59.000Z

336

High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy  

E-Print Network (OSTI)

Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based ...

Wynn, Charles M.

337

Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report  

SciTech Connect

The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

NONE

1996-08-01T23:59:59.000Z

338

Measurement of one-particle correlations and momentum distributions for trapped 1D gases  

E-Print Network (OSTI)

van Hove's theory of scattering of probe particles by a macroscopic target is generalized so as to relate the differential cross section for atomic ejection via stimulated Raman transitions to one-particle momentum-time correlations and momentum distributions of 1D trapped gases. This method is well suited to probing the longitudinal momentum distributions of 1D gases in situ, and examples are given for bosonic and fermionic atoms.

M. D. Girardeau; E. M. Wright

2000-12-19T23:59:59.000Z

339

Induction machine stray loss from inter-bar currents  

E-Print Network (OSTI)

Stray load loss refers generally to the sources of induction machine loss not accounted for by typical calculations of primary or secondary copper loss, no load core loss, or friction and windage loss. Harmonic rotor bar ...

Englebretson, Steven Carl

2009-01-01T23:59:59.000Z

340

On the Information Loss in Static Systems  

E-Print Network (OSTI)

In this work we give a concise definition of information loss from a system-theoretic point of view. Based on this definition, we analyze the information loss in static input-output systems subject to a continuous-valued input. For a certain class of multiple-input, multiple-output systems the information loss is quantified. An interpretation of this loss is accompanied by upper bounds which are simple to evaluate. Finally, a class of systems is identified for which the information loss is necessarily infinite. Quantizers and limiters are shown to belong to this class.

Geiger, Bernhard C

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Study of Heat Loss: Commercial and Residential  

E-Print Network (OSTI)

There is much savings involved in the prevention of heat loss. Many structures exhibit such loss. Much can be done to improve or minimize the heat loss in a structure. These include interior and exterior modifications. It has been shown that heat can move by means of convection, conduction, and radiation. Problems with heat loss can be due to moisture, and poor construction techniques. There is a beneficial cost savings involved in the prevention of heat loss. Prevention techniques include insulation, caulking, weather stripping, and double pane windows. There are tables available for one to reference and calculate the return on their investment or “payback tim”

Emmett Ientilucci

1995-01-01T23:59:59.000Z

342

Emissions of greenhouse gases in the United States, 1985--1990  

SciTech Connect

The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

Not Available

1993-11-10T23:59:59.000Z

343

PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS  

Science Conference Proceedings (OSTI)

Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and vapor densities was evaluated for selected normal paraffins, normal alkenes, cyclo-paraffins, light aromatics, argon, carbon dioxide and water. The generalized EOS constants and substance-specific characteristic parameters in the modified PGR EOS were obtained from the pure component vapor pressures, and saturated liquid and vapor molar volumes. The calculated phase properties were compared to those of the Peng-Robinson (PR), the simplified-perturbed-hard-chain theory (SPHCT) and the original PGR equations. Generally, the performance of the proposed EOS was better than the PR, SPHCT and original PGR equations in predicting the pure fluid properties (%AAD of 1.3, 2.8 and 3.7 for vapor pressure, saturated liquid and vapor densities, respectively).

KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

1998-08-31T23:59:59.000Z

344

Energy Information Administration / Natural Gas Annual 2007 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,474 3,525 2,954 2,845 2,000 Total............................................................... 3,474 3,525 2,954 2,845 2,000 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 387 402 337 304 E 222 Marketed Production ...................................... 3,087 3,123 2,616 2,540 1,778 Extraction Loss...............................................

345

Microsoft Word - front_matter_Dec12.docx  

Gasoline and Diesel Fuel Update (EIA)

5 5 Egypt Figure 2. Natural gas supply and disposition in the United States, 2011 (trillion cubic feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 28.5 0.9 0.2 3.4 3.117 0.129 0.002 0.500 0.937 0.018 22.9 1.1 3.5 3.1 2.0 3.2 6.9 0.03 7.6 0.035 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

346

Phase Behavior of Light Gases in Hydrocarbon and Aqueous Solvents  

Science Conference Proceedings (OSTI)

Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, our solubility apparatus was refurbished and restored to full service. To test the experimental apparatus and procedures used, measurements were obtained for the solubility Of C0{sub 2} in benzene at 160{degrees}F. Having confirmed the accuracy of the newly acquired data in comparison with our previous measurements and data reported in the literature for this test system, we have begun to measure the solubility of hydrogen in hexane. The measurements for this system will cover the temperature range from 160 to 280{degrees}F at pressures to 2,500 psia. As part of our model evaluation efforts, we examined the predictive abilities of an alternative approach we have proposed for calculating the phase behavior properties of highly non-ideal systems. Using this approach, the liquid phase fugacities generated from an equation of state (EOS) are augmented by a fugacity deviation function correction. The correlative abilities of this approach are compared with those of an EOS equipped with the recently introduced Wong-Sandler (MWS) mixing rules. These two approaches are compared with the current methods for vapor-liquid equilibrium (VLE) calculations, i.e., the EOS (0/0) approach with the van der Waals mixing rules and the split (y/0) approach. The evaluations were conducted on a database comprised of non-ideal low pressure binary systems as well as asymmetric high pressure binary systems. These systems are of interest in the coal liquefaction and utilization processes. The Peng-Robinson EOS was selected for the purposes of this evaluation.

Gasem, K.A.M.; Robinson, R.L., Jr.; Trvedi, N.J., Gao, W.

1997-09-01T23:59:59.000Z

347

PHASE BEHAVIOR OF LIGHT GASES IN HYDROGEN AND AQUEOUS SOLVENTS  

DOE Green Energy (OSTI)

Under previous support from the US Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, the solubilities of hydrogen in n-hexane, carbon monoxide in cyclohexane, and nitrogen in phenanthrene and pyrene were measured using a static equilibrium cell over the temperature range from 344.3 to 433.2 K and pressures to 22.8 MPa. The uncertainty in these new solubility measurements is estimated to be less than 0.001 in mole fraction. The data were analyzed using the Peng-Robinson (PR) equation of state (EOS). In general, the PR EOS represents the experimental data well when a single interaction parameter (C{sub ij}) is used for each isotherm. In addition, the predictive capability of the modified Park-Gasem-Robinson (PGR) equation of state (EOS) was evaluated for selected carbon dioxide + normal paraffins, ethane + normal paraffins, and hydrogen + normal paraffins. A set of mixing rules was proposed for the modified EOS to extend its predictive capabilities to mixtures. The predicted bubble point pressures for the ethane + n-paraffin and carbon dioxide + n-paraffin binaries were compared to those of the Peng-Robinson (PR), simplified-perturbed-hard-chain theory (SPHCT) and original PGR equations. The predictive capability of the proposed equation is better or comparable to the PR, SPHCT and original PGR equations of state for the ethane binaries (%AAD of 1.9) and carbon dioxide binaries (%AAD of 2.0). For the hydrogen binaries, the modified PGR EOS showed much better performance (%AAD of 1.7) than the original PGR equation and comparable to the PR equation.

KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

1999-03-31T23:59:59.000Z

348

Vehicle Technologies Office: Parasitic Loss Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Parasitic Loss Reduction Parasitic Loss Reduction Heavy vehicles lose a tremendous amount of energy to wind resistance and drag, braking, and rolling resistance. Such non-engine losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning, heaters, refrigeration, etc.), and engine idling. The parasitic loss activity identifies methodologies that may reduce energy losses, and tests those in the laboratory. Promising technologies are then prototyped and tested onboard heavy vehicles. Once validated, technologies must be tested on-road to obtain durability, reliability, and life-cycle cost data for the developmental component and/or design strategy.

349

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

350

Analysis of TPV Network Losses (a Presentation)  

DOE Green Energy (OSTI)

This talk focuses on the theoretical analysis of electrical losses associated with electrically networking large numbers of TPV cells to produce high power TPV power generators.

DM DePoy; MW Dashiell; DD Rahner; LR Danielson; JE Oppenlander; JL Vell; RJ Wehrer

2004-12-08T23:59:59.000Z

351

Wetland loss dynamics in southwestern Barataria basin ...  

U.S. Energy Information Administration (EIA)

ABSTRACT We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's ...

352

Louisiana Coastal Land Loss Video Release  

U.S. Energy Information Administration (EIA)

Today, the U.S. Geological Survey National Wetlands Research Center is pleased to announce the release of a new Louisiana coastal land loss video, ...

353

Evaluation of the generation and release of flammable gases in tank 241-SY-101  

DOE Green Energy (OSTI)

Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)) [Westinghouse Hanford Co., Richland, WA (United States); Pederson, L.R.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)) [Pacific Northwest Lab., Richland, WA (United States); Meisel, D.; Jonah, C. (Argonne National Lab., IL (United States)) [Argonne National Lab., IL (United States); Ashby, E.C. (Georgia Inst. of Tech., Atlanta, GA (United States)) [Georgia Inst. of Tech., Atlanta, GA (United States)

1991-11-01T23:59:59.000Z

354

System and method for converting wellhead gas to liquefied petroleum gases (LPG)  

SciTech Connect

A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

May, R.L.; Sinclair, B.W.

1984-07-31T23:59:59.000Z

355

Management of radioactive waste gases from the nuclear fuel cycle. Volume I. Comparison of alternatives  

SciTech Connect

Alternatives were compared for collection and fixation of radioactive waste gases released during normal operation of the nuclear fuel cycle, and for transportation and storage/disposal of the resulting waste forms. The study used a numerical rating scheme to evaluate and compare the alternatives for krypton-85, iodine-129, and carbon-14; whereas a subjective evaluation, based on published reports and engineering judgement, was made for transportation and storage/disposal options. Based on these evaluations, certain alternatives are recommended for an integrated scheme for waste management of each of the subject waste gases. Phase II of this project, which is concerned with the development of performance criteria for the waste forms associated with the subject gases, will be completed by the end of 1980. This work will be documented as Volume II of this report.

Evans, A.G.; Prout, W.E.; Buckner, J.T.; Buckner, M.R.

1980-12-01T23:59:59.000Z

356

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network (OSTI)

rapid development of coal-bed methane was spurred by amethane and other gases. Some of this coalbed gas is stored in the coal bed

Delucchi, Mark

1997-01-01T23:59:59.000Z

357

Heat loss from an open cavity  

DOE Green Energy (OSTI)

Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

1995-12-01T23:59:59.000Z

358

Definition: Reduced Electricity Losses | Open Energy Information  

Open Energy Info (EERE)

Losses Losses Jump to: navigation, search Dictionary.png Reduced Electricity Losses Functions that provide this benefit could help manage peak feeder loads, reduced electricity throughput, locate electricity production closer to the load and ensure that voltages remain within service tolerances, while minimizing the amount of reactive power provided. These actions can reduce electricity losses by making the system more efficient for a given load served or by actually reducing the overall load on the system.[1] Related Terms load, electricity generation, reactive power, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Electricity_Losses&oldid=502644

359

The economics of controlling stock pollutants: An efficient strategy for greenhouse gases  

SciTech Connect

Optimal control theory is applied to develop an efficient strategy to control stock pollutants such as greenhouse gases and hazardous waste. The optimal strategy suggests that, at any time, the marginal costs of abatement should be equated with the present value of the marginal damage of timely unabated emission. The optimal strategy calls for increasingly tight abatement over time as the pollutant stock accumulates. The optimal policy applied to greenhouse gases suggest moderate abatement efforts, at present, with the potential for much greater future efforts. 15 refs., 2 tabs.

Falk, I. (Harvard Univ., Cambridge, MA (United States)); Mendelsohn, R. (Yale Univ., New Haven, CT (United States))

1993-07-01T23:59:59.000Z

360

Life cycles on earth complicate climate research studies of trace gases  

SciTech Connect

The Exchange of Trace Gases between Atmosphere and Biosphere was the theme of the 57th workshop held by the Dahlem Conferences of the Stifterverband fuer die Deutsche Wissenschaft (Donors Association for the Promotion of Arts and Sciences in Germany), in which the experts focused their attention on the trace gases methane (CH{sub 4}) and the nitrous oxides (N{sub 2}O, NO, NO{sub 2}). Although these substances only exist in minute quantities in comparison to carbon dioxide, they contribute just as much to the greenhouse effect.

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, J.E.; Jalan, V.M.

1984-06-19T23:59:59.000Z

362

GEI 41040G - Specification for Fuel Gases for COmbustion in Heavy-Duty Gas Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Gas Turbine Revised, January 2002 GEI 41040G These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes the matter should be referred to the GE Company. © 1999 GENERAL ELECTRIC COMPANY Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines GEI 41040G Specification for Fuel Gases for Combustion in Heavy-Duty Gas Turbines 2 TABLE OF CONTENTS I. INTRODUCTION 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

363

Absolute rate measurements of two-photon process of gases, liquids, and solids  

DOE Green Energy (OSTI)

Due to rapid improvements in high-power laser performance, two-photon absorption processes have become a very useful tool for studying the molecular structures of various gases, liquids and solids. However, measurements of absolute two-photon absorption cross sections were more or less ignored previously because of their small size. In this work, we obtained not only the two-photon absorption spectra, but also measurements of their absolute cross sections for various gases, liquids, and solids. 8 refs., 1 fig., 1 tab.

Chen, C.H.; McCann, M.P.; Payne, M.G.

1987-12-01T23:59:59.000Z

364

High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures  

DOE Patents (OSTI)

A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

1984-01-01T23:59:59.000Z

365

A Rapid Loss Index for Tropical Cyclone Disasters in China  

Science Conference Proceedings (OSTI)

Disaster emergency response needs rapid estimation on disaster loss. In China it is of great importance to develop a loss index for rapidly assessing tropical cyclone (TC) disaster loss. In this paper, a new composite loss index for TC landing on China ... Keywords: Tropical Cyclone, Disaster, Loss Index, Rapid Loss Assessment

Ying Li; Weihua Fang

2012-06-01T23:59:59.000Z

366

Photoconductivity and luminescence in GaSe crystals at high levels of optical excitation  

Science Conference Proceedings (OSTI)

The photoconductivity and luminescence of GaSe layered crystals at high levels of optical excitation are studied experimentally. The specific features observed in the photoconductivity and photoluminescence spectra are controlled by the nonlinear optical absorption in the region of excitonic resonance.

Kyazym-zade, A. G.; Salmanov, V. M., E-mail: vagif_salmanov@yahoo.com; Salmanova, A. A. [Baku State University (Azerbaijan); Alieva, A. M.; Ibaeva, R. Z. [National Academy of Sciences, Institute of Physics (Azerbaijan)

2010-03-15T23:59:59.000Z

367

Process And Apparatus For Producing A Stream Of Inert Gases From A Hydrocarbon Fuel Source  

Science Conference Proceedings (OSTI)

An experimental research study involving an unconventional method of producing a stream of inert gases from common hydrocarbon fuel sources has been described. Design and processing science elements from several different scientific, engineering, and ... Keywords: design, engine, fuel, hydrocarbon, inert gas, process, production, system

F. W. Giacobbe

2004-08-01T23:59:59.000Z

368

Group-velocity-dispersion measurements of atmospheric and combustion-related gases using  

E-Print Network (OSTI)

, "Dispersion measurement of inert gases and gas mixtures at 800 nm," Appl. Opt. 47(27), 4856­4863 (2008). 17. T of the gas. For each gas measurement a pressure point was randomly selected, and the dispersion was measured (), and plot dispersion as a function of gas density in Fig. 3. As expected we see the linear dependence

Dantus, Marcos

369

Greenhouse gases emission from municipal waste management: The role of separate collection  

Science Conference Proceedings (OSTI)

The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

Calabro, Paolo S. [Dipartimento di Meccanica e Materiali, Universita degli Studi Mediterranea di Reggio Calabria, via Graziella - loc. Feo di Vito, 89122 Reggio Calabria (Italy)], E-mail: paolo.calabro@unirc.it

2009-07-15T23:59:59.000Z

370

Regenerable process for the selective removal of sulfur dioxide from effluent gases  

SciTech Connect

A regenerable process is claimed for scrubbing SO/sub 2/ from effluent gases using an aqueous alkanolamine and the corresponding sulfite as the solvent, such amine having a boiling point below about 250/sup 0/ C. At one atmosphere pressure and wherein the alkanolamine solutions containing heat stable salts (Hss) is regenerated by alkali addition, crystallization and vacuum distillation of the amine.

Atwood, G.R.; Kosseim, A.J.; Sokolik, J.E.

1983-06-21T23:59:59.000Z

371

Displacement of Different Gases on the Mechanism of Methane and its Experimental Research  

Science Conference Proceedings (OSTI)

The paper is research how to improve the exploitation of coal bed methane rate, we discussed the flooding in the coal bed methane gas, CO2 gas with N2 gas and the effect of displacement, respectively, and summed up: With the injection of different gases ... Keywords: CBM, N2 and CO2 gas, Flow characteristics, Mechanism

E. Dong; Long Guan

2012-05-01T23:59:59.000Z

372

Documentation for Emissions of Greenhouse Gases in the United States 2008  

Reports and Publications (EIA)

The Energy Policy Act of 1992 required the U.S. Energy Information Administration (EIA) to prepare an inventory of aggregate U.S. national emissions of greenhouse gases for the period 1987-1990, with annual updates thereafter. This report documents the methodology for the seventeenth annual inventory, covering national emissions over the period 1990-2008.

Information Center

2011-01-03T23:59:59.000Z

373

Assessing the environmental pollutant vector of combustion gases emission from coal-fired power plants  

Science Conference Proceedings (OSTI)

Within the present industrial metabolism, electric and thermal energy production is one of the main consumers of fossil fuels. Coal is a natural resource and fossil fuel used in the coal-fired power plants in Romania. Unfortunately, beyond the environmental ... Keywords: coal-fired power plant, combustion gases, environmental impact, pollutant vector

Cornelia A. Bulucea; Andreea Jeles; Nikos E. Mastorakis; Carmen A. Bulucea; Constantin Brindusa

2011-07-01T23:59:59.000Z

374

Greenhouse gases accounting and reporting for waste management - A South African perspective  

Science Conference Proceedings (OSTI)

This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa); Trois, Cristina [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa)

2010-11-15T23:59:59.000Z

375

Biological sweetening of energy gases mimics in biotrickling filters Marc Fortuny a,c  

E-Print Network (OSTI)

: Hydrogen sulfide; Gas sweetening; Biotrickling filter; Desulfurization; Fuel gas; Biogas 1. Introduction in energy-rich gases such as biogas from anaerobic digesters which may contain H2S concentrations exceeding ones specifically developed for the removal of high concentra- tions of H2S from biogas or fuel gas

376

Operational aspects of the desulfurization process of energy gases mimics in biotrickling filters5  

E-Print Network (OSTI)

. Introduction Energy rich off-gases such as biogas are sometimes not used for electric power generation due impurities. H2S concentrations in biogas can range from 0.1 to 5 We dedicate this article to the memory/v (1000e20,000 ppmv), whereas the specifications for the maximum content of H2S in typical biogas

377

Most countries have made commitments to limit human-caused emissions of greenhouse gases. To  

E-Print Network (OSTI)

(which is soot, rather than a greenhouse gas) would both improve our ability to manage its impact GREENHOUSE GAS EMISSIONS There are three primary methods for estimating emissions of greenhouse gases, all be used to estimate greenhouse gas emissions and sinks with sufficient accuracy at the national level

378

What are greenhouse gases? Many chemical compounds in the atmosphere act as  

E-Print Network (OSTI)

greenhouse gas and plays an important role in regulating the climate. Changes in water vapor from human in the atmosphere, water vapor is not counted in the United States or international greenhouse gas inventories3 . Why do greenhouse gas levels matter? Atmospheric concentrations of several important greenhouse gases

379

Determination of Autoignition and Flame Speed Characteristics of Coal Gases Having Medium Heating Values  

Science Conference Proceedings (OSTI)

Combustion of clean, medium-Btu coal-derived gas offers a way of generating electric power from domestic coal without the sulfur oxide emissions of direct coal combustion. This initial testing yielded data on the spontaneous ignition and turbulent flame speed behavior of such gases that will be valuable for the development of low-NOx combustion systems.

1985-11-11T23:59:59.000Z

380

A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases  

E-Print Network (OSTI)

Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such...

Seager, S; Hu, R

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Spin waves in ultracold gases with exchange and spin-orbit interactions  

SciTech Connect

The dynamics of spin waves in ultracold gases is investigated with allowance for exchange and spin-orbit interaction. The exact basis of atomic states is used taking into account all rotational quantum numbers of the atom. The dispersion relation for spin waves is obtained for fermions and bosons in the hydro-dynamic approximation.

Andreeva, T. L.; Rubin, P. L., E-mail: rubin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2012-08-15T23:59:59.000Z

382

Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents  

DOE Patents (OSTI)

A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known "pressure swing adsorption" technique utilizing the same sorption material.

Judkins, Roddie R. (9917 Rainbow Dr., Knoxville, TN 37922); Burchell, Timothy D. (109 Greywood Pl., Oak Ridge, TN 37830)

1999-01-01T23:59:59.000Z

383

Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents  

DOE Patents (OSTI)

A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

Judkins, R.R.; Burchell, T.D.

1999-07-20T23:59:59.000Z

384

Why Ť25?? and Y-12 mercury losses  

NLE Websites -- All DOE Office Websites (Extended Search)

"25"? and Y-12 mercury losses Recently I learned something new regarding the "shortcut names" or code names for uranium-235 and plutonium-239. It seems the codes used to discuss...

385

Corona losses in HVdc bipolar lines  

SciTech Connect

The problem related to the prediction of corona losses in HVdc bipolar lines has been solved, in the past, by means of semi-empirical monomial formulae. However, the proposed formulae that are simpler to use do not always give adequate calculation precision, while the formulae that provide the closest results require implicit functions of different complexity, which are difficult to apply; moreover, it is not possible to understand clearly what influence the variations of the different line parameters have on the losses themselves. The new monomial semi-empirical relationship, proposed to predict the corona losses in HVdc bipolar lines, is very simple to use; it highlights the dependence of power losses due to the corona effect by the different line parameters. The formula has been developed by elaborating a considerable amount of available experimental data.

Corbellini, U.; Pelacchi, P. [Univ. of Pisa (Italy). Dept. of Electric Systems and Automation

1996-07-01T23:59:59.000Z

386

Trough Receiver Heat Loss Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

2006-02-01T23:59:59.000Z

387

Mass-loss from Red Giants  

E-Print Network (OSTI)

Although much is known about the nature of winds from hot stars and giants and supergiants with spectral types earlier than K, there is still much to be learned regarding the mass-loss process in cool, late-type stars. We will review the current state of research, with particular reference to observations and modelling of mass-loss from giant stars in symbiotic systems.

Brian Espey; Cian Crowley

2008-03-07T23:59:59.000Z

388

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Isotopes in Greenhouse Gases Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

(Scroll down to find Isotopes in Greenhouse Gases, a subheading under the broader heading of Atmospheric Trace Gases, etc.) CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to isotopes in greenhouse gases includes: • Monthly atmospheric 13C/12C isotopic ratios for 10 SIO stations, (2005) (Trends Online) • Mixing ratios of CO, CO2, CH4, and isotope ratios of associated 13C, 18O, and 2H in air samples from Niwot Ridge, Colorado, and Monta±a de Oro, California, USA (2004) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) ?13C in CO2 from the CSIRO GASLAB Flask Sampling Network (Trends Online) • In Situ 13CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (2001) (Trends Online) • In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (1995) • Carbon-13 Isotopic Abundance and concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (1995) • Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999) • 14CO 2 Observations from Schauinsland, Germany (1997) (Trends Online) • Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962-1992 (1996) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 (1998) (Specialized Interface)

389

Depositional environment of a Kimmeridgian carbonate 'black band' (Akkuyu Formation, south-western Turkey)  

E-Print Network (OSTI)

with increasing amounts of thiol and thiophene compounds. Non-hydrocarbon gases from petroleum source rocks, L69 3GP It is assumed typically that minerals do not affect the geochemistry of petroleum, the consequences being bleaching of rocks by petroleum and the increasing availability of ferrous iron

Paris-Sud XI, Université de

390

Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia  

E-Print Network (OSTI)

with increasing amounts of thiol and thiophene compounds. Non-hydrocarbon gases from petroleum source rocks, L69 3GP It is assumed typically that minerals do not affect the geochemistry of petroleum, the consequences being bleaching of rocks by petroleum and the increasing availability of ferrous iron

Rothman, Daniel

391

Support vector machines with the ramp loss and the hard margin loss  

E-Print Network (OSTI)

Nov 4, 2008 ... Despite the fact that training SVM with the robust loss functions requires the solution of a quadratic mixed-integer program (QMIP) and is ...

392

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

393

Biomass burning and the production of greenhouse gases, in Climate Biosphere Interaction: Biogenic Emissions and the Environmental Effects of Climate Change, edited by  

E-Print Network (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the

Joel S. Levine

1994-01-01T23:59:59.000Z

394

Atom-molecule conversion with particle losses  

E-Print Network (OSTI)

Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.

B. Cui; L. C. Wang; X. X. Yi

2011-03-01T23:59:59.000Z

395

AC Loss Measurements with a Cryocooled Sample  

SciTech Connect

A new cryostat cooled by a closed-cycle Cryomech GB-37 cryocooler for superconductor measurements at temperatures down to 20 K is described. The sample is conductively coupled to the cold stage so as to minimize vibration and thermal stresses. AC losses have been measured calorimetrically in several HTSC coils that have been wound to simulate sub-scale transformer winding pairs. Stable temperatures down to 20 K were reached on these coils, allowing measurements at practical levels of ac current and I{sub c}. By using short ac current pulses, losses on individual turns could be resolved. Results are reported mainly to showcase the apparatus, measurement procedure and analytical approach.

Schwenterly, S.W.

2001-02-15T23:59:59.000Z

396

Anyon-Fermion Mapping and Applications to Ultracold Gases in Tight Waveguides  

SciTech Connect

The Fermi-Bose mapping method for one-dimensional Bose and Fermi gases with zero-range interactions is generalized to an anyon-fermion mapping and applied to exact solution of several models of ultracold gases with anyonic exchange symmetry in tight waveguides: anyonic Calogero-Sutherland model, anyons with point hard-core interaction (anyonic Tonks-Girardeau gas), and spin-aligned anyon gas with infinite zero-range odd-wave attractions (attractive anyonic Tonks-Girardeau, or AATG, gas). It is proved that for even N{>=}4 there are states of the AATG gas on A, with anyonic phase slips which are odd integral multiples of {pi}/(N-1), of energy lower than that of the corresponding fermionic ground state. A generalization to a spinor Fermi gas state with anyonic symmetry under purely spatial exchange enables energy lowering by the same mechanism.

Girardeau, M. D. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States)

2006-09-08T23:59:59.000Z

397

Radiolytic and radiolytically induced generation of gases in simulated waste solutions  

DOE Green Energy (OSTI)

The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

1990-12-31T23:59:59.000Z

398

EIA-Voluntary Reporting of Greenhouse Gases Program - About the 1605(b)  

U.S. Energy Information Administration (EIA) Indexed Site

About the 1605(b) Program About the 1605(b) Program Voluntary Reporting of Greenhouse Gases Program About the 1605(b) Program History Established by Section 1605(b) of the Energy Policy Act of 1992, the Voluntary Reporting of Greenhouse Gases Program (also known as the 1605(b) Program) encourages corporations, government agencies, non-profit organizations, households, and other private and public entities to submit annual reports of their greenhouse gas emissions, emission reductions, and sequestration activities. The Program provides a means for voluntary reporting that is complete, reliable, and consistent. The Voluntary Reporting Program began operations in 1994 under the auspices of the Energy Information Administration, the statistical branch of the Department of Energy. Under the original guidelines, the Program released annual reports and a public database for each reporting cycle from the 1994 through the 2005 data years.

399

Emissions of Greenhouse Gases in the United States 2009, DOE/EIA-0573(2009)  

Gasoline and Diesel Fuel Update (EIA)

March 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Emissions of Greenhouse Gases in the United States 2009 ii Contacts This report, Emissions of Greenhouse Gases in the United States 2009, was prepared under the general direction of John Conti, Assistant Administrator for Energy Analysis, and Paul Holtberg, Team Leader, Analysis Integration Team. General questions concerning the content of this report may be directed to the Office of Communications at 202/586-8800. Technical information concerning the content of the report may be obtained from Perry Lindstrom at 202/586-0934 (email, perry. lindstrom@eia.gov). Without the assistance of Science Applications International Corporation (SAIC), this report would not have

400

Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants  

Open Energy Info (EERE)

June 2000 * NREL/SR-550-28329 June 2000 * NREL/SR-550-28329 Martin Vorum, P.E. Englewood, Colorado Eugene A. Fritzler, P.E. Fort Morgan, Colorado Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants April 1999-March 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2000 * NREL/SR-550-28329 Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants April 1999-March 2000 Martin Vorum, P.E. Englewood, Colorado Eugene A. Fritzler, P.E. Fort Morgan, Colorado NREL Technical Monitor: C. Kutscher

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1996-12-31T23:59:59.000Z

402

Field evaluation of sampling methods for pressurized geothermal liquids, gases, and suspended solids  

DOE Green Energy (OSTI)

Many different sampling methods were tested and compared for collecting samples for measurement of brine chemistry, gases, and suspended solids from pressurized geothermal systems. The tests were conducted on the 6-2 wellhead and a test loop at the Department of Energy's Geothermal Test Facility at East Mesa, California. The recommended methods for single-phase liquid or single-phase steam (with gases) are presented, together with detailed procedures. The results of testing methods for sampling two phase liquid-steam systems showed significant errors can result. It was recommended that two-phase flowing wells be directed to a full flow separator and the single-phase liquid and single-phase steam sampled separately using the recommended methods.

Shannon, D.W.; Cole, M.W.; DeMonia, D.D.; Divine, J.R.; Jensen, G.A.; Kindle, C.H.; Koski, O.H.; Smith, R.P.; Woodruff, E.M.

1980-01-01T23:59:59.000Z

403

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

SciTech Connect

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

404

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

405

An equation of state from cool-dense fluids to hot gases for mixed elements  

E-Print Network (OSTI)

An equation of state for the domain extending from hot gases to cool-dense fluids is formulated for a hydrogen-helium mixture. The physical processes take account of temperature ionization and dissociation, electron degeneracy, Coulomb coupling and pressure ionization. Pressure ionization and Coulomb coupling are studied with simple and comprehensive modeling. A single and complete algorithm is achieved with explicit expressions available for the whole domain from hot gases to cool dense fluids ($T>10^2% K$). Pressure ionization and Coulomb coupling have been examined for their contributions to the pressure and internal energy. The result reveals that their contributions smooth the variation of the pressure and internal energy in the region of pressure ionization even at very low temperatures.

G. Q. Luo

1997-11-22T23:59:59.000Z

406

An equation of state from cool-dense fluids to hot gases for mixed elements  

E-Print Network (OSTI)

An equation of state for the domain extending from hot gases to cool-dense fluids is formulated for a hydrogen-helium mixture. The physical processes take account of temperature ionization and dissociation, electron degeneracy, Coulomb coupling and pressure ionization. Pressure ionization and Coulomb coupling are studied with simple and comprehensive modeling. A single and complete algorithm is achieved with explicit expressions available for the whole domain from hot gases to cool dense fluids ($T>10^2% K$). Pressure ionization and Coulomb coupling have been examined for their contributions to the pressure and internal energy. The result reveals that their contributions smooth the variation of the pressure and internal energy in the region of pressure ionization even at very low temperatures.

Luo, G Q

1997-01-01T23:59:59.000Z

407

Radiolytic and radiolytically induced generation of gases in simulated waste solutions  

DOE Green Energy (OSTI)

The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

1990-01-01T23:59:59.000Z

408

A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere  

SciTech Connect

A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

2012-01-15T23:59:59.000Z

409

Method and apparatus for hot-gas desulfurization of fuel gases  

DOE Patents (OSTI)

The present invention is directed to a method and apparatus for removing sulfur values from a hot fuel gas stream in a fluidized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen- containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse. 3 figs., 1 tab.

Bissett, L.A.

1990-01-01T23:59:59.000Z

410

Method and apparatus for hot-gas desulfurization of fuel gases  

DOE Patents (OSTI)

The present invention is directed to a method and apparatus for removing sulfur values from a hot fuel gas stream in a fluidized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen- containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse. 3 figs., 1 tab.

Bissett, L.A.

1990-12-31T23:59:59.000Z

411

Biological production of acetic acid from waste gases with Clostridium ljungdahlii  

DOE Patents (OSTI)

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

Gaddy, James L. (Fayetteville, AR)

1998-01-01T23:59:59.000Z

412

Biological production of acetic acid from waste gases with Clostridium ljungdahlii  

DOE Patents (OSTI)

A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

Gaddy, J.L.

1998-09-15T23:59:59.000Z

413

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1998-01-13T23:59:59.000Z

414

EIA-Voluntary Reporting of Greenhouse Gases Program - Original 1605(b)  

U.S. Energy Information Administration (EIA) Indexed Site

Program Program Voluntary Reporting of Greenhouse Gases Program Original 1605(b) Program Section 1605(b) of the Energy Policy Act of 1992 established the Voluntary Reporting of Greenhouse Gases Program. The Program operated under the original 1994 guidelines through the 2005 data year (for reports containing data through 2005). Reports containing data through 2007 and beyond submitted beginning in 2008 will be conducted under the revised General and Technical Guidelines issued in 2006 and 2007, respectively. More about the original 1605(b) Program. Old Program Reporting Guidelines Old Program Electricity Emissions Factors Old Program Calculation Tools Old Program Forms and Software Old Program Reports for the reporting years 1994 to 2004. Old Program Data for the reporting years 1994 to 2005.

415

ARM - PI Product - ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle ProductsARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases Site(s) SGP General Description Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2

416

Have Disaster Losses Increased Due to Anthropogenic Climate Change?  

Science Conference Proceedings (OSTI)

The increasing impact of natural disasters over recent decades has been well documented, especially the direct economic losses and losses that were insured. Claims are made by some that climate change has caused more losses, but others assert ...

Laurens M. Bouwer

2011-01-01T23:59:59.000Z

417

The origin of hydrothermal and other gases in the Kenya Rift Valley  

SciTech Connect

The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

Darling, W.G. [British Geological Survey, Wallingford (United Kingdom)] [British Geological Survey, Wallingford (United Kingdom); Griesshaber, E. [Max-Planck Institut fuer Chemie, Mainz (Germany)] [Max-Planck Institut fuer Chemie, Mainz (Germany); Andrews, J.N. [Univ. of Reading (United Kingdom)] [and others] [Univ. of Reading (United Kingdom); and others

1995-06-01T23:59:59.000Z

418

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

419

Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks  

SciTech Connect

The mechanisms responsible for noble gas concentrations, abundance patterns, and strong retentivity in sedimentary lithologies remain poorly explained. Diffusion-controlled fractionation of noble gases is modeled and examined as an explanation for the absolute and relative abundances of noble gases observed in sediments. Since the physical properties of the noble gases are strong functions of atomic mass, the individual diffusion coefficients, adsorption coefficients and atomic radii combine to impede heavy noble gas (Xe) diffusion relative to light noble gas (Ne) diffusion. Filling of lithic grains/half-spaces by diffusive processes thus produces Ne enrichments in the early and middle stages of the filling process with F(Ne) values similar to that observed in volcanic glasses. Emptying lithic grains/half-spaces produces a Xe-enriched residual in the late (but not final) stages of the process producing F(Xe) values similar to that observed in shales. 'Exotic but unexceptional' shales that exhibit both F(Ne) and F(Xe) enrichments can be produced by incomplete emptying followed by incomplete filling. This mechanism is consistent with literature reported noble gas abundance patterns but may still require a separate mechanism for strong retention. A system of labyrinths-with-constrictions and/or C-, Si-nanotubes when combined with simple adsorption can result in stronger diffusive separation and non-steady-state enrichments that persist for longer times. Enhanced adsorption to multiple C atoms inside C-nanotubes as well as dangling functional groups closing the ends of nanotubes can provide potential mechanisms for 'strong retention'. We need new methods of examining noble gases in rocks to determine the role and function of angstrom-scale structures in both the diffusive enrichment process and the 'strong retention' process for noble gas abundances in terrestrial rocks.

Torgersen, T.; Kennedy, B.M.; van Soest, M.C.

2004-06-14T23:59:59.000Z

420

Solubility of Gases in Glass. II. He, Ne, and H2 in Fused Silica  

Science Conference Proceedings (OSTI)

The statistical thermodynamics of the gas?in?glass system provides a basic model of both physical and chemical solubility. The physical solubility result is essentially equivalent to that for monatomic solubility. The chemical solubility result is dependent upon the specific system involved. The model was compared with experiment for a variety of systems. Helium and neon in fused silica were examples of the physical solubility of monatomic gases. Variations of the thermal history of the fused silica did not appear to have a measurable effect on physical solubility as evidenced in the helium data. Hydrogen in fused silica was an example of the physical solubility of polyatomic gases. Physical solubility was measured by a modified Seiverts technique and was characterized by a linear dependence on pressure. Binding energies for the physically dissolved species were of the order expected for van der Waals bonding. Vibrational frequencies were on the order of 1013 sec?1 with the heavier species having the lower frequencies. Hydrogen in fused silica was also an example of the chemical solubility of polyatomic gases. The literature gave data for the chemical solution of hydrogen in fused silica

James F. Shackelford; Perry L. Studt; Richard M. Fulrath

1972-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality  

E-Print Network (OSTI)

Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.

Allan Adams; Lincoln D. Carr; Thomas Schaefer; Peter Steinberg; John E. Thomas

2012-05-23T23:59:59.000Z

422

Time dependence of gases from plasma-wall interactions in ISX-A  

DOE Green Energy (OSTI)

Numerous papers have been published concerning radiation damage and thermal properties of first walls in tokamak reactors. However vacuum properties are also important, particularly as regards the adsorption and release of gases during and immediately following tokamak discharges. We have studied the time evolution of working and impurity gases by means of a quadrupole mass spectrometer attached to the ISX-A tokamak. These results were compared with measurements in a similar (304L stainless steel) laboratory vacuum system, with no tokamak discharges. Laboratory tests were made with a 100-msec-long H/sub 2/ puff. The partial pressures of CH/sub 4/, H/sub 2/O, and CO all exhibited very small intermediate peaks followed by a second rise which began 25 to 50 msec after the beginning of the puff and peaked some 200 to 300 msec later. When Ar was substituted for the H/sub 2/ puff the partial pressures of these impurities behaved in a similar manner except that the magnitude of the increase was less. The pressure rise of the impurity gases following the H/sub 2/ puffs varied, depending on the vacuum system configuration, differences in wall preparation of the tokamak and the absence of a plasma in the laboratory systems.

Simpkins, J.E.; Colchin, R.J.

1979-01-01T23:59:59.000Z

423

Emissions of greenhouse gases in the United States, 1987--1994  

SciTech Connect

The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

NONE

1995-09-25T23:59:59.000Z

424

ORNL analysis predicts losses from extreme weather damage could...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL analysis predicts losses from extreme weather damage could double by 2050 Researcher tackles unprecedented county-by-county economic loss forecast Research in impacts,...

425

Federal Offshore--Gulf of Mexico Natural Gas Extraction Loss...  

Annual Energy Outlook 2012 (EIA)

Pages: Extraction Loss of Natural Gas at Processing Plants (Summary) Federal Offshore Gulf of Mexico Natural Gas Plant Processing Extraction Loss of Natural Gas at...

426

Aerodynamic Losses and Heat Transfer in a Blade Cascade with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring...

427

South Dakota Natural Gas Extraction Loss (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Extraction Loss (Million Cubic Feet) South Dakota Natural Gas Extraction Loss (Million Cubic Feet) Decade...

428

Mobile device protection from loss and capture  

Science Conference Proceedings (OSTI)

Mobile devices play a critical role in assistive environments. How to authenticate and secure communications among them has become more important especially against loss and capture of the devices. In this paper, we present an approach to protect signing ... Keywords: assistive environment, authentication, digital signature, forward security, mobile device

Zhengyi Le; Yi Ouyang; Yurong Xu; Fillia Makedon

2008-07-01T23:59:59.000Z

429

Fuel Gases  

Science Conference Proceedings (OSTI)

...often used in torch brazing of steel. Hydrogen, butane, and producer (city) gas are seldom employed. In manual torch brazing, pure oxygen is

430

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

in press), Organic aerosols in the earth's atmosphere,loss, and trace gas and aerosol emissions during laboratoryproperties of biomass burn aerosols, Geophysical Research

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

431

Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO  

Science Conference Proceedings (OSTI)

Satellite observations of temperature, optically thin cirrus clouds, and trace gases derived from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite ...

Katrina S. Virts; John M. Wallace

432

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network (OSTI)

gases. 2.3.5 Synthetic natural gas (SNG) systems Asynthetic natural gas (SNG) can be manufactured from coal orthe use of biomass-derived SNG in motor vehicles. SNG from

Delucchi, Mark

1997-01-01T23:59:59.000Z

433

A Refined Method of Parameterizing Absorption Coefficients among Multiple Gases Simultaneously from Line-by-Line Data  

Science Conference Proceedings (OSTI)

An extension of the correlated-k distribution method that uses spectral-mapping techniques was derived to parameterize line-by-line absorption coefficients for multiple gases simultaneously for use in three-dimensional atmospheric models. In a ...

Mark Z. Jacobson

2005-02-01T23:59:59.000Z

434

Reducing fischer-tropsch catalyst attrition losses in high ...  

Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems United States Patent

435

An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling  

Science Conference Proceedings (OSTI)

One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

Qian, Yun; Gustafson, William I.; Fast, Jerome D.

2010-07-29T23:59:59.000Z

436

Scannerless loss modulated flash color range imaging  

SciTech Connect

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2009-02-24T23:59:59.000Z

437

Scannerless loss modulated flash color range imaging  

SciTech Connect

Scannerless loss modulated flash color range imaging methods and apparatus are disclosed for producing three dimensional (3D) images of a target within a scene. Apparatus and methods according to the present invention comprise a light source providing at least three wavelengths (passbands) of illumination that are each loss modulated, phase delayed and simultaneously directed to illuminate the target. Phase delayed light backscattered from the target is spectrally filtered, demodulated and imaged by a planar detector array. Images of the intensity distributions for the selected wavelengths are obtained under modulated and unmodulated (dc) illumination of the target, and the information contained in the images combined to produce a 3D image of the target.

Sandusky, John V. (Albuquerque, NM); Pitts, Todd Alan (Rio Rancho, NM)

2008-09-02T23:59:59.000Z

438

Economics of heat loss for power cables  

SciTech Connect

Energy losses occur in power cables which cause a rise in the conductor temperature. A trend toward higher allowable conductor temperatures has increased the energy losses during operation. At the same time, the costs of the energy has increased dramatically. With a given installation and load, energy costs vary inversely with the conductor size. However, initial costs vary directly with the conductor size. This relationship can be utilized to select a conductor size which minimizes the sum of the initial costs an the energy costs. This paper reviews present value techniques and identifies the level of energy costs in some particular installation configurations. An analysis is made of the marginal costs and savings available by changing the size of the conductor in a cable circuit.

Cornelison, K.E.

1982-07-01T23:59:59.000Z

439

Information Loss in Black Hole Evaporation  

E-Print Network (OSTI)

Parikh-Wilczek tunnelling framework is investigated again. We argue that Parikh-Wilczek's treatment, which satisfies the first law of black hole thermodynamics and consists with an underlying unitary theory, is only suitable for a reversible process. Because of the negative heat capacity, an evaporating black hole is a highly unstable system. That is, the factual emission process is irreversible, the unitary theory will not be satisfied and the information loss is possible.

Jingyi Zhang; Yapeng Hu; Zheng Zhao

2005-12-11T23:59:59.000Z

440

Recent Stirling engine loss - understanding results  

DOE Green Energy (OSTI)

For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA`s objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed.

Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sirius A: turbulence or mass loss?  

E-Print Network (OSTI)

Context. Abundance anomalies observed in a fraction of A and B stars of both Pop I and II are apparently related to internal particle transport. Aims. Using available constraints from Sirius A, we wish to determine how well evolutionary models including atomic diffusion can explain observed abundance anomalies when either turbulence or mass loss is used as the main competitor to atomic diffusion. Methods. Complete stellar evolution models, including the effects of atomic diffusion and radiative accelerations, have been computed from the zero age main-sequence of 2.1M\\odot stars for metallicities of Z0 = 0.01 \\pm 0.001 and shown to agree with the observed parameters of Sirius A. Surface abundances were predicted for three values of the mass loss rate and for four values of the mixed surface zone. Results. A mixed mass of ~ 10^-6 M\\odot or a mass loss rate of 10^-13 M\\odot/yr were determined through comparison with observations. Of the 17 abundances determined observationally which are included in our calculati...

Michaud, G; Vick, M

2011-01-01T23:59:59.000Z

442

Pressurized release of liquefied fuel gases (LNG and LPG). Topical report, May 1993-February 1996  

SciTech Connect

This report is an important contribution to the behavior of pressurized liquefied gases when accidentally released into the atmosphere. LNG vehicle fueling stations and LPG storage facilities operate at elevated pressures. Accidental releases could result in rainout and the formation of an aerosol in the vapor cloud. These factors must be considered when estimating the extent of the hazard zone of the vapor cloud using a heavier-than-air gas dispersion model such as DEGADIS (or its Windows equivalent DEGATEC). The DOS program PREL has been incorporated in the Windows program LFGRISK.

Atallah, S.; Janardhan, A.

1996-02-01T23:59:59.000Z

443

A comparison of the contribution of various gases to the greenhouse effect  

SciTech Connect

The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions relative to that of carbon dioxide emissions. A rough analysis based on the use of currently accepted values shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect as long as its leakage can be limited to 3 to 6 percent. 9 refs., 1 fig., 4 tabs.

Rodhe, H. (Stockholm Univ. (Sweden))

1990-06-08T23:59:59.000Z

444

Method and apparatus for detecting and measuring trace impurities in flowing gases  

SciTech Connect

Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

Taylor, Gene W. (Los Alamos, NM); Dowdy, Edward J. (Los Alamos, NM)

1979-01-01T23:59:59.000Z

445

Mechanics of liquid and gas, or mechanics of the inertless mass II. Real liquids and gases  

E-Print Network (OSTI)

The second part of the monograph investigates mechanical motion of real liquids and gases. Besides that, this contains two examples of practical applications of the theoretical statements for engineers. The first example is a new algorithm for calculating a concrete form of blade for a centrifugal pump. This blade form will make the work of any pump maximally efficient for a given density of liquid or gas. Principal constructive scheme of the device for measuring dynamic power of the pressure is the second example. This monograph is addressed to specialists in the field of theoretical and practical hydrodynamics and adjacent sciences.

I. Z. Shkurchenko

2007-01-11T23:59:59.000Z

446

Overview of the Flammability of Gases Generated in Hanford Waste Tanks  

SciTech Connect

This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

2000-07-21T23:59:59.000Z

447

Use of sulfide-containing liquors for removing mercury from flue gases  

DOE Patents (OSTI)

A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

2003-01-01T23:59:59.000Z

448

Molecular dynamics of gases and vapors in nanoporous solids. Final LDRD project report  

DOE Green Energy (OSTI)

This report provides a study of gases in microporous solids using molecular modeling. The theory of gas transport in porous materials as well as the molecular modeling literature is briefly reviewed. Work complete is described and analyzed with retard to the prevailing theory. The work covers two simple subjects, construction of porous solid models and diffusion of He, H{sub 2}, Ar and CH{sub 4} down a pressure gradient across the material models as in typical membrane permeation experiments. The broader objective is to enhance our capability to efficiently and accurately develop, produce and apply microporous materials.

Pohl, P.I.

1996-08-01T23:59:59.000Z

449

Static and Dynamic Properties of Trapped Fermionic Tonks-Girardeau Gases  

E-Print Network (OSTI)

We investigate some exact static and dynamic properties of one-dimensional fermionic Tonks-Girardeau gases in tight de Broglie waveguides with attractive p-wave interactions induced by a Feshbach resonance. A closed form solution for the one-body density matrix for harmonic trapping is analyzed in terms of its natural orbitals, with the surprising result that for odd, but not for even, numbers of fermions the maximally occupied natural orbital coincides with the ground harmonic oscillator orbital and has the maximally allowed fermionic occupancy of unity. The exact dynamics of the trapped gas following turnoff of the p-wave interactions are explored.

M. D. Girardeau; E. M. Wright

2005-01-11T23:59:59.000Z

450

System Losses and Assessment Trade Study  

SciTech Connect

This Advanced Fuel Cycle Initiative (AFCI) study has developed new analysis methods to examine old and new technology options toward the goal of improving fuel cycle systems. We have integrated participants and information from AFCI Systems Analysis, Transmutation Fuels, Separations, and Waste Form Campaigns in the Systems Losses and Assessment Trade Study. The initial objectives of this study were to 1) increase understanding of system interdependencies and thereby identify system trade-offs that may yield important insights, 2) define impacts of separations product purity on fuel manufacture and transmutation reactivity, 3) define impacts from transuranic (TRU) losses to waste, 4) identify the interrelationships involved in fuels and separations technology performance, and 5) identify system configuration adjustments with the greatest potential for influencing system losses. While bounding and analyzing this initial problem, we also identified significantly higher-level programmatic drivers with broad implications to the current fuel cycle research charter and the general issue of a DOE complex wide need for a comprehensive and integrated nuclear material management as addressed by the new DOE Order 410.2 titled “Management of Nuclear Materials”. The initial modeling effort developed in this study for a much smaller subset of material (i.e., commercial fuel) and a selected transmutation scheme (i.e., fast reactor recycling) is a necessary first step towards examining a broader set of nuclear material management options, dispositioning strategies and integrated waste management options including potential areas of research leverage. The primary outcome from this initial study has been an enhanced integration among Campaigns and associated insights and analysis methods. Opportunities for improved understanding between the groups abound. The above lanthanide-actinide example highlights the importance of evaluating options via integration across the Campaigns. Plans for Fiscal Year 2010 are being made in a coordinated fashion such that the knowledge gained from the research performed by the Campaigns can benefit on-going work of the study, and that improved understanding of the system relationships can be used to guide the specific research and development (R&D) activities within the Campaigns. In FY-10, the System Losses and Assessment Trade Study will carry-over activities from FY-09. We will continue to refine impurity and loss estimates and impurity limits on fuels by incorporating results from ongoing R&D. And we will begin work on an enhanced nuclear material management model to allow us to continue to improve our overall system understanding of the trade-offs between separations, fuel fabrication, waste forms, waste disposition, SNM losses, reactor performance, and proliferation resistance. In the future, we can also better understand how used fuel and other forms of remote-handled SNM can be better integrated into an overall nuclear material management program that will evolve for the DOE complex via Order 410.2 (DOE 2009).

David Shropshire; Steve Piet; Nick Soelberg; Robert Cherry; Roger Henry; David Meikrantz; Greg Teske; Eric Shaber; Candido Pereira

2009-09-01T23:59:59.000Z

451

Optimal detection of losses by thermal probes  

E-Print Network (OSTI)

We consider the discrimination of lossy bosonic channels and focus to the case when one of the values for the loss parameter is zero, i.e., we address the detection of a possible loss against the alternative hypothesis of an ideal lossless channel. This discrimination is performed by inputting one-mode or two-mode squeezed thermal states with fixed total energy. By optimizing over this class of states, we find that the optimal inputs are pure, thus corresponding to single- and two-mode squeezed vacuum states. In particular, we show that for any value of the damping rate smaller than a critical value there is a threshold on the energy that makes the two-mode squeezed vacuum state more convenient than the corresponding single-mode state, whereas for damping larger than this critical value two-mode squeezed vacua are always better. We then consider the discrimination in realistic conditions, where it is unlikely to have pure squeezing. Thus by fixing both input energy and squeezing, we show that two-mode squeezed thermal states are always better than their single- mode counterpart when all the thermal photons are directed into the dissipative channel. Besides, this result also holds approximately for unbalanced distribution of the thermal photons. Finally, we also investigate the role of correlations in the improvement of detection. For fixed input squeezing (single-mode or two-mode), we find that the reduction of the quantum Chernoff bound is a monotone function of the two-mode entanglement as well as the quantum mutual information and the quantum discord. We thus verify that employing squeezing in the form of correlations (quantum or classical) is always a resource for loss detection whenever squeezed thermal states are taken as input.

Carmen Invernizzi; Matteo G. A. Paris; Stefano Pirandola

2010-11-11T23:59:59.000Z

452

EIA-Voluntary Reporting of Greenhouse Gases Program - Section 1605 Text  

U.S. Energy Information Administration (EIA) Indexed Site

Section 1605 Text Section 1605 Text Voluntary Reporting of Greenhouse Gases Program Section 1605 Text Energy Policy Act of 1992 [Full Text] (a) NATIONAL INVENTORY.- Not later than 18 months after the date of the enactment of this Act, the Secretary, through the Energy Information Administration, shall develop, based on data available to, and obtained by, the Energy Information Administration, an inventory of the national aggregate emissions of each greenhouse gas for each calendar year of the baseline period of 1987 through 1990. The Administrator of the Energy Information Administration shall annually update and analyze such inventory using available data. This subsection does not provide any new data collection authority. (b) VOLUNTARY REPORTING.- (1) ISSUANCE OF GUIDELINES.-Not later than 18 months after the date of the enactment of this Act, the Secretary shall, after opportunity for public comment, issue guidelines for the voluntary collection and reporting of information on sources of greenhouse gases. Such guidelines shall establish procedures for the accurate voluntary reporting of information on-

453

Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant  

Science Conference Proceedings (OSTI)

A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250{sup o}C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400{sup o}C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC. 38 refs., 6 figs.

Yan Liu; David J.A. Kelly; Hongqun Yang; Christopher C.H. Lin; Steve M. Kuznicki; Zhenghe Xu [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

2008-08-15T23:59:59.000Z

454

Passive sampling and analyses of common dissolved fixed gases in groundwater  

SciTech Connect

An in situ passive sampler and gas chromatographic protocol for analysis of the major and several minor fixed gases in groundwater was developed. A gas-tight syringe, mated to a short length of silicone tubing, was equilibrated with dissolved gases in groundwater by immersing in monitoring wells and was used to transport and to inject a 0.5 mL gas sample into a gas chromatograph. Using Ar carrier gas, a HaySep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors allowed good sensitivity for He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O. Within 4 days of immersion in groundwater, samplers initially filled with either He or air attained the same and constant gas composition at an Oak Ridge, Tennessee, site heavily impacted by uranium, acidity, and nitrate. Between June 2006 and July 2007, 12 permanent groundwater wells were used to test the passive samplers in groundwater contaminated by a group of four closed radioactive wastewater seepage ponds; over a thousand passive gas samples from these wells averaged 56% CO2, 32.4% N2, 2.5% O2, 2.5% N2O, 0.20% CH4, 0.096% H2, and 0.023% CO with an average recovery of 95 14% of the injected gas volume.

Spalding, Brian Patrick [ORNL; Watson, David B [ORNL

2008-01-01T23:59:59.000Z

455

Sound waves and dynamics of superfluid Fermi gases in optical lattices  

SciTech Connect

The sound waves, the stability of Bloch waves, the Bloch oscillation, and the self-trapping phenomenon in interacting two-component Fermi gases throughout the BEC-BCS crossover in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) optical lattices are discussed in detail. Within the hydrodynamical theory and by using the perturbative and tight-binding approximation, sound speed in both weak and tight 1D, 2D, 3D optical lattices, and the criteria for occurrences of instability of Bloch waves and self-trapping of Fermi gases along the whole BEC-BCS crossover in tight 1D, 2D, 3D optical lattices are obtained analytically. The results show that the sound speed, the criteria for occurrences of instability of Bloch waves and self-trapping, and the destruction of Bloch oscillation are modified dramatically by the lattice parameters (lattice dimension and lattice strength), the atom density or atom number, and the atom interaction.

Zhang Aixia; Xue Jukui [Physics and Electronics Engineering College, Northwest Normal University, Lanzhou 730070 (China)

2009-10-15T23:59:59.000Z

456

The contribution from emissions of different gases to the enhanced greenhouse effect. Appendix B  

SciTech Connect

The main purpose of this paper is to compare the different contributions, that mankind has made to perturbing the atmosphere`s radiative balance. We have, and will continue to perturb both the balance of outgoing long-wave radiation and the balance of incoming short-wave radiation. Human activities since preindustrial times have caused a substantial enhancement of the greenhouse effect, a process involving the absorption of outgoing long-wave radiation which leads to a warming of the lower atmosphere. Because the atmosphere`s short-wave radiative balance is affected by the presence of small particles (aerosols) produced by the oxidation of sulphur compounds, anthropogenic emissions of sulphur dioxide (SO{sub 2}) have also caused a perturbation of the overall balance. The greenhouse gases we will consider are, in order of importance: carbon dioxide (CO{sub 2}), Methane (CH{sub 4}), nitrous oxide (N{sub 2}O) and the halocarbons. We use observed and model-based concentration data together with the most recent information relating concentrations to radiative forcing to estimate the individual contributions of the different gases to the changing radiative balance of the atmosphere. We also estimate the ranges of uncertainty in each of these estimates. We base all results on the 1992 IPCC emissions scenarios IS92a-f. We begin with a summary of 1990 conditions, then consider each gas separately (but lumping the halocarbons into a single group), to compare their relative importance.

Wigley, T.M.L.

1993-01-01T23:59:59.000Z

457

Analysis of hypochlorite process for removal of hydrogen sulfide from geothermal gases  

SciTech Connect

Sodium hypochlorite reacts readily with hydrogen sulfide to convert the sulfide ion into free sulfur in a neutral or acid solution and to the sulfate ion in an alkaline solution. Sodium hypochlorite can be generated on site by processing geothermal brine in electrolytic cells. An investigation to determine if this reaction could be economically used to remove hydrogen sulfide from geothermal noncondensible gases is reported. Two processes, the LO-CAT Process and the Stretford Process, were selected for comparison with the hypochlorite process. Three geothermal reservoirs were considered for evaluation: Niland KGRA, Baca KGRA, and The Geysers KGRA. Because of the wide variation in the amount of hydrogen sulfide present at The Geysers, two different gas analyses were considered for treatment. Plants were designed to process the effluent noncondensible gases from a 10 MW/sub e/ geothermal power plant. The effluent gas from each plant was to contain a maximum hydrogen sulfide concentration of 35 ppb. Capital costs were estimated for each of the processes at each of the four sites selected. Operating costs were also calculated for each of the processes at each of the sites. The results of these studies are shown.

1980-04-01T23:59:59.000Z

458

Simulations of greenhouse trace gases using the Los Alamos chemical tracer model  

SciTech Connect

Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth's radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

Kao, C.Y.J.; Morz, E. (Los Alamos National Lab., NM (United States)); Tie, X. (Scripps Institution of Oceanography, San Diego, CA (United States))

1991-11-01T23:59:59.000Z

459

Simulations of greenhouse trace gases using the Los Alamos chemical tracer model  

SciTech Connect

Through three-dimensional global model studies on atmospheric composition and transport, we are improving our quantitative understanding of the origins and behavior of trace gases that affect Earth`s radiative energy balance and climate. We will focus, in this paper, on the simulations of three individual trace gases including CFC-11, methyl chloroform, and methane. We first used our chemical tracer model to study the global distribution and trend of chemically inert CFC-11 observed by the Atmospheric Lifetime Experiment. The results show that the model has the ability to reproduce the time-series of the observations. The purpose of this CFC-11 simulation was to test the transport of the model. We then used to model introduce methyl chloroform into the atmosphere according to the known emission patterns and iteratively varied OH fields so that the observed concentrations of methyl chloroform from the observations could be simulated well. The rationale behind this approach is that the reaction with OH is the dominant sink for metyl chloroform and the transport of the model has been tested in the previous CFC-11 study. Finally, using the inferred OH distributions, we conducted a steady-state simulation to reproduce the current methane distribution. The general agreement between the modeled an observed methane surface concentrations has laid a foundation for the simulation of the transient increase of methane.

Kao, C.Y.J.; Morz, E. [Los Alamos National Lab., NM (United States); Tie, X. [Scripps Institution of Oceanography, San Diego, CA (United States)

1991-11-01T23:59:59.000Z

460

Fin-efficiency calculation for condensation in the presence of noncondensable gases  

DOE Green Energy (OSTI)

Plate-fin heat exchangers are being considered for many condenser applications. They are commonly used for the gas-separation process because they can provide a high thermal performance to obtain a low mean-temperature difference, essential for the gas-separation process. Plate-fin heat exchangers are also considered for the heat-pump system using nonazeotropic refrigerant mixtures. The brazed plate-fin condenser was considered to be a leading candidate for the Ocean Thermal Energy Conversion (OTEC) system, where high-performance heat exchangers are essential for maintaining a low mean-temperature difference. Calculation of the fin efficiency is difficult for condensation in the presence of noncondensable gases due to the spatial variation of the interfacial temperature. An analysis was carried out to develop a simplified method to calculate the fin efficiency for condensation of a vapor in the presence of noncondensable gases. The analysis includes the variation in the interfacial temperature along the fin surface. Appropriate assumptions are made to simplify the coupled heat-conduction equation in the fin and the heat/mass fluxes at the interface. The resulting expression for the fin efficiency includes mass-flux parameters, and it is similar to the common expression used for single-phase flow.

Panchal, C.B.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Comparative analysis of alternative means for removing noncondensable gases from flashed-steam geothermal power plants  

DOE Green Energy (OSTI)

This is a final report on a screening study to compare six methods of removing noncondensable gases from direct-use geothermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. The specific gas-removal methods include five vacuum system configurations using the conventional approach of evacuating gas/vapor mixtures from the power plant condenser system and a system for physical separation of steam and gases upstream of the power turbine. The study focused on flashed-steam applications, but the results apply equally well to flashed-steam and dry-steam geothermal power plant configurations. Two gas-removal options appear to offer profitable economic potential. The hybrid vacuum system configurations and the reboiler process yield positive net present value results over wide-ranging gas concentrations. The hybrid options look favorable for both low-temperature and high-temperature resource applications. The reboiler looks profitable for low-temperature resource applications for gas levels above about 20,000 parts per million by volume. A vacuum system configuration using a three-stage turbocompressor battery may be profitable for low-temperature resources, but results show that the hybrid system is more profitable. The biphase eductor alternative cannot be recommended for commercialization at this time.

Vorum, M.; Fitzler, E.

2000-06-20T23:59:59.000Z

462

Fin-efficiency calculation for condensation in the presence of noncondensable gases  

DOE Green Energy (OSTI)

Plate-fin heat exchangers are being considered for many condenser applications. They are commonly used for the gas-separation process because they can provide a high thermal performance to obtain a low mean-temperature difference, essential for the gas-separation process. Plate-fin heat exchangers are also considered for the heat-pump system using nonazeotropic refrigerant mixtures. The brazed plate-fin condenser was considered to be a leading candidate for the Ocean Thermal Energy Conversion (OTEC) system, where high-performance heat exchangers are essential for maintaining a low mean-temperature difference. Calculation of the fin efficiency is difficult for condensation in the presence of noncondensable gases due to the spatial variation of the interfacial temperature. An analysis was carried out to develop a simplified method to calculate the fin efficiency for condensation of a vapor in the presence of noncondensable gases. The analysis includes the variation in the interfacial temperature along the fin surface. Appropriate assumptions are made to simplify the coupled heat-conduction equation in the fin and the heat/mass fluxes at the interface. The resulting expression for the fin efficiency includes mass-flux parameters, and it is similar to the common expression used for single-phase flow.

Panchal, C.B.

1993-07-01T23:59:59.000Z

463

Status of wake and array loss research  

DOE Green Energy (OSTI)

In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

Elliott, D.L.

1991-09-01T23:59:59.000Z

464

Parabolic Trough Receiver Heat Loss Testing (Poster)  

DOE Green Energy (OSTI)

Parabolic trough receivers, or heat collection elements (HCEs), absorb sunlight focused by the mirrors and transfer that thermal energy to a fluid flowing within them. Thje absorbing tube of these receivers typically operates around 400 C (752 F). HCE manufacturers prevent thermal loss from the absorbing tube to the environment by using sputtered selective Cermet coatings on the absorber and by surrounding the absorber with a glass-enclosed evacuated annulus. This work quantifies the heat loss of the Solel UVAC2 and Schott PTR70 HCEs. At 400 C, the HCEs perform similarly, losing about 400 W/m of HCE length. To put this in perspective, the incident beam radiation on a 5 m mirror aperture is about 4500 W/m, with about 75% of that energy ({approx} 3400 W/m) reaching the absorber surface. Of the 3400 W/m on the absorber, about 3000 W/m is absorbed into the working fluid while 400 W/m is lost to the environment.

Price, H.; Netter, J.; Bingham, C.; Kutscher, C.; Burkholder, F.; Brandemuehl, M.

2007-03-01T23:59:59.000Z

465

An overview of MHD seawater thruster performance and loss mechanisms  

DOE Green Energy (OSTI)

Loss mechanisms affecting the performance of an MHD seawater thruster system have ben identified and discussed. Among those losses are the jet and nozzle losses, joule heating losses, surface potential and electro-chemical losses, frictional losses, and electrical end losses. Simple, but accurate, models have seen used to assess the relative and absolute magnitude of these losses and to investigate their influence on the overall thruster efficiency. A parametric study has been performed for a generic full size seawater vehicle propelled by an MHD thruster at different operating conditions. The results of this study confirm that higher efficiencies can be achieved at high magnetic field strengths (> 10 Tesla). Furthermore, the results indicate that higher efficiencies can be maintained over a wide range of cruising speeds (2--20 m/s or 4--40 knots) at higher magnetic fields (20 Tesla).

Doss, E.D.; Geyer, H.K.

1992-01-01T23:59:59.000Z

466

An overview of MHD seawater thruster performance and loss mechanisms  

DOE Green Energy (OSTI)

Loss mechanisms affecting the performance of an MHD seawater thruster system have ben identified and discussed. Among those losses are the jet and nozzle losses, joule heating losses, surface potential and electro-chemical losses, frictional losses, and electrical end losses. Simple, but accurate, models have seen used to assess the relative and absolute magnitude of these losses and to investigate their influence on the overall thruster efficiency. A parametric study has been performed for a generic full size seawater vehicle propelled by an MHD thruster at different operating conditions. The results of this study confirm that higher efficiencies can be achieved at high magnetic field strengths (> 10 Tesla). Furthermore, the results indicate that higher efficiencies can be maintained over a wide range of cruising speeds (2--20 m/s or 4--40 knots) at higher magnetic fields (20 Tesla).

Doss, E.D.; Geyer, H.K.

1992-09-01T23:59:59.000Z

467

Gene family evolution by duplication, speciation and loss - CECM  

E-Print Network (OSTI)

increase of the lower bound. Let S = {S1,...,Sk} be a set .... (expected number of event by million years) and a gene loss rate of 0.02. We chose a gene gain/loss ...

468

Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

Cushman, R.M.

2003-08-28T23:59:59.000Z

469

Membrane technologies for hydrogen and carbon monoxide recovery from residual gas streams. Tecnologías de membranas para la recuperación de hidrógeno y monóxido de carbono de gases residuales.  

E-Print Network (OSTI)

??This PhD thesis work is aimed to the separation and recovery of valuable gases from industrial residual gas streams by means of membrane technology. In… (more)

David, Oana Cristina

2012-01-01T23:59:59.000Z

470

Loss Mechanisms and High Power Piezoelectric Components - TMS  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... Loss Mechanisms and High Power Piezoelectric Components ... we demonstrated high power multilayer piezoelectric transformers with Cu or ...

471

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

DOE Green Energy (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

472

Emissions of trace gases and aerosols during the open combustion of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions of trace gases and aerosols during the open combustion of biomass Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Title Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Publication Type Journal Article Year of Publication 2009 Authors McMeeking, Gavin R., Sonia M. Kreidenweis, Stephen Baker, Christian M. Carrico, Judith C. Chow, Jeffrey Collett L. Jr., Wei Min Hao, Amanda S. Holden, Thomas W. Kirchstetter, William C. Malm, Hans Moosmuller, Amy P. Sullivan, and Cyle E. Wold Journal Journal of Geophysical Research Volume 114 Abstract We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO4 2, NO3, Cl, Na+, K+, and NH4 + generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

473

Radiolytic and radiolytically induced generation of gases from synthetic wastes. Final report  

DOE Green Energy (OSTI)

To better understand the processes leading to the generation and release of gases from waste tanks, the authors studied the radiolytic and thermal generation of H{sub 2}, N{sub 2}O, N{sub 2}, O{sub 2}, and NH{sub 3} in nonradioactive waste simulant solutions and slurries. The radiolytic sources for H{sub 2} are e{sub aq}{sup {minus}} and its predecessors and H atoms. Radiolysis of the water generates some H{sub 2} and an additional amount comes from the hydrogen abstraction reaction H + RH{yields}H{sub 2}+R{center_dot}. Nitrate scavenges e{sub aq}{sup {minus}} and its predecessors whereas nitrite is the major H-atom scavenger. Computer modeling shows that if [NO{sub 3}{sup {minus}}] is above 0.5 M, and [NO{sub 2}{sup {minus}}] is above 2M, the addition of other scavengers will have little effect on the yield of H{sub 2}. In the presence of organic molecules O{sub 2} is efficiently destroyed. Small yields of ammonia were measured and the yields increase linearly with dose. The nitrogen in NH{sub 3} comes from organic chelators. The yields of gases in solution depend only weakly on temperature. The rate of thermal generation of gases increases upon preirradiation, reaches a maximum, and then declines. The known radiolytic degradation products of chelators, NTA, IDA, glycolate, glyoxylate, formaldehyde, formate, oxalate, and hydroxylainine were examined for their roles in the thermal generation of H{sub 2} and N{sub 2}O at 60{degrees}C. In solution or slurry only radiolytically produced Pd intermediate strongly retains H{sub 2}. Radiolytic yields of N{sub 2}O are strongly reduced by Cr(III). In irradiated slurry, loose and tight gas were found. The loose gas could be removed by bubbling from the slurry, but the tight gas could be released only by dissolution of the slurry.

Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Sauer, M.C. Jr.

1993-10-01T23:59:59.000Z

474

Quantum cryptographic system with reduced data loss  

DOE Patents (OSTI)

A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.

Lo, Hoi-Kwong (1309, Low Block, Lei Moon House Ap Lei Chau Estate, Hong Kong, HK); Chau, Hoi Fung (Flat C, 42nd Floor, Tower 1, University Heights 23 Pokfield Road, Pokfulam, Hong Kong, HK)

1998-01-01T23:59:59.000Z

475

Electron energy loss spectroscopy of disilane  

SciTech Connect

Electron energy loss spectra of disilane have been recorded over an excitation energy range of 20 eV employing electrons of 20 and 200 eV incident energy for scattering angles of 0/sup 0/--90/sup 0/. Every transition detected except one appears at an energy consistent with the first observed members of Rydberg series converging to one of four possible ion states. The first two observed transitions belong to (2a/sub 1//sub g/)/sup 2/..-->../sup 1//sup ,//sup 3/(2a/sub 1//sub g/,4s) dipole forbidden channels appearing at excitation energies of )similarreverse arrowto)6.3 and 7.05 eV for the triplet and singlet, respectively. Evidence is presented for the identification of additional forbidden transitions as well as possible low-lying valence transition

Dillon, M.A.; Spence, D.; Boesten, L.; Tanaka, H.

1988-04-01T23:59:59.000Z

476

Quantum cryptographic system with reduced data loss  

DOE Patents (OSTI)

A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.

Lo, H.K.; Chau, H.F.

1998-03-24T23:59:59.000Z

477

Ac loss calorimeter for three-phase cable  

SciTech Connect

A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G. [Los Alamos National Lab., NM (United States). Superconductivity Technology Center

1996-10-01T23:59:59.000Z

478

Aging, Estrogen Loss and Epoxyeicosatrienoic Acids Alison R. Lee1.  

E-Print Network (OSTI)

Aging, Estrogen Loss and Epoxyeicosatrienoic Acids (EETs) Alison R. Lee1. , Angela S. Pechenino1 loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti

Hammock, Bruce D.

479

Analysis of technical loss in distribution line system  

Science Conference Proceedings (OSTI)

This research was aimed to present Technical loss analysis in Hatyai of Provincial Electricity Authority (PEA). This Analysis used calculation and PSS/Adept program. For considering the technical loss in distribution system included: transmission line ... Keywords: PSS/Adept program, technical loss, three phase power flow

Narong Mungkung; Nittaya Gomurut; Tanes Tanitteerapan; Somchai Arunrungrusmi; Weerachai Chaokumnerd; Toshifumi Yuji

2009-05-01T23:59:59.000Z

480

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S  

SciTech Connect

This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss nonhydrocarbon gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EVOLUTION OF SOME PARTICLE DETECTORS BASED ON THE DISCHARGE IN GASES  

NLE Websites -- All DOE Office Websites (Extended Search)

61 - 61 - EVOLUTION OF SOME PARTICLE DETECTORS BASED ON THE DISCHARGE IN GASES G. Charpak CERN, Geneva, Switzerland. INTRODUCTION In this year 1969, if we look into the experimental techniques used around high-energy accelerators we observe the following situation: the bubble chamber is still an important tool, absorbing a large fraction of the activity of the community of experimentalists. Its evolution is directed towards a greater efficiency and rapidity in the automatic evalu- ation of pictures, and towards the building of giant chambers. What is it that keeps the bubble chamber surviving in the hostile surroundings of fast-growing counter techniques? Let us quote, for dis- cussion, some qualities and defects of a typical large hydrogen bubble chamber, 2 metres long:

482

Trace gases, CO/sub 2/, climate, and the greenhouse effect  

SciTech Connect

Weather is driven by the sun's energy input and the difference between insolation per unit area of the poles and the equator. The energy flux of the Earth is in long-term balance: as much is radiated away by the Earth as is absorbed, or the mean temperature would have to increase or decrease steadily (and, of course, this is not observed). CO/sub 2/ and other ''trace gases'' can cause the Earth's mean temperature to rise through the Greenhouse Effect. The mean temperature in the Little Ice Age was only 1 /sup 0/C cooler, but large effects were felt, especially toward the poles. The CO/sub 2/ which stays in the atmosphere will raise Earth's mean temperature, with effects which are relatively certain: a lot of warming at the poles, and a very small amount of warming at the equator.

Aubrecht G.J. II

1988-03-01T23:59:59.000Z

483

Advanced Technology for the Capture of Carbon Dioxide from Flue Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology for the Capture of Carbon Dioxide Technology for the Capture of Carbon Dioxide from Flue Gases by Shrikar Chakravarti (shrikar_chakravarti@praxair.com; 716-879-4760) Amitabh Gupta (ami_gupta@praxair.com; 716-879-2194) Balazs Hunek (balazs_hunek@praxair.com; 716-879-2250) Praxair, Inc. Process & Systems R&D, CO 2 Technology 175 East Park Drive, P.O. Box 44 Tonawanda, NY 14150 USA key words: flue gas, carbon dioxide, separation, amine absorption, oxygen tolerant process, amine blends First National Conference on Carbon Sequestration Washington, DC, May 15-17, 2001 Copyright 2001, Praxair Technology, Inc. All Rights Reserved. 1 Abstract Cost effective carbon sequestration schemes have been identified as a key need for dealing with carbon dioxide's (CO 2 ) impact on global climate change. Two main

484

Carbonaceous material for production of hydrogen from low heating value fuel gases  

DOE Patents (OSTI)

A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

Koutsoukos, Elias P. (Los Angeles, CA)

1989-01-01T23:59:59.000Z

485

Universal phase structure of dilute Bose gases with Rashba spin-orbit coupling  

SciTech Connect

A Bose gas subject to a light-induced Rashba spin-orbit coupling possesses a dispersion minimum on a circle in momentum space; we show that kinematic constraints due to this dispersion cause interactions to renormalize to universal, angle-dependent values that govern the phase structure in the dilute-gas limit. We find that, regardless of microscopic interactions, (a) the ground state involves condensation at two opposite momenta and is, in finite systems, a fragmented condensate and and (b) there is a nonzero-temperature instability toward the condensation of pairs of bosons. We discuss how our results can be reconciled with the qualitatively different mean-field phase diagram, which is appropriate for dense gases.

Gopalakrishnan, Sarang [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Lamacraft, Austen [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Goldbart, Paul M. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

2011-12-15T23:59:59.000Z

486

Electrochemical separation and concentration of sulfur containing gases from gas mixtures  

DOE Patents (OSTI)

A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

Winnick, Jack (3805 Woodrail-on-the-Green, Columbia, MO 65201)

1981-01-01T23:59:59.000Z

487

Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers  

SciTech Connect

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

1983-01-01T23:59:59.000Z

488

Method of activating limestone for enhanced capture of sulfur from post combustion gases  

DOE Patents (OSTI)

Calcium based sulfur sorbent is prepared in a highly reactive form for use in removing gaseous sulfur species from coal combustion gases by heating finely divided limestone particles at a temperature of at least 2,000 K for a period of 5 to 50 milliseconds and quenching the particles by bringing them to a temperature below 1,400 K before they become sintered. For application to a coal combustion system, the quenching step may be carried out in the post coal combustion zone along with the reaction of the particles with sulfur. The initial heating step is performed outside of the zone because of the high temperatures required in that step, which would result in decomposition of the calcium-sulfur product.

Abichandan, J.S.; Holcombe, N.T.; Litka, A.F.; Woodroffe, J.A.

1991-03-04T23:59:59.000Z

489

Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical simulations are performed in order to investigate the effects of noncondensible gases (CO/sub 2/) on fluid recovery and matrix depletion in fractured geothermal reservoirs. The model used is that of a well producing at a constant bottomhole pressure from a two-phase fracture