Powered by Deep Web Technologies
Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dry matter losses during hay production and storage of sweet sorghum used for methane production  

SciTech Connect

Losses from production and storage of large round hay bales from sweet sorghum were measured. Dry matter losses from hay production were 55.3%. Storage losses were 18.1% and 10.1% for outdoor and indoor storage, respectively. It was concluded hay storage of sweet sorghum used for anaerobic digestion is not a viable option.

Coble, C.G.; Egg, R.

1987-01-01T23:59:59.000Z

2

Natural Gas Dry Production (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG...

3

,"Pennsylvania Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

4

,"Mississippi Dry Natural Gas Reserves Estimated Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

5

,"Dry Natural Gas Reserves Estimated Production "  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Dry Natural Gas Reserves Estimated Production ",52,"Annual",2011,"6301977" ,"Release Date:","81...

6

Texas Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Dry Natural Gas Production (Million Cubic Feet) Texas Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar...

7

Texas Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Dry Natural Gas Production (Million Cubic Feet) Texas Dry Natural Gas Production (Million Cubic Feet) Decade Year-0...

8

South Dakota Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Dry Natural Gas Production (Million Cubic Feet) South Dakota Dry Natural Gas Production (Million Cubic Feet)...

9

Nevada Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

10

Missouri Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Missouri Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

11

dry natural gas production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Dry natural gas production: The process of producing consumer-grade natural gas. Natural gas withdrawn from reservoirs is reduced by volumes used at the production ...

12

,"Tennessee Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

13

,"Kansas Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry...

14

,"Alaska Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry...

15

,"Ohio Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry...

16

,"Arizona Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

17

,"Missouri Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

18

,"Utah Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry...

19

,"Nevada Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

20

,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

,"Maryland Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

22

,"Texas Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry...

23

,"Illinois Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

24

,"Oregon Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

25

,"Indiana Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

26

,"New York Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","122011" ,"Release Date:","7312013"...

27

,"North Dakota Dry Natural Gas Production (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","122011" ,"Release Date:","7312013"...

28

,"West Virginia Dry Natural Gas Production (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","122011" ,"Release Date:","7312013"...

29

,"Federal Offshore--Gulf of Mexico Dry Natural Gas Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2012 ,"Release...

30

Figure 5. Percentage change in natural gas dry production and ...  

U.S. Energy Information Administration (EIA)

Figure 5. Percentage change in natural gas dry production and number of gas wells in the United States, 2007?2011 annual ...

31

,"Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

32

,"Arkansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

33

,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

34

,"Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

35

,"Oklahoma Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

36

,"Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

37

,"Texas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

38

,"Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

39

,"Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

40

,"Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"Utah Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

42

,"Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

43

,"Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

44

,"Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

45

,"Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

46

,"California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

47

,"Ohio Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

48

,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011...

49

Production of Dry Air by Isentropic Mixing  

Science Conference Proceedings (OSTI)

The authors have explored the factors governing upper-tropospheric relative humidity with a simple model based on isentropic mixing and condensation. Our analysis has focused on the Northern Hemisphere winter season and on the 315-K (dry) ...

H. Yang; R. T. Pierrehumbert

1994-12-01T23:59:59.000Z

50

California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

51

Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

52

Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

53

Mississippi Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

54

Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

55

Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

56

Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

57

Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

58

Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

59

Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

60

Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

62

Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

63

Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

64

Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

65

New Mexico - West Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

66

Texas Dry Natural Gas Reserves Estimated Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

67

,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

"Date","Nebraska Dry Natural Gas Production (Million Cubic Feet)" 30132,2147 30497,1954 30863,2168 31228,1829 31593,1326 31958,1180 32324,851 32689,849 33054,793 33419,771...

68

,"California Dry Natural Gas Production (Million Cubic Feet)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:29:23 PM" "Back to Contents","Data 1: California Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SCA2"...

69

Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

70

Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2006: 244,584: 213,829: 239,860 ...

71

,"Texas Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:29:25 PM" "Back to Contents","Data 1: Texas Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160STX2"...

72

Missouri Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 - No Data Reported; -- Not Applicable; NA ...

73

,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:29:24 PM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SNM2"...

74

Gulf of Mexico Federal Offshore Dry Natural Gas Production from...  

Gasoline and Diesel Fuel Update (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

75

Gulf of Mexico Federal Offshore Dry Natural Gas Production from...  

Annual Energy Outlook 2012 (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

76

Texas Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Texas Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 6,112,411: 5,562,712 ...

77

Circofer -- Low cost approach to DRI production  

SciTech Connect

Lurgi's Circofer Process for reducing fine ores with coal in a Circulating Fluidized Bed (CFB) is a direct approach by using a widely applied and proven reactor in commercializing a state of the art technology. The technology is in response to the demand for a direct reduction process of the future by making possible: the use of low cost ore fines and inexpensive primary energy, fine coal; production of a high grade product used as feedstock by mini mills with the additional advantage of dilution of contaminants introduced by scrap; low environmental impact; and low specific investment costs due to the closed energy circuit. With the incorporation of the latest developments in CFB technology, Circofer offers excellent heat and mass transfer conditions and, consequently, improved gas and energy utilization. High gas conversions using recycle gas have a positive influence on the process economics whereby no export gas is produced. Sticking, accretion and reoxidation problems, which have plagued all previous attempts at developing direct reduction processes using fine ore and coal as a reductant, are avoided, essentially by operating with defined amounts of excess carbon and separation of the reduction and gasifying zones.

Weber, P.; Bresser, W.; Hirsch, M. (Lurgi Metallurgie GmbH, Frankfurt (Germany))

1994-09-01T23:59:59.000Z

78

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

79

Nevada Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Production (Million Cubic Feet) Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross Withdrawals and Production Natural Gas Dry Production (Annual Supply & Disposition

80

U.S. Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1930's: 1,903,771: 1,659,614 ...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

U.S. Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1997: 1,617,923: 1,465,907: 1,627,602: 1,551,268: 1,610,527 ...

82

Missouri Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 - No Data Reported;...

83

Nevada Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0...

84

South Dakota Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

South Dakota Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 2,331: 1,846: 1,947 ...

85

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production Oklahoma Dry Natural Gas Proved Reserves

86

Impacts of the Venezuelan Crude Oil Production Loss  

Gasoline and Diesel Fuel Update (EIA)

Impacts of the Venezuelan Crude Oil Production Loss Impacts of the Venezuelan Crude Oil Production Loss EIA Home > Petroleum > Petroleum Feature Articles Impacts of the Venezuelan Crude Oil Production Loss Printer-Friendly PDF Impacts of the Venezuelan Crude Oil Production Loss By Joanne Shore and John Hackworth1 Introduction The loss of almost 3 million barrels per day of crude oil production in Venezuela following a strike in December 2002 resulted in an increase in the world price of crude oil. However, in the short term, the volume loss probably affected the United States more than most other areas. This country receives more than half of Venezuela's crude and product exports, and replacing the lost volumes proved difficult. U.S. imports of Venezuelan crude oil dropped significantly in December 2002 relative to other years

87

Impacts of the Venezuelan Crude Oil Production Loss  

U.S. Energy Information Administration (EIA)

Energy Information Administration 1 Impacts of the Venezuelan Crude Oil Production Loss ... The gravity increased most at the ConocoPhillips Sweeny ...

88

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Facebook icon Twitter icon Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

89

U.S. dry natural gas production growth levels off following ...  

U.S. Energy Information Administration (EIA)

U.S. dry natural gas production has increased since late 2005 due mainly to rapid growth in production from shale gas resources. However, there have ...

90

Forecasting photovoltaic array power production subject to mismatch losses  

Science Conference Proceedings (OSTI)

The development of photovoltaic (PV) energy throughout the world this last decade has brought to light the presence of module mismatch losses in most PV applications. Such power losses, mainly occasioned by partial shading of arrays and differences in PV modules, can be reduced by changing module interconnections of a solar array. This paper presents a novel method to forecast existing PV array production in diverse environmental conditions. In this approach, field measurement data is used to identify module parameters once and for all. The proposed method simulates PV arrays with adaptable module interconnection schemes in order to reduce mismatch losses. The model has been validated by experimental results taken on a 2.2 kW{sub p} plant, with three different interconnection schemes, which show reliable power production forecast precision in both partially shaded and normal operating conditions. Field measurements show interest in using alternative plant configurations in PV systems for decreasing module mismatch losses. (author)

Picault, D.; Raison, B.; Bacha, S. [Grenoble Electrical Engineering Laboratory (G2Elab), 961, rue Houille Blanche BP 46, 38402 St Martin d'Heres (France); de la Casa, J.; Aguilera, J. [Grupo de Investigacion IDEA, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Jaen, Campus Las Lagunillas, 23071 Jaen (Spain)

2010-07-15T23:59:59.000Z

91

Production of low-fat tortilla chips using alternative methods of drying before frying  

E-Print Network (OSTI)

Tortilla chips were prepared from commercial nixtamalized dry masa flour. They were baked, sun dried and then fried in fresh soybean oil. Control chips were not sun-dried before frying. A commercial batch fryer was used. The effect of solar drying of the tortilla chips on the rate of moisture loss, oil absorption, texture, microstructure, and the physical properties of tortilla chips during and after drying was analyzed. The results indicated that the final oil content of the sun-dried tortilla chips was significantly lower than the control treatment. As a result of solar drying, the structure of the tortilla chips was tighter before frying, but expanded significantly during frying. The difference in the temperature profile at the center of tortilla chips during frying was analyzed. The results showed a clear difference in the length of the plateau, and the boiling point of water during the frying process, Tortilla pieces were also prepared from nixtamalized masa flour, and dried under impinging hot air. The effect of different drying conditions on the drying rate, texture, shrinkage profile and microstructure was analyzed. The results indicated that I drying rate was mostly affected by the air temperature, texture was crispier at higher air temperatures; shrinkage of the piece was higher at lower convective heat transfer coefficient, and microstructure looked smoother at higher air temperature A process to produce low-fat tortilla chips with good flavor and texture using convection-oven-baking, air impingement drying and frying was suggested and validated.

Lujan Acosta, Francisco Javier

1996-01-01T23:59:59.000Z

92

Starch properties, endogenous amylase activity, and ethanol production of corn kernels with different planting dates and drying conditions.  

E-Print Network (OSTI)

??This study was conducted with aim to understand how planting dates and drying conditions affected starch properties and dry-grind ethanol production of corn kernels. Three… (more)

Medic, Jelena

2011-01-01T23:59:59.000Z

93

Data on production and use of DRI: World and U. S. [Direct Reduced Iron  

Science Conference Proceedings (OSTI)

This paper will present data on the production and use direct-reduced iron (DRI) worldwide, focusing primarily on its use in the United States. The author is indebted to the Midrex Corporation for the data on world production of DRI. The U.S. data is his own and he will explain later how it was collected. He uses the term DRI to include all forms of direct-reduced iron, whether briquettes, pellets or lump.

Jensen, H.B.

1993-01-01T23:59:59.000Z

94

Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics  

DOE Patents (OSTI)

A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

2003-12-09T23:59:59.000Z

95

,"Michigan Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan...

96

,"Alabama Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama...

97

,"Louisiana Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

98

,"California Dry Natural Gas Production (Million Cubic Feet)...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California...

99

,"Oklahoma Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

100

,"Colorado Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

102

,"Montana Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

103

,"Pennsylvania Dry Natural Gas Production (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

104

,"Mississippi Dry Natural Gas Production (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

105

,"Virginia Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia...

106

,"Florida Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

107

,"Arkansas Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas...

108

Land Application Uses for Dry Flue Gas Desulfurization By-Products  

Science Conference Proceedings (OSTI)

New sulfur dioxide removal technologies produce a dry, solid by-product material consisting of excess sorbent, reaction products that contain sulfates and sulfites, and coal fly ash. The scarcity of landfill disposal sites for such flue gas desulfurization (FGD) by-products has led to a long-term study on possible large-volume beneficial applications. To date, FGD by-products have been successfully used in agriculture, construction, and strip mine reclamation.

1995-09-26T23:59:59.000Z

109

Method for lowering the VOCS emitted during drying of wood products  

DOE Patents (OSTI)

The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

2000-01-01T23:59:59.000Z

110

,"South Dakota Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1160_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:15 AM" "Back to Contents","Data 1: South Dakota Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160_SSD_2" "Date","South Dakota Dry Natural Gas Production (Million Cubic Feet)" 30132,2331 30497,1846 30863,1947 31228,2558

111

,"Kentucky Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2010" Monthly","12/2010" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1160_sky_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_sky_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:07 AM" "Back to Contents","Data 1: Kentucky Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160_SKY_2" "Date","Kentucky Dry Natural Gas Production (Million Cubic Feet)" 38732,5697 38763,7677 38791,8520

112

,"South Dakota Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2010" Monthly","12/2010" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1160_ssd_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1160_ssd_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:15 AM" "Back to Contents","Data 1: South Dakota Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160_SSD_2" "Date","South Dakota Dry Natural Gas Production (Million Cubic Feet)" 38732,85 38763,78 38791,84

113

Land application uses for dry FGD by-products, Phase 1 report  

SciTech Connect

The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

1993-04-01T23:59:59.000Z

114

Table 11. Dry natural gas proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Dry natural gas proved reserves, reserves changes, and production, 2011 : Dry natural gas proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 8,838 -1 928 206 36 221 4 0 3 327 9,424 Lower 48 States 295,787 1,732 52,673 53,267 43,150 46,020 45,905 947 1,224 23,228 324,643 Alabama 2,629 -49 455 157 573 383 3 2 0 218 2,475 Arkansas 14,178 728 631 324 6,760 6,880 2,093 0 23 1,079 16,370 California 2,647 923 1,486 1,889 47 52 73 0 0 311 2,934 Coastal Region Onshore 173 13 20 31 0 0 1 0 0 11 165 Los Angeles Basin Onshore 87 7 11 4 0 2 0 0 0 6 97 San Joaquin Basin Onshore 2,321 902 1,444 1,854 45 42 69 0 0 289 2,590 State Offshore

115

An estimate of the cost of electricity production from hot-dry rock  

DOE Green Energy (OSTI)

This paper gives an estimate of the cost to produce electricity from hot-dry rock (HDR). Employment of the energy in HDR for the production of electricity requires drilling multiple wells from the surface to the hot rock, connecting the wells through hydraulic fracturing, and then circulating water through the fracture system to extract heat from the rock. The basic HDR system modeled in this paper consists of an injection well, two production wells, the fracture system (or HDR reservoir), and a binary power plant. Water is pumped into the reservoir through the injection well where it is heated and then recovered through the production wells. Upon recovery, the hot water is pumped through a heat exchanger transferring heat to the binary, or working, fluid in the power plant. The power plant is a net 5.1-MW[sub e] binary plant employing dry cooling. Make-up water is supplied by a local well. In this paper, the cost of producing electricity with the basic system is estimated as the sum of the costs of the individual parts. The effects on cost of variations to certain assumptions, as well as the sensitivity of costs to different aspects of the basic system, are also investigated.

Pierce, K.G. (Sandia National Labs., Albuquerque, NM (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States))

1993-01-01T23:59:59.000Z

116

Ethanol production from dry-mill corn starch in a fluidized-bed bioreactor  

DOE Green Energy (OSTI)

The development of a high-rate process for the production of fuel ethanol from dry-mill corn starch using fluidized-bed bioreactor (FBR) technology is discussed. Experiments were conducted in a laboratory scale FBR using immobilized biocatalysts. Two ethanol production process designs were considered in this study. In the first design, simultaneous saccharification and fermentation was performed at 35 C using {kappa}-carageenan beads (1.5 mm to 1.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. For dextrin feed concentration of 100 g/L, the single-pass conversion ranged from 54% to 89%. Ethanol concentrations of 23 to 36 g/L were obtained at volumetric productivities of 9 to 15 g/L-h. No accumulation of glucose was observed, indicating that saccharification was the rate-limiting step. In the second design, saccharification and fermentation were carried out sequentially. In the first stage, solutions of 150 to 160 g/L dextrins were pumped through an immobilized glucoamylase packed column maintained at 55 C. Greater than 95% conversion was obtained at a residence time of 1 h, giving a product of 165 to 170 g glucose/L. In the second stage, these glucose solutions were fed to the FBR containing Z. mobilis immobilized in {kappa}-carageenan beads. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L was achieved, giving an overall productivity of 23 g/L-h.

Krishnan, M.S.; Nghiem, N.P.; Davison, B.H.

1998-08-01T23:59:59.000Z

117

Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants  

Science Conference Proceedings (OSTI)

The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

2007-03-30T23:59:59.000Z

118

Laboratory Characterization of Advanced SO2 Control By-Products: Dry Sodium and Calcium In-Duct Injection Wastes  

Science Conference Proceedings (OSTI)

Extensive laboratory investigation indicates that the physical and chemical characterization and engineering properties of dry sodium and calcium in-duct injection wastes differ, as do the refuse and by-product management options associated with them. Utilities can use this report on the chemical, physical, engineering, and leachate properties of dry sodium and calcium in-duct injection wastes to better plan for and manage future waste disposal and/or use.

1990-01-08T23:59:59.000Z

119

High-intensity drying processes -- Impulse drying: Report 15 (final report). Production of linerboard on a pilot paper machine, subsequent commercial converting trials and preliminary economic assessment  

SciTech Connect

In September 1998, 33{number_sign} liner was produced on the {number_sign}4 pilot machine under both single-felted wet pressing and impulse drying conditions. In October 1998, the pilot produced liner and commercial liner were converted to combined board and corrugated boxes at a commercial box plant. In January 1999, linerboard, medium, and combined board and box testing were completed. The pilot trials demonstrated that 33{number_sign} liner could be impulse dried at a reel speed of 380 m/min. Press dryness was improved by as much as 4 points, while CD STFI and CD ring crush were improved by more than 10%. Improvements to the smoothness of heated side of sheet were also realized. Commercial box plant converting trials demonstrated that impulse dried linerboard can be used to increase ECT and box compression strength by as much as 10%. As anticipated, print quality was found to be superior. A preliminary economic analysis was performed in which an impulse dryer would increase press dryness by 4 points and would allow the basis weight to be reduced by 10%. The economic model showed that the 4 points in dryness would translate to a 17% tonnage increase. Applying the 10% basis weight reduction resulted in an increase in productivity, on an area basis, of 30%. The pulp cost savings was found to outweigh any additional electric power costs.

Orloff, D.I.

1999-04-01T23:59:59.000Z

120

Simultaneous Saccharification and Fermentation of Dry-grind Highly Digestible Grain Sorghum Lines for Ethanol Production  

E-Print Network (OSTI)

The potential of high digestible grain sorghum (HDGS) with a modified starch protein endosperm matrix to replace corn in ethanol production was investigated using dry grind simultaneous saccharification and fermentation (SSF). Preliminary experiments showed that HDGS yielded higher amounts of glucose and ethanol than normal digestible grain sorghum (NDGS) and corn particularly in the first 48 hrs of fermentation. It was hypothesized that fast conversion of starch to glucose and ethanol during hydrolysis and fermentation are results of improved protein digestibility of HDGS. The invagination of protein structures in HDGS produced a flourier endosperm texture, softer kernels and lower starch content than the normal digestible protein (ND) lines. Highly digestible protein (HD) lines have better pasting properties (significantly lower pasting temperature, faster rate of gelatinization and higher peak viscosity) than ND lines based on the RVA profile. Increasing protein digestibility of the HDGS improved starch digestibility (increased rate of glucose conversion and total glucose yield during saccharification), which is supported by highly significant correlation of turbidity with rate of glucose conversion and efficiency of enzymatic conversion. The efficiency of ethanol conversion is significantly correlated with starch digestibility, pasting properties, and protein digestibility. Results also showed that HD sorghum lines had significantly faster rate of conversion and shorter reaction time needed to achieve completion than ND sorghum lines and corn. Increasing the dry solid concentration from 22% to 30% (w/v) increased the ethanol yield from 8% v/v to 13%v/v. This will allow considerable saving of water, reduced distillation cost and increased ethanol production for a given plant capacity and labor cost. Fineness of grind influences the amount of sugar formed due to variation in surface area of the flour. The hypothesis that finer particles has faster and higher glucose yield, defined as g of glucose converted per g of theoretical glucose, is supported by highly significant correlation of mass fraction of 3 to 60 mu m size range and mass median diameter (MMD) of 60 to 1000 mu m size range with glucose conversion efficiency and glucose conversion rate during saccharification and fermentation.

Hernandez, Joan R.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of

122

Application of cycle-based simulation to estimate loss of logistics productivity on construction sites  

Science Conference Proceedings (OSTI)

Logistics management is a critical factor that determines the successful delivery of a construction project. The logistics activities have close connection with other logistics/construction activities, often producing hazards on site. Moreover, the policies ... Keywords: cycle-based simulation, hazard prevention, hazardous interaction, logistics productivity loss, safety

Feng Xu; Yuanbin Song; Hao Hu

2012-09-01T23:59:59.000Z

123

Soil fertility and soil loss constraints on crop residue removal for energy production  

DOE Green Energy (OSTI)

A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

Flaim, S.

1979-07-01T23:59:59.000Z

124

Extrapolating Impingement and Entrainment Losses to Equivalent Adults and Production Foregone  

Science Conference Proceedings (OSTI)

This report provides guidance on the use of two types of fish loss extrapolation models: equivalent adult (EA) and production foregone (PF) models. The report is a companion to EPRI report 1007821, which summarizes impingement survival information and EPRI report 1000757, which summarizes entrainment survival information. It complements EPRI reports TR-112013 and 1005176, which review fish population assessment methods in general.

2004-07-13T23:59:59.000Z

125

Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Alvarez-Gallego, C. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Romero Garcia, L.I. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain)

2012-03-15T23:59:59.000Z

126

Energy loss of charm quarks from $J/?$ production in cold nuclear matter  

E-Print Network (OSTI)

$J/\\psi$ suppression in p-A collisions is studied by considering the nuclear effects on parton distribution, energy loss of beam proton and the finial state energy loss of color octet $c\\overline{c}$. The leading-order computations for $J/\\psi$ production cross-section ratios $R_{W/Be}(x_{F})$ are presented and compared with the selected E866 experimental data with the $c\\overline{c}$ remaining colored on its entire path in the medium. It is shown that the combination of the different nuclear effects accounts quite well for the observed $J/\\psi$ suppression in the experimental data. It is found that the $J/\\psi$ suppression on $R_{W/Be}(x_{F})$ from the initial state nuclear effects is more important than that induced by the energy loss of color octet $c\\overline{c}$ in the large $x_F$ region. Whether the $c\\overline{c}$ pair energy loss is linear or quadratic with the path length is not determined. The obtained $c\\overline{c}$ pair energy loss per unit path length $\\alpha=2.78\\pm0.81$ GeV/fm, which indicates that the heavy quark in cold nuclear matter can lose more energy compared to the outgoing light quark.

Li-Hua Song; Wen-Dan Miao; Chun-Gui Duan

2013-12-15T23:59:59.000Z

127

Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361  

Science Conference Proceedings (OSTI)

A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

NONE

1992-05-01T23:59:59.000Z

128

Method for the production of electrodes for lead--acid storage batteries. [drying by inert gas at high temperature  

SciTech Connect

A method for the production of lead--acid storage batteries having a grid of lead alloy filled with active materials consisting of lead oxides, lead powder, sulfuric acid, and water is described. The electrodes are subjected to a jet of an inert gas at a high temperature and velocity for several seconds to dry the surface of the electrodes while leaving the interior thereof moist.

Nikolaou, P.

1978-08-29T23:59:59.000Z

129

Low VOC drying of lumber and wood panel products. Progress report No. 7  

DOE Green Energy (OSTI)

Green pine blocks (2x1x 1) were dried to different moisture levels at 120 degrees C. They were immersed in D{sub 2}O (greater than 99% isotopic Content) for different periods at room temperature, and were then cut in halves. One piece from each set was then wrapped in plastic, and microwaved at 110 W, for 30 minutes, with the field being cycled to keep the wood surface at 90-100 degrees C. Fibers taken from just inside the wet surface from five regions along the length of the piece were then analysed by mass spectrometry with a direct insertion probe. The m/e profiles of the three isotopic forms of water, namely H{sub 2}O, HOD, and D{sub 2}O, remained unchanged as the wood was heated inside the spectrometer, indicating that they were bound equally strongly to the wood. The water released from the green wood had the same isotopic composition regardless of whether or not the wood was microwaved (Table 1), indicating that the exchangeable protons in wood were not affected by microwaving. However, as the wood progressively dried, the water released from the microwaved wood was of lower isotopic content, which means that microwaving increases access of the exchangeable protons in wood tissue to water. The only exchangeable protons in dried wood are those sited on hydroxyl groups, and the difference in isotopic exchange is the greatest for dried wood. This must mean that as wood dries, internal hydrogen bonding restricts access of D{sub 2}O to the hydroxyl protons. Presumably the energy transferred to water upon microwaving is sufficient to at least partially overcome this barrier. The effect is akin to the hysteresis that occurs for moisture sorption to green and dried wood. Similar isotope exchange work with D{sub 2}O has been previously conducted to determine the accessibility of cellulose to water.

Hui Yan; Hooda, Usha; Banerjee, Sujit [and others

1998-03-01T23:59:59.000Z

130

Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel  

SciTech Connect

All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A “loss” is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed – unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot separate U from TRU, it is then impossible to make X% TRU for fast reactors with UOX-51 used fuel with 1.3% TRU. AIROX and melt refining can serve in the recycle loop for about 3 recycles, at which point the accumulated impurities displace fertile uranium and the fuel can no longer be as critical as the original fast reactor fuel recipe. UREX+1 and electrochemical can serve in either capacity; key impurities appear to be lanthanides and several transition metals.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

2010-11-01T23:59:59.000Z

131

Forest Products: Long Wavelength Catalytic Infrared Drying System for Wood Fiber  

DOE Green Energy (OSTI)

Order this fact sheet to read about the innovative new system, which can be used in a variety of industries in addition to forest products, including agriculture, chemical processing, brewing and distilling, animal products, and horticulture.

Blazek, S.

1999-01-29T23:59:59.000Z

132

Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997  

Science Conference Proceedings (OSTI)

This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

1998-12-31T23:59:59.000Z

133

Enhancing dry-grind corn ethanol production with fungal cultivation and ozonation.  

E-Print Network (OSTI)

??Public opinion of the U.S. fuel ethanol industry has suffered in recent years despite record ethanol production. Debates sparked over the environmental impacts of corn… (more)

Rasmussen, Mary

2009-01-01T23:59:59.000Z

134

Land Application Uses for Dry Flue Gas Desulfurization By-Products: Phase 2  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 20 million tons of flue gas desulfurization (FGD) by-products annually, and the quantity is expected to increase as utilities institute further controls to comply with Clean Air Act requirements. This report presents the results of the second phase of a large-scale study of beneficial land-use applications of these by-products.

1998-04-10T23:59:59.000Z

135

Land Application Uses for Dry Flue Gas Desulfurization By-Products: Phase 3  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 25 million tons of flue gas desulfurization (FGD) by-products annually in the United States -- a quantity that is expected to increase as utilities apply new controls to comply with Clean Air Act Amendments. This report presents results of the third and final phase of a large-scale study of beneficial land-use applications for these by-products.

1999-09-28T23:59:59.000Z

136

Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production  

Science Conference Proceedings (OSTI)

Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to ?nd out the effect of process variables on the biofuel (bio-oil and syn- gas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5–50.3 wt.% of the biomass. Biochar yields were 23.5–62.2% depending on the pyrolysis conditions. The energy con- tent of DDGS bio-oils was 28 MJ/kg obtained at the 650 oC and 8 min, which was about 66.7% of the heat- ing value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.

Lei, Hanwu; Ren, Shoujie; Wang, Lu; Bu, Quan; Julson, James; Holladay, Johnathan E.; Ruan, Roger

2011-05-01T23:59:59.000Z

137

Economic modeling of electricity production from hot dry rock geothermal reservoirs: methodology and analyses. Final report  

DOE Green Energy (OSTI)

An analytical methodology is developed for assessing alternative modes of generating electricity from hot dry rock (HDR) geothermal energy sources. The methodology is used in sensitivity analyses to explore relative system economics. The methodology used a computerized, intertemporal optimization model to determine the profit-maximizing design and management of a unified HDR electric power plant with a given set of geologic, engineering, and financial conditions. By iterating this model on price, a levelized busbar cost of electricity is established. By varying the conditions of development, the sensitivity of both optimal management and busbar cost to these conditions are explored. A plausible set of reference case parameters is established at the outset of the sensitivity analyses. This reference case links a multiple-fracture reservoir system to an organic, binary-fluid conversion cycle. A levelized busbar cost of 43.2 mills/kWh ($1978) was determined for the reference case, which had an assumed geothermal gradient of 40/sup 0/C/km, a design well-flow rate of 75 kg/s, an effective heat transfer area per pair of wells of 1.7 x 10/sup 6/ m/sup 2/, and plant design temperature of 160/sup 0/C. Variations in the presumed geothermal gradient, size of the reservoir, drilling costs, real rates of return, and other system parameters yield minimum busbar costs between -40% and +76% of the reference case busbar cost.

Cummings, R.G.; Morris, G.E.

1979-09-01T23:59:59.000Z

138

Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996  

SciTech Connect

The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

NONE

1996-12-31T23:59:59.000Z

139

Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995  

SciTech Connect

On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

Chugh, Y.P.; Dutta, D.; Esling, S. [and others

1995-10-01T23:59:59.000Z

140

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

Science Conference Proceedings (OSTI)

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network (OSTI)

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics was conducted using ArcGIS with the Network Analyst extension and model builder. A square grid methodology was used to determine biomass availability of corn stover and bioenergy sorghum in Texas. The SWAT model was used to quantify soil erosion losses in surface runoff caused by sorghum residue removal for bioenergy production in the Oso Creek Watershed in Nueces County. The model simulated the removal of 25, 50, 75, and 100 percent residue removal. The WEPS model was used to quantify wind erosion soil loss caused by corn stover removal in Dallam County. Nine simulations were run estimating soil loss for corn stover removal rates of 0 percent to 50 percent. The results of the SWAT and WEPS analyses were compared to the NRCS tolerable soil loss limit of 5 tons/acre/year for both study areas. The GIS analysis determined the optimum route distances between mobile unit sites were 2.07 to 58.02 km for corn and 1.95 to 60.36 km for sorghum. The optimum routes from the mobile pyrolysis sites and the closest refineries were 49.50 to 187.18 km for corn and 7.00 to 220.11 km for sorghum. These results were used as input to a separate bioenergy economic model. The SWAT analysis found that maximum soil loss (1.24 tons/acre) occurred during the final year of the simulation where 100 percent of the sorghum residue was removed. The WEPS analysis determined that at 30 percent removal the amount of soil loss starts to increase exponentially with increasing residue removal and exceeds the tolerable soil loss limit. Limited harvesting of biomass for bioenergy production will be required to protect crop and soil productivity ensuring a sustainable biomass source.

Bumguardner, Marisa

2011-08-01T23:59:59.000Z

142

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994  

SciTech Connect

On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

1995-01-01T23:59:59.000Z

143

Natural Gas Dry Production  

Gasoline and Diesel Fuel Update (EIA)

19,266,026 20,158,602 20,623,854 21,315,507 22,901,879 24,057,609 19,266,026 20,158,602 20,623,854 21,315,507 22,901,879 24,057,609 1930-2012 Alaska 407,153 374,105 374,152 353,391 334,671 329,789 1982-2012 Alaska Onshore 294,212 2012-2012 Alaska State Offshore 35,577 2012-2012 Federal Offshore Gulf of Mexico 2,798,718 2,314,342 2,428,916 2,245,062 1,812,328 1,423,239 1999-2012 Louisiana 1,254,588 1,283,184 1,453,248 2,107,651 2,933,576 2,918,125 1982-2012 Louisiana Onshore 2,849,980 2012-2012 Louisiana State Offshore 68,145 2012-2012 New Mexico 1,421,672 1,353,625 1,288,164 1,200,222 1,147,012 1,131,211 1982-2012 Oklahoma 1,687,039 1,782,021 1,788,665 1,706,697 1,754,838 1,883,204 1982-2012 Texas 5,735,831 6,559,190 6,394,931 6,281,672 6,631,555 6,895,462 1982-2012 Texas Onshore 6,878,956 2012-2012

144

Natural Gas Dry Production  

Gasoline and Diesel Fuel Update (EIA)

Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History U.S. 2,035,858 1,988,565 2,062,344 2,000,456 2,079,804 2,080,270 1997-2013 Alaska 2006-2011 Federal Offshore Gulf of Mexico...

145

Natural Gas Dry Production  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

146

Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995  

SciTech Connect

On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

Chugh, Y.P.; Dutta, D.; Esling, S. [and others

1995-07-01T23:59:59.000Z

147

PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES  

Science Conference Proceedings (OSTI)

To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at production activity after 8 weeks of storage. When stored in argon at production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

2012-08-27T23:59:59.000Z

148

PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES  

SciTech Connect

To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

2012-08-27T23:59:59.000Z

149

Steam atmosphere drying concepts using steam exhaust recompression  

SciTech Connect

In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

1992-08-01T23:59:59.000Z

150

Steam atmosphere drying concepts using steam exhaust recompression  

SciTech Connect

In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

1992-08-01T23:59:59.000Z

151

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

152

Land application uses of dry FGD by-products. [Quarterly report, January 1, 1994--March 31, 1994  

SciTech Connect

This report contains three separate monthly reports on the progress to use flue gas desulfurization by-products for the land reclamation of an abandoned mine site in Ohio. Data are included on the chemical composition of the residues, the cost of the project, as well as scheduling difficulties and efforts to allay the fears of public officials as to the safety of the project. The use of by-products to repair a landslide on State Route 541 is briefly discussed.

Dick, W.A.; Beeghly, J.H.

1994-08-01T23:59:59.000Z

153

Environmental Monitoring of Abandoned Mined Land Revegetated Using Dry FGD By-Products and Yard Waste Compost  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 25 million tons of flue gas desulfurization (FGD) by-products annually in the United States. Utilities expect this quantity to increase as they apply new controls to comply with Clean Air Act Amendments. This report presents the results of a field-scale study of beneficial land-use applications of these by-products in surface mine reclamation.

2000-12-06T23:59:59.000Z

154

Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste  

SciTech Connect

In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

Hedman, Bjoern [Chemistry Department, Environmental Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)]. E-mail: bjorn.hedman@chem.umu.se; Burvall, Jan [Unit for Biomass Technology and Chemistry, Swedish University of Agricultural Sciences, Box 4097, SE-904 03 Umeaa (Sweden); Nilsson, Calle [NBC Defence, NBC Analysis, The Swedish Defence Research Agency, SE-901 82 Umeaa (Sweden); Marklund, Stellan [Chemistry Department, Environmental Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)

2005-07-01T23:59:59.000Z

155

Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994  

Science Conference Proceedings (OSTI)

Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

1994-10-01T23:59:59.000Z

156

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

157

Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, [October 1, 1993--December 31, 1993  

Science Conference Proceedings (OSTI)

The ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` program is one of the largest programs ever undertaken by the Mining Engineering Department of Southern Illinois university, both in terms of complexity and in terms of funding. Total funding over the expected four-year extent of the program, including both Department of Energy, matching Southern Illinois University funds, and contributed funds, this program exceeds three million dollars. The number of cooperating organizations adds to the management complexity of the program. It was believed, therefore, that sound management plan and management base is essential for the efficient and effective conduct of the program. This first quarter period (i.e., October 1--December 31, 1993) was developed to establishing the management base, developing a sound management plan, developing a test plan, and developing sound fiscal management and control. Actual technical operations, such as residue sample acquisition, residue analyses, groundwater sample acquisition and analyses, and material handling studies will get underway early in the next quarter (i.e., January 1--March 31, 1994). Some early results of residue analyses and groundwater analyses should be available by the end of the second quarter. These results will be reported in the next Technical Progress Report.

Thomasson, E.M.; Chugh, Y.P.; Esling, S.; Honaker, R.; Paul, B.; Sevin, H.

1994-01-01T23:59:59.000Z

158

Textile Drying Via Wood Gasification  

E-Print Network (OSTI)

This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million Btu/hr pilot plant produced clean burning gas which appeared viable for drying textiles. The gasifier was coupled to a modified textile drying oven and a series of tests were carried out to assess product degradation of white, colored, and chemically treated fabrics.

McGowan, T. F.; Jape, A. D.

1983-01-01T23:59:59.000Z

159

Glossary Term - Dry Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Deuteron Previous Term (Deuteron) Glossary Main Index Next Term (Electron) Electron Dry Ice A block of dry ice sublimating on a table. Dry ice is the solid form of carbon dioxide...

160

DRI Companies | Open Energy Information  

Open Energy Info (EERE)

DRI Companies DRI Companies Jump to: navigation, search Name DRI Companies Place Irvine, California Zip 92614 Sector Solar Product US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Combined Corex/DRI technology  

Science Conference Proceedings (OSTI)

A feasible steelmaking alternative, the Corex/direct reduction/electric arc furnace combination, provides an economic route for the production of high quality steel products. This combination is a major step into a new generation of iron and steel mills. These mills are based on the production of liquid steel using noncoking coal and comply with the increasing demands of environmental protection. The favorable production costs are based on: Utilization of Corex and DRI/HBI plants; Production of hot metal equal to blast furnace quality; Use of low cost raw materials such as noncoking coal and lump ore; Use of process gas as reducing agent for DRI/HBI production; and Use of electric arc furnace with high hot metal input as the steelmaking process. The high flexibility of the process permits the adjustment of production in accordance with the strategy of the steel mills. New but proven technologies and applications of the latest state of art steelmaking process, e.g., Corex, in conjunction with DRI production as basic raw material for an electric arc furnace, will insure high quality, high availability, optimized energy generation at high efficiency rates, and high product quality for steelmaking.

Flickenschild, A.J.; Reufer, F. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Dusseldorf (Germany); Eberle, A.; Siuka, D. [Voest-Alpine Industrieanlagenbau, Linz (Austria)

1996-08-01T23:59:59.000Z

162

Predicting Forage Nutritive Value Using an In Vitro Gas Production Technique and Dry Matter Intake of Grazing Animals Using n-Alkanes  

E-Print Network (OSTI)

In the first experiment, forage samples (n = 39) were collected during 4 years (2006 ? 2009) from pastures grazed by Santa Gertrudis cattle at the King Ranch, TX. The in vitro gas production technique (IVGP) was performed to understand the pattern of fermentation parameters of the forage and obtain fractional digestion rate (kd) values to predict total digestible nutrients (TDN). The best nonlinear model to describe the IVGP values of the forages was the two-pool logistic equation. The passage rate (kp) of 4%/h was used.. The kp predicted by the Large Nutrient Ruminant System (LNRS) model was 3.66%/h. The average TDN was 55.9% compared to 53.8% using a theoretical equation. In the second experiment, Brahman bulls (n = 16) grazed Coastal bermudagrass pastures [Cynodon dactylon (L.) Pers.] and stocked at a moderate to low grazing pressure. Three periods of fecal collections were made within each period. Bulls were individually fed at 0700 and 1900 h of 400 g of corn gluten pellets containing C32 n-alkanes. Each period was divided in 2 sub periods in which fecal samples were collected 4 times a day (0700, 1100, 1500 and 1900 h). N-alkanes in the forage and feces were determined using gas chromatography. In the third experiment, four methods were used to estimate dry matter intake (DMI): C31 or C33 with or without adjustment for forage C32 (C31_0 and C33_0, respectively). There was a difference between morning (0700 and 1100 h) and afternoon fecal collections (1500 and 1900 h) on the predicted DMI using C31 (P = 0.0010), C33 (P = 0.0001), C31_0 (P = 0.0010), or C33_0 (P efficiency under confinement conditions does not guarantee (P < 0.0001) similar ranking under grazing conditions when using the alkane technique to determine forage DMI. In order to estimate DMI at least 5 d of fecal collection and 2 times a day of collection (0700 and 1500h) are needed to decrease the variability.

Aguiar, Andre D.

2010-05-01T23:59:59.000Z

163

Dry cleaning of Turkish coal  

Science Conference Proceedings (OSTI)

This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

2008-07-01T23:59:59.000Z

164

Drying damaged K West fuel elements (Summary of whole element furnace runs 1 through 8)  

DOE Green Energy (OSTI)

N Reactor fuel elements stored in the Hanford K Basins were subjected to high temperatures and vacuum conditions to remove water. Results of the first series of whole element furnace tests i.e., Runs 1 through 8 were collected in this summary report. The report focuses on the six tests with breached fuel from the K West Basin which ranged from a simple fracture at the approximate mid-point to severe damage with cladding breaches at the top and bottom ends with axial breaches and fuel loss. Results of the tests are summarized and compared for moisture released during cold vacuum drying, moisture remaining after drying, effects of drying on the fuel element condition, and hydrogen and fission product release.

LAWRENCE, L.A.

1998-10-13T23:59:59.000Z

165

Determination of freeze-drying behaviors of apples by artificial neural network  

Science Conference Proceedings (OSTI)

Freeze drying is the best drying technology regarding quality of the end product but it is an expensive method and the high costs of process limit its application to industrial scale. At the same time, the freeze-drying process is based on different ... Keywords: ANN, Apple, Drying, Freeze drying, Modeling

Tayfun Menlik; Mustafa Bahad?r Özdemir; Volkan Kirmaci

2010-12-01T23:59:59.000Z

166

Transporting Dry Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements for Shipping Dry Ice IATA PI 904 Source: Reg of the Day from ERCweb 2006 Environmental Resource Center | 919-469-1585 | webmaster@ercweb.com http:...

167

Pilot-scale submersed cultivation of R. microsporus var. oligosporus in thin stillage, a dry-grind corn-to-ethanol co-product.  

E-Print Network (OSTI)

??An innovative process to add value to a corn-to-ethanol co-product, Thin stillage, was studied for pilot-scale viability. A 1500L bioreactor was designed, operated, and optimized… (more)

Erickson, Daniel Thomas

2012-01-01T23:59:59.000Z

168

Survey of hybrid solar heat pump drying systems  

Science Conference Proceedings (OSTI)

Solar drying is in practice since the ancient time for preservation of food and agriculture crops. The objective of most drying processes is to reduce the moisture content of the product to a specified value. Solar dryers used in agriculture for food ... Keywords: coefficient of performance (COP), direct expansion SAHD, drying chamber, heat pump, solar assisted heat pumps dryer (SAHPD), solar fraction

R. Daghigh; K. Sopian; M. H. Ruslan; M. A. Alghoul; C. H. Lim; S. Mat; B. Ali; M. Yahya; A. Zaharim; M. Y. Sulaiman

2009-02-01T23:59:59.000Z

169

Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade...

170

Engineering methods for predicting productivity and longevity of hot-dry-rock geothermal reservoir in the presence of thermal cracks. Technical completion report  

DOE Green Energy (OSTI)

Additional heat extraction from geothermal energy reservioirs depends on the feasibility to extend the main, hydraulic fracture through secondary thermal cracks of the adjacent hot rock. When the main, hydraulic fracture is cooled sufficiently, these secondary thermal cracks are produced normal to the main fracture surface. As such, both the heat transfer surface area and heat energy available to the fluid circulating through the main, hydraulic fracture system increase. Methods for predicting the productivity and longevity of a geothermal reservoir were developed. A question is whether a significant long-term enhancement of the heat extraction process is achieved due to these secondary thermal cracks. In short, the objectives of this investigation are to study how the main, hydraulic fracture can be extended through these secondary thermal cracks of the rock, and to develop methods for predicting the productivity and longevity of a geothermal reservoir.

Hsu, Y.C.; Lu, Y.M.; Ju, F.D.; Dhingra, K.C.; Lu, Y.M.; Ju, F.D.; Dhingra, K.C.

1978-01-01T23:59:59.000Z

171

Freeze drying method  

DOE Patents (OSTI)

The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

1999-01-01T23:59:59.000Z

172

Freeze drying apparatus  

Science Conference Proceedings (OSTI)

The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

2001-01-01T23:59:59.000Z

173

Dry piston coal feeder  

SciTech Connect

This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

Hathaway, Thomas J. (Belle Meade, NJ); Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

174

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

175

Hot Dry Rock - Summary  

SciTech Connect

Hot Dry Rock adds a new flexibility to the utilization of geothermal energy. Almost always the approach has been to limit that utilization to places where there is a natural source of water associated with a source of heat. Actually, the result was that steam was mined. Clearly there are much larger heat resources available which lack natural water to transport that energy to the surface. Also, as is found in hydrothermal fields being mined for steam, the water supply finally gets used up. There is a strong motive in the existing capital investment to revitalize those resources. Techniques for introducing, recovering and utilizing the water necessary to recover the heat from below the surface of the earth is the subject of this session. Implicit in that utilization is the ability to forecast with reasonable accuracy the busbar cost of that energy to the utility industry. The added element of supplying the water introduces costs which must be recovered while still supplying energy which is competitive. Hot Dry Rock technology can supply energy. That has been proved long since. The basic barrier to its use by the utility industry has been and remains proof to the financial interests that the long term cost is competitive enough to warrant investment in a technology that is new to utility on-grid operations. As the opening speaker for this session states, the test that is underway will ''simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings''. Further, the Fenton Hill system is a research facility not designed for commercial production purposes, but it can give indications of how the system must be changed to provide economic HDR operations. And so it is that we must look beyond the long term flow test, at the opportunities and challenges. Proving that the huge HDR resources can be accessed on a worldwide scale must involve the construction of additional sites, preferably to the specifications of the now Federal geothermal community. These facilities will have to be engineered to produce and market energy at competitive prices. At the same time, we must not rest on our technological laurels, though they be many. Design and operational techniques have been conceived which could lead to improved economics and operations for HDR. These must be pursued and where merit is found, vigorously pursued. Accelerated research and development ought to include revolutionary drilling techniques, reservoir interrogation, and system modeling to assure the competitiveness and geographical diversity of applications of HDR. Much of this work will be applicable to the geothermal industry in general. More advanced research ought to include such innovations as the utilization of other operating fluids. Supercritical carbon dioxide and the ammonia/water (Kalina) cycle have been mentioned. But even as the near and more distant outlook is examined, today's work was reported in the HDR session. The start-up operations for the current test series at the Fenton Hill HDR Pilot Plant were described. The surface plant is complete and initial operations have begun. While some minor modifications to the system have been required, nothing of consequence has been found to impede operations. Reliability, together with the flexibility and control required for a research system were shown in the system design, and demonstrated by the preliminary results of the plant operations and equipment performance. Fundamental to the overall success of the HDR energy resource utilization is the ability to optimize the pressure/flow impedance/time relationships as the reservoir is worked. Significant new insights are still being developed out of the data which will substantially affect the operational techniques applied to new systems. However, again, these will have to be proved to be general and not solely specific to the Fenton Hill site. Nevertheless, high efficiency use of the reservoir without unintended reservoir grow

Tennyson, George P. Jr.

1992-03-24T23:59:59.000Z

176

Dry Natural Gas Reserves Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore U.S. 2,775 2,731 2,250 2,377 2,154 1,660 1990-2011 Pacific (California) 37 40 36 37 28 31 1977-2011 Louisiana & Alabama 1,973 2,066 1,752 1,886 1,717 1,311 1981-2011 Texas 765 625 462 454 409 318 1981-2011 Alaska 408 388 354 358 317 327 1977-2011 Lower 48 States 18,137 19,078 20,169 21,236 21,922 23,228 1977-2011 Alabama 287 274 257 254 223 218 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Coastal Region Onshore 9 12 11 12 12 11 1977-2011 Los Angeles Basin Onshore 8 8 6 7 6 6 1977-2011 San Joaquin Basin Onshore 232 227 217 214 220 289 1977-2011 State Offshore 6 6 3 6 5 5 1977-2011

177

Dry Natural Gas Reserves Estimated Production  

U.S. Energy Information Administration (EIA) Indexed Site

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore U.S. 2,775 2,731 2,250 2,377 2,154 1,660 1990-2011 Pacific (California) 37 40 36 37 28 31 1977-2011 Louisiana & Alabama 1,973 2,066 1,752 1,886 1,717 1,311 1981-2011 Texas 765 625 462 454 409 318 1981-2011 Alaska 408 388 354 358 317 327 1977-2011 Lower 48 States 18,137 19,078 20,169 21,236 21,922 23,228 1977-2011 Alabama 287 274 257 254 223 218 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Coastal Region Onshore 9 12 11 12 12 11 1977-2011 Los Angeles Basin Onshore 8 8 6 7 6 6 1977-2011 San Joaquin Basin Onshore 232 227 217 214 220 289 1977-2011 State Offshore 6 6 3 6 5 5 1977-2011

178

Natural Gas Dry Production (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

035,858 1,988,565 2,062,344 2,000,456 2,079,804 2,080,270 1997-2013 Federal Offshore Gulf of Mexico 2006-2011 Alabama 2006-2011 Alaska 2006-2011 Arizona 2006-2011 Arkansas...

179

Dry Natural Gas Estimated Production (Summary)  

Annual Energy Outlook 2012 (EIA)

274 257 254 223 218 1977-2011 Alaska 408 388 354 358 317 327 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Colorado 1,174...

180

Year Supply Disposition Dry Production Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

8,056,848 246,802 9,225 -240,445 8,072,430 404,838 28,322 7,639,270 8,072,430 1954... 8,388,198 330,177 6,847 -215,709 8,509,513 432,283 28,726...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Dry Production (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Balancing Item ...

182

Dry Natural Gas Estimated Production (Summary)  

Gasoline and Diesel Fuel Update (EIA)

8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 8,545 19,466 20,523 21,594 22,239 23,555 1977-2011 Federal Offshore Gulf of Mexico 2,738 NA 1992-2007 Alabama 287 274 257 254 223 218 1977-2011 Alaska 408 388 354 358 317 327 1977-2011 Arkansas 188 269 456 698 951 1,079 1977-2011 California 255 253 237 239 243 311 1977-2011 Colorado 1,174 1,326 1,441 1,524 1,590 1,694 1977-2011 Florida 2 4 3 0 15 0 1977-2011 Kansas 350 361 357 334 305 285 1977-2011 Kentucky 66 80 93 108 96 101 1977-2011 Louisiana 1,309 1,257 1,319 1,544 2,189 2,985 1981-2011 Michigan 197 184 157 153 154 139 1977-2011 Mississippi 83 100 110 100 87 75 1977-2011 Montana 117 112 114 113 93 75 1977-2011 New Mexico 1,426 1,349 1,349 1,350 1,220 1,170 1977-2011 New York

183

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

184

Drying of fiber webs  

DOE Patents (OSTI)

A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

1997-01-01T23:59:59.000Z

185

Drying of fiber webs  

DOE Patents (OSTI)

A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

Warren, D.W.

1997-04-15T23:59:59.000Z

186

Economic analysis of wind-powered crop drying. Final report  

DOE Green Energy (OSTI)

Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in crop drying. Drying of corn, soybeans, rice, peanuts, tobacco, and dehydrated alfalfa were addressed.

Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

1980-03-01T23:59:59.000Z

187

Crop residue conversion to biogas by dry fermentation  

Science Conference Proceedings (OSTI)

A simple 'dry fermentation' process has been developed that may enable economical conversion of drier crop residues to biogas. Results from two years of process definition and scale-up to a 110 m/sup 3/ prototype show that biogas production rates exceeding those necessary to make the dry fermentor competitive have been achieved. 13 refs.

Jewell, W.J.; Dell'Orto, S.; Fanfoni, K.J.; Fast, S.J.; Jackson, D.A.; Kabrick, R.M.; Gottung, E.J.

1981-01-01T23:59:59.000Z

188

Dry Gas-Well Capacity per New Gas-Well Completions  

U.S. Energy Information Administration (EIA)

Appendix C Dry Gas-Well Capacity per New Gas-Well Completion Dry gas-well gas productive capacity of about one billion cubic feet per day is added per 1,000 new gas ...

189

Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser  

E-Print Network (OSTI)

This paper describes an EPRI-funded experimental evaluation of advanced air-cooled ammonia condensers for a phase. Change dry/wet cooling system for power plants. Two condenser surfaces with different air-side augmentation were tested in an ammonia phase change pilot plant (0.6 MWth) located at UCC/Linde. The first unit consisted of integral shaved-fin-extruded aluminum tubing designed for dry operation. Heat transfer and air-side pressure loss characteristics were measured under varying air face velocities (1 to 5 m/s) and initial temperature differences, ITD (11 to 33K). Measured overall heat transfer coefficients, U, ranged between 40 and 49 J /m2 S.K (based on air-side surface). The second configuration constituted an aluminum plate-fin/tube assembly, which was tested in both dry and wet (water deluge) modes at 1 to 4 m/s air face velocities and ITD's of 5 to 33K. Deluge rates varied from 1 to 6 m3/s per meter of core width. In the dry mode, U ranged from 42 to 63 J/m2 .S.K. Water deluge enhanced the heat rejection up to 4.5 times over dry operation.

Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

1981-01-01T23:59:59.000Z

190

Method of drying articles  

DOE Patents (OSTI)

A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

Janney, M.A.; Kiggans, J.O. Jr.

1999-03-23T23:59:59.000Z

191

Method of drying articles  

DOE Patents (OSTI)

A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

192

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

193

THE MASS-LOSS-INDUCED ECCENTRIC KOZAI MECHANISM: A NEW CHANNEL FOR THE PRODUCTION OF CLOSE COMPACT OBJECT-STELLAR BINARIES  

SciTech Connect

Over a broad range of initial inclinations and eccentricities, an appreciable fraction of hierarchical triple star systems with similar masses are essentially unaffected by the Kozai-Lidov mechanism (KM) until the primary in the central binary evolves into a compact object. Once it does, it may be much less massive than the other components in the ternary, enabling the 'eccentric Kozai mechanism (EKM)': the mutual inclination between the inner and outer binaries can flip signs driving the inner binary to very high eccentricity, leading to a close binary or collision. We demonstrate this 'mass-loss-induced eccentric Kozai' (MIEK) mechanism by considering an example system and defining an ad hoc minimal separation between the inner two members at which tidal effects become important. For fixed initial masses and semimajor axes, but uniform distributions of eccentricity and cosine of the mutual inclination, {approx}10% of systems interact tidally or collide while the primary is on the main sequence (MS) due to the KM or EKM. Those affected by the EKM are not captured by earlier quadrupole-order secular calculations. We show that fully {approx}30% of systems interact tidally or collide for the first time as the primary swells to AU scales, mostly as a result of the KM. Finally, {approx}2% of systems interact tidally or collide for the first time after the primary sheds most of its mass and becomes a white dwarf (WD), mostly as a result of the MIEK mechanism. These findings motivate a more detailed study of mass loss in triple systems and the formation of close neutron star (NS)/WD-MS and NS/WD-NS/WD binaries without an initial common envelope phase.

Shappee, Benjamin J.; Thompson, Todd A., E-mail: shappee@astronomy.ohio-state.edu, E-mail: thompson@astronomy.ohio-state.edu [Center for Cosmology, and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

2013-03-20T23:59:59.000Z

194

coastal loss | NOLA DEFENDER  

U.S. Energy Information Administration (EIA)

BP Oil Doubled Wetland Loss, Study Says Posted Tuesday, ... coastal loss; Deepwater Horizon; louisiana coast; Oil; proceedings of the national academy ...

195

Hot dry rock geothermal heat extraction  

DOE Green Energy (OSTI)

A man-made geothermal reservoir has been created at a depth of 2.7 km in hot, dry granite by hydraulic fracturing. The system was completed by directionally drilling a second well in close proximity with the top of the vertical fracture. In early 1978 heat was extracted from this reservoir for a period of 75 days. During this period thermal power was produced at an average rate of 4 MW(t). Theoretical analysis of th measured drawdown suggests a total fracture heat transfer area of 16,000 m/sup 2/. Viscous impedance to through-flow declined continuously so that at the end of the experiment this impedance was only one-fifth its initial value. Water losses to the surrounding rock formation also decreased continuously, and eventually this loss rate was less than 1% of the circulated flow rate. Geochemical analyses suggest that, with scale up of the heat transfer area and deeper, hotter reservoirs, hot dry rock reservoirs can ultimately produce levels of power on a commercial scale.

Murphy, H.D.

1979-01-01T23:59:59.000Z

196

Energy from hot dry rock  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Program is described. The system, operation, results, development program, environmental implications, resource, economics, and future plans are discussed. (MHR)

Hendron, R.H.

1979-01-01T23:59:59.000Z

197

Hot dry rock venture risks investigation:  

DOE Green Energy (OSTI)

This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

Not Available

1988-01-01T23:59:59.000Z

198

Moisture Distribution and Flow During Drying of Wood and Fiber  

DOE Green Energy (OSTI)

New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of cobalt chloride was developed for nondestructive determination of surface moisture content. Fundamental new understanding of drying characteristics in wood and fiber has been provided that can be used by researchers to improve drying of wood and fiber. The three techniques for measuring moisture content and gradients provided in this study are efficient, practical, and economical - easy to apply by industry and researchers. An energy consumption worksheet is provided as a first step toward reducing energy consumed during drying of lumber and strandboard flakes. However, it will need additional verification and testing.

Zink-Sharp, Audrey; Hanna, Robert B.

2001-12-28T23:59:59.000Z

199

DOE hot dry rock program  

DOE Green Energy (OSTI)

Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

Nunz, G.J.

1980-01-01T23:59:59.000Z

200

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hot Dry Rock energy annual report fiscal year 1992  

DOE Green Energy (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Duchane, D.V.; Winchester, W.W.

1993-04-01T23:59:59.000Z

202

Hot Dry Rock energy annual report fiscal year 1992  

DOE Green Energy (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Winchester, W.W. [ed.; Duchane, D.V.

1993-04-01T23:59:59.000Z

203

When Do Losses Count?  

Science Conference Proceedings (OSTI)

Current global and national databases that monitor losses from natural hazards suffer from a number of limitations, which in turn lead to misinterpretation and fallacies concerning the “truthfulness” of hazard loss data. These biases often go ...

Melanie Gall; Kevin A. Borden; Susan L. Cutter

2009-06-01T23:59:59.000Z

204

Evaluating Transformer Losses  

E-Print Network (OSTI)

This paper outlines how to determine what transformer losses cost and how to evaluate transformer bids to optimize the investment.

Grun, R. L. Jr.

1989-09-01T23:59:59.000Z

205

Dry cooling tower operating experience in the LOFT reactor  

SciTech Connect

A dry cooling tower has been uniquely utilized to dissipate heat generated in a small experimental pressurized water nuclear reactor. Operational experience revealed that dry cooling towers can be intermittently operated with minimal wind susceptibility and water hammer occurrences by cooling potential steam sources after a reactor scram, by isolating idle tubes from the external atmosphere, and by operating at relatively high pressures. Operating experience has also revealed that tube freezing can be minimized by incorporating the proper heating and heat loss prevention features.

Hunter, J.A.

1980-01-01T23:59:59.000Z

206

Spent fuel drying system test results (second dry-run)  

DOE Green Energy (OSTI)

The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0.

Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

1998-07-01T23:59:59.000Z

207

Dry Ice vs. Pipette Experiment Description  

E-Print Network (OSTI)

Dry Ice vs. Pipette Experiment Description Dry ice (solid) is put into the bulb of a pipette, plastic pipette 1 ice cube sized piece of dry ice Butter knife (or some object to break dry ice) Gloves (surgical gloves will not work, they must protect hands from dry ice) Safety glasses for demonstrator

208

NEWTON: Preventing Tire Dry Rot  

NLE Websites -- All DOE Office Websites (Extended Search)

Preventing Tire Dry Rot Preventing Tire Dry Rot Name: Millard Status: student Grade: 9-12 Location: MD Country: USA Date: Spring 2013 Question: My dad has a classic car, and because it gets driven very little each year, the tires dry rot before he can get much tread wear on them. What could be used to protect the tires from dry rot and cracking? Replies: Hi Millard, Thanks for the question. I would recommend keeping the car on blocks so that there is no weight on the tires. Additionally, I would recommend that no electrical equipment (motors, switches, and other things that spark) be used around the car. The sparks generate ozone and ozone can cause rubber items such as tires, belts, and hoses to crack. I hope this helps. Please let me know if you have more questions. Thanks Jeff Grell

209

Abrasives for Dry Blast Cleaning  

Science Conference Proceedings (OSTI)

...The materials used in dry abrasive blast cleaning can be categorized as metallic grit, metallic shot, sand, glass, and miscellaneous. Hardness, density, size, and shape are important considerations in choosing an abrasive for a specific

210

Report on Biomass Drying Technology  

DOE Green Energy (OSTI)

Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

Amos, W. A.

1999-01-12T23:59:59.000Z

211

SOME MECHANISMS OF DRY BEARING CHATTER  

SciTech Connect

Much study has been devoted to the motion of shafts in lubricated journal bearings. In contrast, the work done on the motion of shafts in unlubricated or dry bearings is negligible. The reason is obvious: in most applications, lubrication of the bearings is relatively simple. This is not the case in nuclear power plant appliciltion where bearings operate in low viscosity primary coolants of liquid metal or water without the benefit of coolant contaminating lubricants. For this reason, an analytical study was made to determine what motions would be excited in a shaft mounted in a dry bearing. The study splits naturally into two parts: (a) the shaft maintains continuous contact with the bearing, either rolling or sliding or a combination of the two; (b) the shaft dances (or chatters) about the bearing in a series of impacts. Typical motions in each of these cases (rolling oscillations, sliding oscillations, stick- slip oscillations, chatter) are calculated and plotted. Except for the stick- slip oscillation, none of the motions studied is self-sustaining; rolling and sliding oscillations will damp out due to frictional and other losses, and chatter degenerates into a rolling whirl of the shaft around the bearing. (auth)

Jahsman, W.E.; Miller, D.R.

1956-06-01T23:59:59.000Z

212

Dry Processing of Used Nuclear Fuel  

SciTech Connect

Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

K. M. Goff; M. F. Simpson

2009-09-01T23:59:59.000Z

213

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

214

Distribution System Losses Evaluation  

Science Conference Proceedings (OSTI)

Currently, there is not an industry standard on how utilities calculate and account for electrical losses and reductions in electric system losses. Computer models used to analyze power flows typically only include the primary components of the distribution system infrastructure. More detailed electric system models can benefit utilities by providing more accurate loss calculations as well as benefits for system planning and engineering. The utility industry could benefit from having a consistent and uni...

2008-12-16T23:59:59.000Z

215

Spent fuel drying system test results (first dry-run)  

DOE Green Energy (OSTI)

The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental results provided in Section 4.0. These results are further discussed in Section 5.0.

Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

1998-07-01T23:59:59.000Z

216

Energy losses in switches  

DOE Green Energy (OSTI)

The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF{sub 6} polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V{sub peak}I{sub peak}){sup 1.1846}. When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset.

Martin, T.H.; Seamen, J.F.; Jobe, D.O.

1993-07-01T23:59:59.000Z

217

Modeling the Loss Distribution  

Science Conference Proceedings (OSTI)

In this paper, we focus on modeling and predicting the loss distribution for credit risky assets such as bonds and loans. We model the probability of default and the recovery rate given default based on shared covariates. We develop a new class of default ... Keywords: Basel II, default prediction, loss distribution, recovery rates

Sudheer Chava; Catalina Stefanescu; Stuart Turnbull

2011-07-01T23:59:59.000Z

218

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

219

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

220

Definition: Reduced Electricity Losses | Open Energy Information  

Open Energy Info (EERE)

Losses Losses Jump to: navigation, search Dictionary.png Reduced Electricity Losses Functions that provide this benefit could help manage peak feeder loads, reduced electricity throughput, locate electricity production closer to the load and ensure that voltages remain within service tolerances, while minimizing the amount of reactive power provided. These actions can reduce electricity losses by making the system more efficient for a given load served or by actually reducing the overall load on the system.[1] Related Terms load, electricity generation, reactive power, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Electricity_Losses&oldid=502644

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DRI Renewable Energy Center (REC) (NV)  

Science Conference Proceedings (OSTI)

The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

2012-12-31T23:59:59.000Z

222

Sechage solaire des aliments (solar food drying and conservation of food for year-round consumption)  

Science Conference Proceedings (OSTI)

This report is an introduction to food drying as a measure to avoid the loss of agricultural surpluses, and conserve food for year-round consumption. It discusses the basic rules of food drying and gives an overview of various methods and appropriate dryer constructions. It also provides detailed explanations on how to process vegetables, fruits, and meats and gives advice on storage and cooking.

Not Available

1985-09-01T23:59:59.000Z

223

Flash drying protects standby plants  

Science Conference Proceedings (OSTI)

This article describes how special fast-drying technique provides effective corrosion protection for units that will be in standby for a short time. The Jacksonville Electric Authority (JEA) has developed a technique for rapidly drying out its boilers as an effective corrosion prevention measure, even for units which will be out of service for a short time. The JEA has several steam generating units that are not in continual service. These units, whether on standby or in extended cold storage, must be maintained if they are to operate reliably when they are needed. JEA uses dehumidification as the primary method to reduce corrosion in these standby units. Engineers at JEA believe it is better to reduce the amount of water retained in standby boilers than to add inhibiting chemicals to retained water for corrosion protection.

Mallard, R.E.

1996-08-01T23:59:59.000Z

224

Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dry and Mixed-Dry Climates Dry and Mixed-Dry Climates Guides and Case Studies for Hot-Dry and Mixed-Dry Climates Map of the Hot-Dry and Mixed-Dry Zone of the United States. The zone contains the eastern side of California and follows the US border to cover the western half of Texas. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates. Best Practice Guides New Construction Case Studies Improvements to Existing Homes Case Studies Best Practice Guides 40% Whole-House Energy Savings in Hot-Dry and Mixed-Dry Climates - Volume 9 New Construction Case Studies Arizona Project: Gordon Estates - Phoenix Builder: Mandalay Homes Profile: Fourteen homes in this subdivision achieved Challenge Home

225

Managing Aging Effects on Dry Cask Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Aging Effects Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transportation of Used Fuel Rev. 0 Prepared for U.S. Department of Energy Used Fuel Disposition Campaign O.K. Chopra, D. Diercks, R. Fabian, D. Ma, V. Shah, S-W Tam, and Y.Y. Liu Argonne National Laboratory June 30, 2012 FCRD-USED-2012-000119 ANL-12/29 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

226

Desiccant grain applied to the storage of solar drying potential  

Science Conference Proceedings (OSTI)

Sorption storage of solar heat using a layer of wheat as the desiccant was analyzed by means of a deep-bed model. Intended to be applied to solar-assisted in-storage drying of agricultural bulk materials, the probability of the persistence of unfavorable weather periods was quantified statistically for Potsdam for the month of August, as an example. Simulation results demonstrate that a relative humidity of the drying air of 65% can be maintained day and night for weeks without combustion of fossil fuels. Using a simple strategy of control, periods with insufficient solar radiation can be bridged over. The desiccant grain is not endangered by mold growth as a matter of principle. Simple solar air heaters can be used to avoid economic losses due to overdrying and to reduce the danger of decay to a minimum even at unfavorable climatic conditions.

Ziegler, T.; Richter, I.G.; Pecenka, R.

1999-09-01T23:59:59.000Z

227

Development of hot dry rock resources  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is the only U.S. field test of this geothermal resource. In the LASL concept, a man-made geothermal reservoir would be formed by drilling a deep hole into relatively impermeable hot rock, creating a large surface area for heat transfer by fracturing the rock hydraulically, then drilling a second hole to intersect the fracture to complete the circulation loop. In 1974, the first hole was drilled to a depth of 2929 m (9610 ft) and a hydraulic fracture was produced near the bottom. In 1975, a second hole was directionally drilled to intersect the fracture. Although the desired intersection was not achieved, a connection was made through which water was circulated. After a year's study of the fracture system, drilling began again in April 1977 and an improved connection was achieved. In September of 1977 a 5 MW (thermal) heat extraction and circulation experiment was conducted for 100 h as a preliminary test of the concept. An 1800-h circulation experiment was concluded on April 13, 1978 to determine temperature-drawdown, permeation water loss and flow characteristics of the pressurized reservoir, to examine chemistry changes in the circulating fluid, and to monitor for induced seismic effects.

Pettitt, R.A.; Tester, J.W.

1978-01-01T23:59:59.000Z

228

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

229

ARM - Campaign Instrument - dri-air  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign Instrument : Desert Research Institute Airborne Aerosol Instruments (DRI-AIR) Instrument Categories Aerosols, Airborne Observations Campaigns Aerosol IOP ...

230

Catalogue of a Loss  

E-Print Network (OSTI)

Catalogue of a Loss is a collection of sixty-two prose poems written within the past year and half. The work is printed on 4x6 cards. Each poem may be read individually from a single card or the poems can be read in ...

Berger, Larisa (Larisa A.)

2012-01-01T23:59:59.000Z

231

Mathematical modelling of brown seaweed drying curves  

Science Conference Proceedings (OSTI)

Simple solution on one-term exponential models is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different ... Keywords: brown seaweed, drying curves, mathematical models

Ahmad Fudholi; Mohd Hafidz Ruslan; Lim Chin Haw; Sohif Mat; Mohd Yusof Othman; Azami Zaharim; Kamaruzzaman Sopian

2012-01-01T23:59:59.000Z

232

Dry Cooling: Perspectives on Future Needs  

Science Conference Proceedings (OSTI)

The total number of dry-cooled power plants in the United States has increased significantly in recent years. This is because nonutility generators are using dry-cooling systems to meet environmental protection and water conservation requirements. A survey shows that utility planners expect that dry cooling could become an important cooling-system option for new utility plants.

1991-08-19T23:59:59.000Z

233

High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying  

SciTech Connect

Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create maintenance problems nor will it significantly increase operating expenses. An energy balance on the boiler showed that heat loss through the insulated jacket was 10%. This value is much higher than the 2% to 5% that is typical of most boilers and indicates a need to better insulate the unit. With insulation that brings jacket losses down to 5%, a 1?-effect regenerator that uses this boiler as its high-temperature stage will have a gas-based COP of 1.05. The estimated cost to manufacture a 300-lb/h, 1?-effect regenerator at 500 units per year is $17,140. Unfortunately, the very high cost for natural gas that now prevails in the U.S. makes it very difficult for a gas-fired LDAC to compete against an electric vapor-compression air conditioner in HVAC applications. However, there are important industrial markets that need very dry air where the high price of natural gas will encourage the sale of a LDAC with the 1?-effect regenerator since in these markets it competes against less efficient gas-fired desiccant technologies. A manufacturer of industrial dehumidification equipment is now negotiating a sales agreement with us that would include the 1?-effect regenerator.

Andrew Lowenstein

2005-12-19T23:59:59.000Z

234

Future of hot dry rock geothermal energy systems  

DOE Green Energy (OSTI)

Where natural groundwater circulation does not exist, the obvious method of extracting heat from the earth's crust is to imitate nature by creating it. A means of doing so by hydraulic fracturing has been demonstrated. Alternatively, explosives or mechanical or chemical methods might be used to open circulation paths. However, where permeabilities are sufficient so that fluid loss is excessive, other approaches are also possible. The magnitude and distribution of hot dry rock and the variety of possible heat-extraction techniques make it appear inevitable that this energy supply will eventually be used on a large scale.

Smith, M.C.

1979-01-01T23:59:59.000Z

235

Dry Transfer Systems for Used Nuclear Fuel  

Science Conference Proceedings (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

236

Structural response of coal to drying and pentane sorption  

Science Conference Proceedings (OSTI)

Experiments probed the response of coal toward drying and subsequent sorption and desorption of pentane. The change in porosity due to drying was calculated from the difference between the expected volume change associated with H{sub 2}O loss and the observed volume change. For low rank coals, a slight increase in porosity was found. For coals {gt}85 wt % carbon a slight decrease occurred. Pentane sorption experiments were conducted for up to 365 days using coals dried at room temperature. A significant amount of pentane could not be removed upon evacuation for 100 min at room temperature, conditions suitable for removal of this sorbate from interconnected macro-, meso-, and micropores. However, much of this pentane could be removed upon extended evacuation. Negligible swelling of coal accompanies pentane sorption despite its considerable presence indicating that pentane adsorbs on surfaces of open pore space. The quantity of 'slow reversible' pentane was compared to the quantity of CO{sub 2} determined from BET experiments. The degree of connectivity of the pore system of coal was estimated from the ratio of 'slow reversible' pentane surface area to CO{sub 2} BET surface area. A ratio of 1.0 indicates a completely unconnected pore network, while a ratio of 0.0 indicates a completely interconnected pore network. The range of this ratio was 0.46-0.73 for coal dried under high vacuum at room temperature. These findings indicate that interconnection among pores is incomplete for these coals. For most coals, drying at 150{sup o}C affects the quantity of slow reversible pentane, and this is associated with alteration in the connectivity of the network pore structure of coal. 52 refs., 7 figs., 9 tabs.

S.R. Kelemen; L.M. Kwiatek; M. Siskin; A.G.K. Lee [ExxonMobil Research and Engineering Company, Annandale, NJ (United States)

2006-02-01T23:59:59.000Z

237

Grain & Wood Based Technologies for Production of Ethanol  

U.S. Energy Information Administration (EIA)

Outline Sources of Ethanol Grain Based Dry Mill Process Cellulosic Based Processes Costs Conclusions The Production of Ethanol Bioethanol ...

238

Hot dry rock: What does it take to make it happen  

DOE Green Energy (OSTI)

The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century.

Duchane, D.V.

1993-06-01T23:59:59.000Z

239

Hot dry rock geothermal energy development program: Annual report, Fiscal year 1986  

DOE Green Energy (OSTI)

Preparation, execution, and analysis of a 30-day Initial Closed-Loop Flow Test (ICFT) of the Phase II reservoir were the primary objectives of the Hot Dry Rock Program in fiscal year 1986. The ICFT successfully tested the Phase II heat-extraction loop with the injection of 37,000 m/sup 3/ of cold water and production of 23,000 m/sup 3/ of hot water, extracting up to 10 MW/sub t/ when production reached 0.0139 m/sup 3//s at 192/degree/C. By the end of the test, water loss rate has decreased to 26% and a significant portion of the injected water had been recovered, 66% during the test and an additional 20% during subsequent venting. Geochemical, tracer, and seismic analyses suggest reservoir fracture volume was growing throughout the test. A new technique, the ''three-point'' method, was developed to determine locations and orientations of seismically active planes. Fault or joint planes are identified in what superficially appears to be an amorphous microearthquake location set. Five planes were determined when the three-point method was applied to a location data set for the massive hydraulic-fracturing experiment conducted in 1983. 23 refs., 19 figs., 3 tabs.

Dash, Z.V.; Grant, T.; Jones, G.; Murphy, H.D.; Wilson, M.G.

1989-02-01T23:59:59.000Z

240

Hot dry rock: What does it take to make it happen  

DOE Green Energy (OSTI)

The ubiquitous heat in hot dry rock (HDR) is an abundant, widely distributed form of geothermal energy. Until recently, development of this energy source has been largely focused on understanding the scientific and engineering principles involved in forming and operating HDR reservoirs. During the past year, however, a pilot facility at Fenton Hill, NM has been run under steady-state conditions simulating the operation of a commercial HDR energy plant. Issues important to commercialization such as sustainability of thermal production, water loss, operating costs, and others have been addressed to the extent possible. The results, while not always definitive, have been encouraging. The stage is now set for the formation of an initiative led by private industry to take HDR technology from its current state of scientific and engineering demonstration to the production and marketing of energy in commercial quantities. Because of the technology risks involved, this can probably only be accomplished through a cost-shared industry/government effort. The potential rewards are great, since HDR represents the best, and perhaps the only, opportunity for geothermal energy to take its rightful place as a major energy source for the 21st century.

Duchane, D.V.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modified dry limestone process for control of sulfur dioxide emissions  

DOE Patents (OSTI)

A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

Shale, Correll C. (Morgantown, WV); Cross, William G. (Morgantown, WV)

1976-08-24T23:59:59.000Z

242

The effect of drying on the heating value of biomass fuels  

E-Print Network (OSTI)

There has been some speculation as to whether or not biomass fuels (such as feedlot manure) may lose volatile matter during the drying process. Since current standards state that heating value analysis may be performed before or after drying, and volatile matter analysis can only be performed after drying, and since many fuel suppliers are paid on a heating value basis of the fuel, there has been some controversy in this matter. Furthermore, it is known that if manure is left out at ambient temperatures over long periods of time, the heating value decreases as well. It is therefore the objective of this work to ascertain if in fact volatile matter is lost during the drying or aging process and, if so, to find an optimum aging and /or drying time and to model the loss of volatile matter. It has been found that, if indeed there is volatile matter loss over the drying process, then it is so small as to be negligible. Furthermore, no appreciable amount of volatile loss occurs even if the fuel is dried for extensive amounts of time as are generally needed to obtain constant weight in the fuel sample. It has also been found that heating value decreases with aging time (falling even after only one to two days at atmospheric conditions), yet the heating value of an initial (undried) fuel sample increases with aging time. This is because moisture is lost as well as combustibles so the heat produced by the fuel will increase with a decrease in moisture even though volatiles are lost.

Rodriguez, Pablo Gregorio

1994-01-01T23:59:59.000Z

243

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

244

Particle size distributions of ground corn and DDGS from dry grind processing  

E-Print Network (OSTI)

ABSTRACT. Ethanol production has increased in the past decade as a result of growth in the dry grind industry. In the dry grind process, the first step is grinding of corn. The particle size of the resulting ground corn can affect the fermentation process and the particle size of dried distillers ’ grains with solubles (DDGS), a coproduct of dry grind processing. Few data are available that characterize particle size distributions of ground corn or DDGS. The objective was to determine particle size distributions of ground corn and DDGS. Samples of ground corn and DDGS were obtained from nine dry grind plants; particle size distribution, geometric mean diameter (dgw) and geometric standard deviation (Sgw) were determined. The dgw of ground corn and of DDGS were not different among processing plants. The overall mean dgw of ground corn was not different from that of DDGS. Most of the ground corn (80 g/100 g) and DDGS (70 g/100 g) were recovered in the three largest particle size categories. The particle size distributions of ground corn were not correlated (r Corn, DDGS, Distillers dried grains with solubles, Ethanol. Corn is processed into ethanol by one of two major processes: dry grinding or wet milling. Wet milling is more complex than dry grinding because fiber and germ components are separated; this requires considerable equipment and capital. In the dry grind process,

K. D. Rausch; R. L. Belyea; M. R. Ellersieck; V. Singh; D. B. Johnston; M. E. Tumbleson

2005-01-01T23:59:59.000Z

245

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

246

Liquid Desiccant Drying of Thermoreversibly Gelcast Bodies  

Science Conference Proceedings (OSTI)

Presentation Title, Liquid Desiccant Drying of Thermoreversibly Gelcast Bodies. Author(s), Noah O Shanti, Katherine T Faber. On-Site Speaker (Planned), Noah ...

247

,"Utah Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Proved Reserves",10,"Annual",2011,"6301977" ,"Release Date:","81...

248

Dry Barrier Mix in Reduction Cell Cathodes  

Science Conference Proceedings (OSTI)

Presentation Title, Dry Barrier Mix in Reduction Cell Cathodes ... successfully tested as a replacement for barrier bricks in several reduction cell technology types ...

249

Cold vacuum drying system conceptual design report  

SciTech Connect

This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

Bradshaw, F.W.

1996-05-01T23:59:59.000Z

250

,"Ohio Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Proved Reserves",10,"Annual",2011,"6301977" ,"Release Date:","81...

251

,"California Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Proved Reserves",10,"Annual",2011,"6301977" ,"Release Date:","81...

252

ARM - Campaign Instrument - dri-gnd  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign Instrument : Desert Research Institute Ground-Based Aerosol Instruments (DRI-GND) Instrument Categories Aerosols Campaigns Aerosol IOP Download Data Southern...

253

Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Integrated Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump...

254

FINAL REPORT: Transformational electrode drying process  

SciTech Connect

This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

Claus Daniel, C.; Wixom, M. (A123 Systems, Inc.)

2013-12-19T23:59:59.000Z

255

Propane earth materials drying techniques and technologies.  

E-Print Network (OSTI)

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The… (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

256

,"Texas Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Proved Reserves",10,"Annual",2011,"6301981" ,"Release Date:","81...

257

Cold vacuum drying facility design requirements  

SciTech Connect

This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

IRWIN, J.J.

1999-07-01T23:59:59.000Z

258

Geothermal Food Processors Agricultural Drying Low Temperature...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to:...

259

,"New Mexico Dry Natural Gas Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2011,"6301977" ,"Release Date:","81...

260

Gas Water Heater Energy Losses  

E-Print Network (OSTI)

non-firing, non- recovery mode, i.e. , during standby mode.The stack losses while in standby mode account for about 43%can be made by reducing standby heat losses. This paper

Biermayer, Peter

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Louisiana Wetland Loss at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

262

Dry Versus Wet Aging of Beef: Retail Cutting Yields and Palatability Evaluations of Steaks Using Alternative Cutting Styles  

E-Print Network (OSTI)

Boneless ribeye rolls (n = 12) and boneless top sirloin butts (n = 12) were obtained from heavy weight carcasses (mean = 407.8 kg), assigned to one of two aging treatments (dry or wet) and aged for 35 days at a commercial aging facility. Cutting tests were performed at the end of the aging period to determine retail yields. Subprimals were fabricated using the Beef Alternative Merchandising cutting styles, isolating four specific muscles: M. spinalis thoracis, M. longissimus thoracis, M. gluteobiceps, and M. gluteus medius. Retail cutting tests showed wet-aged subprimals had higher (P < 0.0001) total saleable yield percentages with decreased cooler shrink and gross cut loss percentages. This resulted in wet-aged ribeye rolls and top sirloin butts yielding 1.5 times and 1.3 times more saleable product than dry-aged counterparts, respectively. In order to determine palatability characteristics, consumer sensory evaluations and trained panel evaluations were preformed. Palatability related to aging and muscle type resulted in significant differences. From a consumer standpoint, aging treatment influenced OLIKE, FLAV, FLEVEL, and BEEFLIKE but only through the interaction of aging treatment x muscle. Clearly, consumers rated the wet-aged, M. spinalis thoracis highest in each of the previously stated attributes. Aging also affected JUIC, whereas muscle type had a significant (P < 0.0001) effect on FLVBF, TEND, LEVTEND, JUIC, and LEVJUIC. As far as trained sensory attributes were concerned, a more concrete flavor profile of aged beef was obtained. In addition, dry-aged steaks had greater (P < 0.0001) cooking yield percentages when compared to wet-aged steaks.

Smith, Amanda 1987-

2012-12-01T23:59:59.000Z

263

The hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

The paper presents a simplified description of the Department of Energy's Hot-Dry-Rock program conducted at Fenton Hill, New Mexico. What a hot-dry-rock resource is and what the magnitude of the resource is are also described.

Smith, M.C.

1987-09-01T23:59:59.000Z

264

FINAL REPORT: Transformational electrode drying process  

DOE Green Energy (OSTI)

Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

Claus Daniel, C.; Wixom, M. (A123 Systems, Inc.)

2013-12-19T23:59:59.000Z

265

Cold vacuum drying facility 90% design review  

Science Conference Proceedings (OSTI)

This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

O`Neill, C.T.

1997-05-02T23:59:59.000Z

266

Arkansas Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 18,546 16,947 19,757 19,566 21,048 21,471 22,642 23,956 24,198 26,472 26,928 28,550 2007 18,430 16,848 19,649 19,459 21,011 21,441 22,595 23,921 24,250 26,634 26,925 28,562 2008 29,068 29,082 32,973 33,043 35,331 35,806 38,869 40,631 39,412 42,558 42,579 46,966 2009 49,673 45,476 51,973 53,142 56,218 56,255 56,932 63,384 47,067 62,797 66,448 70,419 2010 70,073 64,169 72,458 73,424 76,475 75,411 79,934 82,380 80,488 83,809 81,415 86,390 2011 81,082 74,261 83,854 84,964 88,515 92,249 87,539 95,303 93,123 96,950 94,177 99,928 2012 95,797 85,615 95,788 93,716 95,878 92,884 95,721 98,326 96,018 99,539 97,008 99,455

267

Oklahoma Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 133,990 139,235 134,308 138,934 2007 135,745 128,559 147,430 135,563 146,113 139,520 143,803 144,436 138,754 144,998 139,076 143,042 2008 146,796 140,901 148,341 147,602 152,741 148,502 153,761 142,734 148,998 150,213 145,633 155,799 2009 155,239 143,226 153,344 146,913 155,448 150,595 154,540 152,852 143,223 147,247 142,838 143,200 2010 142,477 130,222 145,015 141,968 146,833 142,340 145,731 144,139 140,015 144,884 138,649 144,426 2011 144,051 125,088 144,947 142,355 146,378 145,008 149,423 151,181 149,111 153,572 149,082 154,641 2012 154,148 143,176 152,692 151,575 159,644 152,902 159,746 162,255 157,490 163,853 161,611 164,113

268

Virginia Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 8,410 7,694 8,597 8,227 8,671 8,619 8,741 8,829 8,709 8,803 8,721 9,005 2007 9,148 8,368 9,350 8,949 9,431 9,373 9,507 9,602 9,472 9,575 9,485 9,795 2008 10,492 9,594 10,715 10,259 10,812 10,742 10,897 11,008 10,856 10,976 10,872 11,232 2009 11,622 10,525 11,426 11,297 11,760 11,406 12,201 12,234 11,878 12,407 12,107 11,875 2010 12,528 11,363 12,405 11,914 12,502 12,105 12,490 12,520 12,229 12,417 12,190 12,593 2011 12,845 12,027 12,789 12,268 12,697 12,218 12,740 12,943 12,307 12,897 12,380 12,984 2012 13,045 11,995 12,541 12,023 12,481 12,549 11,811 12,368 11,788 11,988 11,689 12,129 2013 NA NA NA NA NA NA NA NA NA NA

269

Alaska Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 38,517 35,146 40,041 33,136 28,536 33,103 32,361 33,039 34,849 36,404 35,868 39,085 2007 37,127 34,071 38,968 32,142 27,624 32,121 31,327 32,224 34,137 35,074 34,644 37,694 2008 33,907 31,192 36,078 29,331 25,032 29,531 28,615 29,707 31,853 32,267 31,892 34,702 2009 33,793 31,201 35,892 29,428 25,276 29,555 28,739 29,769 31,704 32,211 31,920 34,664 2010 34,771 30,608 33,134 30,164 28,355 24,451 24,089 24,238 27,332 31,336 31,497 33,418 2011 29,275 29,526 31,994 30,107 29,180 24,866 21,238 24,126 27,235 27,634 29,427 30,061 2012 32,091 29,171 30,747 27,923 28,275 25,930 24,393 19,107 24,677 28,196 28,530 30,749

270

Natural Gas Dry Production (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

19,266,026 20,158,602 20,623,854 21,315,507 22,901,879 24,057,609 19,266,026 20,158,602 20,623,854 21,315,507 22,901,879 24,057,609 1930-2012 Federal Offshore Gulf of Mexico 2,798,718 2,314,342 2,428,916 2,245,062 1,812,328 1,423,239 1999-2012 Alabama 250,576 240,662 218,797 203,873 178,310 208,600 1982-2012 Alaska 407,153 374,105 374,152 353,391 334,671 329,789 1982-2012 Arizona 655 523 712 183 168 117 1982-2012 Arkansas 269,724 446,318 679,784 926,426 1,071,944 1,145,744 1982-2012 California 293,639 282,497 262,853 273,597 238,082 234,067 1982-2012 Colorado 1,204,391 1,335,809 1,431,463 1,495,742 1,546,775 1,627,433 1982-2012 Florida 1,646 2,414 257 12,409 15,125 18,681 1982-2012 Illinois 1,346 1,151 1,412 1,357 1,078 2,125 1982-2012 Indiana 3,606 4,701 4,927 6,802 9,075 8,814 1982-2012

271

Natural Gas Dry Production (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

055,938 1,990,431 2,075,702 2,076,287 1,990,290 2,076,796 055,938 1,990,431 2,075,702 2,076,287 1,990,290 2,076,796 1997-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2006-2013 Alabama NA NA NA NA NA NA 2006-2013 Alaska NA NA NA NA NA NA 2006-2013 Arizona NA NA NA NA NA NA 2006-2013 Arkansas NA NA NA NA NA NA 2006-2013 California NA NA NA NA NA NA 2006-2013 Colorado NA NA NA NA NA NA 2006-2013 Florida NA NA NA NA NA NA 2006-2013 Illinois NA NA NA NA NA NA 2006-2013 Indiana NA NA NA NA NA NA 2006-2013 Kansas NA NA NA NA NA NA 2006-2013 Kentucky NA NA NA NA NA NA 2006-2013 Louisiana NA NA NA NA NA NA 2006-2013 Maryland NA NA NA NA NA NA 2006-2013 Michigan NA NA NA NA NA NA 2006-2013 Mississippi NA NA NA NA NA NA 2006-2013 Missouri

272

West Virginia Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 17,570 16,517 17,882 16,886 18,179 17,814 18,110 19,598 18,177 18,604 18,675 19,501 2007 18,467 16,618 18,206 17,927 18,705 18,260 18,995 18,805 19,189 18,779 19,513 19,650 2008 19,831 18,927 19,828 19,168 19,680 19,392 20,149 20,299 19,102 20,753 19,727 19,634 2009 20,302 18,759 21,305 21,006 21,913 21,331 21,994 22,211 21,832 22,310 21,540 21,147 2010 21,055 19,252 21,215 20,713 21,499 21,133 21,876 21,878 21,425 22,542 21,895 22,085 2011 26,692 25,557 29,537 29,765 31,195 31,648 34,453 33,927 35,627 35,824 34,397 36,875 2012 40,519 38,444 40,009 39,564 43,461 42,036 43,041 46,276 45,220 50,342 49,558 50,503

273

Colorado Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 99,662 90,391 99,510 95,525 99,046 95,410 98,219 99,973 95,857 100,635 97,085 95,190 2007 100,556 90,237 101,062 100,196 103,056 100,423 103,567 100,909 104,352 102,823 102,047 95,164 2008 109,302 100,430 108,336 111,486 109,203 101,723 113,009 119,947 116,373 114,033 113,738 118,229 2009 127,323 115,584 126,323 120,547 124,736 117,837 121,810 120,398 114,487 116,778 114,187 111,453 2010 123,488 114,687 125,234 118,989 125,591 122,570 127,151 132,135 130,152 132,202 116,940 126,602 2011 125,917 116,985 125,388 122,007 131,622 124,498 130,452 135,921 128,844 137,755 131,299 136,086 2012 150,392 127,923 140,071 133,934 139,724 131,260 136,107 134,513 131,565 137,571 131,070 133,303

274

Natural Gas Dry Production (Annual Supply & Disposition)  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 19,266,026 20,158,602 20,623,854 21,315,507 22,901,879 24,057,609 1930-2012 Alabama 250,576 240,662 218,797 203,873 178,310 208,600 1982-2012 Alaska 407,153 374,105 374,152 353,391 334,671 329,789 1982-2012 Arizona 655 523 712 183 168 117 1982-2012 Arkansas 269,724 446,318 679,784 926,426 1,071,944 1,145,744 1982-2012 California 293,639 282,497 262,853 273,597 238,082 234,067 1982-2012 Colorado 1,204,391 1,335,809 1,431,463 1,495,742 1,546,775 1,627,433 1982-2012 Florida 1,646 2,414 257 12,409 15,125 18,681 1982-2012

275

California Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 26,709 24,159 26,358 25,054 26,148 25,090 26,049 24,843 24,309 24,405 23,739 24,290 2007 26,089 23,578 25,703 24,498 25,549 24,512 25,418 24,212 23,675 23,693 23,054 23,658 2008 25,012 22,663 24,661 23,567 24,458 23,530 24,570 23,341 22,976 22,823 22,101 22,796 2009 23,307 21,069 22,988 21,884 22,871 21,921 22,770 21,669 21,242 21,219 20,627 21,287 2010 24,284 21,962 23,900 22,672 23,732 22,814 23,742 22,596 22,130 22,126 21,427 22,211 2011 21,142 19,757 20,913 20,412 20,222 19,715 20,275 19,894 18,907 18,736 18,714 19,395 2012 20,148 19,226 18,237 18,869 20,347 19,112 19,685 20,222 18,925 20,758 18,582 19,958

276

Michigan Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 19,883 17,063 27,033 13,724 16,250 29,932 19,947 23,815 21,426 21,485 15,743 33,432 2007 28,452 18,375 20,205 16,164 26,215 19,657 22,244 23,754 24,229 20,800 22,560 19,160 2008 12,815 11,826 12,767 12,084 12,618 12,241 12,726 12,935 12,320 12,670 11,930 12,277 2009 11,969 10,885 14,918 11,443 11,360 11,504 14,266 11,778 12,143 11,495 14,682 14,960 2010 11,162 9,983 11,016 10,515 10,841 10,502 10,765 11,025 10,631 10,776 10,390 10,571 2011 11,531 10,523 11,685 11,283 11,516 11,015 11,513 11,564 11,282 11,440 11,114 11,231 2012 10,998 10,311 10,794 10,608 10,885 10,501 10,715 10,709 10,313 10,556 10,119 10,341

277

U.S. Dry Natural Gas Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,869 1,883 1,830 1,741 1,821 1,765 1,804 1,819 1,766 1,799 1,788 1,848 1974 1,851 1,688 1,817 1,707 1,771 1,669 1,743 1,716 1,683 1,694 1,658 1,716 1975 1,702 1,574 1,663 1,599 1,616 1,563 1,604 1,604 1,533 1,575 1,548 1,655 1976 1,676 1,576 1,641 1,554 1,601 1,570 1,604 1,566 1,498 1,569 1,566 1,678 1977 1,665 1,602 1,676 1,573 1,619 1,578 1,602 1,574 1,530 1,558 1,537 1,652 1978 1,669 1,579 1,673 1,597 1,593 1,554 1,621 1,587 1,509 1,565 1,538 1,637 1979 1,702 1,591 1,686 1,626 1,648 1,578 1,596 1,622 1,570 1,638 1,656 1,751 1980 1,751 1,643 1,760 1,606 1,630 1,525 1,554 1,515 1,518 1,585 1,588 1,729

278

Alabama Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 23,068 20,965 23,528 22,673 23,113 21,276 21,886 22,309 21,248 22,084 21,095 21,911 2007 21,865 19,575 21,444 20,217 20,863 19,763 20,509 21,924 20,846 21,254 20,587 21,727 2008 21,121 20,048 20,966 19,692 21,009 19,988 19,910 19,888 18,102 20,394 19,451 20,092 2009 18,047 18,112 19,722 18,630 19,546 18,558 19,364 18,677 17,622 16,696 15,613 18,209 2010 17,486 15,942 18,526 17,561 18,129 17,268 16,365 16,426 15,058 18,000 17,015 16,097 2011 16,512 15,155 16,609 15,939 14,788 15,342 15,803 15,992 12,335 13,540 11,831 14,462 2012 18,844 17,698 18,596 17,283 17,867 17,033 17,733 16,657 16,242 17,517 16,860 16,269

279

Utah Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 90,325 58,978 70,439 79,531 79,874 74,762 80,135 101,787 1990's 128,296 130,425 159,442 212,101...

280

Utah Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 27,437 25,286 28,290 27,483 28,644 27,847 28,492 29,681 29,397 30,752 30,381 31,719 2007 29,988 28,560 33,003 32,061...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New Mexico Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

103,173 109,398 104,277 100,711 2010 101,117 91,571 100,542 99,013 102,984 95,917 103,456 103,411 99,496 100,358 98,903 103,456 2011 93,017 82,059 101,243 96,076 99,578 95,476...

282

Arkansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 - No Data Reported; -- Not Applicable; NA Not Available; W ...

283

Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456...

284

North Dakota Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

1990's 45,725 47,137 48,828 53,927 52,134 44,141 44,737 47,325 47,704 47,058 2000's 46,405 48,564 51,052 49,875 48,776 45,699 48,019 52,817 44,566 49,229 2010's 70,456 82,920...

285

Alaska Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

409,382 411,593 398,093 524,457 434,498 442,375 426,776 426,528 424,555 2000's 419,671 435,291 428,595 456,441 438,855 459,326 420,086 407,153 374,105 374,152 2010's 353,391 334,67...

286

New Mexico - East Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

1970's 604 553 596 1980's 515 531 498 424 439 429 325 382 359 396 1990's 392 424 437 456 466 418 432 418 427 491 2000's 447 518 526 507 516 522 480 462 459 454 2010's 392 377 -...

287

Nebraska Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 2,147: 1,954: 2,168: 1,829: 1,326: 1,180: 851: 849: 1990's: 793: ...

288

Illinois Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -10,579 -11,813 -10,157 -10,112 -7,372 -5,291 1,277 1,396 1990's 596 366 247 254 253 258 234 31...

289

Illinois Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 13 13 12 11 11 11 8 9 9 9 8 9 2007 134 128 128 119 120 120 96 99 99 103 95 106 2008 114 109 109 101 103 103 82 85 85 88 81...

290

Texas Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2006: 430,569: 385,770: 433,275: 423,525: 440,256: 425,524: 439,080: 442,449: 430,887: 444,407: 431,300: 447,631 ...

291

Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA 5,027,623 4,511,942 4,406,450 3,969,450 3,132,089 2,901,969 2,798,718 2,314,342...

292

California Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 369,864 400,381 460,891 474,310 446,015 409,619 384,771 349,484 1990's 350,324 366,598 353,247...

293

Ohio Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,368 151,271 186,439 182,178 182,004 166,543 166,646 159,684 1990's 154,561 147,602 144,743...

294

Ohio Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 7,654 6,838 7,366 7,066 7,116 6,830 6,936 6,938 6,841 7,449 7,463 7,814 2007 7,812 6,979 7,518 7,211 7,263 6,971 7,078...

295

Colorado Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 196,930 152,231 162,486 166,320 153,243 154,362 179,955 203,397 1990's 229,819 270,139 304,892...

296

Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 244,584 213,829 239,860 238,542 256,010 247,754 256,378 250,819 238,653 242,261 235,960 237,319 2007 235,396 213,877...

297

Michigan Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,869 125,373 131,708 120,726 115,643 136,120 135,662 146,102 1990's 163,834 187,646 186,722...

298

New Mexico Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 934,321 838,975 898,786 851,319 651,319 758,617 728,464 793,021 1990's 898,478 967,821 1,193,343...

299

Inspection of Used Fuel Dry Storage Casks  

SciTech Connect

ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

2012-09-01T23:59:59.000Z

300

Low Impact Weight Loss Exercises | Fish Oil Weight Loss  

U.S. Energy Information Administration (EIA)

Low Impact Weight Loss Exercises. You want to lose weight, but for whatever reason, you want to or only can perform low impact exercises. No problem.

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electricity from hot dry rock geothermal energy: technical and economic issues  

SciTech Connect

Extraction of energy from hot dry rock would make available a nearly unlimited energy source. Some of the technical problems and possible economic tradeoffs involved in a power generating system are examined and possible solutions proposed. An intertemporal optimization computer model of electricity production from a hot dry rock geothermal source has been constructed. The effects of reservoir degradation, variable fluid flow rate, and drilling operations are examined to deetermine optimal strategies for reservoir management and necessary conditions for economic feasibility.

Tester, J.W.; Morris, G.E.; Cummings, R.G.; Bivins, R.L.

1979-01-01T23:59:59.000Z

302

High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization  

SciTech Connect

This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

Eissenberg, David M. (Oak Ridge, TN); Liu, Yin-An (Opelika, AL)

1980-01-01T23:59:59.000Z

303

Acoustically enhanced heat exchange and drying apparatus  

DOE Patents (OSTI)

A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

Bramlette, T.T.; Keller, J.O.

1987-07-10T23:59:59.000Z

304

The Role of Disturbance in Dry Tropical Forest Landscapes  

Science Conference Proceedings (OSTI)

Disturbance can be defined as 'any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment'. This definition requires that the spatial and temporal scales of the system and disturbance be determined. Disturbances are typically characterized by their size, spatial distribution, frequency or return time, predictability, and magnitude (which includes both intensity and severity). These disturbance attributes set the parameters for the suite of species, both plant and animal, that can persist within a given system. As such, an understanding of seasonally dry tropical forests in Asia requires an understanding of disturbance within the region. However, disturbances are relatively poorly understood in dry tropical forests, partly because of the weak seasonality in temperature and high tree species diversity of these forests relative to most forest systems of the world. There are about 1,048,700 km{sup 2} of dry tropical forests worldwide and that only 3% of this land is in conservation status. In other words, 97% of the world's seasonally dry tropical forest is at risk of human disturbance. About half of this forest occurs in South America, where most of the conservation lands are located. Satellite imagery based on MODIS (Moderate Resolution Imaging Spectroradiometer) data shows that only about 3.8% of the world's dry tropical forests are in Australia and South east Asia. The susceptibility of these forests to human disturbances is of great concern and is largely unstudied. Because natural disturbance regimes shape the ecosystem structure and are in many ways integral to these forest systems, it is critical to know how natural disturbance affects dry forest in order to understand the effects of human activities on these forests. Even basic information about disturbances in dry tropical forests is only recently available. Therefore this chapter brings together much of the available information from dry tropical forest throughout the world with the goal of developing an understanding of the role of disturbance in Asian dry forests. Most ecologists now recognize that disturbances, rather than being catastrophic agents of destruction, are a normal, perhaps even an integral, part of long-term system dynamics. The composition, structure, organization, and development and trophic dynamics of most forest systems are the products of disturbances. As an example, the forest composition for two disturbances in the Anaikatty Hills of Western Ghats were compared, where the low disturbance was from past logging followed by cutting and illicit felling and grazing and the high disturbance was due to human presence, past logging, and fuelwood collection. They found higher species richness and Shannon-Wiener diversity index for the low-disturbance forest (98 and 3.9, respectively) compared to the high-disturbance stand (45 and 2.71, respectively) as well as significant differences in mean basal area of trees, density of seedlings, number of species, density and diversity of shrubs, and number of species and diversity of herbs. Some ecological systems contain species that have evolved in response to disturbances. Adaptations typical of dry tropical forest plants are drought tolerance, seed dispersal mechanisms, and the ability to sprout subsequent to disturbance. In contrast, evidence was found that human disturbance in Kakamega Forest of western Kenya has significantly reduced allelic richness and heterozygosity, increased inbreeding, and slightly reduced gene flow in Prunus africana in the past century.

Dale, Virginia H [ORNL

2011-01-01T23:59:59.000Z

305

Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993  

DOE Green Energy (OSTI)

Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

Salazar, J.; Brown, M. [eds.

1995-03-01T23:59:59.000Z

306

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

used the cost of onshore oil wells and dry holes (i.e. , weCosts Alaska onshore oil wells and dry holes Cost per well (field, and the number of oil wells on the cost of production

Leighty, Wayne

2008-01-01T23:59:59.000Z

307

Integrated Ingredients Dehydrated Agricultural Drying Low Temperature  

Open Energy Info (EERE)

Ingredients Dehydrated Agricultural Drying Low Temperature Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Facility Integrated Ingredients Dehydrated Sector Geothermal energy Type Agricultural Drying Location Empire, Nevada Coordinates 40.5757352°, -119.34213° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

308

Infrared Dry-peeling Technology for Tomatoes  

E-Print Network (OSTI)

This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

309

Cold vacuum drying facility design requirements  

SciTech Connect

This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

Irwin, J.J.

1997-09-24T23:59:59.000Z

310

Intraseasonal Variability in a Dry Atmospheric Model  

Science Conference Proceedings (OSTI)

A long integration of a primitive equation dry atmospheric model with time-independent forcing under boreal winter conditions is analyzed. A variety of techniques such as time filtering, space–time spectral analysis, and lag regressions are used ...

Hai Lin; Gilbert Brunet; Jacques Derome

2007-07-01T23:59:59.000Z

311

High strength air-dried aerogels  

Science Conference Proceedings (OSTI)

A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

Coronado, Paul R.; Satcher, Jr., Joe H.

2012-11-06T23:59:59.000Z

312

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

313

Alternate operating strategies for Hot Dry Rock geothermal reservoirs  

DOE Green Energy (OSTI)

Flow testing and heat extraction experiments in prototype Hot Dry Rock (HDR) geothermal reservoirs have uncovered several challenges which must be addressed before commercialization of the technology is possible. Foremost among these is the creation of a reservoir which simultaneously possesses high permeability pathways and a large volume of fractured rock. The current concept of heat extraction -- a steady state circulation system with fluid pumping from the injection well to a single, low pressure production well -- may limit our ability to create heat extraction systems which meet these goals. A single injection well feeding two production wells producing fluid at moderate pressures is shown to be a potentially superior way to extract heat. Cyclic production is also demonstrated to have potential as a method for sweeping fluid through a larger volume of rock, thereby inhibiting flow channeling and increasing reservoir lifetime. 10 refs., 4 figs., 2 tabs.

Robinson, B.A.

1991-01-01T23:59:59.000Z

314

Dry capture of SO/SUB/2  

Science Conference Proceedings (OSTI)

The injection of dry sorbents into the flue gas stream is a much simpler process for SO/SUB/2 removal than wet scrubbing. The process may be economically attractive, however only for plants near to deposits of such minerals as nahcolite or trona. The mechanism of sulphur removal by these minerals is described and the prospects for their use in the western US are examined. The economics of dry injection for a hypothetical plant in Wisconsin are shown.

Moore, T.

1984-03-01T23:59:59.000Z

315

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

316

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

1994-01-01T23:59:59.000Z

317

Borehole temperature survey analysis hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has been actively investigating the potential for extracting geothermal energy from hot dry rock. A man-made geothermal reservoir has been formed at the Fenton Hill Test Site in northern New Mexico. The 10-MW (thermal) prototype energy extraction circulation loop has been completed and has been continuously operating since January 28 of this year. The performance of the Phase I 1000-h circulation experiment would establish technological assessment of the particular hot dry rock geothermal reservoir. The major parameters of interest include equipment operations, geochemistry, water loss, and reservoir thermal drawdown. Temperature measurements were used extensively as one method to study the man-made geothermal reservoir. The temperature probe is one of the less complex wellbore survey tools that is readily fielded to allow on-line analysis of changing conditions in the hydraulic-fracture system. Several downhole temperature instruments have been designed and fabricated for use in the GT-2/EE-1 wellbores.

Dennis, B.R.; Murphy, H.D.

1978-01-01T23:59:59.000Z

318

Utilization of geothermal heat in tropical fruit-drying process  

DOE Green Energy (OSTI)

The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

1982-10-01T23:59:59.000Z

319

Hot-dry-rock energy: review of environmental aspects  

DOE Green Energy (OSTI)

The potential environmental and socioeconomic impacts of the production of energy contained in hot dry rock (HDR) is surveyed here. In general, careful siting and timing and routine control measures should be adequate to prevent significant environmental harm; sites of particular ecological or visual and recreational value, however, may require more extensive (and more expensive) precautions such as using multiwell pads to reduce land disturbance and dry or wet and dry cooling towers to reduce or eliminate the consumptive use of water. The most important uncertainty among the environmental concerns is the seismic response of HDR formations to short-duration fluid injections at pressures above fracture thresholds; continued monitoring at HDR development sites is necessary. The direct socioeconomic impacts of HDR development should be relatively minor, owing to its capital-intensive nature. Of greater potential importance are the indirect jobs resulting from such development, which could cause significant demographic (and thus fiscal and social) impacts in sparsely populated regions. However, such indirect growth is not expected to begin until a large, stable HDR industry is established in a region, and thus its impacts are expected to be permanent rather than transient.

O'Banion, K.

1981-10-13T23:59:59.000Z

320

Transporting & Shipping Hazardous Materials at LBNL: Dry Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice Dry ice is regulated as a hazardous material if shipped by air or water. Contact Shipping for any shipments that include dry ice (x5094, x4388, or shipping@lbl.gov)....

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California  

Science Conference Proceedings (OSTI)

Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.

Anderson, D.C.

1994-11-01T23:59:59.000Z

322

Characterization of DuPont 9015, aqueous processable dry film photoresist for printed wiring boards. Topical report  

SciTech Connect

This report describes the evaluation of DuPont`s Riston 9015, fully aqueous processable dry film photoresist as a mask for gold plating, tin/lead plating, and print and etch patterning for printed circuit board products.

Goldammer, S.

1995-04-01T23:59:59.000Z

323

Federal hot dry rock geothermal energy development program: an overview  

DOE Green Energy (OSTI)

The formulation and evolution of the Federal Hot Dry Rock Geothermal Energy Development Program at the Los Alamos Scientific Laboratory are traced. Program motivation is derived from the enormous potential of the resource. Accomplishments to date, including the establishment and evaluation of the 5-MW/sub t/ Phase 1 reservoir at Fenton Hill, NM and various instrument and equipment developments, are discussed. Future plans presented include (1) establishment of a 20- to 50-MW/sub t/ Phase 2 reservoir at Fenton Hill that will be used to demonstrate longevity and, eventually, electric power production and (2) the selection of a second site at which a direct thermal application will be demonstrated.

Nunz, G.J.

1979-01-01T23:59:59.000Z

324

Drying radioactive wastewater salts using a thin film dryer  

SciTech Connect

This paper describes the operational experience in drying brines generated at a radioactive wastewater treatment facility. The brines are composed of aqueous ammonium sulfate/sodium sulfate and aqueous sodium nitrate/sodium sulfate, The brine feeds receive pretreatment to preclude dryer bridging and fouling. The dryer products are a distillate and a powder. The dryer is a vertical thin film type consisting of a steam heated cylinder with rotor. Maintenance on the dryer has been minimal. Although many operability problems have had to be overcome, dryer performance can now be said to be highly reliable.

Scully, D.E.

1998-03-19T23:59:59.000Z

325

Dry method for recycling iodine-loaded silver zeolite  

DOE Green Energy (OSTI)

Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

Thomas, Thomas R. (Idaho Falls, ID); Staples, Bruce A. (Idaho Falls, ID); Murphy, Llewellyn P. (Idaho Falls, ID)

1978-05-09T23:59:59.000Z

326

Cold Vacuum Drying facility fire protection system design description (SYS 24)  

SciTech Connect

This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

PITKOFF, C.C.

1999-07-06T23:59:59.000Z

327

Soap Manufacturing TechnologyChapter 10 Soap Drying Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 10 Soap Drying Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 10 Soap Drying Systems from ...

328

New Mexico - East Dry Natural Gas New Reservoir Discoveries in...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - East Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade...

329

Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas New Reservoir Discoveries in...

330

New Mexico - West Dry Natural Gas New Reservoir Discoveries in...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - West Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade...

331

Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)...

332

Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

333

West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)...

334

Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

335

Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

336

Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

337

Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet) Florida Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

338

Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

339

Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

340

Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet)...

342

Pennsylvania Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Dry Natural Gas Reserves Sales (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Sales (Billion Cubic Feet)...

343

Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

344

Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

345

New York Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) New York Dry Natural Gas Reserves Sales (Billion Cubic Feet) New York Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

346

Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade...

347

Characterization of Dry Aggregates in Carbon Anodes by Image ...  

Science Conference Proceedings (OSTI)

Anodes are mainly composed of dry aggregates such as calcined petroleum coke and recycled materials with pitch as the binder. Granulometry of the dry ...

348

Electrode Technology for Aluminum Production  

Science Conference Proceedings (OSTI)

Loss in Cathode Life Resulting from the Shutdown and Restart of Potlines at Aluminum Smelters · Lower Aluminium Production Cost through Refractory Material ...

349

Measurements of the Transmission Loss of a Radome at Different Rain Intensities  

Science Conference Proceedings (OSTI)

Results on the transmission loss of a dry and a wet C-band weather radar radome at different rain intensities are presented. Two methods were used in the study, both carried out under laboratory conditions. In the first method, the complex ...

Mikko Kurri; Asko Huuskonen

2008-09-01T23:59:59.000Z

350

H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986  

SciTech Connect

The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

Not Available

1986-01-01T23:59:59.000Z

351

Potential use of dry cooling in support of advanced energy generation systems  

SciTech Connect

Advanced energy technologies were investigated for filling the energy supply and demand gap, including fuel cells, thermionic converters, and fusion. Technologies that have the potential for supplying energy in the future are solar, geothermal, coal gasification and liquefaction, clean solid fuel from coal, and oil shale. Results are presented of an analysis of the advanced energy generation systems, the potential for using dry cooling, and the waste heat generation characteristics of the advanced technologies. The magnitude of the waste heat expected to be generated indicates the following percentages of total cooling requirements would be needed by advanced energy technologies: (a) 1% to 2% in 1985, (b) 17% to 40% in 2000, and (c) 24% to 76% in 2025. Dry cooling could be required for flashed steam and dry steam geothermal plants if balancing withdrawal and reinjection of the geothermal fluid becomes a requirement. Binary cycle geothermal plants and plants using the hot dry rocks geothermmal resource are even more likely to require dry cooling since these plants will need an outside source of water. Solar central tower plants have a high potential for the use of dry cooling since they are likely to be located in the Southwest where water availability problems are already apparent. The high water consumption associated with the projected synthetic fuel production levels indicates that dry cooling will be desirable, perhaps even mandatory, to achieve a high level of synthetic fuel production. In the year 2000, between 2.5 and 13 GW of electrical energy produced by advanced power generation systems may require dry cooling. In the year 2025, this requirement may increase to between 4.5 and 81 GW/sub e/.

Mayer, D.W.; Arnold, E.M.; Allemann, R.T.

1979-09-01T23:59:59.000Z

352

Minimize Boiler Short Cycling Losses  

SciTech Connect

This revised ITP tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

353

Evaluation of a simulation model in predicting the drying parameters for deep-bed paddy drying  

Science Conference Proceedings (OSTI)

A simulation model for deep-bed batch drying of paddy was developed to predict the profiles of grain moisture content, grain temperature, air temperature and air humidity during the drying process. In order to evaluate the validity of this model, a laboratory-scale ... Keywords: Deep-bed, Energy optimization, Paddy, Simulation model

Dariush Zare; Guangnan Chen

2009-08-01T23:59:59.000Z

354

Method and apparatus for drying web  

DOE Patents (OSTI)

The present invention is directed to a method and apparatus for drying a web of paper utilizing impulse drying techniques. In the method of the invention for drying a paper web, the paper web is transported through a pair of rolls wherein at least one of the rolls has been heated to an elevated temperature. The heated roll is provided with a surface having a low thermal diffusivity of less than about 1.times.10.sup.-6 m.sup.2 /s. The surface material of the roll is preferably prepared from a material selected from the group consisting of ceramics, polymers, glass, inorganic plastics, composite materials and cermets. The heated roll may be constructed entirely from the material having a low thermal diffusivity or the roll may be formed from metal, such as steel or aluminum, or other suitable material which is provided with a surface layer of a material having a low thermal diffusivity.

Orloff, David I. (Atlanta, GA); Kloth, Gerald R. (Kennesaw, GA); Rudemiller, Gary R. (Paducah, KY)

1992-01-01T23:59:59.000Z

355

Los Alamos hot dry rock geothermal energy experiment  

DOE Green Energy (OSTI)

Recent heat flow data indicates that about 95,000 sq. mi. in 13 western U.S. states is underlain, at a depth of 5 km (16,400 ft) by hot dry rock at temperatures above 290/sup 0/C (440/sup 0/F.). Therefore a geothermal energy development program was undertaken to develop methods from extracting thermal energy from hot rock in the earth crust by man-made underground circulation systems; demonstrate the commercial feasibility of such systems; and encourage use of this technology. Experiments performed on the Jemez Plateau in New Mexico are described with information on the drilling of boreholes, hydraulic fracturing of hot rocks, well logging, and environmental monitoring to establish base line data and define the potential effects of the project. The technical achievements of the project include boreholes were drilled to 3k (10,000 ft) with bottomhole temperatures of approximately 200/sup 0/C (390/sup 0/F); hydraulic fracturing produced fractured regions with 150 m (500 ft) radii; at least 90 percent of the water injected was recovered; and data was obtained on geologic conditions, seismic effects, and thermal, fracturing, and chemical properties of the downhole rocks. A geothermal power-production system model was formulated for evaluating the total cost of developing power production using a hot-dry-rock geothermal energy source. (LCL)

Pettitt, R.A.

1976-01-01T23:59:59.000Z

356

Acoustically enhanced heat exchange and drying apparatus  

DOE Patents (OSTI)

A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

1989-01-01T23:59:59.000Z

357

Annotated Bibliography for Drying Nuclear Fuel  

Science Conference Proceedings (OSTI)

Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

Rebecca E. Smith

2011-09-01T23:59:59.000Z

358

Average Price of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

. . Quantity and Average Price of Natural Gas Production in the United States, 1930-1996 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ....................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ....................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ....................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ....................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ....................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ....................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ....................... 2,691,512 73,507 NA 392,528 2,225,477

359

Study of high energy ion loss during hydrogen minority heating in TFTR  

DOE Green Energy (OSTI)

High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45{degrees} below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described.

Park, J.; Zweben, S.J.

1994-03-01T23:59:59.000Z

360

Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a  

E-Print Network (OSTI)

1 Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a , Eric Blond1, b , Alain Gasser1 Forbach, France a damintode.kolani@univ-orleans.fr, b eric.blond@univ-orleans.fr Keywords: coal, drying: drying process and pyrolysis of coal. A heat and mass transfer model was developed to simulate the drying

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site  

SciTech Connect

A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

Cole, L.T.; Schmitt, R.C.

1980-06-01T23:59:59.000Z

362

Dry Flue Gas Desulfurization State of the Art Survey  

Science Conference Proceedings (OSTI)

The intent of this report is to provide a summary of state-of-the-art dry flue gas desulfurization (FGD) technologies, including circulating dry scrubbers (CDS), spray dryer absorbers (SDA), and the Alstom Novel Integrated Desulfurization (NID) technology. These can all be considered “semi-dry” technologies, as the flue gas is cooled and humidified as part of each of these processes. This report also discusses a completely dry FGD technology, dry sorbent injection (DSI), which is ...

2012-12-14T23:59:59.000Z

363

Method for dry etching of transition metals  

DOE Patents (OSTI)

A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

Ashby, Carol I. H. (Edgewood, NM); Baca, Albert G. (Albuquerque, NM); Esherick, Peter (Albuquerque, NM); Parmeter, John E. (Albuquerque, NM); Rieger, Dennis J. (Tijeras, NM); Shul, Randy J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

364

Method for dry etching of transition metals  

DOE Patents (OSTI)

A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

1998-09-29T23:59:59.000Z

365

Hot-dry-rock geothermal resource 1980  

DOE Green Energy (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

366

Galaxy formation from dry and hydro simulations  

E-Print Network (OSTI)

The effects of dry and wet merging on the Scaling Laws (SLs) of elliptical galaxies (Es) are discussed. It is found that the galaxy SLs, possibly established at high redshift by the fast collapse of gas-rich and clumpy stellar distributions in preexisting dark matter halos following the cosmological SLs, are compatible with a (small) number of galaxy mergers at lower redshift.

Ciotti, L

2009-01-01T23:59:59.000Z

367

Utilizing Spaceborne Radars to Retrieve Dry Snowfall  

Science Conference Proceedings (OSTI)

A dataset consisting of one year of CloudSat Cloud Profiling Radar (CPR) near-surface radar reflectivity Z associated with dry snowfall is examined in this study. The CPR observations are converted to snowfall rates S using derived Ze–S ...

Mark S. Kulie; Ralf Bennartz

2009-12-01T23:59:59.000Z

368

Dry capture of SO/sub 2/  

Science Conference Proceedings (OSTI)

Mineral reagents found in the West may offer a simple, low-cost route to removing sulfur from the flue gas of coal-fired boilers. Two naturally occurring sodium-based minerals, nahcolite and trona, are currently the compounds of interest as dry sorbents. Electric Power Reseach Institute efforts are aimed at reducing economic uncertainties and broadening potential applications. 2 references, 4 figures.

Moore, T.; Carr, R.; Hooper, R.

1984-03-01T23:59:59.000Z

369

Dry deposition of pan to grassland vegetation  

Science Conference Proceedings (OSTI)

Peroxyacetyl nitrate or PAN (CH{sub 3}C(O)OONO{sub 2}) is formed in the lower troposphere via photochemical reactions involving nitrogen oxides (NO{sub x}) and non-methane hydrocarbons (NMHCs). PAN has a lifetime in the free troposphere of about three months and is removed by photolysis or reaction with OH. Dry deposition will decrease its lifetime, although the few measurements that have been made indicate that this process is slow. Measurements of the uptake of PAN by alfalfa in growth chambers indicated that the dry deposition velocity (downward flux divided by concentration at a specified height) was 0.75 cm s{sup {minus}1}. Garland and Penkett measured a dry deposition velocity of 0.25 cm s{sup {minus}1} for PAN to grass and soil in a return-flow wind tunnel. Shepson et al. (1992) analyzed trends of PAN and O{sub 3} concentrations in the stable nocturnal boundary layer over mixed deciduous/coniferous forests at night, when leaf stomata were closed, and concluded that the deposition velocity for PAN was at least 0.5 cm s{sup {minus}1}. We measured the dry deposition velocity of PAN to a grassland site in the midwestern United States with a modified Bowen ratio technique. Experiments were conducted on selected days during September, October, and November of 1990. An energy balance Bowen ratio station was used to observe the differences in air temperature and water vapor content between heights of 3.0 and 0.92 m and to evaluate the surface energy balance. Air samples collected at the same two heights in Teflon {reg_sign} bags were analyzed for PAN by a gas chromatographic technique. We present an example of the variations of PAN concentrations and gradients observed during the day and compare measurements of the dry deposition velocity to expectations based on the physicochemical properties of PAN.

Doskey, P.V.; Wesely, M.L.; Cook, D.R.; Gao, W.

1994-01-01T23:59:59.000Z

370

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

371

Hot roll embossing in thermoplastic foils using dry-etched silicon stamp and multiple passes  

Science Conference Proceedings (OSTI)

Hot roll embossing is a promising technique for manufacturing and patterning of micron and sub-micron features. It attracted attention due to its high volume production and large area processing. In this work, we describe a hot-roll-embossing process ... Keywords: COC, Dry-etching, Flexible microfluidic devices, Hot embossing, PMMA, Roll-to-roll, Silicon stamp

Khaled Metwally; Samuel Queste; Laurent Robert; Roland Salut; Chantal Khan-malek

2011-08-01T23:59:59.000Z

372

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

Science Conference Proceedings (OSTI)

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

373

Evaluation of potential food applications of dried distillers spent grain (DSG). Final research report  

SciTech Connect

Results from experimental test bakes indicate that dried distillers spent grain (DSG) can be used to replace up to 15% of the flour for the production of an acceptable variety bread, provided that the DSG is processed under optimum conditions for a satisfactory flavor and color development. The raw materials used for the mash bill may also affect the taste of the finished product. (MHR)

Not Available

1981-02-06T23:59:59.000Z

374

Initial measurements of fast ion loss in KSTAR  

Science Conference Proceedings (OSTI)

A fast ion loss detector (FILD) has been installed and tested in Korea Superconducting Tokamak Advanced Research (KSTAR). KSTAR FILD measures the energy and the pitch-angle of the escaping ions with the striking positions on the scintillator plane. Measurements of the fast ion loss have been performed for the neutral beam heated plasmas. Initial experimental results indicate the prompt losses from neutral beam are dominant and the effects of the resonant magnetic perturbation on the fast ion loss are investigated. In addition, further design change of the detector-head in order to avoid excessive heat load and to detect the fusion products or the fast ions having order of MeV of energy is also discussed.

Kim, Junghee; Yoon, S. W.; Kim, W. C. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Kim, Jun Young [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Department of Nuclear Fusion and Plasma Science, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Garcia-Munoz, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association IPP, Garching D-85748 (Germany); Isobe, M. [National Institute for Fusion Science, Toki-shi 509-5292 (Japan)

2012-10-15T23:59:59.000Z

375

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

376

Dry Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Dry Lake Wind Farm Facility Dry Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location Navajo County AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

378

Transfer of hot dry rock technology  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

379

A Study of the Dielectric Properties of Dry and Saturated Green River Oil Shale  

Science Conference Proceedings (OSTI)

We measured dielectric permittivity of dry and fluid-saturated Green River oil shale samples over a frequency range of 1 MHz to 1.8 GHz. Dry sample measurements were carried out between room temperature and 146 C, saturated sample measurements were carried out at room temperature. Samples obtained from the Green River formation of Wyoming and from the Anvil Points Mine in Colorado were cored both parallel and perpendicular to layering. The samples, which all had organic richness in the range of 10-45 gal/ton, showed small variations between samples and a relatively small level of anisotropy of the dielectric properties when dry. The real and imaginary part of the relative dielectric permittivity of dry rock was nearly constant over the frequency range observed, with low values for the imaginary part (loss factor). Saturation with de-ionized water and brine greatly increased the values of the real and imaginary parts of the relative permittivity, especially at the lower frequencies. Temperature effects were relatively small, with initial increases in permittivity to about 60 C, followed by slight decreases in permittivity that diminished as temperature increased. Implications of these observations for the in situ electromagnetic, or radio frequency (RF) heating of oil shale to produce oil and gas are discussed.

Sweeney, J; Roberts, J; Harben, P

2007-02-07T23:59:59.000Z

380

Processing Gain(-) or Loss(+) from Refinery Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sound energy loss during sonolysis  

Science Conference Proceedings (OSTI)

This paper gives an analysis of sound energy losses due to sonolysis — dissociation of the part of water molecules to radicals H? and ?OH. The value of the energy loss can be evaluated by using the concentration of hydrogen peroxide which appears in the water as a result of cross?recombination of radicals ?OH+?OH=H2O2. Data previously obtained by different authors were used for the present analysis. Data for fresh water and also for water with dissolved gases were considered. Data covered a sound frequency range from 1.5 kHz to 2 MHz and sound pressure amplitudes 0.6–2.5 atm for normal static pressure and a water temperature of 20?°C. It is shown that the rate of increasing hydrogen peroxide concentration is proportional to the intensity of sound. The rate is also propor? tional to the concentration of dissolved oxygen and argon in water while other gases (hydrogen

Dmitry A. Selivanovsky; Grigory A. Domrachev

1995-01-01T23:59:59.000Z

382

Hadley Cell Dynamics in a Virtually Dry Snowball Earth Atmosphere  

Science Conference Proceedings (OSTI)

The Hadley cell of a virtually dry snowball Earth atmosphere under equinox insolation is studied in a comprehensive atmospheric general circulation model. In contrast to the Hadley cell of modern Earth, momentum transport by dry convection, which ...

Aiko Voigt; Isaac M. Held; Jochem Marotzke

2012-01-01T23:59:59.000Z

383

Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

384

California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

385

California State Offshore Dry Natural Gas Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) California State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

386

Dry Cask Storage Probabilistic Risk Assessment Scoping Study  

Science Conference Proceedings (OSTI)

This report describes and evaluates the current state of risk assessment methodologies applicable to dry cask storage probabilistic risk assessment (PRA) and suggests appropriate approaches for performing the various aspects of a dry cask storage PRA.

2002-03-20T23:59:59.000Z

387

Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that was designed to dry the irradiated fuel rods which were previously stored underwater in the K-Basins. Upon completion of the drying process in the CVDF, the MCOs,...

388

Managing Aging Effects on Dry Cask Storage Systems for Extended...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 Managing Aging Effects on Dry Cask Storage Systems for...

389

Property:Dry Mass(kg) | Open Energy Information  

Open Energy Info (EERE)

Mass(kg) Jump to: navigation, search Property Name Dry Mass(kg) Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:DryMass(kg)&oldid623736"...

390

Property:Dry Mass (kg) | Open Energy Information  

Open Energy Info (EERE)

Mass (kg) Jump to: navigation, search Property Name Dry Mass (kg) Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:DryMass(kg)&oldid642179"...

391

Texas - RRC District 3 Onshore Dry Natural Gas Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

392

Hot dry rock geothermal reservoir testing: 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. This report traces reservoir growth as demonstrated during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266 m/sup 3/. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D.; Cremer, G.M. (eds.)

1981-11-01T23:59:59.000Z

393

Cumulative experience of the US Hot Dry Rock Program  

DOE Green Energy (OSTI)

In over 20 years of research on the Hot Dry Rock (HDR) geothermal energy concept at Los Alamos National Laboratory, no obstacle has yet been found that would prevent its development as a major new energy source for the nation. To put the continuing development of the HDR concept in perspective, the most appropriate comparison is with fusion energy, the only other nonrenewable energy resource of the magnitude of HDR geothermal energy. In this context, research on fusion energy is currently so far from the demonstration stage that obstacles to its ultimate commercial development, such as induced radiation or neutron damage to structural materials, cannot yet be addressed from the standpoint of engineered solutions. For the commercialization of the HDR concept, on the other hand, we know what technical problems remain and are presently developing engineered solutions to address each of them. This document presents learned information on: the formation of HDR reservoirs; the structure of the deep precambrian basement; the mechanics of creating an HDR geothermal reservoir; peripheral water loss from deep HDR reservoirs; the determination of the size, orientation, and internal structure of the stimulated HDR region; and results from geochemical analyses and tracer testing.

Brown, D.W.

1993-01-01T23:59:59.000Z

394

Cumulative experience of the US Hot Dry Rock Program  

DOE Green Energy (OSTI)

In over 20 years of research on the Hot Dry Rock (HDR) geothermal energy concept at Los Alamos National Laboratory, no obstacle has yet been found that would prevent its development as a major new energy source for the nation. To put the continuing development of the HDR concept in perspective, the most appropriate comparison is with fusion energy, the only other nonrenewable energy resource of the magnitude of HDR geothermal energy. In this context, research on fusion energy is currently so far from the demonstration stage that obstacles to its ultimate commercial development, such as induced radiation or neutron damage to structural materials, cannot yet be addressed from the standpoint of engineered solutions. For the commercialization of the HDR concept, on the other hand, we know what technical problems remain and are presently developing engineered solutions to address each of them. This document presents learned information on: the formation of HDR reservoirs; the structure of the deep precambrian basement; the mechanics of creating an HDR geothermal reservoir; peripheral water loss from deep HDR reservoirs; the determination of the size, orientation, and internal structure of the stimulated HDR region; and results from geochemical analyses and tracer testing.

Brown, D.W.

1993-04-01T23:59:59.000Z

395

Dry Granulation of Molten Blast Furnace Slag and Heat Recovery ...  

Science Conference Proceedings (OSTI)

Meeting the Materials Challenges to Enable Clean Coal Technologies ... Study on Drying Characteristics of Australian Brown Coal Using Superheated Steam.

396

DRI Model of the U.S. Economy -- Model Documentation:  

Reports and Publications (EIA)

Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.

Information Center

1993-12-01T23:59:59.000Z

397

Structural anisotropy of directionally dried colloids  

E-Print Network (OSTI)

Aqueous colloidal dispersions of silica particles become anisotropic when they are dried through evaporation. This anisotropy is generated by a uniaxial strain of the liquid dispersions as they are compressed by the flow of water toward a solidification front. Part of the strain produced by the compression is relaxed, and part of it is stored and transferred to the solid. This stored elastic strain has consequences for the properties of the solid, where it may facilitate the nucleation of cracks and shear bands and influence the direction of their propagation.

François Boulogne; Ludovic Pauchard; Frédérique Giorgiutti-Dauphiné; Robert Botet; Ralf Schweins; Michael Sztucki; Joaquim Li; Bernard Cabane; Lucas Goehring

2013-09-04T23:59:59.000Z

398

System Losses and Assessment Trade Study  

SciTech Connect

This Advanced Fuel Cycle Initiative (AFCI) study has developed new analysis methods to examine old and new technology options toward the goal of improving fuel cycle systems. We have integrated participants and information from AFCI Systems Analysis, Transmutation Fuels, Separations, and Waste Form Campaigns in the Systems Losses and Assessment Trade Study. The initial objectives of this study were to 1) increase understanding of system interdependencies and thereby identify system trade-offs that may yield important insights, 2) define impacts of separations product purity on fuel manufacture and transmutation reactivity, 3) define impacts from transuranic (TRU) losses to waste, 4) identify the interrelationships involved in fuels and separations technology performance, and 5) identify system configuration adjustments with the greatest potential for influencing system losses. While bounding and analyzing this initial problem, we also identified significantly higher-level programmatic drivers with broad implications to the current fuel cycle research charter and the general issue of a DOE complex wide need for a comprehensive and integrated nuclear material management as addressed by the new DOE Order 410.2 titled “Management of Nuclear Materials”. The initial modeling effort developed in this study for a much smaller subset of material (i.e., commercial fuel) and a selected transmutation scheme (i.e., fast reactor recycling) is a necessary first step towards examining a broader set of nuclear material management options, dispositioning strategies and integrated waste management options including potential areas of research leverage. The primary outcome from this initial study has been an enhanced integration among Campaigns and associated insights and analysis methods. Opportunities for improved understanding between the groups abound. The above lanthanide-actinide example highlights the importance of evaluating options via integration across the Campaigns. Plans for Fiscal Year 2010 are being made in a coordinated fashion such that the knowledge gained from the research performed by the Campaigns can benefit on-going work of the study, and that improved understanding of the system relationships can be used to guide the specific research and development (R&D) activities within the Campaigns. In FY-10, the System Losses and Assessment Trade Study will carry-over activities from FY-09. We will continue to refine impurity and loss estimates and impurity limits on fuels by incorporating results from ongoing R&D. And we will begin work on an enhanced nuclear material management model to allow us to continue to improve our overall system understanding of the trade-offs between separations, fuel fabrication, waste forms, waste disposition, SNM losses, reactor performance, and proliferation resistance. In the future, we can also better understand how used fuel and other forms of remote-handled SNM can be better integrated into an overall nuclear material management program that will evolve for the DOE complex via Order 410.2 (DOE 2009).

David Shropshire; Steve Piet; Nick Soelberg; Robert Cherry; Roger Henry; David Meikrantz; Greg Teske; Eric Shaber; Candido Pereira

2009-09-01T23:59:59.000Z

399

Characterizing and Controlling Beam Losses at the LANSCE Facility  

SciTech Connect

The Los Alamos Neutron Science Center (LANSCE) currently provides 100-MeV H{sup +} and 800-MeV H{sup -} beams to several user facilities that have distinct beam requirements, e.g. intensity, micropulse pattern, duty factor, etc. Minimizing beam loss is critical to achieving good performance and reliable operation, but can be challenging in the context of simultaneous multi-beam delivery. This presentation will discuss various aspects related to the observation, characterization and minimization of beam loss associated with normal production beam operations in the linac.

Rybarcyk, Lawrence J. [Los Alamos National Laboratory

2012-09-12T23:59:59.000Z

400

Energy Loss in Nuclear Drell-Yan Process  

E-Print Network (OSTI)

By means of the nuclear parton distributions which can be used to provide a good explanation for the EMC effect in the whole x range, we investigate the energy loss effect in nuclear Drell-Yan process. When the cross section of lepton pair production is considered varying with the center-of-mass energy of the nucleon-nucleon collision, we find that the nuclear Drell-Yan(DY) ratio is suppressed due to the energy loss, which balances the overestimate of the DY ratio only in consideration of the effect of nuclear parton distributions.

Jian-Jun Yang; Guang-Lie Li

1998-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gelcasting compositions having improved drying characteristics and machinability  

DOE Patents (OSTI)

A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

Janney, Mark A. (Knoxville, TN); Walls, Claudia A. H. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

402

Mechanical model for ductility loss  

Science Conference Proceedings (OSTI)

A mechanical model was constructed to probe into the mechanism of ductility loss. Fracture criterion based on critical localized deformation was undertaken. Two microstructure variables were considered in the model. Namely, the strength ratio of grain boundary affected area to the matrix, ..cap omega.., and the linear fraction, x, of grain boundary affected area. A parametrical study was carried out. The study shows that the ductility is very sensitive to those microstructure parameters. The functional dependence of ductility to temperature as well as strain-rate, suggested by the model, is demonstrated to be consistent with the observation.

Hu, W.L.

1980-02-11T23:59:59.000Z

403

Economics of dry FGD by sorbent injection  

SciTech Connect

Increasingly stringent pollution control requirements for new power plants have nearly doubled the cost of producing electricity. The capital, operating and maintenance costs of wet flue gas desulfurization (FGD) systems are major, and considerable interest is currently being given to less expensive dry systems. One attractive alternative to wet scrubbing for FGD is to inject a dry, powdered reagent into the duct work between a coal-fired boiler and a FF (baghouse). The reagent (and fly ash) are collected on the fabric surface where the SO/sub 2//reagent contact occurs. The technical aspects of SO/sub 2/ removal using nahcolite and trona as sorbents have been investigated at laboratory-scale, demonstrated at full-scale, and are reported on briefly. These results indicate that injection of sodium based reagents is technically an attractive alternative to the many steps and processes involved in wet scrubbing. This paper summarizes a project to examine the economics of nahcolite/trona and furnace limestone injection FGD and compare them to those of the more advanced spray dryer FGD systems. Uncertainties in material handling, pulverization, and waste disposal were investigated and designs were produced as a basis for cost estimating.

Naulty, D.J.; Hooper, R.; Keeth, R.J.; McDowell, D.A.; Muzio, L.J.; Scheck, R.W.

1983-11-01T23:59:59.000Z

404

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect

This is the seventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Coal drying experiments were performed with lignite and Powder River Basin coals to determine the effects of inlet air moisture level on the equilibrium relationship between coal moisture and exit air relative humidity and temperature. The results show that, for lignite, there is a slight dependence of equilibrium moisture on inlet humidity level. However, the equilibrium relationship for PRB coal appears to be independent of inlet air humidity level. The specific equilibrium model used for computing lignite coal dryer performance has a significant effect on the prediction accuracy for exit air relative humidity; but its effects on predicted coal product moisture, exit air temperature and specific humidity are minimal. Analyses were performed to determine the effect of lignite product moisture on unit performance for a high temperature drying system. With this process design, energy for drying is obtained from the hot flue gas entering the air preheater and the hot circulating cooling water leaving the steam condenser. Comparisons were made to the same boiler operating with lignite which had been dried off-site.

Edward K. Levy; Nenad Sarunac; Wei Zhang

2004-10-01T23:59:59.000Z

405

Scheduling Workover Rigs for Onshore Oil Production  

E-Print Network (OSTI)

available workover rigs, so as to minimize the production loss associated with the ... novic [5, 6, 7] is based on the exploration of a dynamic neighborhood model.

406

Engineering and cost analysis of a dry cooling system augmented with a thermal storage pond  

DOE Green Energy (OSTI)

An engineering and cost study of the capacitive thermal storage pond added to a state-of-the-art dry cooling system is described. The purpose of the study was to assess the potential for reducing the cost of all-dry cooling for thermal electric power plants using a dry cooling system that includes a thermal storage pond. Using the modified BNW-I computer code, the effect of varying significant design parameters was investigated. The parametric study included studying the effects of varying turbine type, pond size, replacement energy costing, capacity penalty methodology, pond location with respect to the dry cooling tower, design temperature, and site location (meteorology). Incremental power production costs for dry cooling (i.e., the portion of the cost of bus-bar electricity from the plant which is attributable to the cost of building and operating the heat rejection system) with a thermal storage pond system were determined for meteorologies of both Wyodak, Wyoming and Phoenix, Arizona. For Wyodak the incremental cost of dry cooling with a thermal storage pond was 2.81 mills/kWh as compared to 2.55 mills/kWh for a system without a thermal storage pond. For Phoenix the incremental cost of dry cooling with a thermal storage pond was 3.66 mills/kWh as compared to 4.31 mills/kWh for a system without a thermal storage pond. If the use of a modified conventional turbine with the dry-cooled system is stipulated in order to stay with proven technology for large turbines, then results of this study show that in extremely hot climates the thermal storage pond can reduce the cost of dry cooling. If no cost penalty is assigned to high back pressure turbines and it can be used, then the thermal storage pond has no advantage in hot climates. However, collateral use of the pond for makeup or emergency cooling water storage may decreae the cost. (LCL)

Drost, M.K.; Allemann, R.T.

1978-09-01T23:59:59.000Z

407

Hot dry rock fracture propagation and reservoir characterization  

DOE Green Energy (OSTI)

North America's largest hydraulic fracturing opeations have been conducted at Fenton hill, New mexico to creae hot dry rock geothermal reservoirs. Microearthquakes induced by these fracturing operations were measured with geophones. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the pre-existing joints are oriented at angles between 30 and 60)degree) to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. Field testing of HDR reservoirs at the Fenton Hill site shows that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area. These temporal increases indicate that augmentation of reservoir heat production capacity in hot dry rock system occurred. For future reservoir testing, Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts. Recent studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene, which can be used in reservoirs as hot as 275)degree)C.

Murphy, H.; Fehler, M.; Robinson, B.; Tester, J.; Potter, R.; Birdsell, S.

1988-01-01T23:59:59.000Z

408

Expectations for a second US Hot Dry Rock Site  

DOE Green Energy (OSTI)

The worlds first hot dry rock (HDR) reservoir was created at Fenton Hill, NM in the late 1970`s. Today, Fenton Hill is the site of the largest, deepest, and hottest HDR reservoir. Over the past two decades, HDR systems have also been developed in a number of other countries. However, HDR reservoirs to date have always been created as part of research and development programs aimed at understanding the fundamentals of HDR technology. The time has come to begin planning the construction of a commercial-scale facility which will show the world that HDR can be a practical source of power. The second domestic HDR facility should demonstrate that commercial production of energy from HDR is feasible at a variety of locations. Day-today operating data should provide the cost figures needed in order to unambiguously design and build future commercial HDR power production plants. Successful construction and operation of the second HDR plant will both supply needed electric power at competitive costs and set the stage for the widespread application of HDR technology both domestically and throughout the world. If preliminary work is begun promptly, it should be possible to develop a fully operational second site by 1997. The Clearlake region of northern California may be an ideal area in which to locate the second HDR site.

Duchane, D.V.

1993-04-01T23:59:59.000Z

409

Expectations for a second US Hot Dry Rock Site  

DOE Green Energy (OSTI)

The worlds first hot dry rock (HDR) reservoir was created at Fenton Hill, NM in the late 1970's. Today, Fenton Hill is the site of the largest, deepest, and hottest HDR reservoir. Over the past two decades, HDR systems have also been developed in a number of other countries. However, HDR reservoirs to date have always been created as part of research and development programs aimed at understanding the fundamentals of HDR technology. The time has come to begin planning the construction of a commercial-scale facility which will show the world that HDR can be a practical source of power. The second domestic HDR facility should demonstrate that commercial production of energy from HDR is feasible at a variety of locations. Day-today operating data should provide the cost figures needed in order to unambiguously design and build future commercial HDR power production plants. Successful construction and operation of the second HDR plant will both supply needed electric power at competitive costs and set the stage for the widespread application of HDR technology both domestically and throughout the world. If preliminary work is begun promptly, it should be possible to develop a fully operational second site by 1997. The Clearlake region of northern California may be an ideal area in which to locate the second HDR site.

Duchane, D.V.

1993-01-01T23:59:59.000Z

410

Hot dry rock: A climate change action opportunity for industry  

DOE Green Energy (OSTI)

Geothermal resources in the form of heat found in rock that is hot but is not in contact with sufficient mobile fluid to transport that heat to the surface are a large, as yet virtually unexploited, source of clean energy. The technology to extract useful amounts of energy from this ubiquitous hot dry rock (HDR) geothermal resource has been under development for more than twenty years. During the last two years, flow testing at the Fenton Hill HDR pilot facility in New Mexico has answered many of the questions about the viability of HDR heat mining. While the most important issue of thermal longevity of the artificial geothermal reservoir that is the heart of an HDR energy system was not fully resolved, the test results provided good reasons to be optimistic that such reservoirs can have long lifetimes. No decline was observed in the temperature of the fluid produced during the relatively short test period and tracer testing indicated that the reservoir may be thermally self sustaining. In addition, water consumption during the circulation test was reduced to very low levels, the production of significant excess energy over that required simply to operate the system was verified, and routine energy production with virtually no emissions to the environment, except waste heat, was demonstrated.

Duchane, D.V.

1994-07-01T23:59:59.000Z

411

Clayburn Dri-Barrier Mix - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 2003 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description CLAYBURN ...

412

Spent Fuel Drying System Test Results (Dry-Run in Preparation for Run 8)  

Science Conference Proceedings (OSTI)

The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL)(a)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of a test ''dry-run'' conducted prior to the eighth and last of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister6513U. The system used for the dry-run test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. The experimental results are provided in Section 4.0 and discussed Section 5.0.

BM Oliver; GS Klinger; J Abrefah; SC Marschman; PJ MacFarlan; GA Ritter

1999-08-11T23:59:59.000Z

413

Loss mechanisms in turbine tip clearance flows  

E-Print Network (OSTI)

Numerical simulations of tip clearance ow have been carried out to dene the loss generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix- ing loss between the leakage, which takes the form of a ...

Huang, Arthur (Arthur C.)

2011-01-01T23:59:59.000Z

414

System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)  

SciTech Connect

This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models don’t like “TBD” as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of “modified open fuel” cycles, employing “minimum fuel treatment” as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.

Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

2010-09-01T23:59:59.000Z

415

Louisiana Wetland Loss Fact at Askives  

U.S. Energy Information Administration (EIA)

Louisiana Wetland Loss Fact? - Find Questions and Answers at Askives, the first startup that gives you an straight answer

416

Dry lubricant films for aluminum forming.  

DOE Green Energy (OSTI)

During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

Wei, J.; Erdemir, A.; Fenske, G. R.

1999-03-30T23:59:59.000Z

417

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

418

Hot Dry Rock Overview at Los Alamos  

DOE Green Energy (OSTI)

The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

Berger, Michael; Hendron, Robert H.

1989-03-21T23:59:59.000Z

419

Corona losses dependence from the conductor diameter  

Science Conference Proceedings (OSTI)

This paper presents possibility to decrease the corona power losses in overhead transmission lines. Corona power losses can be reduced by increasing the diameter of the conductor and used bundled conductors per phase. The objectives were to determine ... Keywords: corona model, critical disruptive voltage, electric discharge, electric field, power losses, transmission line

Isuf Krasniqi; Vjollca Komoni; Avni Alidemaj; Gazmend Kabashi

2011-10-01T23:59:59.000Z

420

Shield Losses in Medium-Voltage Cables  

Science Conference Proceedings (OSTI)

Utilities can substantially reduce cable costs and circulating current losses by optimizing the design of concentric neutral conductors for underground distribution cables and by configuring installed cables to minimize energy loss. This guide shows how to design neutral conductors for maximum cost-effectiveness and includes calculations of circulating current losses and ampacities for commonly used cables.

1987-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Technologies Office: Guides and Case Studies for Hot-Dry and  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry and Mixed-Dry Climates to someone by E-mail Dry and Mixed-Dry Climates to someone by E-mail Share Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Facebook Tweet about Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Twitter Bookmark Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Google Bookmark Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Delicious Rank Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on Digg Find More places to share Building Technologies Office: Guides and Case Studies for Hot-Dry and Mixed-Dry Climates on AddThis.com... About Take Action to Save Energy Partner With DOE

422

Induction machine stray loss from inter-bar currents  

E-Print Network (OSTI)

Stray load loss refers generally to the sources of induction machine loss not accounted for by typical calculations of primary or secondary copper loss, no load core loss, or friction and windage loss. Harmonic rotor bar ...

Englebretson, Steven Carl

2009-01-01T23:59:59.000Z

423

Study of Heat Loss: Commercial and Residential  

E-Print Network (OSTI)

There is much savings involved in the prevention of heat loss. Many structures exhibit such loss. Much can be done to improve or minimize the heat loss in a structure. These include interior and exterior modifications. It has been shown that heat can move by means of convection, conduction, and radiation. Problems with heat loss can be due to moisture, and poor construction techniques. There is a beneficial cost savings involved in the prevention of heat loss. Prevention techniques include insulation, caulking, weather stripping, and double pane windows. There are tables available for one to reference and calculate the return on their investment or “payback tim”

Emmett Ientilucci

1995-01-01T23:59:59.000Z

424

On the Information Loss in Static Systems  

E-Print Network (OSTI)

In this work we give a concise definition of information loss from a system-theoretic point of view. Based on this definition, we analyze the information loss in static input-output systems subject to a continuous-valued input. For a certain class of multiple-input, multiple-output systems the information loss is quantified. An interpretation of this loss is accompanied by upper bounds which are simple to evaluate. Finally, a class of systems is identified for which the information loss is necessarily infinite. Quantizers and limiters are shown to belong to this class.

Geiger, Bernhard C

2011-01-01T23:59:59.000Z

425

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

426

California - Coastal Region Onshore Dry Natural Gas Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

427

Factors affecting quality of dried low-rank coals  

SciTech Connect

The chemical and physical properties of coal are strongly affected by the upgrading process employed. For high-moisture coals, upgrading involves thermal dehydration to improve the calorific value of the coal on mass basis. This study evaluates the feasibility of upgrading a low-rank/grade coal using the oven drying method. The objective of this research work is to study the drying characteristics of low-rank coals and to understand the factors affecting the quality of dried low-rank coals. This article describes laboratory experiments conducted on the characterization of the low-rank coals before and after the drying process. The results on drying kinetics, re-absorption of coal samples, and proximate analysis of coal samples before and after drying are discussed. It was found that the upgrading process produced coal with better heating value and combustion characteristics than those of the raw coal samples.

Karthikeyan, M.; Kuma, J.V.M.; Hoe, C.S.; Ngo, D.L.Y. [National University of Singapore, (Singapore)

2007-07-01T23:59:59.000Z

428

California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

429

Continuous blending of dry pharmaceutical powders  

E-Print Network (OSTI)

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

430

CNST NanoFab Equipment - Dry Etch  

Science Conference Proceedings (OSTI)

... Features: Milling of metals (such as Au, Co, Cu, Fe, Ir, Mn, Ni, Permalloy, Pd, Pt ... SIMS can detect the composition of ion mill by-products for up to four ...

2013-04-05T23:59:59.000Z

431

Dry sorbent injection may serve as a key pollution control ...  

U.S. Energy Information Administration (EIA)

Dry sorbent injection (DSI) is a pollution control technology that may play a role in the United States' electric power sector's compliance with the Mercury and Air ...

432

California Federal Offshore Dry Natural Gas New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Federal Offshore Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

433

,"California Dry Natural Gas Reserves New Field Discoveries ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2011...

434

,"California Dry Natural Gas New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

435

,"California Dry Natural Gas Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011...

436

,"California Dry Natural Gas Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011...

437

TIP Project Brief100019 Atmospheric Spray Freeze Dried ...  

Science Conference Proceedings (OSTI)

Page 1. TIP Project Brief – 100019/11H003 Manufacturing Atmospheric Spray Freeze Dried Powder Process Advancement and Scale-Up ...

2011-11-07T23:59:59.000Z

438

,"Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

439

Study on Drying Characteristics of Australian Brown Coal Using ...  

Science Conference Proceedings (OSTI)

Victorian brown coal in Australia has over 60wt% moisture content and, when dried, it becomes highly reactive. Due to the difficulty in transporting it, brown coal

440

,"California State Offshore Dry Natural Gas Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

442

,"California - Coastal Region Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

443

,"California - Los Angeles Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

444

,"California Federal Offshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Dry Natural Gas Proved Reserves (Billion Cubic...

445

A class of moving boundary problems arising in drying processes  

Science Conference Proceedings (OSTI)

Keywords: drying processes, heat and mass transfer, moving boundary value problems, multiphase flows in porous media, quasilinear parabolic systems, wellposedness of solutions

M. Ilic

1992-10-01T23:59:59.000Z

446

Hydrogen storage materials and method of making by dry homogenation  

DOE Green Energy (OSTI)

Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

Jensen, Craig M. (Kailua, HI); Zidan, Ragaiy A. (Honolulu, HI)

2002-01-01T23:59:59.000Z

447

,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

448

,"Texas Dry Natural Gas Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011...

449

,"Texas Dry Natural Gas Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011...

450

Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...  

Gasoline and Diesel Fuel Update (EIA)

Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Percent)...

451

Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade...

452

,"New Mexico Dry Natural Gas Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

453

,"New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

454

,"New Mexico Dry Natural Gas Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011...

455

,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

456

,"New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

457

,"New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

458

,"New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

459

,"New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011...

460

,"Texas - RRC District 3 Onshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Texas State Offshore Dry Natural Gas Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011...

462

,"Texas - RRC District 4 Onshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

463

,"Texas - RRC District 2 Onshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

464

,"Texas Dry Natural Gas Proved Reserves (Billion Cubic Feet)...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

465

Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah  

DOE Green Energy (OSTI)

The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

1983-08-01T23:59:59.000Z

466

DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the specific design chosen (see Assumption 3.4). A more current design will be included in the next revision of the criticality calculations for the Aging Facility. In addition, this calculation is valid for the current design as provided in Attachment III of the DTF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document.

C.E. Sanders

2005-05-17T23:59:59.000Z

467

FEASIBILITY AND CONCEPTUAL DESIGN FOR THE STEP LOSS OF COOLANT FACILITY  

SciTech Connect

A summary of studies conducted on the pressurizedwater reactor loss-of- coolant accident is presented, and an experimental safety program is proposed. The various phenomena involved in the loss-of-coolant accident, related research and development programs, assumptions currently used to predict the various physical phenomena, and the general approach to be used in conducting the safety tests are discussed. In order to accomplish the loss-of-coolant experimental safety program, a dry containment test facility is proposed for construction at the Test Area North of the National Reactor Testing Station in Idaho. The site selection utilizes existing support facilities suited for performing nuclear safety tests requiring experiment assembly areas and post-test analytical examination of the irradiated nuclear components. (auth)

Wilson, T.R.; Hauge, O.M.; Matheney, G.B.

1963-04-24T23:59:59.000Z

468

NREL: Learning - Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

469

Hot Dry Rock at Fenton Hill, USA  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program, operated by the Los Alamos National Laboratory, has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the Precambrian basement rock at Fenton Hill, outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase 1, 1978--1980) producing up to 5 MWt at 132/degree/C. A second (Phase 2) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/degree/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development. 17 refs., 3 figs., 1 tab.

Hendron, R.H.

1988-01-01T23:59:59.000Z

470

The US Hot Dry Rock project  

DOE Green Energy (OSTI)

The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

Hendron, R.H.

1987-01-01T23:59:59.000Z

471

Beam Loss due to Foil Scattering in the SNS Accumulator Ring  

Science Conference Proceedings (OSTI)

In order to better understand the contribution of scattering from the primary stripper foil to losses in the SNS ring, we have carried out calculations using the ORBIT Code aimed at evaluating these losses. These calculations indicate that the probability of beam loss within one turn following a foil hit is ~1.8 10-8 , where is the foil thickness in g/cm2, assuming a carbon foil. Thus, for a typical SNS stripper foil of thickness = 390 g/cm2, the probability of loss within one turn of a foil hit is ~7.0 10-6. This note describes the calculations used to arrive at this result, presents the distribution of these losses around the SNS ring, and compares the calculated results with observed ring losses for a well-tuned production beam.

Holmes, Jeffrey A [ORNL; Plum, Michael A [ORNL

2012-01-01T23:59:59.000Z

472

Hot dry rock heat mining: An alternative energy progress report  

DOE Green Energy (OSTI)

Mining Heat from the hot dry rock (HDR) resource that lies beneath the earth's crust may provide an almost inexhaustible supply of energy for mankind with minimal environmental effects. In the heat mining process, water is pumped down an injection well into a mass of hydraulically fractured hot rock. As the water flows under high pressure through the opened rock joints, it becomes heated by the rock. It is returned to the surface through a production well (or wells) located some distance from the injector where its thermal energy is recovered by a heat exchanger. The same water is then recirculated through the system to extract more thermal energy. In this closed-loop process, nothing but heat is released to the environment during normal operation. The technical feasibility of HDR heat mining already has been proven by field testing. A long-term flow test is scheduled to begin in 1991 at the world's largest HDR heat mine in New Mexico, USA, to demonstrate that energy can be produced from HDR on a continuous basis over an extended time period. Significant HDR programs are also underway in several other countries. The paper describes the HDR resource, the heat mining concept, environmental characteristics, economics, developments at Los Alamos to date, and HDR development outside the US. 15 refs., 5 figs., 2 tabs.

Duchane, D.V.

1991-01-01T23:59:59.000Z

473

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2002-10-01T23:59:59.000Z

474

Vehicle Technologies Office: Parasitic Loss Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Parasitic Loss Reduction Parasitic Loss Reduction Heavy vehicles lose a tremendous amount of energy to wind resistance and drag, braking, and rolling resistance. Such non-engine losses can account for an approximate 45% decrease in efficiency. Other sources of energy loss include: friction and wear in the power train, thermal (heat) loads, operation of auxiliary loads (air conditioning, heaters, refrigeration, etc.), and engine idling. The parasitic loss activity identifies methodologies that may reduce energy losses, and tests those in the laboratory. Promising technologies are then prototyped and tested onboard heavy vehicles. Once validated, technologies must be tested on-road to obtain durability, reliability, and life-cycle cost data for the developmental component and/or design strategy.

475

Modeling of tomato drying using artificial neural network  

Science Conference Proceedings (OSTI)

This study involves experimental works on drying of tomatoes in a tray dryer covering different variables like power of heater and air flow velocity. The data are modeled using artificial neural network and empirical mathematical equations. The results ... Keywords: Artificial neural network, Curve fitting, Drying, Mathematical model

Kamyar Movagharnejad; Maryam Nikzad

2007-11-01T23:59:59.000Z

476

Advances in solar assisted drying systems for agricultural produce  

Science Conference Proceedings (OSTI)

The technical directions in the development of solar assisted drying systems system for agricultural produce are compact collector design, high efficiency, integrated storage, and long-life drying system. Air based solar collectors are not the only available ... Keywords: V-groove solar collector, double-pass solar collector, photovoltaic thermal collectors, solar assisted chemical heat pump system, solar dehumidification system

Kamaruzzaman Sopian; Mohd Yusof Sulaiman; Mohd Yusof Othman; Sohif Mat; Muhamad Yahya; Mohamad A. Alghoul; Baharudin Ali; Lim Chin Haw; Mohd Hafidz Ruslan; Azami Zaharim

2009-02-01T23:59:59.000Z

477

Modified horizontal solar collector for low temperature grain drying  

DOE Green Energy (OSTI)

The project consisted of constructing a horizontal solar collector with a small amount of rock storage integrated into the collector air stream. The collected energy was used to dry corn in a 6000 bushel low-temperature drying facility. The collector proved to be economically feasible to build and collected sufficient energy to show a reasonable return on the investment.

None

1980-01-27T23:59:59.000Z

478

Numerical Simulation of Dry Ice Cloud Seeding Experiments  

Science Conference Proceedings (OSTI)

The application of a two-dimensional, time-dependent cloud model to describe the effects of dry ice cloud seeding is demonstrated. A conservation equation and associated auxiliary equations for the mixing ratio of dry ice (CO2) are presented. The ...

Fred J. Kopp; Harold D. Orville; Richard D. Farley; John H. Hirsch

1983-09-01T23:59:59.000Z

479

The effect of drying temperature on the composition of biomass  

DOE Green Energy (OSTI)

The compositional quality of different lignocellulosic feedstocks influences their performance and potential demand at a biorefinery. Many analytical protocols for determining the composition or performance characteristics of biomass involve a drying step, where the drying temperature can vary depending on the specific protocol. To get reliable data, it is important to determine the correct drying temperature to vaporize the water without negatively impacting the compositional quality of the biomass. A comparison of drying temperature between 45 degrees C and 100 degrees C was performed using wheat straw and corn stover. Near-infrared (NIR) spectra were taken of the dried samples and compared using principal component analysis (PCA). Carbohydrates were analyzed using quantitative saccharification to determine sugar degradation. Analysis of variance was used to determine if there was a significant difference between drying at different temperatures. PCA showed an obvious separation in samples dried at different temperatures due to sample water content. However, quantitative saccharification data shows, within a 95% confidence interval, that there is no significant difference in sugar content for drying temperatures up to 100 degrees C for wheat straw and corn stover.

Houghton, T.P.; Stevens, D.N.; Wright, C.T.; Radtke, C.W.

2008-05-01T23:59:59.000Z

480

Stacker-reclaimer scheduling in a dry bulk terminal  

Science Conference Proceedings (OSTI)

A dry bulk terminal acts as a multi-modal interface for transhipping iron ores. Stacker-reclaimers are the dedicated equipments in storage yard for iron ore handling. Both unloading and loading processes are supported by stacker-reclaimers in most cases. ... Keywords: dry bulk terminal, genetic algorithm, lower bound, stacker-reclaimer scheduling

Dayong Hu; Zhenqiang Yao

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "loss dry production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Management of nitrogen and composted biosolids to cycle nutrients and enhance environmental quality during production and after transplanting turfgrass sod  

E-Print Network (OSTI)

Land application of large, volume-based rates of municipal biosolids (MB) enhances soil physical properties and provides an alternative to disposal in landfills. Yet, topdressing or incorporation of the volume-based rates can increase non-point source losses of sediment and nutrients from excavated soils to surface waters. Research objectives were developed to evaluate the options for cycling of MB through turfgrass sod during production and after transplanting. The first objective was to compare the production of Tifway bermudagrass sod between fields grown with and without MB under increasing rates of supplemental fertilizer N. The second objective was to compare runoff losses between soils constructed with and without MB before planting to sprigs or sod transplanted from turfgrass grown in soil with and without incorporation of MB. Incorporation of 25% by volume of MB in soil enhanced (p < 0.001) turfgrass coverage of the soil surface compared to soil without MB. In addition, amending soil with MB reduced wet and dry sod weights (p < 0.001) and increased soil water content (p < 0.001) at harvest compared to sod without MB. Runoff concentrations and mass loss of total dissolved P (TDP) were significantly greater (P=0.001) for MB-amended compared to un-amended sod. In addition, a linear relationship (R2 = 0.94) was observed between water extractable soil P within the 0- to 2-cm depth and concentrations and mass loss of TDP in runoff. Similarly, runoff loss of NO3-N was greater (P = 0.05) for soil mixed with 25% by volume of MB than soil alone and variation of NO3-N loss among treatments was directly related to soil NO3-N concentration within the 0- to 5-cm depth. In contrast, runoff concentrations of NH4-N were directly related to inputs of N from turf clippings returned to soil rather than soil NH4-N concentrations. Total Kjeldahl N (TKN) concentration in runoff was unrelated to soil N concentrations, but was linearly related to mass loss of sediment in runoff. Transplanted sod reduced sediment loss compared to sprigged soil during turfgrass establishment and MB-amended soil reduced sediment loss compared to soil without MB. In addition, the MB imported in sod or incorporated in soil before sprigging increased soil organic carbon and mean soil water content compared to sod or soil without MB over a 92 day period. Incorporation of MB within soil prior to planting fertilizer grown turfgrass sod enhanced water conservation and reduced nutrient loss compared to planting MB-grown sod on un-amended soils.

Schnell, Ronnie Wayne

2007-05-01T23:59:59.000Z

482

Innovative Drying Technology Extracts More Energy from High Moisture Coal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Drying Technology Extracts More Energy from High Innovative Drying Technology Extracts More Energy from High Moisture Coal Innovative Drying Technology Extracts More Energy from High Moisture Coal March 11, 2010 - 12:00pm Addthis Washington, DC - An innovative coal-drying technology that will extract more energy from high moisture coal at less cost and simultaneously reduce potentially harmful emissions is ready for commercial use after successful testing at a Minnesota electric utility. The DryFining(TM) technology was developed with funding from the first round of the U.S. Department of Energy's Clean Coal Power Initiative (CCPI). Great River Energy of Maple Grove, Minn., has selected the WorleyParsons Group to exclusively distribute licenses for the technology, which essentially uses waste heat from a power plant to reduce moisture content

483

Community Geothermal Technology Program: Experimental lumber drying kiln. Final report  

DOE Green Energy (OSTI)

Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

Leaman, D.; Irwin, B.

1989-10-01T23:59:59.000Z

484

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

485

Reduce Radiation Losses from Heating Equipment  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Not Available

2006-01-01T23:59:59.000Z

486

Wetland loss dynamics in southwestern Barataria basin ...  

U.S. Energy Information Administration (EIA)

ABSTRACT We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's ...

487

Louisiana Coastal Land Loss Video Release  

U.S. Energy Information Administration (EIA)

Today, the U.S. Geological Survey National Wetlands Research Center is pleased to announce the release of a new Louisiana coastal land loss video, ...

488

Analysis of TPV Network Losses (a Presentation)  

DOE Green Energy (OSTI)

This talk focuses on the theoretical analysis of electrical losses associated with electrically networking large numbers of TPV cells to produce high power TPV power generators.

DM DePoy; MW Dashiell; DD Rahner; LR Danielson; JE Oppenlander; JL Vell; RJ Wehrer

2004-12-08T23:59:59.000Z

489

Fracturing operations in a dry geothermal reservoir  

DOE Green Energy (OSTI)

Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh downhole environment. Two deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures are in excess of 600/sup 0/F (315/sup 0/C). The wells were drilled during 1979 to 1981, inclined at 35 degrees, one above the other, and directionally drilled in an azimuthal direction orthogonal to the least principal in-situ crustal stress field. Hydraulic fracturing experiments to connect the two wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in insolation liners and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of three-dimensional fracture growth that requires very large volumes of injected water. Two fractured zones have been formed by hydraulic fracturing and defined by close-in, borehole deployed, microseismic detectors. Initial operations were focused in the injection wellbore near total depth, where water injection treatments totalling 51,000 bbls (8100 m/sup 3/) were accomplished by pumping through a cemented-in 4-1/2 in. liner/PBR assembly. Retrievable casing packers were used to inject 26,000 bbls (4100 m/sup 3/) in the upper section of the open hole. Surface injection pressures (ISIP) varied from 4000 to 5900 psi (27 to 41 MPa) and the fracture gradient ranged from 0.7 to 0.96 psi/ft.

Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.

1983-01-01T23:59:59.000Z

490

Ethanol Production Facility in Decatur,  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Facility in Decatur, Illinois. A processing plant Production Facility in Decatur, Illinois. A processing plant built for this project removes water from the CO 2 stream and then compresses the dry CO 2 to a supercritical phase. The compressed CO 2 then travels through a 1 mile-long pipeline to the wellhead where it is injected into the Mt. Simon Sandstone at a depth of about 7,000 feet. November 21, 2011, http://www.netl.doe.gov/publications/

491

Improvement of tubulars used for fracturing in hot dry rock wells  

DOE Green Energy (OSTI)

Completion of hot dry rock wells as it is currently envisioned, requires that hydraulic fracturing be used to develop a heat extraction reservoir and to provide low impedance flow paths between the designated water injection and production wells. Recent fracturing operations at measured depths from 11,400 ft to 15,300 ft at the Fenton Hill Hot Dry Rock Geothermal Test Site have resulted in numerous failures of tubulars caused by the high fracturing pressures, corrosive environment and large treatment volumes at high flow rates. Two new fracturing strings were designed and purchased. Physical and chemical properties exceeding API specifications were demanded and supplied by the manufacturers. These tubulars have performed to design specifications.

Nicholson, R.W.; Dreesen, D.S.; Turner, W.C.

1984-04-01T23:59:59.000Z

492

Summary - Hot Dry Rock R&D Strategies and Applications  

DOE Green Energy (OSTI)

In geothermal energy technology, the hydrothermal systems rely on volcanic hot rocks being fortuitously co-located with an adequate supply of natural ground water, usually at some considerable depth within the earth. This represents essentially two accidents in the same place, and the occurrence is relatively rare. Yellowstone Park and the desert valley of southern California are the most noteworthy US. examples. Since the heat is the energy needed, if we could just get the water down to it and back. Well, that's what is being done with the hot dry rock program. A well is drilled down to where there is adequate heat in the rocks. The well is then pressurized until the rock fractures creating what amounts to a reservoir full of hot, shattered rock. Finally, a well is drilled into the reservoir and water is pumped in one well, heated by the rock, and taken out through the other well at useful temperatures and pressures. We are getting ready to run significant long-term flow tests at the Fenton Hill Hot Dry Rock site west of Los Alamos, New Mexico. We expect the operational information to provide the data to forecast the energy life of the wells as a production facility. This kind of resource is much more common than regular geothermal resources. Robert H. Hendron described the Long Term Flow Test and reservoir studies for which the project is preparing. A shortfall of available funding has slowed preparations, delaying the start of that test. The test is planning to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other interests include geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to the pumping power required. Progress has been made in modeling studies, chemically reactive tracer techniques, and in improvements in acoustic or microseismic event analysis. Donald W. Brown discussed reservoir modeling as it relates to production management of the HDR well. For wells which are fracture dominated rather than matrix-permeability controlled, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (or pre-existing fractures is critical to long-term power production from the wells) through optimized pressure management. It was mentioned that a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs, or reinjection I procedures of geothermal reservoirs. Dr. Bruce A. Robinson discussed the development of fluid flow and transport models for simulation of HDR geothermal reservoirs. These models are also expected to provide accurate predictions of long-term behavior and help in the development of strategies for reservoir improvement and operation. Two approaches were discussed. The discrete fracture approach is based on a random fracture network subject to prescribed statistical properties of the fracture set. It is used to simulate steady state fluid flow and solute transport. The other approach used the continuum approximation. This type of model is appropriate when the reservoir consists of many interconnected fractures, as is the case at Fenton Hill.

Tennyson, George P..

1989-03-21T23:59:59.000Z

493

Application of Desiccant Drying in Plastic Molding  

E-Print Network (OSTI)

Desiccants are materials that have an affinity, after heating, for water vapor. Desiccant materials have long been applied in industrial processes requiring low humidity environments. A gas-fired desiccant system improved the productivity of one blowmolding process by reducing the number of defects and allowing an increase in line speed. The environmental impact of the operation improved because electrical usage did not increase incrementally and CFC usage did not change. A comparison of the efficiency of desiccant and refrigeration dehumidification is presented.

Brown, M.; Connors, G.; Moore, D.

1993-03-01T23:59:59.000Z

494

Textile drying using solarized can dryers to demonstrate the application of solar energy to industrial drying or dehydration processes, Phase II. Final report  

DOE Green Energy (OSTI)

This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated process steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46 percent of the direct isolation available to the collector field during the operational hours (300 days/year of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Over 50 percent of all woven goods are processed through slashers and dried on can dryers. The collectors were fabricated by Honeywell at a pilot production facility in Minneapolis, Minnesota, under a 3000-square-meter (32,000-square-foot) production run. The collectors and other system components were installed at the site by the Bahnson Service Company and their subcontractors, acting as the project general contractor. System checkout and start-up was conducted. Preliminary system performance was determined from data collected during start-up. System design, fabrication and installation, data analysis, operation and maintenance procedures, and specifications and drawings are presented.

Mitchell, P.D.; Beesing, M.E.; Bessler, G.L.

1979-12-01T23:59:59.000Z

495

The US Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

Recent accomplishments of the program are highlighted by a successful limited term flow test of the Phase 2 reservoir at the Fenton Hill site near Los Alamos. This reservoir connection was established by sidetracking one of the deep wells into hydraulically fractured areas, identified by microseismic data after original fracture attempts failed to connect the two wells. Hydraulic communication was improved by supplemental fracturing. Preliminary testing indicated a reservoir with fracture volume and heat production area surpassing the values from the earlier Phase 1 reservoir. Following completion of the downhole reservoir system, preparations were made for a reservoir-energy-extraction test. This Initial Closed Loop Flow Test (ICFT) was needed to obtain operating characteristics for planning a much longer test for thorough reservoir evaluation. The 30-day ICFT succeeded with final production of about 10 MWt at 192/sup 0/C, while injecting 285 gpm at 4600 psi and producing 206 gpm at 500 psi. The water loss rate and flow impedance were high, 27% and 18 psi/gpm respectively, but were declining. Radioactive tracer tests indicated reservoir volume growth during the experiment which was continuously monitored for acoustic or microseismic activity. Following the flow test, experiments were continued for several months during the venting process. Preparations are now underway for the Long Term Flow Test (LTFT). To understand as much as possible about the Phase 2 reservoir and to demonstrate the commercial feasibility of energy from HDR reservoirs, a flow test of approximately one year's duration is deemed necessary. Part of the preparation for the LTFT is the workover and repair of the production well and the installation of a competent overall flow loop and energy exchange system. 7 refs., 5 figs.

Franke, P.R.

1987-01-01T23:59:59.000Z

496

Energy-efficient regenerative liquid desiccant drying process  

DOE Patents (OSTI)

This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

Ko, Suk M. (Huntsville, AL); Grodzka, Philomena G. (Huntsville, AL); McCormick, Paul O. (Athens, AL)

1980-01-01T23:59:59.000Z

497

Heat loss from an open cavity  

DOE Green Energy (OSTI)

Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

1995-12-01T23:59:59.000Z

498

PRODUCTION OF THORIA WARE  

DOE Patents (OSTI)

The production of thoria ware of very low porosity by the slip casting of pure thoria is described. It comprises dry milling calcined thoria to obtain particles ranging up to 11 microns in size and having 60% of particles less than 2 microns, forming an aqueous slip of the milled thoric casting the slip and firing the dry cast at a sintering temperature of from 1600 to 1825 d C. The preferred composition of the slip is 1600 grams of thoria in each liter of slip. The preferred pH of the slip is 1. When thoria of 99.9% purity is used the slip is suitable for casting for as long as six weeks after preparation.

Murray, P.; Denton, I.; Wilkinson, D.

1957-10-01T23:59:59.000Z

499

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates  

Science Conference Proceedings (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-01-01T23:59:59.000Z

500

A Rapid Loss Index for Tropical Cyclone Disasters in China  

Science Conference Proceedings (OSTI)

Disaster emergency response needs rapid estimation on disaster loss. In China it is of great importance to develop a loss index for rapidly assessing tropical cyclone (TC) disaster loss. In this paper, a new composite loss index for TC landing on China ... Keywords: Tropical Cyclone, Disaster, Loss Index, Rapid Loss Assessment

Ying Li; Weihua Fang

2012-06-01T23:59:59.000Z