Sample records for loop ground source

  1. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  2. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser scale test data. The short-term behavior of ground-coupled heat pump systems is important for the design

  3. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01T23:59:59.000Z

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  4. A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool the proposed Earth Science Systems Building

    E-Print Network [OSTI]

    A pre-feasibility study to assess the potential of Open Loop Ground Source Heat to heat and cool............................................................1 1.2. History of Ground Source Heat Pump Systems................................................3 1.3. Components of Ground Source Heat Pump Systems..........................................3 1.4. Types of Ground

  5. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  6. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  7. A preliminary assessment of the effects of groundwater flow on closed-loop ground source heat pump systems

    SciTech Connect (OSTI)

    Chiasson, A.D.; Rees, S.J.; Spitler, J.D.

    2000-07-01T23:59:59.000Z

    A preliminary study has been made of the effects of groundwater flow on the heat transfer characteristics of vertical closed-loop heat exchangers and the ability of current design and in-situ thermal conductivity measurement techniques to deal with these effects. It is shown that an initial assessment of the significance of groundwater flow can be made by examining the Peclet number of the flow. A finite-element numerical groundwater flow and heat transfer model has been used to simulate the effects of groundwater flow on a single closed-loop heat exchanger in various geologic materials. These simulations show that advection of heat by groundwater flow significantly enhances heat transfer in geologic materials with high hydraulic conductivity, such as sands, gravels, and rocks exhibiting fractures and solution channels. Simulation data were also used to derive effective thermal conductivities with an in-situ thermal conductivity estimation procedure. These data were used to design borehole fields of different depths for a small commercial building. The performance of these borehole field designs was investigated by simulating each borehole field using the pre-calculated building loads over a ten-year period. Results of these simulations, in terms of the minimum and peak loop temperatures, were used to examine the ability of current design methods to produce workable and efficient designs under a range of groundwater flow conditions.

  8. Train-the-Trainer As ground source heat

    E-Print Network [OSTI]

    Train-the-Trainer As ground source heat pumps capture more of the HVAC market, the need will also receive a copy of the Closed-Loop/ Ground- Source Heat Pump Systems Installation Guide · Soils and Rock Identification · Pump and Fluid Selection Registration information You must be an IGSHPA

  9. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  10. Evaluation of Analytical and Numerical Techniques for Defining the Radius of Influence for an Open-Loop Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.

    2013-09-26T23:59:59.000Z

    In an open-loop groundwater heat pump (GHP) system, groundwater is extracted, run through a heat exchanger, and injected back into the ground, resulting in no mass balance changes to the flow system. Although the groundwater use is non-consumptive, the withdrawal and injection of groundwater may cause negative hydraulic and thermal impacts to the flow system. Because GHP is a relatively new technology and regulatory guidelines for determining environmental impacts for GHPs may not exist, consumptive use metrics may need to be used for permit applications. For consumptive use permits, a radius of influence is often used, which is defined as the radius beyond which hydraulic impacts to the system are considered negligible. In this paper, the hydraulic radius of influence concept was examined using analytical and numerical methods for a non-consumptive GHP system in southeastern Washington State. At this location, the primary hydraulic concerns were impacts to nearby contaminant plumes and a water supply well field. The results of this study showed that the analytical techniques with idealized radial flow were generally unsuited because they over predicted the influence of the well system. The numerical techniques yielded more reasonable results because they could account for aquifer heterogeneities and flow boundaries. In particular, the use of a capture zone analysis was identified as the best method for determining potential changes in current contaminant plume trajectories. The capture zone analysis is a more quantitative and reliable tool for determining the radius of influence with a greater accuracy and better insight for a non-consumptive GHP assessment.

  11. BY SHAWN XU, Ph.D. Ground Source Heat Pumps Serve

    E-Print Network [OSTI]

    BY SHAWN XU, Ph.D. 1 Ground Source Heat Pumps Serve A Large; BY SHAWN XU, Ph.D. 7 Loop Func>ons § Seasonal storage (Single output) § Hourly buffering (Dual output) #12; BY SHAWN XU, Ph.D. 8 Ground Loops § Ground

  12. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  13. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  14. Ground and Water Source Heat Pump Performance and Design for Southern Climates

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  15. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    tool for geothermal water loop heat pump systems, 9thInternational IEA Heat Pump Conference, Zürich, Switzerland,Performance of ground source heat pump system in a near-zero

  16. VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 Ground-Source Heat Pump System Research--

    E-Print Network [OSTI]

    VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 165 EDITORIAL Ground-Source Heat Pump System Research-- Past, Present, and Future J.D. Spitler, PhD, PE Fellow ASHRAE Ground-source heat pump (GSHP-source heat pumps installed worldwide. These systems may be closed-loop ("ground-coupled") or open

  17. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  18. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  19. Ball State University Completes Nation's Largest Ground-Source...

    Office of Environmental Management (EM)

    University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act Ball State University Completes Nation's Largest Ground-Source Geothermal...

  20. ADVANCES IN MODELING OF GROUND-SOURCE HEAT

    E-Print Network [OSTI]

    ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS By ANDREW D. CHIASSON Bachelor of Applied 1999 #12;ii ADVANCES IN MODELING OF GROUND-SOURCE HEAT PUMP SYSTEMS Thesis Approved: Thesis Adviser..............................................................................................................1 1.1. Overview of Ground-Source Heat Pump Systems ..............................................1 1

  1. APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO

    E-Print Network [OSTI]

    APPLICATIONS OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS TO BUILDINGS AND BRIDGE DECKS. By MAHADEVAN Chapter Page 1. Introduction 1.1. Overview of hybrid ground source heat pump systems 1.2. Literature review 1.3. Thesis objective and scope 2. Optimal sizing of hybrid ground source heat pump system

  2. DESIGN OF AN EXPERIMENTAL FACILITY FOR HYBRID GROUND SOURCE HEAT

    E-Print Network [OSTI]

    DESIGN OF AN EXPERIMENTAL FACILITY FOR HYBRID GROUND SOURCE HEAT PUMP SYSTEMS By SHAWN ALEX HERN.1 HYBRID GROUND SOURCE HEAT PUMP SYSTEM DESIGN........................................2-3 2.1.1 Design...............................................................................2-5 2.2 HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION................................2-9 3

  3. Development of a Residential Ground-Source Integrated Heat Pump

    SciTech Connect (OSTI)

    Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  4. Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P.E.

    E-Print Network [OSTI]

    Modeling of Standing Column Wells in Ground Source Heat Pump Systems Zheng Deng O'Neill, Ph.D., P Montfort University, Leicester, United Kingdom 1. INTRODUCTION In recent years, ground source heat pump-surface environment: · Ground-coupled heat pump (GCHP) systems (Closed-loop) · Surface water heat pump (SWHP) systems

  5. Ground-Source Heat Pumps in Cold Climates

    E-Print Network [OSTI]

    Wagner, Diane

    Ground-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review-Source Heat Pumps in Cold Climates The Current State of the Alaska Industry, a Review of the Literature and contributions from individuals and organizations involved in ground-source heat pump installation around Alaska

  6. Monitoring SERC Technologies —Geothermal/Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

  7. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov (indexed) [DOE]

    Ground-Source Heat Pump System Design May 19, 2010 Geothermal Technologies Program 2010 Peer Review ENVIRON International PI : Metin Ozbek Track : GSHP Demonstration Projects This...

  8. Marketing Ground Source Heat Pump Advanced Applications that

    E-Print Network [OSTI]

    Marketing Ground Source Heat Pump Advanced Applications that Deliver Competitive Advantage Al is the fastest growing market with the available capital and need for the benefits of ground source heat pumps Heating ... and Cooling n Comfort & Indoor Air Quality n Homes have domestic hot water - DHW n Less

  9. SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT

    E-Print Network [OSTI]

    SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS By XIAOWEI XU Bachelor #12;ii SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS Dissertation Approved as co- advisor of this research project. His many years of building system simulation experience

  10. Ground-source Heat Pumps Applied to Commercial Buildings

    SciTech Connect (OSTI)

    Parker, Steven A.; Hadley, Donald L.

    2009-07-14T23:59:59.000Z

    Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

  11. Ground-state energy of pionic hydrogen to one loop

    E-Print Network [OSTI]

    J. Gasser; M. A. Ivanov; E. Lipartia; M. Mojzis; A. Rusetsky

    2002-08-16T23:59:59.000Z

    We investigate the ground-state energy of the pi- p atom (pionic hydrogen) in the framework of QCD+QED. In particular, we evaluate the strong energy-level shift. We perform the calculation at next-to-leading order in the low-energy expansion in the framework of the relevant effective field theory. The result provides a relation between the strong energy shift and the pion-nucleon S-wave scattering lengths - evaluated in pure QCD - at next-to-leading order in isospin breaking and in the low-energy expansion. We compare our result with available model calculations.

  12. Combined permeable pavement and ground source heat pump systems 

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  13. Optimal Design for a Hybrid Ground-Source Heat Pump

    E-Print Network [OSTI]

    Yu, Z.; Yuan, X.; Wang, B.

    2006-01-01T23:59:59.000Z

    Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial...

  14. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics Jump to:Ground

  15. Application analysis of ground source heat pumps in building space conditioning

    E-Print Network [OSTI]

    Qian, Hua

    2014-01-01T23:59:59.000Z

    for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

  16. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  17. Overcoming Barriers to Ground Source Heat Pumps in California

    E-Print Network [OSTI]

    by consumers, industry and, government and high first costs. Compared to other states, California also has heat pump's constant lowlevel usage of electricity. · Integrate ground source heat pumps formally. It would increase energy efficiency of buildings, dramatically reduce fossil fuel consumption, reduce

  18. A capital cost comparison of commercial ground-source heat pump systems

    SciTech Connect (OSTI)

    Rafferty, K.

    1994-06-01T23:59:59.000Z

    The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

  19. Ground-source heat pump case studies and utility programs

    SciTech Connect (OSTI)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01T23:59:59.000Z

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  20. Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC 

    E-Print Network [OSTI]

    Mu, W.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold...

  1. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  2. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Menart, James A. [Wright State University

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

  3. HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+

    E-Print Network [OSTI]

    HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+ M.H. Khan, 74078, USA ABSTRACT This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems

  4. Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in

    E-Print Network [OSTI]

    Blumsack, Seth

    the potential for significant energy savings [1]. The performance of ground-source heat pumps for residential1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

  5. Optimal Design for a Hybrid Ground-Source Heat Pump 

    E-Print Network [OSTI]

    Yu, Z.; Yuan, X.; Wang, B.

    2006-01-01T23:59:59.000Z

    extraction from the ground. The paper presented has shown that the heat rejection of the GLHEs and the system energy consumption are approached to discuss the ground heat balance with different design procedures and control strategies though the system...

  6. Introduction Ground source heat pump (GSHP) systems are used

    E-Print Network [OSTI]

    to drilling of bore- holes for vertical ground heat exchangers (GHX), or excavation for horizontal GHX heating and cooling loads and their distribution over the year, as well as ground thermal properties, undisturbed ground temperature, and GHX design, as well as other factors. For low energy buildings the greatly

  7. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  8. Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Broader source: Energy.gov [DOE]

    Project objective: Create a new modeling decision? tool that will enable ground source heat pump (GSHP) designers and customers to make better design and purchasing decisions.

  9. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect (OSTI)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24T23:59:59.000Z

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

  10. PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION

    E-Print Network [OSTI]

    PERFORMANCE ANALYSIS OF A RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEM WITH ANTIFREEZE SOLUTION M in a ground source heat pump system falls near or below 0o C, an antifreeze mixture must be used to prevent freezing in the heat pump. The antifreeze mixture type and concentration has a number of implications

  11. 192 ASHRAE Transactions: Research Ground-source heat pumps for cooling-dominated

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    192 ASHRAE Transactions: Research ABSTRACT Ground-source heat pumps for cooling- tion of the heat pump performance is avoided by offsetting the annual load imbalance in the borefield operating and control strategies in a hybrid ground-source heat pump application using an hourly system

  12. A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs 

    E-Print Network [OSTI]

    Do, S. L.; Haberl, J. S.

    2010-01-01T23:59:59.000Z

    Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over...

  13. Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes

    E-Print Network [OSTI]

    Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

    2005-08-24T23:59:59.000Z

    We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

  14. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area 

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01T23:59:59.000Z

    The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

  15. Phase loop bandwidth measurements on the advanced photon source 352 MHz rf systems

    SciTech Connect (OSTI)

    Horan, D.; Nassiri, A.; Schwartz, C.

    1997-08-01T23:59:59.000Z

    Phase loop bandwidth tests were performed on the Advanced Photon Source storage ring 352-MHz rf systems. These measurements were made using the HP3563A Control Systems Analyzer, with the rf systems running at 30 kilowatts into each of the storage ring cavities, without stored beam. An electronic phase shifter was used to inject approximately 14 degrees of stimulated phase shift into the low-level rf system, which produced measureable response voltage in the feedback loops without upsetting normal rf system operation. With the PID (proportional-integral-differential) amplifier settings at the values used during accelerator operation, the measurement data revealed that the 3-dB response for the cavity sum and klystron power-phase loops is approximately 7 kHz and 45 kHz, respectively, with the cavities the primary bandwidth-limiting factor in the cavity-sum loop. Data were taken at various PID settings until the loops became unstable. Crosstalk between the two phase loops was measured.

  16. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect (OSTI)

    Hadley, Donald L.

    2001-03-01T23:59:59.000Z

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  17. EPA (Environmental Protection Agency) activities related to sources of ground-water contamination

    SciTech Connect (OSTI)

    Black-Coleman, W.

    1987-02-01T23:59:59.000Z

    The report contains a listing of EPA programs and activities, as of October 1986, that address 33 sources of potential ground-water contamination. The information on each activity is presented in a matrix format that is organized by type of contamination source. The following information is presented for each program and activity listed: title, lead office, contact person, type of activity (study, regulation, guidance, strategy, etc.) status, and a summary of the activity. The 33 sources of ground-water contamination are discussed in the 1984 EPA Office of Technology report: Protecting the Nations Ground Water from Contamination.

  18. Short communication Optimization of hybrid ground coupled and air source heat pump systems

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Short communication Optimization of hybrid ­ ground coupled and air source ­ heat pump systems 2008 Accepted 14 January 2010 Available online 28 January 2010 Keywords: Ground coupled heat pump Air to water heat pump Thermal storage device Hybrid HVAC system Energy efficiency Numerical simulation a b

  19. Ball State Completes Largest U.S. Ground-Source Geothermal System...

    Broader source: Energy.gov (indexed) [DOE]

    ground-source geothermal system, the nation's largest geothermal heating and cooling system, DOE announced on March 20. DOE played a part in the project by providing a 5 million...

  20. Ground source heat storage and thermo-physical response of soft clay

    E-Print Network [OSTI]

    Saxe, Shoshanna Dawn

    2009-01-01T23:59:59.000Z

    Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

  1. ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption Division Sponsored by EERE Geothermal Technologies Program U.S. Department of Energy #12;Page iii DOCUMENT

  2. ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption Division Sponsored by EERE Geothermal Technologies Program U.S. Department of Energy #12; Page iii

  3. Ground Source Heat Pump Demonstration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity1ChallengesGround

  4. Temporal Loop Multiplexing: A resource efficient scheme for multiplexed photon-pair sources

    E-Print Network [OSTI]

    Francis-Jones, Robert J A

    2015-01-01T23:59:59.000Z

    Single photons are a vital resource for photonic quantum information processing. However, even state-of-the-art single photon sources based on photon-pair generation and heralding detection have only a low probability of delivering a single photon when one is requested. We analyse a scheme that uses a switched fibre delay loop to increase the delivery probability per time bin of single photons from heralded sources. We show that, for realistic experimental parameters, combining the output of up to 15 pulses can yield a performance improvement of a factor of 10. We consider the future performance of this scheme with likely component improvements.

  5. NRAO Electronics Division Technical Note 179 Ground Loops in SIS Bias Circuits

    E-Print Network [OSTI]

    Groppi, Christopher

    the possibility of static discharge damaging the mixer when it is connected to the floating bias supply. 3 SIS mixer, and it may be difficult in practice to obtain a stable bias voltage using a high value receiver, in which one end of the junction is connected to the grounded mixer block, such a resistor can

  6. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    SciTech Connect (OSTI)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02T23:59:59.000Z

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  7. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01T23:59:59.000Z

    Energiae Solaris Sinica, 2005, 6(2):162-165.(In Chinese) [4] Sun Jianping, Wang Jinggang, etc. Operating performance analysis of the ground source heat pump [J]. Journal of North China electric Power University, 2004,31(5):52-55.(In Chinese) [5] Wang...

  8. Performance Evaluation of a ground source heat pump system based on ANN and ANFIS models

    E-Print Network [OSTI]

    Sun, W.; Hu, P.; Lei, F.; Zhu, N.; Zhang,J.

    2014-01-01T23:59:59.000Z

    Performance evaluation of a ground source heat pump system based on ANN and ANFIS models Weijuan SUN a, Pingfang HUa,*, Fei Leia, Na Zhua, Jiangning Zhanga aHuazhong University of Science and Technology, Wuhan 430074, P. R. China Abstract...: The aim of this work is to calculate the heat pump coefficient of performance (COP) and the system COP of a ground source heat pump (GSHP) system based on an artificial neural network (ANN) model and (adaptive neuro-fuzzy inference system (ANFIS) model...

  9. Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

  10. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  11. A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System 

    E-Print Network [OSTI]

    Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

    2006-01-01T23:59:59.000Z

    In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

  12. Payback Analysis for Ground Source Heat Pump Retrofits Using eQuest Modeling Software

    E-Print Network [OSTI]

    Wahlers, Drake

    2011-12-16T23:59:59.000Z

    There has been much research and analysis done on the performance and potential energy savings related to installing a ground source heat pump (GSHP) system. Much of this research has been dedicated to the new construction industry, and focused on a...

  13. Feasibility Study of Using Ground Source Heat Pumps in Two Buildings

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    , it was assumed that natural gas-fired water heaters would replace the steam converters that presently provide hot water for the buildings. It would also be possible to use dedicated water-to-water ground source heat pumps to provide hot water. #12; 2 II. BACKGROUND AND BASE CASE A. Background on McCormick Center

  14. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect (OSTI)

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01T23:59:59.000Z

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  15. International Workshop on Geomechanics and Energy The Ground as Energy Source and Storage Lausanne, Switzerland, 26-28 November 2013

    E-Print Network [OSTI]

    Candea, George

    International Workshop on Geomechanics and Energy ­ The Ground as Energy Source and Storage of shales is becoming one of the most important issues in modern geomechanics, largely driven by petroleum region of Switzerland. #12;International Workshop on Geomechanics and Energy ­ The Ground as Energy

  16. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump 

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  17. A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2009-01-01T23:59:59.000Z

    Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

  18. Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump

    E-Print Network [OSTI]

    Wang, F.; Zheng, M.; Li, Z.; Lei, B.

    2006-01-01T23:59:59.000Z

    In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling...

  19. The Susceptibility of Materials in Spallation Neutron Source Target and Blanket Cooling Loops to Corrosion

    E-Print Network [OSTI]

    to Corrosion R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Lab MST-6 cooling loops to corrosion. To simulate the environment that materials may be exposed to in a target of exposing corrosion samples to an 800 MeV proton beam at currents upwards of 1 mA was constructed. This loop

  20. The citation for this paper is: Spitler, J.D., X. Liu, S.J. Rees, C. Yavuzturk. 2005. Simulation and Optimization of Ground Source Heat

    E-Print Network [OSTI]

    are potentially more efficient than conventional air-to-air systems. In practice, ground-source heat pump systems and Optimization of Ground Source Heat Pump Systems. 8th International Energy Agency Heat Pump Conference. Las Vegas. May 30-June 2. 1 #12;SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS J.D. Spitler

  1. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  2. Contamination source review for Building E3236, Edgewood Area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Zellmer, S.D.; Smits, M.P.; Draugelis, A.K.; Glennon, M.A.; Rueda, J.; Zimmerman, R.E.

    1995-09-01T23:59:59.000Z

    The US Army Aberdeen Proving Ground (APG) commissioned Argonne National Laboratory (ANL) to conduct a contamination source review to identify and define areas of toxic or hazardous contaminants and to assess the physical condition and accessibility of APG buildings. The information obtained from the review may be used to assist the US Army in planning for the future use or disposition of the buildings. The contamination source review consisted of the following tasks: historical records search, physical inspection, photographic documentation, geophysical investigation, and review of available records regarding underground storage tanks associated with each building. This report provides the results of the contamination source review for Building E3236. Many of the APG facilities constructed between 1917 and the 1960s are no longer used because of obsolescence and their poor state of repair. Because many of these buildings were used for research, development, testing, and/or pilot- scale production of chemical warfare agents and other military substances, the potential exists for portions of the buildings to be contaminated with these substances, their degradation products, and other laboratory or industrial chemicals. These buildings and associated structures or appurtenances may contribute to environmental concerns at APG.

  3. PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01T23:59:59.000Z

    The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

  4. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-09-01T23:59:59.000Z

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

  5. In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, S.; Shapiro, C.

    2012-04-01T23:59:59.000Z

    CARB partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and LAMELs through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and lighting, appliances, and miscellaneous loads (LAMELs).

  6. Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.

    2006-01-01T23:59:59.000Z

    The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single...

  7. Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump

    E-Print Network [OSTI]

    Song, Y.; Yao, Y.; Na, W.

    2006-01-01T23:59:59.000Z

    In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground-source...

  8. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect (OSTI)

    Scott Hackel; Amanda Pertzborn

    2011-06-30T23:59:59.000Z

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  9. Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers

    SciTech Connect (OSTI)

    Hughes, Patrick [ORNL

    2008-12-01T23:59:59.000Z

    More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

  10. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect (OSTI)

    Qian, Hua; Wang, Yungang

    2013-07-01T23:59:59.000Z

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  11. Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

  12. What is Nonpoint Source Pollution? Nonpoint Source Pollution, or people pollution, is a contamination of our ground water,

    E-Print Network [OSTI]

    Rainforth, Emma C.

    , recreational water activities, the fishing industry, tourism and our precious drinking water resources, humans and fish. Do not dump used motor oil down storm drains or on the ground. Recycle all used motor such as fertilizing the lawn, walking pets, changing motor oil and littering. With each rainfall, pollutants generated

  13. GEO Down Under The Ground Source Industry in Australia and New Zealand

    E-Print Network [OSTI]

    warranty) § PE fusion § Building Code § Electrical / plumbing etc § Energy Star rocks and energy genera8on to most § North side of house has greatest solar: Professor Ian Johnston § Focus: 3D Modelling of Energy Piles and Ground Heat

  14. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  15. Hydrogeologic Evaluation of a Ground-Source Cooling System at the BSF/CSF on the Battelle Campus: Final Report

    SciTech Connect (OSTI)

    Freedman, Vicky L.; Mackley, Rob D.; Waichler, Scott R.; Horner, Jacob A.; Moon, Thomas W.; Newcomer, Darrell R.; DeSmet, Darrell J.; Lindsey, K. A.; Porcello, J. J.

    2010-05-12T23:59:59.000Z

    This report documents both the field characterization activities and the numerical modeling effort at the BSF/CSF site to determine the viability of an open-loop ground source heat pump (GSHP). The primary purpose of the integrated field and modeling study was to determine far-field impacts related to a non-consumptive use water right for the well field containing four extraction and four injection wells. In the field, boreholes were logged and used to develop the geologic conceptual model. Hydraulic testing was performed to identify hydraulic properties and determine sustainable pumping rates. Estimates of the Ringold hydraulic conductivity (60-150 m/d) at the BSF/CSF site were consistent with the local and regional hydrogeology as well as estimates previously published by other investigators. Sustainable pumping rates at the extraction wells were variable (100 – 700 gpm), and confirmed field observations of aquifer heterogeneity. Field data were used to develop a numerical model of the site. Simulations assessed the potential of the well field to impact nearby contaminant plumes, neighboring water rights, and the thermal regime of nearby surface water bodies. Using steady-state flow scenarios in conjunction with particle tracking, a radius of influence of 400–600 m was identified around the well field. This distance was considerably shorter than the distance to the closest contaminant plume (~1.2 km northwest to the DOE Horn Rapids Landfill) and the nearest water right holder (~1.2 km southeast to the City of Richland Well Field). Results demonstrated that current trajectories for nearby contaminant plumes will not be impacted by the operation of the GSHP well field. The objective of the energy transport analysis was to identify potential thermal impacts to the Columbia River under likely operational scenarios for the BSF/CSF well field. Estimated pumping rates and injection temperatures were used to simulate heat transport for a range of hydraulic conductivity estimates for the Ringold Formation. Two different operational scenarios were simulated using conservative assumptions, such as the absence of river water intrusion in the near shore groundwater. When seasonal injection of warm and cool water occurred, temperature impacts were insignificant at the Columbia River (< +0.2ºC), irrespective of the hydraulic conductivity estimate. The second operational scenario simulated continuous heat rejection, a condition anticipated once the BSF/CSF is fully loaded with laboratory and computer equipment. For the continuous heat rejection case, where hourly peak conditions were simulated as month-long peaks, the maximum change in temperature along the shoreline was ~1ºC. If this were to be interpreted as an absolute change in a static river temperature, it could be considered significant. However, the warmer-than-ambient groundwater flux that would potentially discharge to the Columbia River is very small relative to the flow in the river. For temperatures greater than 17.0ºC, the flow relative to a low-flow condition in the river is only 0.012%. Moreover, field data has shown that diurnal fluctuations in temperature are as high as 5ºC along the shoreline.

  16. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect (OSTI)

    Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

    2011-01-01T23:59:59.000Z

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  17. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  18. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect (OSTI)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2007-05-01T23:59:59.000Z

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  19. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

  20. Characterization of ammonia emissions from ground level area sources at central texas dairies

    E-Print Network [OSTI]

    Mutlu, Atilla

    2009-05-15T23:59:59.000Z

    ) to potentially develop source specific NH3 emission control strategies. The GLAS including open-lots, free-stall barns, separated solids, primary and secondary lagoons and milking parlor were sampled to estimate NH3 emissions. In the first study, assessment...

  1. Air dispersion modeling of particulate matter from ground-level area sources

    E-Print Network [OSTI]

    Meister, Michael Todd

    2000-01-01T23:59:59.000Z

    obtained from a dispersion model. The model currently approved by EPA, the Industrial Source Complex, Version 3 - Short Term (ISC3-ST), over-predicts downwind concentrations of PM by as much two orders of magnitude. As a result, a facility may be denied a...

  2. Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms 

    E-Print Network [OSTI]

    Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

    2002-01-01T23:59:59.000Z

    water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School...

  3. Loop Representations

    E-Print Network [OSTI]

    B. Bruegmann

    1993-12-02T23:59:59.000Z

    The loop representation plays an important role in canonical quantum gravity because loop variables allow a natural treatment of the constraints. In these lectures we give an elementary introduction to (i) the relevant history of loops in knot theory and gauge theory, (ii) the loop representation of Maxwell theory, and (iii) the loop representation of canonical quantum gravity. (Based on lectures given at the 117. Heraeus Seminar, Bad Honnef, Sept. 1993)

  4. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

  5. A segmented multi-loop antenna for selective excitation of azimuthal mode number in a helicon plasma source

    SciTech Connect (OSTI)

    Shinohara, S., E-mail: sshinoha@cc.tuat.ac.jp [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, T. [Research Institute of Science and Technology, Tokai University, 4-1-1, Kita-kaname, Hiratsuka, Kanagawa 259-1292 (Japan); Motomura, T. [National Institute of Advanced Industrial Science and Technology (AIST), 807-1, Shuku-machi, Tosu, Saga 841-0052 Japan (Japan)

    2014-09-15T23:59:59.000Z

    A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density n{sub e} were investigated with a radio frequency (rf) power less than 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n{sub e} up to ?5 × 10{sup 12} cm{sup ?3} was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.

  6. International Workshop on Geomechanics and Energy The Ground as Energy Source and Storage Lausanne, Switzerland, 26-28 November 2013

    E-Print Network [OSTI]

    Candea, George

    in the ground from other technologies, such as solar panels, will lead to higher temperature variations. Soils, and eventually its response, depending on the type of soil. The main consequence of the thermal volume variation by the different authors for a wide range of different clayey materials containing variable quantities of illite

  7. Distinguishing barriers and asperities in near-source ground motion Morgan T. Page, Eric M. Dunham,1

    E-Print Network [OSTI]

    Carlson, Jean

    process. Numerous kinematic inversions of wave- form data indicate that earthquake ruptures follow complex with equivalent stress drops. This suggests that kinematic models with such constraints overestimate the actual aspects of ground motion in the context of simple but heterogeneous ruptures. [3] Kinematic inversions

  8. Pre-Shot Simulations of Far-Field Ground Motions for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site

    SciTech Connect (OSTI)

    Rodgers, A J; Wagoner, J; Petersson, N A; Sjogreen, B

    2010-11-07T23:59:59.000Z

    The Source Physics Experiment (SPE) will involve a series of explosions in various geologic and emplacement conditions to validate numerical simulation methods to predict behavior of seismic wave excitation and propagation for nuclear test monitoring. The first SPE's currently underway involve explosions in the Climax Stock (granitic geology) at the Nevada National Security Site (NNSS). Detailed geologic data and published material properties for the major lithologic units of the NNSS and surrounding region were used to build three-dimensional models for seismic wave propagation simulations. The geologic structure near the SPE shot point is quite varied including granitic, carbonate, tuff and alluvium lithologies. We performed preliminary ground motion simulations for a near-source domain covering 8 km x 8 km at the surface centered on the shot point to investigate various source and propagation effects using WPP, LLNL's anelastic seismic wave finite difference code. Simulations indicate that variations in wave propagation properties of the sub-surface will generate strongly path-dependent response once the energy has left the relatively small granitic geology of the near-surface Climax Stock near the SPE shot point. Rough topography to the north and west of SPE shot point causes additional complexity in the signals including energy on the transverse components. Waves propagate much faster through the granitic and carbonate formations and slower through the tuff and alluvium. Synthetic seismograms for a pure explosion source in a 3D geologic structure show large amplitudes on transverse component. For paths to the south sampling the granite, tuff and alluvium lithologies transverse component amplitudes are as high as 50% of that on the vertical and radial components.

  9. Pre-shot simulations of far-field ground motion for the Source Physics Experiment (SPE) Explosions at the Climax Stock, Nevada National Security Site: SPE2

    SciTech Connect (OSTI)

    Mellors, R J; Rodgers, A; Walter, W; Ford, S; Xu, H; Matzel, E; Myers, S; Petersson, N A; Sjogreen, B; Hauk, T; Wagoner, J

    2011-10-18T23:59:59.000Z

    The Source Physics Experiment (SPE) is planning a 1000 kg (TNT equivalent) shot (SPE2) at the Nevada National Security Site (NNSS) in a granite borehole at a depth (canister centroid) of 45 meters. This shot follows an earlier shot of 100 kg in the same borehole at a depth 60 m. Surrounding the shotpoint is an extensive array of seismic sensors arrayed in 5 radial lines extending out 2 km to the north and east and approximately 10-15 to the south and west. Prior to SPE1, simulations using a finite difference code and a 3D numerical model based on the geologic setting were conducted, which predicted higher amplitudes to the south and east in the alluvium of Yucca Flat along with significant energy on the transverse components caused by scattering within the 3D volume along with some contribution by topographic scattering. Observations from the SPE1 shot largely confirmed these predictions although the ratio of transverse energy relative to the vertical and radial components was in general larger than predicted. A new set of simulations has been conducted for the upcoming SPE2 shot. These include improvements to the velocity model based on SPE1 observations as well as new capabilities added to the simulation code. The most significant is the addition of a new source model within the finite difference code by using the predicted ground velocities from a hydrodynamic code (GEODYN) as driving condition on the boundaries of a cube embedded within WPP which provides a more sophisticated source modeling capability linked directly to source site materials (e.g. granite) and type and size of source. Two sets of SPE2 simulations are conducted, one with a GEODYN source and 3D complex media (no topography node spacing of 5 m) and one with a standard isotropic pre-defined time function (3D complex media with topography, node spacing of 5 m). Results were provided as time series at specific points corresponding to sensor locations for both translational (x,y,z) and rotational components. Estimates of spectral scaling for SPE2 are provided using a modified version of the Mueller-Murphy model. An estimate of expected aftershock probabilities were also provided, based on the methodology of Ford and Walter, [2010].

  10. Loop-to-loop coupling.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01T23:59:59.000Z

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  11. Ground-Coupled Heat Pump Applications and Case Studies 

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

  12. SOURCE?

    Energy Savers [EERE]

    Department of Energy (DOE) in partnership with Lawrence Berkeley National Laboratory (LBNL), is an open-source code package designed to be a common, low-cost, standardized tool...

  13. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  14. Ground-Coupled Heat Pump Applications and Case Studies

    E-Print Network [OSTI]

    Braud, H. J.

    1989-01-01T23:59:59.000Z

    in all seasons. A loop sizing procedure for mul- tiple units on a common ground loop was given by Braud (1). See also Bose et al. (2) and Partin (3). APPLICATIONS OF GROUND-COUPLED HEAT PUMPS COLD SUPPLY +-fi- ;-"" WATER TANK A recent development...

  15. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution

    SciTech Connect (OSTI)

    Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

    2011-03-16T23:59:59.000Z

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  16. Quantum loop programs

    E-Print Network [OSTI]

    Mingsheng Ying; Yuan Feng

    2007-01-04T23:59:59.000Z

    Loop is a powerful program construct in classical computation, but its power is still not exploited fully in quantum computation. The exploitation of such power definitely requires a deep understanding of the mechanism of quantum loop programs. In this paper, we introduce a general scheme of quantum loops and describe its computational process. The notions of termination and almost termination are proposed for quantum loops, and the function computed by a quantum loop is defined. To show their expressive power, quantum loops are applied in describing quantum walks. Necessary and sufficient conditions for termination and almost termination of a general quantum loop on any mixed input state are presented. A quantum loop is said to be (almost) terminating if it (almost) terminates on any input state. We show that a quantum loop is almost terminating if and only if it is uniformly almost terminating. It is observed that a small disturbance either on the unitary transformation in the loop body or on the measurement in the loop guard can make any quantum loop (almost) terminating. Moreover, a representation of the function computed by a quantum loop is given in terms of finite summations of matrices. To illustrate the notions and results obtained in this paper, two simplest classes of quantum loop programs, one qubit quantum loops, and two qubit quantum loops defined by controlled gates, are carefully examined.

  17. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10T23:59:59.000Z

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  18. CIS 1068: Practice Problems 11 Some practice with basic loop algorithms: step-by-step loops, sentinel loops, accumulation

    E-Print Network [OSTI]

    Yates, Alexander

    , sentinel loops, accumulation loops, and nested loops. 1. Basic Step-by-Step Loops A basic step-by-step loop. Accumulation loops Accumulation loops keep track of and update information each time through the loop. Usually an accumulation loop. Accumulation loops are add-ons to either step-by-step or sentinel loops. You need to start

  19. Optimizing Nested Loops with Loop Distribution and Loop Fusion Department of Computer Science and Engineering

    E-Print Network [OSTI]

    Sha, Edwin

    nodes so that the loop nodes inside one partition can be fused directly without transformation. Maximum and the power consumption [1, 5, 7, 8]. Direct loop fusion is to find the legal fusion partition of the loop of the fused loops is minimized. Loop distribution separates independent statements inside a single loop (or

  20. CNCC Craig Campus Geothermal Program: 82-well closed loop GHP...

    Open Energy Info (EERE)

    Milestones Geothermal energy provided by a ground source heat pump system will reduce consumption of electricity (60% is from coal) and natural gas resources compared to...

  1. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    E-Print Network [OSTI]

    Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada Ralph L. Seiler sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water indicates that W exhibits Tungsten con- centrations are strongly and positively correlated

  2. Multiprotein DNA looping

    E-Print Network [OSTI]

    Jose M. G. Vilar; Leonor Saiz

    2006-06-19T23:59:59.000Z

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switch-like transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  3. Two-loop self-energy correction in high-Z hydrogen-like ions

    E-Print Network [OSTI]

    V. A. Yerokhin; P. Indelicato; V. M. Shabaev

    2003-02-28T23:59:59.000Z

    A complete evaluation of the two-loop self-energy diagrams to all orders in Z\\alpha is presented for the ground state of H-like ions with Z\\ge 40.

  4. A loop quantum multiverse?

    E-Print Network [OSTI]

    Martin Bojowald

    2012-12-20T23:59:59.000Z

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  5. A loop quantum multiverse?

    E-Print Network [OSTI]

    Bojowald, Martin

    2013-01-01T23:59:59.000Z

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  6. Thermal ground state and nonthermal probes

    E-Print Network [OSTI]

    Grandou, Thierry

    2015-01-01T23:59:59.000Z

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  7. A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restricti

    E-Print Network [OSTI]

    Lin, Zhiqun

    A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restrictions or loss of the water supply is not likely

  8. Ground Control | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground Control Ground Control Released: April 22, 2015 EMSL scientists develop new methods to dig deeper into soil organic matter International Year of the Soils Under our feet...

  9. Residential Ground-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, NSTAR, WMECO, Unitil, and municipal light plants that have agreed to pay i...

  10. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | Open EnergyPumps

  11. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | Open

  12. Ground Source Heat Pump System Data Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the CarryingPeer Review GSHP System

  13. Renewable Energy Opportunities at Yuma Proving Ground, Arizona

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Dixon, Douglas R.

    2010-06-30T23:59:59.000Z

    This document provides an overview of renewable resource potential at Yuma Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations.

  14. Ground state hyperfine structure in muonic lithium ions

    E-Print Network [OSTI]

    A. P. Martynenko; A. A. Ulybin

    2015-04-09T23:59:59.000Z

    On the basis of perturbation theory in fine structure constant alpha and the ratio of electron to muon masses we calculate one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections to hyperfine splitting of the ground state in muonic lithium ions $(\\mu\\ e\\ ^6_3Li)^+$ and $(\\mu\\ e\\ ^7_3Li)^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu\\ e\\ ^6_3Li)^+$ $\\Delta\

  15. Ground state hyperfine structure in muonic lithium ions

    E-Print Network [OSTI]

    A. P. Martynenko; A. A. Ulybin

    2014-11-21T23:59:59.000Z

    On the basis of perturbation theory in fine structure constant alpha and the ratio of electron to muon masses we calculate one-loop vacuum polarization, electron vertex corrections, nuclear structure and recoil corrections to hyperfine splitting of the ground state in muonic lithium ions $(\\mu\\ e\\ ^6_3Li)^+$ and $(\\mu\\ e\\ ^7_3Li)^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu\\ e\\ ^6_3Li)^+$ $\\Delta\

  16. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  17. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    None

    2013-07-24T23:59:59.000Z

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  18. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  19. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. Physical and computer modeling of military earth grounding practices in a HEMP (high-altitude electromagnetic pulse) environment. Technical memo

    SciTech Connect (OSTI)

    Cuneo, A.A. Jr.; Loftus, J.J.; Perala, R.A.

    1983-06-01T23:59:59.000Z

    Military grounding practices compatible with hardening electronic systems to high-altitude electromagnetic pulse (HEMP) illumination are considered. This study concerns the grounding practices outlined in MIL-STD-188-124, Common Long-Haul/Tactical Communications Systems. Three standard grounding schemes and one new scheme were chosen for study at a 10:1 scale, illuminated by a 59-V/m peak simulated HEMP. There were several significant results: (a) The theoretical technique in general agrees to within a factor of three with the experimental results, (b) The type end of earth ground system does not appear to be important, and (c) Intrasite transients tend to be dominated by electromagnetic coupling to completed conductive loops. When the loop is broken, the transient is characterized by the half-wavelength resonance of the conductor. Grounding paths which do not form part of the loop do not contribute significantly to the transient in the loop.

  1. Ground Turkey Stroganoff Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey Stroganoff Ingredients: 8 ounces egg noodles, uncooked 1 pound ground turkey 1 onion. Meanwhile, brown ground turkey and onions in non stick skillet until meat is no longer pink and onions cup of egg noodles on plate, top with 1/2 cup of turkey mixture. Equipment: Knife Cutting board

  2. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01T23:59:59.000Z

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  3. Cooking with Ground Pork

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    to thaw. Even when cooked, pork that has been thawed at room temperature can make you sick. Cooking ground pork safely For dishes that contain ground pork, cook the pork before mixing it with other ingredients. How to store cooked ground pork Leftover... dishes made with ground pork should be stored in a covered dish in the refrigerator right away to prevent spoilage. Use it within 3 days. Reheat foods with ground pork until they are steaming hot, bubbling, or at 165 degrees. Other uses Use cooked...

  4. Ground Water Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

  5. Renewable Energy Opportunties at Dugway Proving Ground, Utah

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Horner, Jacob A.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Nesse, Ronald J.; Dixon, Douglas R.

    2010-05-31T23:59:59.000Z

    This document provides an overview of renewable resource potential at Dugway Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and ground source heat pumps (GSHPs). The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment.

  6. Advanced Light Source control system

    SciTech Connect (OSTI)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01T23:59:59.000Z

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  7. Cooking with Ground Beef

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritional value and safe storage of ground beef, a commodity food. It also offers food preparation ideas....

  8. Predaceous Ground Beetles

    E-Print Network [OSTI]

    Sansone, Chris; Minzenmayer, Rick

    2003-06-30T23:59:59.000Z

    Predaceous ground beetles can be a nuisance to homeowners, especially when they are numerous. This publication describes the beetles and discusses ways to prevent and treat them....

  9. Hanford site ground water protection management plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  10. Ground State Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel; M. W. Mitchell; Marvin L. Cohen

    1999-08-11T23:59:59.000Z

    We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.

  11. Dynamic PID loop control

    E-Print Network [OSTI]

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01T23:59:59.000Z

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  12. Dynamic PID loop control

    SciTech Connect (OSTI)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01T23:59:59.000Z

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  13. Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory

    E-Print Network [OSTI]

    Rossak, Wilhelm R.

    Free energy for parameterized Polyakov loops in SU(2) and SU(3) lattice gauge theory [arXiv:1205 by analyzing the free energy of static quarks in pure SU(2) and SU(3) lattice gauge theory. The Polyakov loop P is introduced as a parameterized source for the quarks. Calculation of the free energy F as a function

  14. DC source assemblies

    DOE Patents [OSTI]

    Campbell, Jeremy B; Newson, Steve

    2013-02-26T23:59:59.000Z

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  15. Thermal ground state and nonthermal probes

    E-Print Network [OSTI]

    Thierry Grandou; Ralf Hofmann

    2015-03-18T23:59:59.000Z

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\tiny\\mbox{CMB}}$, the Yang-Mills theory conjectured to underlie photon propagation.

  16. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  17. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP:Brookhaven TeachingCommunity-ScaleTotalGround

  18. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17T23:59:59.000Z

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  19. Loop-deformed Poincaré algebra

    E-Print Network [OSTI]

    Jakub Mielczarek

    2013-04-08T23:59:59.000Z

    In this essay we present evidence suggesting that loop quantum gravity leads to deformation of the local Poincar\\'e algebra within the limit of high energies. This deformation is a consequence of quantum modification of effective off-shell hypersurface deformation algebra. Surprisingly, the form of deformation suggests that the signature of space-time changes from Lorentzian to Euclidean at large curvatures. We construct particular realization of the loop-deformed Poincar\\'e algebra and find that it can be related to curved momentum space, which indicates the relationship with recently introduced notion of relative locality. The presented findings open a new way of testing loop quantum gravity effects.

  20. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  1. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  2. Spectral indices of Galactic radio loops between 1420, 820 and 408 MHz

    E-Print Network [OSTI]

    V. Borka

    2007-02-10T23:59:59.000Z

    In this paper the average brightness temperatures and surface brightnesses at 1420, 820 and 408 MHz of the six main Galactic radio-continuum loops are derived, as are their radio spectral indices. The temperatures and surface brightnesses of the radio loops are computed using data taken from radio continuum surveys at 1420, 820 and 408 MHz. We have demonstrated the reality of Loops V and VI and present diagrams of their spectra for the first time. We derived the radio spectral indices of Galactic radio loops from radio surveys at three frequencies (1420, 820 and 408 MHz) and confirm them to be non-thermal sources. Diameters and distances of Loops I-VI were also calculated. The results obtained are in good agreement with current theories of supernova remnant (SNR) evolution and suggest that radio loops may have a SNR origin.

  3. Thermodynamics in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Li-Fang Li; Jian-Yang Zhu

    2008-12-18T23:59:59.000Z

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. And the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but are actually also found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  4. Pair Correlation Function of Wilson Loops

    E-Print Network [OSTI]

    S. Chaudhuri; Y. Chen; E. Novak

    2000-02-02T23:59:59.000Z

    We give a path integral prescription for the pair correlation function of Wilson loops lying in the worldvolume of Dbranes in the bosonic open and closed string theory. The results can be applied both in ordinary flat spacetime in the critical dimension d or in the presence of a generic background for the Liouville field. We compute the potential between heavy nonrelativistic sources in an abelian gauge theory in relative collinear motion with velocity v = tanh(u), probing length scales down to r_min^2 = 2 \\pi \\alpha' u. We predict a universal -(d-2)/r static interaction at short distances. We show that the velocity dependent corrections to the short distance potential in the bosonic string take the form of an infinite power series in the dimensionless variables z = r_min^2/r^2, uz/\\pi, and u^2.

  5. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01T23:59:59.000Z

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  6. GROUND WATER CONTAMINATION

    SciTech Connect (OSTI)

    Unknown

    1999-09-01T23:59:59.000Z

    As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

  7. A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps 

    E-Print Network [OSTI]

    Dobson, M. K.; O'Neal, D. L.; Aldred, W.

    1994-01-01T23:59:59.000Z

    A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element...

  8. Detecting and escaping infinite loops using Bolt

    E-Print Network [OSTI]

    Kling, Michael (Michael W.)

    2012-01-01T23:59:59.000Z

    In this thesis we present Bolt, a novel system for escaping infinite loops. If a user suspects that an executing program is stuck in an infinite loop, the user can use the Bolt user interface, which attaches to the running ...

  9. Video looping of human cyclic motion

    E-Print Network [OSTI]

    Choi, Hye Mee

    2004-09-30T23:59:59.000Z

    In this thesis, a system called Video Looping is developed to analyze human cyclic motions. Video Looping allows users to extract human cyclic motion from a given video sequence. This system analyzes similarities from a large amount of live footage...

  10. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect (OSTI)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01T23:59:59.000Z

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  11. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect (OSTI)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01T23:59:59.000Z

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  12. Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    4/9/2008 1 Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks Johansson, Pan Gun Park, Emmanuel Witrant Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications Karl H. Johansson Electrical Engineering, Royal Institute

  13. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based Microwave

  14. Unattended ground sensor situation assessment workstation

    SciTech Connect (OSTI)

    Jeppesen, D.; Trellue, R.

    1997-04-01T23:59:59.000Z

    Effective utilization of unattended ground sensors (UGSs) in a theater reconnaissance, surveillance, target acquisition, and kill assessment environment requires that a human operator be able to interpret, and collectively assess, the significance of real time data obtained from UGS emplacements over large geographical regions of interest. The products of this UGS data interpretation and assessment activity can then be used in the decision support process for command level evaluation of appropriate courses of action. Advancements in both sensor hardware technology and in software systems and processing technology have enabled the development of practical real time situation assessment capabilities based upon information from unattended ground sensors. A decision support workstation that employs rule-based expert system processing of reports from unattended ground sensors is described. The primary goal of this development activity is to produce a suite of software to track vehicles using data from unattended ground sensors. The situational assessment products from this system have stand-alone utility, but are also intended to provide cueing support for overhead sensors and supplementary feeds to all-source fusion centers. The conceptual framework, developmental architecture, and demonstration field tests of the system are described.

  15. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

    1998-01-21T23:59:59.000Z

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  16. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03T23:59:59.000Z

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  17. Burial Ground Expansion Hydrogeologic Characterization

    SciTech Connect (OSTI)

    Gaughan , T.F.

    1999-02-26T23:59:59.000Z

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  18. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington:Looping Jump to: navigation,

  19. Coal mine ground control. 3rd ed.

    SciTech Connect (OSTI)

    Peng, S.S.

    2008-09-15T23:59:59.000Z

    The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

  20. air source heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  1. National Certification Standard for Ground Source Heat Pump Personnel

    SciTech Connect (OSTI)

    Kelly, John [Geothermal Heat Pump Consortium] [Geothermal Heat Pump Consortium

    2013-07-31T23:59:59.000Z

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  2. Dispersion modeling of ground-level area sources of particulate

    E-Print Network [OSTI]

    Fritz, Bradley Keith

    1998-01-01T23:59:59.000Z

    , as shown by Equation 3. f(z) = exp ?, + exp? Y This curve represents the distribution of pollutant in the y-z plane. At any point y, a fraction of the total area of the curve [1] is determined The width of the curve depends on o?, a dispersion... the terminal settling velocity. Equation 6 and 7 are used. C p p dp g 18' where: t-o. ss, 'I C = 1+ ? 2. 514+ 0. 8e d (Eq. 6) (Eq 7) V, = Terminal Settling Velocity [m/s] C = Cunningham's Correction Factor [1/1] p, = density; 1500 [kg/m'] ) = gas...

  3. Tennessee: Ground-Source Heat Pump Receives Innovation Award...

    Office of Environmental Management (EM)

    the pump and blower motors when heating or cooling demand is low, the heat pump reduces electricity consumption by 80% or more during much of the year. Based on field tests and...

  4. Hybrid Ground Source System Analysis and Tool Development

    Broader source: Energy.gov [DOE]

    Project objectives: 1. Compile filtered hourly data for three monitored hybrid installations. 2.Validate existing HyGCHP model. 3.Refine and enhance the HyGCHP model (usability / capability). 4. Demonstrate impact of actual hybrid installations. 5. Report lessons learned and impacts of HyGSHPs to design/engineering community.

  5. Investigating Ground Source Geothermal Heating for Garfield House

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    of historical significance associated with Garfield, as it dates back to 1885, serving as a fraternity house heating oil consumption from January 2004 through December 2009, or 72 monthly values. Formulas were set and revised consumption rates were then assigned a conservative cost estimate based on retail price data from

  6. Optimal Ground-Source Heat Pump System Design

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a least-cost design tool (OptGSHP) that will enable GSHP developers to analyze system cost and performance in a variety of building applications to support both design, operational and purchase decisions. Integrate groundwater flow and heat transport into OptGSHP. Demonstrate the usefulness of OptGSHP and the significance of a systems approach to the design of GSHP systems.

  7. Ground Source Heat Pump System Data Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber toSenate1Emerging

  8. Data Analysis from Ground Source Heat Pump Demonstration Projects |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone | DepartmentEA FeaturedDUFM304WDB)

  9. Ball State University Completes Nation's Largest Ground-Source Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG:Background:Bagdad Plant1 ISSUED:System

  10. Ground Source Heat Pump Subprogram Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying

  11. Ground Source Heat Pump System Data Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the CarryingPeer Review GSHP

  12. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24T23:59:59.000Z

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  13. Sandia National Laboratories: molten salt test loop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt test loop Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy...

  14. Ground Turkey Stir Fry Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey Stir Fry Ingredients: 1 1/2 cups brown rice, medium- grain, making 3 cups cooked 1 pound ground turkey 4 zucchini 1 onion 1 green pepper 1/4 teaspoon pepper Directions 1. Cook brown rice turkey in skillet and use a spatula to break beef into small pieces as it browns. Keep on stirring

  15. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect (OSTI)

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31T23:59:59.000Z

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  16. Closed loop computer control for an automatic transmission

    DOE Patents [OSTI]

    Patil, Prabhakar B. (Detroit, MI)

    1989-01-01T23:59:59.000Z

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  17. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  18. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump 

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  19. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  20. 1McNEILL: JITTER IN PHASE-LOCKED LOOPS Jitter in Phase-Locked Loops

    E-Print Network [OSTI]

    McNeill, John A.

    1McNEILL: JITTER IN PHASE-LOCKED LOOPS Jitter in Phase-Locked Loops John McNeill Worcester Polytechnic Institute #12;2McNEILL: JITTER IN PHASE-LOCKED LOOPS Course Overview · Basic Theory · Applications · Measurement Techniques · Test Issues · Design Measurement Techniques Design Tools #12;3McNEILL: JITTER

  1. Direct numerical integration for multi-loop integrals

    E-Print Network [OSTI]

    Sebastian Becker; Stefan Weinzierl

    2013-03-18T23:59:59.000Z

    We present a method to construct a suitable contour deformation in loop momentum space for multi-loop integrals. This contour deformation can be used to perform the integration for multi-loop integrals numerically. The integration can be performed directly in loop momentum space without the introduction of Feynman or Schwinger parameters. The method can be applied to finite multi-loop integrals and to divergent multi-loop integrals with suitable subtraction terms. The algorithm extends techniques from the one-loop case to the multi-loop case. Examples at two and three loops are discussed explicitly.

  2. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect (OSTI)

    Jiang Zhu; Yong X. Tao

    2011-11-01T23:59:59.000Z

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  3. UWB communication receiver feedback loop

    DOE Patents [OSTI]

    Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

    2007-12-04T23:59:59.000Z

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  4. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18T23:59:59.000Z

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  5. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps 

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    configurations of heat pumps: air source heat pumps (ASHP) and ground coupled heat pumps (GCHP). Air source heat pumps extract energy from the outdoor air in the heating mode and reject excess heat in the cooling mode. One significant drawback to ASHP... season. Ground coupled heat pumps use the ground as a heat source or heat sink through The format of this proposal follows that of the Transactions of the American Society of Heating, Refrigeration and Air-Conditioning Engineers. the use of a ground...

  6. Soft X-ray emission in flaring coronal loops

    E-Print Network [OSTI]

    Pinto, R F; Brun, A S

    2014-01-01T23:59:59.000Z

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  7. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  8. NLS ground states on graphs

    E-Print Network [OSTI]

    Riccardo Adami; Enrico Serra; Paolo Tilli

    2014-06-16T23:59:59.000Z

    We investigate the existence of ground states for the subcritical NLS energy on metric graphs. In particular, we find out a topological assumption that guarantees the nonexistence of ground states, and give an example in which the assumption is not fulfilled and ground states actually exist. In order to obtain the result, we introduce a new rearrangement technique, adapted to the graph where it applies. Owing to such a technique, the energy level of the rearranged function is improved by conveniently mixing the symmetric and monotone rearrangement procedures.

  9. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01T23:59:59.000Z

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  10. GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    the cost and feasibility of a residential ground coupled heat pump space conditioning system requiring#12;GROUND-COUPLED HEAT-PUMP-SYSTEM EXPERIMENTAL RESULTS* Philip D. Metz _Solar and Renewables house in Upton, Long Island, New York has been heated and cooled by a liquid source heat pump using

  11. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual

    E-Print Network [OSTI]

    Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User source for science about the Earth, its natural and living resources, natural hazards., 2007, Characterizing hydraulic properties and ground-water chemistry in fractured-rock aquifers: A user

  12. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  13. Ground Water Management Regulations (Louisiana)

    Broader source: Energy.gov [DOE]

    The rules and regulations apply to the management of the state's ground water resources. In addition, the Commissioner of Conservation has recommended that oil and gas operators with an interest...

  14. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas 

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  15. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  16. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at...

  17. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  18. Category:Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source HistoryGroundGround

  19. DNA looping: the consequences and its control

    E-Print Network [OSTI]

    Leonor Saiz; Jose M. G. Vilar

    2006-09-26T23:59:59.000Z

    The formation of DNA loops by proteins and protein complexes is ubiquitous to many fundamental cellular processes, including transcription, recombination, and replication. Here we review recent advances in understanding the properties of DNA looping in its natural context and how they propagate to the cellular behavior through gene regulation. The results of connecting the molecular properties with cellular physiology indicate that looping of DNA in vivo is much more complex and easier than predicted from current models and reveals a wealth of previously unappreciated details.

  20. A new loop-reducing routing algorithm

    E-Print Network [OSTI]

    Park, Sung-Woo

    1989-01-01T23:59:59.000Z

    Coming-up VI. Three Links Failed Page 51 51 52 52 53 53 . 54 54 55 Figure 5. 6. 7. 8. LIST OF FIGURES Bellman-Ford Algorithm Update Tables of Distributed Bellman-Ford Algorithm Two Types of a. Loop Two-Node Loop Multi-Node Loop... distances for all pairs of nodes in the subnet, and distributes updated routing information to all the nodes. The centralized algorithm, however, is vulnerable to a. single node failure ? if the NRC fails, all nodes in the network must stop their rout...

  1. Modulation of DNA loop lifetimes by the free energy of loop formation

    E-Print Network [OSTI]

    Chen, Yi-Ju; Mulligan, Peter; Spakowitz, Andrew J; Phillips, Rob

    2015-01-01T23:59:59.000Z

    Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, ...

  2. Off-shell two loop QCD vertices

    E-Print Network [OSTI]

    J. A. Gracey

    2014-06-03T23:59:59.000Z

    We calculate the triple gluon, ghost-gluon and quark-gluon vertex functions at two loops in the MSbar scheme in the chiral limit for an arbitrary linear covariant gauge when the external legs are all off-shell.

  3. Speed estimation using single loop detector outputs

    E-Print Network [OSTI]

    Ye, Zhirui

    2008-10-10T23:59:59.000Z

    -in Motion (WIM) Video Image Processor (VIP) Microwave Radar Infrared Sensors Ultrasonic Sensors Non-intrusive Passive Acoustic Array Sensors In the following sections, three types of detectors adopting the inductive loop technology are reviewed...

  4. Speed estimation using single loop detector outputs

    E-Print Network [OSTI]

    Ye, Zhirui

    2009-05-15T23:59:59.000Z

    -in Motion (WIM) Video Image Processor (VIP) Microwave Radar Infrared Sensors Ultrasonic Sensors Non-intrusive Passive Acoustic Array Sensors In the following sections, three types of detectors adopting the inductive loop technology are reviewed...

  5. The Three-Loop Lattice Free Energy

    E-Print Network [OSTI]

    B. Alles; M. Campostrini; A. Feo; H. Panagopoulos

    2005-08-15T23:59:59.000Z

    We calculate the free energy of SU(N) gauge theories on the lattice, to three loops. Our result, combined with Monte Carlo data for the average plaquette, gives a more precise estimate of the gluonic condensate.

  6. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12T23:59:59.000Z

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  7. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01T23:59:59.000Z

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  8. Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

    E-Print Network [OSTI]

    Shaw, Steven W.

    asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

  9. An experimental study of heating performance and seasonal modeling of vertical U-tube ground coupled heat pumps

    E-Print Network [OSTI]

    Margo, Randal E.

    1992-01-01T23:59:59.000Z

    , 1985; Mei & Emerson, 1985; Couvillion, 1985; Edwards & Vitta, 1985; Mei & Baxter, 1986; Cane & Forgas, 1991, Deerman, 1991; Dobson, 1991]. Ground coupled heat pumps have the potential to perform more efficiently than air source heat pumps (ASHP... configurations of heat pumps: air source heat pumps (ASHP) and ground coupled heat pumps (GCHP). Air source heat pumps extract energy from the outdoor air in the heating mode and reject excess heat in the cooling mode. One significant drawback to ASHP...

  10. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07T23:59:59.000Z

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  11. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    , Tubing Abstract An advanced heat transfer model for both unlooped and looped Pulsating Heat Pipes (PHPs

  12. On Smarandache Bryant Schneider group of a Smarandache loop

    E-Print Network [OSTI]

    Temitope Gbolahan Jaiyeola

    2008-06-05T23:59:59.000Z

    The concept of Smarandache Bryant Schneider Group of a Smarandache loop is introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache Bryant Schneider Group of an S-loop are discovered and the later is found to be useful in finding Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is useful in finding isotopy-isomorphy condition(s) in loops. Some properties of the Bryant Schneider Group of a loop are shown to be true for the Smarandache Bryant Schneider Group of a Smarandache loop. Some interesting and useful cardinality formulas are also established for a type of finite Smarandache loop.

  13. Analysis of the Potential Applications of Solar Termal and Photovoltaic Systems for Northwest Vista College

    E-Print Network [OSTI]

    Ugursal, A.; Martinez, J.; Baltazar, J. C.; Zilbershtein, G.

    2013-01-01T23:59:59.000Z

    the following RE technologies as viable: ground source heat pump (GSHP) systems, closed loop solar thermal system and photovoltaic (PV)....

  14. Analysis of the Potential Applications of Solar Termal and Photovoltaic Systems for Northwest Vista College 

    E-Print Network [OSTI]

    Ugursal, A.; Martinez, J.; Baltazar, J. C.; Zilbershtein, G.

    2013-01-01T23:59:59.000Z

    the following RE technologies as viable: ground source heat pump (GSHP) systems, closed loop solar thermal system and photovoltaic (PV)....

  15. Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop

    E-Print Network [OSTI]

    T. Minoshima; T. Yokoyama

    2008-06-24T23:59:59.000Z

    We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

  16. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01T23:59:59.000Z

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  17. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-Print Network [OSTI]

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood.2 million cubic meters) of lumber treated with CCA are produced annually in the United States (Micklewright 1998). ·In 1997, for example, some 581.4 million cu. ft. was treated with waterborne preservatives

  18. Measurement of Helium-3/Helium-4 Ratios in Soil Gas at the 618-11 Burial Ground

    SciTech Connect (OSTI)

    Olsen, Khris B.; Dresel, P Evan; Evans, John C.

    2001-10-31T23:59:59.000Z

    Seventy soil gas-sampling points were installed around the perimeter of the 618-11 Burial Ground, approximately 400 feet downgradient of well 699-13-3A, and in four transects downgradient of the burial ground to a maximum distance of 3,100 feet. Soil gas samples were collected and analyzed for helium-3/helium-4 ratios from these 70 points. Helium-3/helium-4 ratios determined from the soil gas sampling points showed significant enrichments, relative to ambient air helium-3 concentrations. The highest concentrations were located along the northern perimeter of the burial ground. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) ranged from 1.0 to 62 around the burial ground. The helium-3/helium-4 ratios from the 4 transect downgradient of the burial ground ranged from 0.988 to 1.68. The helium-3/helium-4 ratios from around the burial ground suggest there is a vadose zone source of tritium along the north side of the burial ground. This vadose zone source is likely the source of tritium in the groundwater. The helium-3/helium-4 ratios also suggest the groundwater plume is traveling east-northeast from the burial ground and the highest groundwater tritium value may be to the north of well 699-13-3A. Finally, there appears to be no immediately upgradient sources of tritium impacting the burial ground since all the upgradient helium-3/helium-4 ratios are approximately 1.0.

  19. Parameterizing loop fusion for automated empirical tuning

    SciTech Connect (OSTI)

    Zhao, Y; Yi, Q; Kennedy, K; Quinlan, D; Vuduc, R

    2005-12-15T23:59:59.000Z

    Traditional compilers are limited in their ability to optimize applications for different architectures because statically modeling the effect of specific optimizations on different hardware implementations is difficult. Recent research has been addressing this issue through the use of empirical tuning, which uses trial executions to determine the optimization parameters that are most effective on a particular hardware platform. In this paper, we investigate empirical tuning of loop fusion, an important transformation for optimizing a significant class of real-world applications. In spite of its usefulness, fusion has attracted little attention from previous empirical tuning research, partially because it is much harder to configure than transformations like loop blocking and unrolling. This paper presents novel compiler techniques that extend conventional fusion algorithms to parameterize their output when optimizing a computation, thus allowing the compiler to formulate the entire configuration space for loop fusion using a sequence of integer parameters. The compiler can then employ an external empirical search engine to find the optimal operating point within the space of legal fusion configurations and generate the final optimized code using a simple code transformation system. We have implemented our approach within our compiler infrastructure and conducted preliminary experiments using a simple empirical search strategy. Our results convey new insights on the interaction of loop fusion with limited hardware resources, such as available registers, while confirming conventional wisdom about the effectiveness of loop fusion in improving application performance.

  20. Torsional oscillations of longitudinally inhomogeneous coronal loops

    E-Print Network [OSTI]

    T. V. Zaqarashvili; K Murawski

    2007-04-03T23:59:59.000Z

    We explore the effect of an inhomogeneous mass density field on frequencies and wave profiles of torsional Alfven oscillations in solar coronal loops. Dispersion relations for torsional oscillations are derived analytically in limits of weak and strong inhomogeneities. These analytical results are verified by numerical solutions, which are valid for a wide range of inhomogeneity strength. It is shown that the inhomogeneous mass density field leads to the reduction of a wave frequency of torsional oscillations, in comparison to that of estimated from mass density at the loop apex. This frequency reduction results from the decrease of an average Alfven speed as far as the inhomogeneous loop is denser at its footpoints. The derived dispersion relations and wave profiles are important for potential observations of torsional oscillations which result in periodic variations of spectral line widths. Torsional oscillations offer an additional powerful tool for a development of coronal seismology.

  1. Inflationary universe in loop quantum cosmology

    E-Print Network [OSTI]

    Xin Zhang; Yi Ling

    2007-07-23T23:59:59.000Z

    Loop quantum cosmology provides a nice solution of avoiding the big bang singularity through a big bounce mechanism in the high energy region. In loop quantum cosmology an inflationary universe is emergent after the big bounce, no matter what matter component is filled in the universe. A super-inflation phase without phantom matter will appear in a certain way in the initial stage after the bounce; then the universe will undergo a normal inflation stage. We discuss the condition of inflation in detail in this framework. Also, for slow-roll inflation, we expect the imprint from the effects of the loop quantum cosmology should be left in the primordial perturbation power spectrum. However, we show that this imprint is too weak to be observed.

  2. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29T23:59:59.000Z

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  3. Automation of one-loop QCD corrections

    E-Print Network [OSTI]

    Valentin Hirschi; Rikkert Frederix; Stefano Frixione; Maria Vittoria Garzelli; Fabio Maltoni; Roberto Pittau

    2013-05-14T23:59:59.000Z

    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

  4. A keyboard control method for loop measurement

    SciTech Connect (OSTI)

    Gao, Z.W. [Universita Degli Studi di Roma La Sapienza (Italy)

    1994-12-31T23:59:59.000Z

    This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation.

  5. Montana Ground Water Assessment Act (Montana)

    Broader source: Energy.gov [DOE]

    This statute establishes a program to systematically assess and monitor the state's ground water and to disseminate the information to interested persons in order to improve the quality of ground...

  6. Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications

    E-Print Network [OSTI]

    Sophia Borowka

    2014-10-29T23:59:59.000Z

    In this thesis, major developments in the publicly available program SecDec are presented, extending the numerical evaluation of multi-loop multi-scale integrals from Euclidean to physical kinematics. The power of this new feature is shown in two phenomenological applications. In the first, numerical results for several massive two-loop four-point functions are shown. In its second application within this thesis, the leading momentum-dependent two-loop corrections to the neutral $\\mathcal{CP}$-even MSSM Higgs-boson masses are calculated. The results are included in the code FeynHiggs.

  7. Ground Turkey and Potato Plate Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey and Potato Plate Ingredients: 1 onion 1/2 pound ground turkey 1 cup ketchup, low, brown ground turkey and onion together over medium heat 8 to 10 minutes or until turkey is no longer. Return turkey to skillet. 3. Add ketchup to skillet; cover and simmer over medium-low heat 10 minutes. 4

  8. Case Study/ Ground Water Sustainability: Methodology and

    E-Print Network [OSTI]

    Zheng, Chunmiao

    , or the lack thereof, of ground water flow systems driven by similar hydrogeologic and economic conditionsCase Study/ Ground Water Sustainability: Methodology and Application to the North China Plain of a ground water flow system in the North China Plain (NCP) subject to severe overexploitation and rapid

  9. Loop realizations of quantum affine algebras

    SciTech Connect (OSTI)

    Cautis, Sabin [Department of Mathematics, University of Southern California, Los Angeles, California, 90089 (United States); Licata, Anthony [Department of Mathematics, Australian National University, Canberra (Australia)

    2012-12-15T23:59:59.000Z

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  10. The HTGR Closed - Loop Energy System

    E-Print Network [OSTI]

    Leeth, G. G.

    1981-01-01T23:59:59.000Z

    This paper summarizes some of the studies performed during the past several years on the application of the high temperature gas-cooled reactor (HTGR) to the U.S. industrial energy market. The specific concept utilizes a closed-loop thermo chemical...

  11. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05T23:59:59.000Z

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  12. Warm inflationary model in loop quantum cosmology

    SciTech Connect (OSTI)

    Herrera, Ramon [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Casilla 4059, Valparaiso (Chile)

    2010-06-15T23:59:59.000Z

    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V({phi}){proportional_to}{phi}{sup 2}, we develop a model where the dissipation coefficient {Gamma}={Gamma}{sub 0}=constant. We use recent astronomical observations for constraining the parameters appearing in our model.

  13. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA)

    2001-01-01T23:59:59.000Z

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  14. Heavy Quark Anti-Quark Free Energy and the Renormalized Polyakov Loop

    E-Print Network [OSTI]

    Kaczmarek, O; Petreczky, P; Zantow, F

    2002-01-01T23:59:59.000Z

    We calculate the colour averaged and colour singlet free energies of static quark anti-quark sources placed in a thermal gluonic heat bath. We discuss the renormalization of these free energies using the short distance properties of the zero temperature heavy quark potential. This leads to the definition of the renormalized Polyakov loop as an order parameter for the deconfinement phase transition of the SU(3) gauge theory which is well behaved in the continuum limit.

  15. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Fertilizer Storage and Handling

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Fertilizer is a major source of ground water contamination. This publication emphasizes the best management practices for storing fertilizers, whether you are building a new facility or modifying an existing one. It also includes information on safe...

  16. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Well-Head Management and Conditions

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

    1997-08-29T23:59:59.000Z

    The condition of a water well and its proximity to contamination sources determine the risk it poses to ground water. Topics covered include well location, well construction, well age and type, well depth, well maintenance, water testing...

  17. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Energy Savers [EERE]

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT...

  18. Loop simulation capability for sodium-cooled systems

    E-Print Network [OSTI]

    Adekugbe, Oluwole A.

    1984-01-01T23:59:59.000Z

    A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

  19. Six-loop divergences in the supersymmetric Kahler sigma model

    E-Print Network [OSTI]

    I. Jack; D. R. T. Jones; J. Panvel

    1993-11-19T23:59:59.000Z

    The two-dimensional supersymmetric $\\s$-model on a K\\"ahler manifold has a non-vanishing $\\b$-function at four loops, but the $\\b$-function at five loops can be made to vanish by a specific choice of renormalisation scheme. We investigate whether this phenomenon persists at six loops, and conclude that it does not; there is a non-vanishing six-loop $\\b$-function irrespective of renormalisation scheme ambiguities.

  20. Closed loop cooling operation with MICON. Revision 1

    SciTech Connect (OSTI)

    Navarro, G.E.

    1995-01-18T23:59:59.000Z

    Document provides instructions for testing the closed loop cooling operation with the MICON Computer System at PFP.

  1. Gravitational field of a stationary circular cosmic string loop

    E-Print Network [OSTI]

    A; A. Sen; N. Banerjee

    1998-06-22T23:59:59.000Z

    Gravitational field of a stationary circular cosmic string loop has been studied in the context of full nonlinear Einstein's theory of gravity. It has been assumed that the radial and tangential stresses of the loop are equal to the energy density of the string loop. An exact solution for the system has been presented which has a singularity at a finite distance from the axis,but is regular for any other distances from the axis of the loop.

  2. On Termination of Integer Linear Loops Joel Ouaknine

    E-Print Network [OSTI]

    Ouaknine, Joël

    On Termination of Integer Linear Loops Jo¨el Ouaknine Department of Computer Science Oxford con- cerns the termination of simple linear loops of the form: x u ; while Bx c do x Ax + a , where initial integer vectors u, such a loop terminates. The correctness of our algorithm relies

  3. A new vacuum for Loop Quantum Gravity

    E-Print Network [OSTI]

    Bianca Dittrich; Marc Geiller

    2015-05-05T23:59:59.000Z

    We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.

  4. A Fractal Interpretation of Controlled-Source Helicopter Electromagnetic Survey Data Seco Creek, Edwards Aquifer, TX

    E-Print Network [OSTI]

    Decker, Kathryn T.

    2010-07-14T23:59:59.000Z

    .1 Literature Review of Airborne Electromagnetic Surveys.................................................................... 36 5.2 Helicopter EM Survey Details..................................... 39 VI DATA ANALYSIS... to detect the magnetic field arising from eddy current induction in the ground. In some airborne surveys, the transmitter and receiver 21 loops are separated by a fixed distance and housed in a bird (often with other equipment for sensing elevation...

  5. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01T23:59:59.000Z

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  6. Hanford Site ground-water monitoring for 1992

    SciTech Connect (OSTI)

    Dresel, P.E.; Newcomer, D.R.; Evans, J.C.; Webber, W.D.; Spane, F.A. Jr.; Raymond, R.G.; Opitz, B.E.

    1993-06-01T23:59:59.000Z

    Monitoring activities were conducted to determine the distribution of radionuclides and hazardous chemicals present in ground water as a result of Hanford Site operations and, whenever possible, relate the distribution of these constituents to Site operations. A total of 720 wells were sampled during 1992 by all Hanford ground-water monitoring activities. The Ground-Water Surveillance Project prepared water-table maps of DOE`s Hanford Site for June 1992 from water-level elevations measured in 287 wells across the Hanford Site and outlying areas. These maps are used to infer ground-water flow directions and gradients for the interpretation of contaminant transport. Water levels beneath the 200 Areas decreased as much as 0.75 m (2.5 ft) between December 1991 and December 1992. Water levels in the Cold Creek Valley decreased approximately 0.5 m in that same period. The water table adjacent to the Columbia River along the Hanford Reach continues to respond significantly to fluctuations in river stage. These responses were observed in the 100 and 300 areas. The elevation of the ground-water mound beneath B Pond did not change significantly between December 1991 and December 1992. However, water levels from one well located at the center of the mound indicate a water-level rise of approximately 0.3 m (1 ft) during the last quarter of 1992. Water levels measured from unconfined aquifer wells north and east of the Columbia River in 1992 indicate that the primary source of recharge is from irrigation practices.

  7. MAGNETIC LOOPS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Borrero, J. M.; Schmidt, W. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, 79104 Freiburg (Germany); Pillet, V. MartInez; Bonet, J. A. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Del Toro Iniesta, J. C. [Instituto de Astrofisica de Andalucia (CSIC), Apartado de Correos 3004, 18080 Granada (Spain); Domingo, V. [Grupo de Astronomia y Ciencias del Espacio, Universidad de Valencia, 46980 Paterna, Valencia (Spain); Knoelker, M. [High Altitude Observatory, National Center for Atmospheric Research Boulder, CO 80307 (United States); Title, A. M., E-mail: wiegelmann@mps.mpg.d [Lockheed Martin Solar and Astrophysics Laboratory, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2010-11-10T23:59:59.000Z

    We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields.

  8. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect (OSTI)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15T23:59:59.000Z

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  9. Remote grounding device for subterranean power systems

    SciTech Connect (OSTI)

    Wilson, D.P.

    1987-04-28T23:59:59.000Z

    A remote grounding device is described for subterranean power cable of an insulated conducting cable which comprises: a grounding module and a grounding mechanism; the grounding module is an assembly of a power buss, an insulation sheath, a reducing tap plug and an insulating receptacle cap. The power buss is intimately connected to the conducting cable by a means of an attachment. The reducing tap plug fits concentrically over the power buss and has a tubular probe path void contiguous and in-line to the power buss and a lip around the outer periphery of the reducing tap plug. The insulating receptacle cap covers the tubular void. The insulating sheath covers and holds reducing tap plug and power cable by a multiplicity of locking means and a grounding mechanism assembly of a frame, a probe, a power drive means, a grounding means, a handle means.

  10. Natural restoration of ground water in UCG

    SciTech Connect (OSTI)

    Humenick, M.J.; Britton, L.N.; Mattox, C.F.

    1982-01-01T23:59:59.000Z

    Ground water contamination from underground coal gasification (UCG) has been documented at several field tests in Texas and Wyoming. However, monitoring data following the termination of gasification operations has shown that contaminant concentrations decrease with time, apparently because of natural processes. This research evaluates the probable natural mechanisms for the reduction of organic contaminant concentrations in ground water. Results indicated that biological degradation and adsorption could be a significant mechanism for removal of organics from ground waters. 12 refs.

  11. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  12. Category:Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source HistoryGround

  13. Evaluation of analytical methods to interpret ground deformations due to soft ground tunneling

    E-Print Network [OSTI]

    Zymnis, Despina M

    2009-01-01T23:59:59.000Z

    An in depth study was undertaken to evaluate the effectiveness of analytical solutions in describing ground movements induced by soft ground tunneling. The analytical solutions that were examined consider both isotropic ...

  14. Special Section on Ground Water Research in China Featured in This Issue of Ground Water

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    of Ground Water by Xun Zhou1, Jiu J. Jiao2, and Mary P. Anderson3 Contained in this issue of Ground Water, Groundwater Resources and the Related Environ- Hydrogeologic Problems in China, Beijing: Seismological Press

  15. The fundamental properties of current controlled current source amplifiers

    E-Print Network [OSTI]

    Terry, Michael Buford

    1978-01-01T23:59:59.000Z

    The thesis studies the fundamental properties of current controlled current source (CCCS) amplifiers for use in a wide bandwidth voltage gain application. Theoretical expressions are derived which describe the p'erformance of the CCCS in terms of circuit... of this research was to conduct a theoretical and experimental study of the fundamental properties of Current Controlled Current Source (CCCS) amplifiers. Of particular interest was the bandwidth independence on the closed loop voltage gain of the CCCS used...

  16. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  17. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01T23:59:59.000Z

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  18. Beam-based Feedback for the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Fairley, D.; Allison, S.; Chevtsov, S.; Chu, P.; Decker, F.J.; Emma, P.; Frisch, J.; Himel, T.; Kim, K.; Krejcik, P.; Loos, H.; Lahey, T.; Natampalli, P.; Peng, S.; Rogind, D.; Shoaee, H.; Straumann, T.; Williams, E.; White, G.; Wu, J.; Zelazney, M.; /SLAC

    2010-02-11T23:59:59.000Z

    Beam-based feedback control loops are required by the Linac Coherent Light Source (LCLS) program in order to provide fast, single-pulse stabilization of beam parameters. Eight transverse feedback loops, a 6 x 6 longitudinal feedback loop, and a loop to maintain the electron bunch charge were successfully prototyped in MATLAB for the LCLS, and have been maintaining stability of the LCLS electron beam at beam rates up to 30Hz. In the final commissioning phase of LCLS the beam will be operating at up to 120Hz. In order to run the feedback loops at beam rate, the feedback loops will be implemented in EPICS IOCs with a dedicated ethernet multi-cast network. This paper will discuss the design of the beam-based Fast Feedback System for LCLS. Topics include MATLAB feedback prototyping, algorithm for 120Hz feedback, network design for fast data transport, actuator and sensor design for single-pulse control and sensor readback, and feedback configuration and runtime control.

  19. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

  20. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect (OSTI)

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01T23:59:59.000Z

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  1. Fractal Structure of Loop Quantum Gravity

    E-Print Network [OSTI]

    Leonardo Modesto

    2008-12-11T23:59:59.000Z

    In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.

  2. High Energy Evolution with Pomeron Loops

    E-Print Network [OSTI]

    Michael Lublinsky

    2006-05-02T23:59:59.000Z

    The high energy/density QCD has been widely used for DIS phenomenology with a projectile particle considered as perturbative and dilute. We review some recent attempts to derive a high energy evolution kernel which treats targets and projectiles in a symmetric manner. From theoretical point of view the problem is tightly related to inclusion of Pomeron loops in the evolution. The ultimate goal is to consider high energy scatterings with both projectile and target being dense, the situation faced at RHIC and the LHC.

  3. Loop Quantum Gravity: An Inside View

    E-Print Network [OSTI]

    Thomas Thiemann

    2006-08-29T23:59:59.000Z

    This is a (relatively) non -- technical summary of the status of the quantum dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical evolution of the subject and why the results obtained so far are non -- trivial. The present text can be viewed in part as a response to an article by Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no go conclusions drawn from a mathematically correct calculation in a recent paper by Helling et al [hep-th/0409182] are physically incorrect.

  4. Grafting Polymer Loops onto Functionalized Nanotubes: Monitoring Grafting and Loop Formation

    SciTech Connect (OSTI)

    Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

    2011-01-01T23:59:59.000Z

    Polystyrene functionalized at both ends (telechelic polymer) with epoxide groups (epoxy PS epoxy) was reacted with carboxylated multiwall carbon nanotubes (COOH MWNT) in solution in order to graft polymer chains at both ends onto the MWNT surface, forming loops. FT-IR spectroscopy was employed to monitor the formation of aromatic esters and to quantify the amount of telechelic grafted to the nanotube surface as a function of reaction time. When the samples were further annealed in the melt, an increase in the aromatic ester peak was observed, indicating that the unreacted chain ends further grafted to MWNT surfaces to form loops. By reacting the grafted nanotube samples further with monocarboxy terminated poly(4-methylstyrene) (COOH P4MS), the amount of epoxy PS epoxy that had only reacted at one end was determined. Reaction rate analysis indicates that that the grafting of epoxy PS epoxy to the nanotube surface is reaction controlled, as the FT-IR spectroscopy signal grows as a function of approximately t0.3. These studies exemplify how FT-IR spectroscopy can be used as a novel technique to quantify the amount of grafted polymer, grafting rate, and percent of difunctional polymers that form loops, and provide a method to create loop covered nanoparticles.

  5. First conference on ground control problems in the Illinois Coal Basin: proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Van Besien, A. (eds.)

    1980-06-01T23:59:59.000Z

    The first conference on ground control problems in the Illinois Coal Basin was held at the Southern Illinois University at Carbondale, Illinois, August 22-24, 1979. Twenty-one papers from the proceedings have been entered individually into EDB; one had been entered previously from other sources. (LTN)

  6. Vertical Concentric Tube Ground Couoled Heat Exchangers V. C. Mei and S. K. Fischer*

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    to extract heat from or reject heat to the environment. The majority of heat pumps use ambient air of the air. Ground water is a better heat source/sink for heat pump application (due to its superior thermal exchangers for use in heat-pump applications is described. The experimental apparatus consists

  7. High temperature storage loop : final design report.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.

    2013-07-01T23:59:59.000Z

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  8. Evolution equation for 3-quark Wilson loop operator

    E-Print Network [OSTI]

    R. E. Gerasimov; A. V. Grabovsky

    2012-12-07T23:59:59.000Z

    The evolution equation for the 3 quark Wilson loop operator has been derived in the leading logarithm approximation within Balitsky high energy operator expansion.

  9. ORC Closed Loop Control Systems for Transient and Steady State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles....

  10. Robotic Roommates Making Pancakes -Look Into Perception-Manipulation Loop

    E-Print Network [OSTI]

    Cremers, Daniel

    Robotic Roommates Making Pancakes - Look Into Perception-Manipulation Loop Michael Beetz, Ulrich Klank, Alexis Maldonado, Dejan Pangercic, Thomas R¨uhr {beetz, klank, maldonad, pangercic, ruehr

  11. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  12. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  13. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  14. Scaling Considerations in Ground State Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel; M. W. Mitchell; Marvin L. Cohen

    2000-07-02T23:59:59.000Z

    We study design challenges associated with realizing a ground state quantum computer. In such a computer, the energy gap between the ground state and first excited state must be sufficiently large to prevent disruptive excitations. Here, an estimate is provided of this gap as a function of computer size. We then address the problem of detecting the output of a ground state quantum computer. It is shown that the exponential detection difficulties that appear to be present at first can be overcome in a straightforward manner by small design changes.

  15. AB Method of Irrigation without Water (Closed-loop water cycle)

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-12-26T23:59:59.000Z

    Author suggests and researches a new revolutionary idea for a closed-loop irrigation method. He offers to cover a given site by a thin closed film with controlled heat conductivity and clarity located at an altitude of 50 300 m. The film is supported at altitude by small additional atmospheric overpressure and connected to the ground by thin cables. Authors show that this closed dome allows full control of the weather in a given region (the day is always fine, the rain is only at night, no strong winds). The dome (having control of the clarity of film and heat conductivity) converts the cold regions to subtropics, hot deserts and desolate wildernesses to prosperous regions with a temperate climate. This is a realistic and cheap method of evaporation economical irrigation and virtual weather control on Earth at the current time.

  16. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  17. Theory of the hysteresis loop in ferromagnets

    E-Print Network [OSTI]

    Lyuksyutov, Igor F.; Nattermann, T.; Pokrovsky, Valery L.

    1999-01-01T23:59:59.000Z

    ~see Refs. 7?9! PRB 590163-1829/99/59~6!/4260~13!/$15.00 loop in ferromagnets v* , College Station, Texas 77843-4242 n a?t zu Ko?ln, 50937, Ko?ln, Germany , 24 rue Lhomond 75231, Paris Cedex 05, France y , College Station, Texas 77843-4242 l... strength in a compli- cated way.18 The random fields h @ r5(x,Z) # generated by imperfec- PRB 59 THEORY OF THE HYSTERESI tions is assumed to be Gaussian distributed and short-range correlated with h(r)50 and h ~ r!h~r 8 !5h 2lD11d l~r2r8!. ~2...

  18. Open-loop heat-recovery dryer

    DOE Patents [OSTI]

    TeGrotenhuis, Ward Evan

    2013-11-05T23:59:59.000Z

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  19. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01T23:59:59.000Z

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  20. Geothermal Loop Experimental Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

  1. Grounding linguistic analysis in control applications

    E-Print Network [OSTI]

    Branavan, Satchuthananthavale Rasiah Kuhan

    2012-01-01T23:59:59.000Z

    This thesis addresses the problem of grounding linguistic analysis in control applications, such as automated maintenance of computers and game playing. We assume access to natural language documents that describe the ...

  2. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name.ehs.cornell.edu/env/bulk-material-storage/petroleum-bulk-storage/Documents/AST_Inspection_Form.pdf #12;

  3. Ground Water Protection Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of the Ground Water Protection Act is to provide substantive provisions and funding mechanisms to the extent that funds are available to enable the state to take corrective action at...

  4. Building an entanglement measure on physical ground

    E-Print Network [OSTI]

    D. Teresi; A. Napoli; A. Messina

    2008-05-28T23:59:59.000Z

    We introduce on physical grounds a new measure of multipartite entanglement for pure states. The function we define is discriminant and monotone under LOCC and moreover can be expressed in terms of observables of the system.

  5. International Borders, Ground Water Flow, and Hydroschizophrenia

    E-Print Network [OSTI]

    Wolf, Aaron

    International Borders, Ground Water Flow, and Hydroschizophrenia by Todd Jarvis1,2, Mark Giordano3 of Geosciences, 104 Wilkinson Hall, Corvallis, OR 97331 2Corresponding author: todd.jarvis@oregonstate.edu 3

  6. Commonality of ground systems in launch operations

    E-Print Network [OSTI]

    Quinn, Shawn M

    2008-01-01T23:59:59.000Z

    NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront ...

  7. Ground rubber: Reactive permeable barrier sorption media

    SciTech Connect (OSTI)

    Kershaw, D.S.; Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States)

    1997-12-31T23:59:59.000Z

    The objective of this research was to examine the feasibility of using ground tire rubber as a sorbent media in reactive permeable barrier systems. Previous research by the current authors has demonstrated that tire rubber can sorb significant quantities of benzene, toluene, ethylbenzene and O-xylene from aqueous solutions. The current research was run to examine the usage rate of ground rubber in a packed bed reactor under specific contact times. In addition, desorption and repetitive sorption tests were run to determine the reversibility of the sorption process for ground tire rubber. These tests were run to determine the regeneration capacity of ground tire rubber. Results of the study show that the usage rates are greater than 50% with an empty bed contact times of 37 minutes, and minimal amounts of energy are needed to regenerate the tire rubber after use.

  8. A note on classical ground state energies

    E-Print Network [OSTI]

    Michael K. -H. Kiessling

    2009-05-28T23:59:59.000Z

    The pair-specific ground state energy of Newtonian N-body systems grows monotonically in N. This furnishes a whole family of simple new tests for minimality of putative ground state energies obtained through computer experiments. Inspection of several publically available lists of such computer-experimentally obtained putative ground state energies has yielded several dozen instances which failed (at least) one of these tests. Although the correct ground state energy is not revealed by this method, it does yield a better upper bound on it than the experimentally found value whenever the latter fails a monotonicity test. The surveyed N-body systems include in particular N point charges with 2- or 3-dimensional Coulomb pair interactions, placed either on the unit 2-sphere or on a 2-torus (a.k.a. Thomson, Fekete, or Riesz problems).

  9. Loop-voltage tomography in tokamaks using transient synchrotron radiation

    SciTech Connect (OSTI)

    Fisch, N.J.; Kritz, A.H. (Princeton Univ., NJ (USA). Plasma Physics Lab.; Hunter Coll., New York, NY (USA). Dept. of Physics)

    1989-07-01T23:59:59.000Z

    The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs.

  10. Supply Regulation Techniques for Phase-Locked Loops

    E-Print Network [OSTI]

    Palermo, Sam

    Supply Regulation Techniques for Phase-Locked Loops Vivekananth Gurumoorthy and Samuel Palermo-- Phase-locked loops (PLLs) which employ voltage regulators for low supply-noise sensitivity often rely. This paper compares various supply regulation techniques on the basis of their ability to reject noise from

  11. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

  12. Singlet Free Energies and Renormalized Polyakov Loop in full QCD

    E-Print Network [OSTI]

    K. Petrov

    2006-10-05T23:59:59.000Z

    We calculate the free energy of a static quark anti-quark pair and the renormalized Polyakov loop in 2+1- and 3- flavor QCD using $16^3 \\times 4$ and $16^3 \\times 6$ lattices and improved staggered p4 action. We also compare the renormalized Polyakov loop with the results of our earlier studies.

  13. Flow Loop Experiments Using Polyalphaolefin Nanofluids Ian C. Nelson

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    Flow Loop Experiments Using Polyalphaolefin Nanofluids Ian C. Nelson and Debjyoti Banerjee Texas A a flow-loop apparatus to explore the performance of nanofluids in cooling applications. The experiments/heater), and a reservoir. Experiments were conducted using nanofluid and polyalphaolefin for two different fin strip

  14. Journal of Educational Psychology Applying Grounded Coordination Challenges to Concrete

    E-Print Network [OSTI]

    Journal of Educational Psychology Applying Grounded Coordination Challenges to Concrete Learning, M. I. (2013, August 19). Applying Grounded Coordination Challenges to Concrete Learning Materials.1037/a0034098 #12;Applying Grounded Coordination Challenges to Concrete Learning Materials: A Study

  15. Ground water protection management program plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  16. Control and optimization system and method for chemical looping processes

    DOE Patents [OSTI]

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24T23:59:59.000Z

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  17. Vortex loops: Are they always doomed to die

    SciTech Connect (OSTI)

    Ben-Ya'acov, U. (International Solvay Institutes for Physics and Chemistry, Campus Plaine-CP231, Universite Libre de Bruxelles, Boulevard du Triomphe, B-1050 Brussels (Belgium))

    1995-03-15T23:59:59.000Z

    The effective equations of motion of relativistic strings in material media are derived and applied to moving rings with a time-dependent radius. The equations contain the Magnus force, due to the motion of the ring relative to the medium, whose eventual effect is the possible stabilization of the ring against shrinking. A constant solution is identified, and small fluctuations around it are bound, demonstrating the stability of the solution. If the string loops created in the cosmological cosmic string scenario interact via this mechanism with a formed-up Higgs particle condensate, then the stabilizing velocities are [similar to][delta][sub loop]/[ital R][sub loop], and the overall effect of this phenomenon is to stabilize large loops and reduce the general disappearance rate of the string loops.

  18. Worm-like Polymer Loops and Fourier Knots

    E-Print Network [OSTI]

    S. Rappaport; Y. Rabin; A. Yu. Grosberg

    2006-03-02T23:59:59.000Z

    Every smooth closed curve can be represented by a suitable Fourier sum. We show that the ensemble of curves generated by randomly chosen Fourier coefficients with amplitudes inversely proportional to spatial frequency (with a smooth exponential cutoff), can be accurately mapped on the physical ensemble of worm-like polymer loops. We find that measures of correlation on the scale of the entire loop yield a larger persistence length than that calculated from the tangent-tangent correlation function at small length scales. The conjecture that physical loops exhibit additional rigidity on scales comparable to the entire loop due to the contribution of twist rigidity, can be tested experimentally by determining the persistence length from the local curvature and comparing it with that obtained by measuring the radius of gyration of dsDNA plasmids. The topological properties of the ensemble randomly generated worm-like loops are shown to be similar to that of other polymer models.

  19. Extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Fornaciari, Neal R. (Tracey, CA); Nygren, Richard E. (Los Ranchos de Albuquerque, NM); Ulrickson, Michael A. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  20. The prediction of the effectiveness of interceptor trenches in the remediation of ground-water contamination by petroleum hydrocarbons

    E-Print Network [OSTI]

    Mast, Mary Katherine

    1991-01-01T23:59:59.000Z

    means of ground-water remediation. Ground water at all three sites is contaminated by petroleum hydrocarbons. Sites B and C are service stations in which the source of contamination has been leaky underground storage tanks. Site C was chosen based... pumping from the interceptor trench on the surrounding observation wells. Slug tests were also performed at Site A previously by others to calculate transmissivity. Data from Site C was obtained by a consulting firm hired to provide remedial action...

  1. Loop Current and Deep Eddies Princeton University, Princeton, New Jersey

    E-Print Network [OSTI]

    . It is shown that north of Campeche Bank is a fertile ground for the growth of deep cyclones by baroclinic

  2. Abstract--We use Delay-Tolerant Networking (DTN) to break control loops between space-ground communication

    E-Print Network [OSTI]

    Wood, Lloyd

    ). Figure 1 shows the overall concept of operations (CONOPS) as a series of events, labeled 1 through 7. 1

  3. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    SciTech Connect (OSTI)

    Sheryl Morton; Carl Baily; Tom Hill; Jim Werner

    2006-02-01T23:59:59.000Z

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  4. Closed-loop control of anesthesia in children 1 Robust closed-loop control of induction and

    E-Print Network [OSTI]

    : During closed-loop control, a drug infusion is continually adjusted according to a measure of clinical. Remifentanil was administered as a bolus (0.5 g/kg), followed by continuous infusion (0.03 g/kg/min). The propofol infusion was closed-loop controlled throughout induction and maintenance of anesthesia, using

  5. A model of ATL ground motion for storage rings

    E-Print Network [OSTI]

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01T23:59:59.000Z

    A MODEL OF ATL GROUND MOTION FOR STORAGE RINGS A. WolskiMODEL OF ATL GROUND MOTION FOR STORAGE RINGS* A. Wolski # ,

  6. Department of Veterans Affairs, FONSI - Ground mounted solar...

    Office of Environmental Management (EM)

    Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National...

  7. Fuel Cell Council Working Group on Aircraft and Aircraft Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications...

  8. GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01T23:59:59.000Z

    is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The

  9. Ground Test Facility for Propulsion and Power Modes of Nuclear Engine Operation

    SciTech Connect (OSTI)

    Michael, WILLIAMS

    2004-11-22T23:59:59.000Z

    Existing DOE Ground Test Facilities have not been used to support nuclear propulsion testing since the Rover/NERVA programs of the 1960's. Unlike the Rover/NERVA programs, DOE Ground Test facilities for space exploration enabling nuclear technologies can no longer be vented to the open atmosphere. The optimal selection of DOE facilities and accompanying modifications for confinement and treatment of exhaust gases will permit the safe testing of NASA Nuclear Propulsion and Power devices involving variable size and source nuclear engines for NASA Jupiter Icy Moon Orbiter (JIMO) and Commercial Space Exploration Missions with minimal cost, schedule and environmental impact. NASA site selection criteria and testing requirements are presented.

  10. Rock magnetic investigation of possible sources of the Bangui magnetic anomaly1 , M., Quesnel2*

    E-Print Network [OSTI]

    Boyer, Edmond

    Rock magnetic investigation of possible sources of the Bangui magnetic anomaly1 2 Ouabego1,2 , M slices of such28 metamorphic rocks, or by an iron-rich mafic source, or by a combination of these two29 source using constraints19 from satellite and ground magnetic field measurements, as well as from surface

  11. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are...

  12. Folding of a DNA Hairpin Loop Structure in Explicit SolventUsingRepli...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a DNA Hairpin Loop Structure in Explicit Solvent UsingReplica-Exchange Molecular Dynamics Simulations. Folding of a DNA Hairpin Loop Structure in Explicit Solvent...

  13. Program permits fast solution to pipeline loop requirements

    SciTech Connect (OSTI)

    Bierman, G.D.

    1983-10-31T23:59:59.000Z

    A program developed for the HP-41CV hand-held calculator can provide pipeline engineers with a quick and easy means for determining loop requirements on existing gas-transmission pipelines. Adding pipe in parallel to an existing pipeline, referred to as looping, is necessary to insure that with a given flow rate, the gas will arrive at a certain point on the pipeline with a pressure equal to or greater than the minimum required pressure. The automatic loop program calculates loop by first determining the total number of segments which require looping within the section of pipeline being evaluated. A section of pipe is usually the pipeline between compressor stations and is divided into segments by either receipt or delivery points along the pipeline. The number of segments which require looping is found by adding loop to individual segments until the final pressure (i.e., the pressure at the point of interest downstream on the pipeline) is equal to or greater than the specified design pressure.

  14. 2002 AUGUST 24 LIMB FLARE LOOP: DYNAMICS OF MICROWAVE BRIGHTNESS DISTRIBUTION

    SciTech Connect (OSTI)

    Reznikova, V. E.; Ji, H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Melnikov, V. F.; Gorbikov, S. P.; Pyatakov, N. P. [Radiophysical Research Institute (NIRFI), Nizhny Novgorod 603950 (Russian Federation); Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Myagkova, I. N. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)], E-mail: vreznikova@nirfi.sci-nnov.ru

    2009-05-20T23:59:59.000Z

    High-resolution radio observation of Nobeyama Radioheliograph at 17 and 34 GHz allowed studying the dynamics of microwave brightness distribution along the giant limb flaring loop in the event of 2002 August 24. It is found that on the rising phase of the radio burst the brightness distribution was highly asymmetric, with a strong maximum near the southern footpoint (SFP) and much weaker brightness enhancements near the loop top (LT) and northern footpoint. On the decay phase, the LT gradually became most bright. The similar dynamics of brightness distribution are shown to happen for all major temporal subpeaks of the burst. Results of our diagnostics show two important properties: (1) the number density of mildly relativistic electrons in the LT is much higher than near the footpoints (FPs) during rise, maximum and decay of each major peak; and (2) the ratio of the electron number densities in the LT and an FP increases from the maximum to decay phase. Model simulations with making use of the nonstationary Fokker-Planck equation have allowed us to find the model explaining the major properties of the microwave brightness distribution and dynamics. The model is characterized by a compact source of electrons located near the center of an asymmetric magnetic loop; the source is nonstationary, long lasting, and injecting high-energy electrons with the pitch-angle distribution mostly directed toward the SFP but also having a very weak isotropic component. This easily explains the observed brightness asymmetry. The observed dynamics comes due to two reasons: faster precipitation of electrons having their mirror points near the ends of the magnetic trap, and relatively faster decay of the lower energy electrons responsible for the gyrosynchrotron emission near the FPs with higher magnetic field.

  15. Sampling Throughout The Hydrologic Cycle To Characterize Sources Of Volatile Organic

    E-Print Network [OSTI]

    Torgersen, Christian

    ether (MTBE) are sufficiently high to cause detection in ground water, whereas atmospheric that point sources of MTBE, such as spills or infiltration of urban runoff, are also prevalent are widespread. MTBE is detected less frequently in observation wells that tap 10- to 15-year-old ground water

  16. Wide tracking range, auto ranging, low jitter phase lock loop for swept and fixed frequency systems

    DOE Patents [OSTI]

    Kerner, Thomas M. (Manorville, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides a wide tracking range phase locked loop (PLL) circuit that achieves minimal jitter in a recovered clock signal, regardless of the source of the jitter (i.e. whether it is in the source or the transmission media). The present invention PLL has automatic harmonic lockout detection circuitry via a novel lock and seek control logic in electrical communication with a programmable frequency discriminator and a code balance detector. (The frequency discriminator enables preset of a frequency window of upper and lower frequency limits to derive a programmable range within which signal acquisition is effected. The discriminator works in combination with the code balance detector circuit to minimize the sensitivity of the PLL circuit to random data in the data stream). In addition, the combination of a differential loop integrator with the lock and seek control logic obviates a code preamble and guarantees signal acquisition without harmonic lockup. An adaptive cable equalizer is desirably used in combination with the present invention PLL to recover encoded transmissions containing a clock and/or data. The equalizer automatically adapts to equalize short haul cable lengths of coaxial and twisted pair cables or wires and provides superior jitter performance itself. The combination of the equalizer with the present invention PLL is desirable in that such combination permits the use of short haul wires without significant jitter.

  17. The Human is the Loop: New Directions for Visual Analytics

    SciTech Connect (OSTI)

    Endert, Alexander; Hossain, Shahriar H.; Ramakrishnan, Naren; North, Chris; Fiaux, Patrick; Andrews, Christopher

    2014-01-28T23:59:59.000Z

    Visual analytics is the science of marrying interactive visualizations and analytic algorithms to support exploratory knowledge discovery in large datasets. We argue for a shift from a ‘human in the loop’ philosophy for visual analytics to a ‘human is the loop’ viewpoint, where the focus is on recognizing analysts’ work processes, and seamlessly fitting analytics into that existing interactive process. We survey a range of projects that provide visual analytic support contextually in the sensemaking loop, and outline a research agenda along with future challenges.

  18. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect (OSTI)

    Cargill, P. J. [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Bradshaw, S. J., E-mail: p.cargill@imperial.ac.uk [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States)

    2013-07-20T23:59:59.000Z

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  19. Module Grounding Module grounding still continues to be an issue with many

    E-Print Network [OSTI]

    Johnson, Eric E.

    by leaps and bounds. New module and inverter manufacturers are entering the market, and the number of PV that will be used with transformerless inverters, and those systems will not have a grounded PV DC conductor. (See so, as PV installers attempt to reduce the time and materials required to ground modules

  20. Mimicking Time Evolution within a Quantum Ground State: Ground-State Quantum Computation, Cloning, and Teleportation

    E-Print Network [OSTI]

    Ari Mizel

    2003-12-09T23:59:59.000Z

    Ground-state quantum computers mimic quantum mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  1. POSSIBLE PHASE LOOP FOR THE GLOBAL DECOUPLING.

    SciTech Connect (OSTI)

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; JONES, R.; ET AL.

    2005-05-16T23:59:59.000Z

    The two eigentunes Q{sub I} and Q{sub II}, two eigenmode amplitude ratios R{sub I} and R{sub II}, and two eignmode phase differences {Delta}{phi}{sub I} and {Delta}{phi}{sub II}, are defined as the coupling observables for the linear weak difference betatron coupling. Simulations were carried out to investigate their behaviors in global decoupling scans. It was found that the amplitude ratios R{sub I,II} are more sensitive than the tune split when the decoupling scan is approaching the global uncoupled point, and that the phase differences {Delta}{phi}{sub I,II} tell the right global decoupling direction, the right strength combination of the skew quadrupoles or families. The analytical solution to these six coupling observables is calculated through both the strict matrix approach and the perturbation Hamiltonian approach. The constant phase differences in the right decoupling direction hint a possible global decoupling phase loop. Dedicated beam experiments were carried out at the Relativistic Heavy Ion Collider (RHIC). The preliminary results from the beam experiments are presented. These six parameters can be used for the global decoupling in feed-back mode, especially on the non-stop energy ramp.

  2. TS LOOP NON-POTABLE PUMP EVALUATION

    SciTech Connect (OSTI)

    S. Goodin

    1999-05-14T23:59:59.000Z

    This analysis evaluates the existing subsurface non-potable water system from the portal pump to the end of the water line in the South Ramp and determines if the pump size and spacing meets the system pressure and flow requirements for construction operations and incipient fire fighting capability as established in the Subsurface Fire Hazards Analysis (CRWMS M&O 1998b). This analysis does not address the non potable water system in the Cross Drift which is covered under a previous design analysis (CRWMS-M&O 1998a). The Subsurface Fire Hazards Analysis references sections of OSHA 29 CFR 1910 Subpart L for requirements applicable to the incipient fire fighting hose stations used underground. This analysis does not address mechanical system valves, fittings, risers and other components of the system piping. This system is not designed or intended to meet all National Fire Protection Association (NFPA) codes for a fire fighting system but is only considered a backup system to fire extinguishers that are installed throughout the Topopah Springs (TS) Loop and may be used to fight small incipient stage fires.

  3. Detection of 6 November 1997 Ground Level Event by Milagrito

    E-Print Network [OSTI]

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    1999-01-01T23:59:59.000Z

    Solar Energetic Particles from the 6 November 1997 solar flare/CME(coronal mass ejection) with energies exceeding 10 GeV have been detected by Milagrito, a prototype of the Milagro Gamma Ray Observatory. While particle acceleration beyond 1 GeV at the Sun is well established, few data exist for protons or ions beyond 10 GeV. The Milagro observatory, a ground based water Cherenkov detector designed for observing very high energy gamma ray sources, can also be used to study the Sun. Milagrito, which operated for approximately one year in 1997/98, was sensitive to solar proton and neutron fluxes above ~5- 10 GeV. Milagrito operated in a scaler mode, which was primarily sensitive to muons, low energy photons, and electrons, and the detector operated in a mode sensitive to showers and high zenith angle muons. In its scaler mode, Milagrito registered a rate increase coincident with the 6 November 1997 ground level event observed by Climax and other neutron monitors. A preliminary analysis suggests the presence of >...

  4. Detection of 6 November 1997 Ground Level Event by Milagrito

    E-Print Network [OSTI]

    R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

    1999-06-24T23:59:59.000Z

    Solar Energetic Particles from the 6 November 1997 solar flare/CME(coronal mass ejection) with energies exceeding 10 GeV have been detected by Milagrito, a prototype of the Milagro Gamma Ray Observatory. While particle acceleration beyond 1 GeV at the Sun is well established, few data exist for protons or ions beyond 10 GeV. The Milagro observatory, a ground based water Cherenkov detector designed for observing very high energy gamma ray sources, can also be used to study the Sun. Milagrito, which operated for approximately one year in 1997/98, was sensitive to solar proton and neutron fluxes above ~5- 10 GeV. Milagrito operated in a scaler mode, which was primarily sensitive to muons, low energy photons, and electrons, and the detector operated in a mode sensitive to showers and high zenith angle muons. In its scaler mode, Milagrito registered a rate increase coincident with the 6 November 1997 ground level event observed by Climax and other neutron monitors. A preliminary analysis suggests the presence of >10 GeV particles.

  5. The ground state energy at unitarity

    E-Print Network [OSTI]

    Dean Lee

    2008-07-28T23:59:59.000Z

    We consider two-component fermions on the lattice in the unitarity limit. This is an idealized limit of attractive fermions where the range of the interaction is zero and the scattering length is infinite. Using Euclidean time projection, we compute the ground state energy using four computationally different but physically identical auxiliary-field methods. The best performance is obtained using a bounded continuous auxiliary field and a non-local updating algorithm called hybrid Monte Carlo. With this method we calculate results for 10 and 14 fermions at lattice volumes 4^3, 5^3, 6^3, 7^3, 8^3 and extrapolate to the continuum limit. For 10 fermions in a periodic cube, the ground state energy is 0.292(12) times the ground state energy for non-interacting fermions. For 14 fermions the ratio is 0.329(5).

  6. Parallel Loop Schedules Part I. Preliminaries

    E-Print Network [OSTI]

    Kaminsky, Alan

    . Map-Reduce #12;3­2 BIG CPU, BIG DATA itcoin (http://bitcoin.org/) is an open-source, peer-to-peer, digital currency system. Bitcoins are created by "mining," reminiscent of how the 1849 Gold Rush prospectors panned for gold. Our next program example implements a simplified version of Bitcoin mining. You

  7. Ground-state cooling of a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    S. Weidt; J. Randall; S. C. Webster; E. D. Standing; A. Rodriguez; A. E. Webb; B. Lekitsch; W. K. Hensinger

    2015-01-07T23:59:59.000Z

    We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  8. Ground-state cooling of a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    Weidt, S; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

    2015-01-01T23:59:59.000Z

    We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  9. Ground Control for Emplacement Drifts for SR

    SciTech Connect (OSTI)

    Y. Sun

    2000-04-07T23:59:59.000Z

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k_0=0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the stability of the openings. No credit or account was given for the initial ground support in modeling the final ground support systems for both emplacement and non-emplacement drifts in this analysis.

  10. Experimental characterization and chemical kinetics study of chemical looping combustion

    E-Print Network [OSTI]

    Chen, Tianjiao, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

  11. Investigations of tetraspanin functions using large extracellular loops

    E-Print Network [OSTI]

    Liu, Christopher C

    2005-01-01T23:59:59.000Z

    This thesis describes our characterization of a specific tetraspanin domain: the large extracellular loop (LEL). Tetraspanins are involved in cellular migration, adhesion, and metastasis, sperm-egg fusion, and viral ...

  12. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01T23:59:59.000Z

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  13. active region loop: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loops J.-Y. Lee1,2 , Graham that seems to be associated with separators with a smaller free energy. Subject headings: Sun: corona -- Sun: magnetic topology -- Sun: UV radiation...

  14. active region loops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loops J.-Y. Lee1,2 , Graham that seems to be associated with separators with a smaller free energy. Subject headings: Sun: corona -- Sun: magnetic topology -- Sun: UV radiation...

  15. Plasmoid Ejections and Loop Contractions in an Eruptive M7.7 Solar Flare: Evidence of Particle Acceleration and Heating in Magnetic Reconnection Outflows

    E-Print Network [OSTI]

    Liu, Wei; Petrosian, Vahe'

    2013-01-01T23:59:59.000Z

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km/s up to 1050 km/s. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descen...

  16. N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop

    SciTech Connect (OSTI)

    Bern, Z.; /UCLA; Boucher-Veronneau, C.; /SLAC; Johansson, H.; /Saclay

    2011-08-19T23:59:59.000Z

    We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N {ge} 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.

  17. Entropy and Area of Black Holes in Loop Quantum Gravity

    E-Print Network [OSTI]

    I. B. Khriplovich

    2002-03-31T23:59:59.000Z

    Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

  18. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01T23:59:59.000Z

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  19. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24T23:59:59.000Z

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  20. GROUND-BASED FACILITIES REVIEW CONSULTATIVE DOCUMENT

    E-Print Network [OSTI]

    Crowther, Paul

    has been withdrawal from the AAO and significant reduction in the running costs at ING and JAC the benefits of joining ESO. Initially the UK decided to enter the 8-metre era by joining the Gemini wavebands, and needing both space and ground-based facilities to achieve new science goals. It also stresses

  1. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30T23:59:59.000Z

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  2. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03T23:59:59.000Z

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  3. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  4. System for detecting and limiting electrical ground faults within electrical devices

    DOE Patents [OSTI]

    Gaubatz, Donald C. (Cupertino, CA)

    1990-01-01T23:59:59.000Z

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  5. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  6. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  7. TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage

    E-Print Network [OSTI]

    Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

    1997-08-29T23:59:59.000Z

    Texas AgriLife Extension Service Petroleum Products Overview Storing liquid petroleum products, such as motor fuel and heating fuel, above ground or underground presents a potential threat to pub- lic health and the environment. Nearly one out... with Varying Permeability Land Surface Figure 1. Petroleum product seepage into soils. Source: Underground Tank Corrective Action Technologies, EPA/625/6-87-015, January 1987. filled. Overfill protection is either a warning device, such as, a buzzer or a...

  8. Advances in BNL's polarized ion source development

    SciTech Connect (OSTI)

    Alessi, J.; DeVito, B.; Herschcovitch, A.; Kponou, A.; Meitzler, C.

    1988-01-01T23:59:59.000Z

    Polarized protons have been accelerated in the AGS to 22/yield/ GeV. The polarized source presently used produces 30-40 ..mu..A of /rvec char/H/sup -/ at 75-80% polarization, in 500 ..mu..s pulses, 0.5 Hz. This is three orders of magnitude lower in intensity than normal H/sup -/ operation, and higher intensities are desired. There is a program in the AGS department to develop a higher intensity source. This is a ground state atomic beam source with an atomic beam cooled to 6 K, spin selection and focusing via a superconducting solenoid (shown) or a sextupole system, and an ionizer for /rvec char/H/sup -/ production based on the charge exchange of /rvec char/H/degree/ with D/sup -/. Work is in progress on all three components, and will be described in this paper. 6 refs., 7 figs.

  9. A simple scheme for universal linear optics quantum computing with constant experimental complexity using fiber-loops

    E-Print Network [OSTI]

    Peter P. Rohde

    2014-10-02T23:59:59.000Z

    Recently, Motes, Gilchrist, Dowling & Rohde [Phys. Rev. Lett. 113, 120501 (2014)] presented a scheme for photonic boson-sampling using a fiber-loop architecture. Here we show that the same architecture can be modified to implement full, universal linear optics quantum computing, in various incarnations. The scheme employs two embedded fiber-loops, a single push-button photon source, three dynamically controlled beamsplitters, and a single time-resolved photo-detector. The architecture has only a single point of interference, and thus may be significantly easier to align than other schemes. The experimental complexity of the scheme is constant, irrespective of the size of the computation, limited only by fiber lengths and their respective loss rates.

  10. Sources of Water Surface water and groundwater are present throughout

    E-Print Network [OSTI]

    MacAdam, Keith

    Sources of Water Surface water and groundwater are present throughout Kentucky's 39,486 square miles. Surface water occurs as rivers, streams, ponds, lakes, and wetlands. Ground- water occurs underlain by soluble carbonate rocks (for example, limestone). Water Supply · Approximately 49 inches

  11. Hydraulic pump with in-ground filtration and monitoring capability

    DOE Patents [OSTI]

    Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.

    1995-01-01T23:59:59.000Z

    A hydraulically operated pump is described for in-ground filtering and monitoring of wells or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of O-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.

  12. Hydraulic pump with in-ground filtration and monitoring capability

    DOE Patents [OSTI]

    Hopkins, Charles D. (Augusta, GA); Livingston, Ronald R. (Aiken, SC); Toole, Jr., William R. (Aiken, SC)

    1996-01-01T23:59:59.000Z

    A hydraulically operated pump for in-ground filtering and monitoring of ws or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.

  13. Measurement of Helium-3/Helium-4 Ratios in Soil Gas at the 618-11 Burial Ground

    SciTech Connect (OSTI)

    Olsen, Khris B; Dresel, P Evan; Evans, John C

    2001-10-31T23:59:59.000Z

    Seventy soil gas-sampling points were installed around the perimeter of the 618-11 Burial Ground, approximately 400 feet downgradient of well 699-13-3A, and in four transects downgradient of the burial ground to a maximum distance of 3,100 feet. Soil gas samples were collected and analyzed for helium-3/helium-4 ratios from these 70 points. Helium-3/helium-4 ratios determined from the soil gas sampling points showed significant enrichments, relative to ambient air helium-3 concentrations. The highest concentrations were located along the northern perimeter of the burial ground. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) ranged from 1.0 to 62 around the burial ground. The helium-3/helium-4 ratios from the 4 transect downgradient of the burial ground ranged from 0.988 to 1.68. The helium-3/helium-4 ratios from around the burial ground suggest there is a vadose zone source of tritium along the north side of the burial ground.

  14. Operational Results of a Closed Brayton Cycle Test-Loop

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Brown, Nicholas [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States); Fuller, Robert; Nichols, Kenneth [Barber Nichols 6325 W 55th Ave., Arvada, Colorado 80002 (United States)

    2005-02-06T23:59:59.000Z

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kWth with a maximum outlet temperature of {approx}1000 K.

  15. Operational results of a Closed Brayton Cycle test-loop.

    SciTech Connect (OSTI)

    Fuller, Robert (Barber Nichols, Arvada, Colorado); Wright, Steven Alan; Nichols, Kenneth Graham. (Barber Nichols, Arvada, Colorado); Brown, Nicholas; Lipinski, Ronald J.

    2004-11-01T23:59:59.000Z

    A number of space and terrestrial power system designs plan to use nuclear reactors that are coupled to Closed-loop Brayton Cycle (CBC) systems to generate electrical power. Because very little experience exists regarding the operational behavior of these systems, Sandia National Laboratories (through its Laboratory Directed Research and Development program) is developing a closed-loop test bed that can be used to determine the operational behavior of these systems and to validate models for these systems. Sandia has contracted Barber-Nichols Corporation to design, fabricate, and assemble a Closed-loop Brayton Cycle (CBC) system. This system was developed by modifying commercially available hardware. It uses a 30 kWe Capstone C-30 gas-turbine unit (www.capstoneturbine.com) with a modified housing that permits the attachment of an electrical heater and a water cooled chiller that are connected to the turbo-machinery in a closed loop. The test-loop reuses the Capstone turbine, compressor, and alternator. The Capstone system's nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system are also reused. The rotational speed of the turbo-machinery is controlled either by adjusting the alternator load by either using the electrical grid or a separate load bank. This report describes the test-loop hardware SBL-30 (Sandia Brayton Loop-30kWe). Also presented are results of early testing and modeling of the unit. The SBL-30 hardware is currently configured with a heater that is limited to 80 kW{sub th} with a maximum outlet temperature of {approx}1000 K.

  16. BROOKHAVEN NATIONAL Sealed Source

    E-Print Network [OSTI]

    Homes, Christopher C.

    BROOKHAVEN NATIONAL LABORATORY Sealed Source Contamination Incident October 13, 2011 #12;2 Cesium (Cs-137) Source Failure On September 28th @ ~1600 contamination event discovered · Two Radiological Contamination was from a Cs-137 (265 micro-curie) "sealed source" used to test area radiation monitors. · Source

  17. Ground Vibration and Siting of the Cryogenics Facility for Cornell ERL J. Welch, Cornell U., Ithaca NY

    E-Print Network [OSTI]

    ERL 02-3 1 Ground Vibration and Siting of the Cryogenics Facility for Cornell ERL Prototype J of extremely sensitive superconducting RF cavities and the noisy and powerful motors and compressors used cultural noise sources will dominate over those produced by the cryogenic compressors. Siting further away

  18. Ground Vibration and Siting of the Cryogenics Facility for Cornell ERL J. Welch, Cornell U., Ithaca NY

    E-Print Network [OSTI]

    ERL 02­3 1 Ground Vibration and Siting of the Cryogenics Facility for Cornell ERL Prototype J of extremely sensitive superconducting RF cavities and the noisy and powerful motors and compressors used the cryoplant the local cultural noise sources will dominate over those produced by the cryogenic compressors

  19. Ground motion data for International Collider models

    SciTech Connect (OSTI)

    Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

    2007-11-01T23:59:59.000Z

    The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

  20. Compression of ground-motion data

    SciTech Connect (OSTI)

    Long, J.W.

    1981-04-01T23:59:59.000Z

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  1. Ground motion: An introduction for accelerator builders

    SciTech Connect (OSTI)

    Fischer, G.E.

    1992-02-01T23:59:59.000Z

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  2. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Ofman, L.; Wang, T. J. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Davila, J. M. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2012-08-01T23:59:59.000Z

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  3. Profiles of heating in turbulent coronal magnetic loops

    E-Print Network [OSTI]

    E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli

    2007-02-28T23:59:59.000Z

    Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

  4. Response of continuous pipelines to tunnel induced ground deformations

    E-Print Network [OSTI]

    Ieronymaki, Evangelia S

    2011-01-01T23:59:59.000Z

    This thesis develops analytical solutions for estimating the bending moments and axial loads in a buried pipeline due to ground movements caused by tunnel construction in soft ground. The solutions combine closed-form, ...

  5. The Design of Ground-Coupled Heat Pump Systems 

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  6. The Design of Ground-Coupled Heat Pump Systems

    E-Print Network [OSTI]

    Parker, J. D.

    1985-01-01T23:59:59.000Z

    Ground-coupled heat pumps are being installed in increasing numbers due to proven performance and economy. The overall thermal resistance between the ground coupling fluid and a given type of surrounding soil is affected by pipe material, wall...

  7. Designing Teams of Unattended Ground Sensors Using Genetic Algorithms

    E-Print Network [OSTI]

    Wu, Annie S.

    Designing Teams of Unattended Ground Sensors Using Genetic Algorithms Ayse S. Yilmaz 1 and Brian N the sensing capabilities of a sensor suite. This work focuses on unattended ground sensor networks consisting

  8. Designing Teams of Unattended Ground Sensors Using Genetic Algorithms

    E-Print Network [OSTI]

    Wu, Annie S.

    Designing Teams of Unattended Ground Sensors Using Genetic Algorithms Ayse S. Yilmaz1 and Brian N of a sensor suite. This work focuses on unattended ground sensor networks consisting of teams of small

  9. Talking In Circles: Designing A Spatially-Grounded Audioconferencing Environment

    E-Print Network [OSTI]

    to become a popular medium for social interaction. Traditional chat environments, however, are limitedTalking In Circles: Designing A Spatially-Grounded Audioconferencing Environment Roy Rodenstein, a multimodal audioconferencing environment whose novel design emphasizes spatial grounding with the aim

  10. aircraft ground operations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a Tilt Rotor Aircraft Wake in Ground Effect, (May 19B2) Michael Louis Frey III, B. S. , Texas A... Frey, Michael Louis 2012-06-07 22 Aircraft Ground Traffic Optimization...

  11. Slotted Ground Structures and Their Applications to Various Microwave Components

    E-Print Network [OSTI]

    Jung, Dong

    2010-01-16T23:59:59.000Z

    This thesis discusses microstrip circuits and components with a slotted area on the ground plane. In recent years, various slot geometries have been placed on the ground plane with the purpose of reducing harmonics, producing frequency pass...

  12. Closed loop drilling systems can eliminate reserve pit costs

    SciTech Connect (OSTI)

    Astrella, L.; Wiemers, R. [Environmental Equipment Corp., Denver, CO (United States)

    1996-05-27T23:59:59.000Z

    Closed loop systems have become more dependable and efficient, making drilling without a mud pit an economically attractive alternative in many drilling programs. A closed loop system is defined simply as a mechanical and chemical system which will allow an operator to drill a well without using a reserve pit. A closed loop system includes some solids control equipment (such as the shaker, desander, desilter, and proper centrifuge), which may already be on the rig, and a polymer flocculation unit, which is not part of a conventional rig`s solids control system. This paper reviews the various methods of flocculation and the performance of the different units. It then goes on to describe costs and regulations associated with both methods of handling drilling wastes.

  13. Hamiltonian traffic dynamics in microfluidic-loop networks

    E-Print Network [OSTI]

    Raphaël Jeanneret; Julien Piera-Vest; Denis Bartolo

    2011-09-28T23:59:59.000Z

    Recent microfluidic experiments revealed that large particles advected in a fluidic loop display long-range hydrodynamic interactions. However, the consequences of such couplings on the traffic dynamics in more complex networks remain poorly understood. In this letter, we focus on the transport of a finite number of particles in one-dimensional loop networks. By combining numerical, theoretical, and experimental efforts, we evidence that this collective process offers a unique example of Hamiltonian dynamics for hydrodynamically interacting particles. In addition, we show that the asymptotic trajectories are necessarily reciprocal despite the microscopic traffic rules explicitly break the time reversal symmetry. We exploit these two remarkable properties to account for the salient features of the effective three-particle interaction induced by the exploration of fluidic loops.

  14. Loop-induced Neutrino Masses: A Case Study

    E-Print Network [OSTI]

    Geng, Chao-Qiang; Tsai, Lu-Hsing

    2014-01-01T23:59:59.000Z

    We study the cocktail model in which the Majorana neutrino masses are generated by the so-called "cocktail" three-loop diagrams with the dark matter particle running in the loops. In particular, we give the correct analytic expressions of the neutrino masses in the model by the detailed calculation of the cocktail diagrams. Based on the reliable numerical calculation of the loop integrals, we explore the parameter space which can give the correct orders of neutrino masses while satisfying other experimental constraints, such as those from the neutrinoless double beta decay, low-energy lepton flavor violation processes, electroweak precision tests, and collider searches. As a result, the large couplings and the large mass difference between the two singly-charged (neutral) scalars are required.

  15. Forward Modelling of Standing Slow Modes in Flaring Coronal Loops

    E-Print Network [OSTI]

    Yuan, D; Banerjee, D; Antolin, P

    2015-01-01T23:59:59.000Z

    Standing slow mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Due to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow mode waves in flaring loops and compare the synthesized line emission properties with SUMER spectrographic and SDO/AIA imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity both in time and spatial domain, which can be used to identify a standing slow mode wave from spectroscopic observations. However, the longitudinal overtones could be only measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations, this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variat...

  16. From Loops to Trees By-passing Feynman's Theorem

    SciTech Connect (OSTI)

    Catani, Stefano; Gleisberg, Tanju; Krauss, Frank; Rodrigo, German; Winter, Jan-Christopher

    2008-04-22T23:59:59.000Z

    We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.

  17. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01T23:59:59.000Z

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  18. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  19. Ground Versus Unground Grain for Lactating Dairy Cows. 

    E-Print Network [OSTI]

    Darnell, A. L. (Albert Laurie); Copeland, O. C. (Orlin Cephas)

    1936-01-01T23:59:59.000Z

    LIBRARY, A & hf COLLEGE, CAMPUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIFkECTOR COLLE~E STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 530 SEPTEMBER, 193 6 DIVISION OF DAIRY HUSBANDRY Ground Versus Unground Grain far Lactating...- bandry in cooperation with the Texas Agricultural Experiment Station. The double reversal method of feeding lactating dairy cows was used in comparing whole versus ground shelled corn, whole versus ground threshed oats, whole versus ground threshed...

  20. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    SciTech Connect (OSTI)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01T23:59:59.000Z

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  1. November 16, 2006 Spectral properties of X-ray bright variable sources in the Taurus

    E-Print Network [OSTI]

    Code 5247, 550 West 120th Street, New York, NY 10027, USA 5 INAF - Osservatorio Astrofisico di Arcetri of flares to derive the size of the flaring loops. Results. The light curves of the selected sources show to solar flares, or of slow modulation due e.g. to rotation (Feigelson & Montmerle 1999; Wolk et al. 2005

  2. Regional Estimation of Total Recharge to Ground Water in Nebraska

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    )over long periods of time when the potential change in ground water storage becomes negligible compared storage other than discharge to streams. One such loss term is evapotranspiration (ET) from ground waterRegional Estimation of Total Recharge to Ground Water in Nebraska by Jozsef Szilagyi1m2,F. Edwin

  3. Materialized community ground models for large-scale earthquake simulation

    E-Print Network [OSTI]

    Shewchuk, Jonathan

    Materialized community ground models for large-scale earthquake simulation Steven W. Schlosser to ground motion sim- ulations, in which ground model datasets are fully materi- alized into octress stored as a service techniques in which scientific computation and storage services become more tightly intertwined. 1

  4. DEVELOPMENTS IN GROUND WATER HYDROLOGY : AN OVERVIEW C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    . Surface water storage and ground water withdrawal are traditional engineering approaches which of storage and circulation as ground water. The large alluvial tract extending over 2000 km in length from which allows ground water storage in the weathered residium and its circulation in the underlying

  5. Basic Ground-Water Hydrology By RALPH C. HEATH

    E-Print Network [OSTI]

    Sohoni, Milind

    #12;Basic Ground-Water Hydrology By RALPH C. HEATH Prepared in cooperation with the North Carolina., 1983, Basic ground-water hydrology: U .S. Geological Survey Water-Supply Paper 2220, 86 p. Library of Congress Cataloging-in-Publications Data Heath, Ralph C . Basic ground-water hydrology (Geological Survey

  6. Cleanup Verification Package for the 618-2 Burial Ground

    SciTech Connect (OSTI)

    W. S. Thompson

    2006-12-28T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  7. On Termination and Derivation Lengths for Ground Rewrite Systems

    E-Print Network [OSTI]

    Giesl, Juergen

    On Termination and Derivation Lengths for Ground Rewrite Systems Dieter Hofbauer 1 Universit¨at GH@theory.informatik.uni­kassel.de Abstract. It is shown that for terminating ground term rewrite systems the length of derivations a suitable interpretation into the natural numbers. Terminating ground systems are not necessarily

  8. Abnormal operating procedures for ATR (Advanced Test Reactor's) experiment loops

    SciTech Connect (OSTI)

    Auflick, J.L.

    1989-09-01T23:59:59.000Z

    This paper outlines the background from the TMI accident which resulted in the definition and development of function-oriented procedures. It also explains how function-oriented procedures were applied in a task for the Advanced Test Reactor's (ATR) NR experiment loops. Human performance design discrepancies were identified for existing procedures, and were corrected by upgrading them according to current NRC and DOE standards. Finally, specific recommendations are made with respect to future ATR control room and loop improvements, as they relate to the revision of operating procedures within INEL's power reactor program. 8 refs., 4 figs.

  9. Estimating two-loop radiative effects in the MOLLER experiment

    SciTech Connect (OSTI)

    Aleksejevs, A. G., E-mail: aaleksejevs@swgc.mun.ca [Grenfell Campus Memorial University (Canada); Barkanova, S. G., E-mail: svetlana.barkanova@acadiau.ca [Acadia University (Canada); Zykunov, V. A., E-mail: vladimir.zykunov@cern.ch [Belarussian State University of Transport (Belarus); Kuraev, E. A., E-mail: kuraev@theor.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2013-07-15T23:59:59.000Z

    Within the on-shell renormalization scheme, two-loop electroweak corrections to the parityviolating polarization asymmetry in the reaction e{sup -}e{sup -} {yields} e{sup -}e{sup -}({gamma}, {gamma}{gamma}) were estimated for the MOLLER experiment at JLab. The infrared divergence and the imaginary part of the amplitude were taken completely under control. Relevant compact expressions obtained by using asymptotic methods are free from unphysical parameters and are convenient for analysis and for numerical estimations. A numerical analysis revealed a significant scale of two-loop effects and the need for taking them into account in the MOLLER experiment.

  10. String Loop Corrections to Stable Non-BPS Branes

    E-Print Network [OSTI]

    N. D. Lambert; I. Sachs

    2000-10-31T23:59:59.000Z

    We calculate the string loop corrections to the tachyon potential for stable non-BPS Dp-branes on the orbifold T^4/Z_2. We find a non-trivial phase structure and we show that, after tachyon condensation, the non-BPS Dp-branes are attracted to each other for p=0,1,2. We then identify the corresponding closed string boundary states together with the massless long range fields they excite. For p=3,4 the string loop correction diverge. We identify the massless closed string fields responsible for these divergencies and regularise the partition function using a Fischler-Susskind mechanism.

  11. Suppression and enhancement of transcriptional noise by DNA looping

    E-Print Network [OSTI]

    Jose M. G. Vilar; Leonor Saiz

    2014-06-11T23:59:59.000Z

    DNA looping has been observed to enhance and suppress transcriptional noise but it is uncertain which of these two opposite effects is to be expected for given conditions. Here, we derive analytical expressions for the main quantifiers of transcriptional noise in terms of the molecular parameters and elucidate the role of DNA looping. Our results rationalize paradoxical experimental observations and provide the first quantitative explanation of landmark individual-cell measurements at the single molecule level on the classical lac operon genetic system [Choi et al., Science 322, 442-446 (2008)].

  12. A Novel Strange Attractor with a Stretched Loop

    E-Print Network [OSTI]

    Safieddine Bouali

    2012-03-30T23:59:59.000Z

    The paper introduces a new 3D strange attractor topologically different from any other known chaotic attractors. The intentionally constructed model of three autonomous first-order differential equations derives from the coupling-induced complexity of the well-known Lotka-Volterra oscillator. The chaotic attractor exhibiting a double scroll bridged by a loop mutates to a single scroll with a very stretched loop by the variation of one parameter. Analysis of the global behavior of the new low dimensional dissipative dynamical model and its range of periodic and a-periodic oscillations are presented.

  13. Towards one-loop SYM amplitudes from the pure spinor BRST cohomology

    E-Print Network [OSTI]

    Carlos R. Mafra; Oliver Schlotterer

    2014-11-05T23:59:59.000Z

    In this paper, we outline a method to compute supersymmetric one-loop integrands in ten-dimensional SYM theory. It relies on the constructive interplay between their cubic-graph organization and BRST invariance of the underlying pure spinor superstring description. The five- and six-point amplitudes are presented in a manifestly local form where the kinematic dependence is furnished by BRST-covariant expressions in pure spinor superspace. At five points, the local kinematic numerators are shown to satisfy the BCJ duality between color and kinematics leading to supergravity amplitudes as a byproduct. At six points, the sources of the hexagon anomaly are identified in superspace as systematic obstructions to BRST invariance. Our results are expected to reproduce any integrated SYM amplitude in dimensions $D< 8$.

  14. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

  15. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04T23:59:59.000Z

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  16. Comparison of Aermod and ISCST3 Models for Particulate Emissions from Ground Level Sources 

    E-Print Network [OSTI]

    Botlaguduru, Venkata Sai V.

    2010-07-14T23:59:59.000Z

    Emission factors (EFs) and results from dispersion models are key components in the air pollution regulatory process. The EPA preferred regulatory model changed from ISCST3 to AERMOD in November, 2007. Emission factors are used in conjunction...

  17. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    dual compressor available on the market Compared with the selected building, a more energy efficient building will have lower space cooling and heating

  18. Nanofluids and a method of making nanofluids for ground source heat pumps and other applications

    DOE Patents [OSTI]

    Olson, John Melvin

    2013-11-12T23:59:59.000Z

    This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.

  19. Source coding by efficient selection of ground-state clusters Demian Battaglia,1

    E-Print Network [OSTI]

    Battaglia, Demian

    by identifying a generalization of the SP equations which are indeed capable of addressing efficiently--with

  20. Air dispersion modeling of particulate matter from ground-level area sources 

    E-Print Network [OSTI]

    Meister, Michael Todd

    2000-01-01T23:59:59.000Z

    State Air Pollution Regulatory Agencies (SAPRAs) often use dispersion modeling to predict downwind concentrations of particulate matter (PM) from a facility. As such, a facility may be granted or denied an operating permit ...

  1. Comparison of Aermod and ISCST3 Models for Particulate Emissions from Ground Level Sources

    E-Print Network [OSTI]

    Botlaguduru, Venkata Sai V.

    2010-07-14T23:59:59.000Z

    setup parameters .................................................................................. 32 Figure 6. Cattle feedlot with a TEOM sampler .............................................................. 35 Figure 7. Wind rose for feedlot E... when solar radiation > 800 W/m2 .................................................................... 54 Figure 20. Variance in AERMOD and ISCST3 concentrations as a function of wind speed...

  2. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    movement toward net zero energy buildings, many technologiesmovement towards net zero energy buildings brings tremendous

  3. Advanced Ground Source Heat Pump Technology for Very-Low-Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- ClimateMaster - Oklahoma City, OK -- Oklahoma State University - Stillwater, OK -- Oklahoma Gas & Electric -...

  4. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    E-Print Network [OSTI]

    Hong, Tainzhen

    2010-01-01T23:59:59.000Z

    heat pump, and the energy consumption of the whole GSHP system given the accurate information of the building, GSHP system, weather data,

  5. Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC

    E-Print Network [OSTI]

    Mu, W.; Wang, S.; Pan, S.; Shi, Y.

    2006-01-01T23:59:59.000Z

    the Jurisdiction of Beijing Municipality (BJE10016200511). REFERENCES [1]Rongguang Wang,Yufeng Zhang,Yang,Xiaotong Zheng. Study on Direct Use Of Geothermal Energy For Heating And Its Energy Efficency Effects [J]. ACTA ENERGIAE SOLARIS SINICA, 2002, 23...

  6. Ball State Completes Largest U.S. Ground-Source Geothermal System |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:WhetherNovember 13, 2009Oak Ridge NationalBackground FactDepartment of

  7. Advanced Ground Source Heat Pump Technology for Very-Low-Energy Buildings |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a16-17, 201529, 2015Lead Performer: OakJoe

  8. Tennessee: Ground-Source Heat Pump Receives Innovation Award at AHR Expo |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy, U.S. DepartmentTechnology Ten Year SiteDepartment

  9. LOCA with consequential or delayed LOOP accidents: Unique issues, plant vulnerability, and CDF contributions

    SciTech Connect (OSTI)

    Martinez-Guridi, G.; Samanta, P.; Chu, L.; Yang, J.

    1998-08-01T23:59:59.000Z

    A loss-of-coolant accident (LOCA) can cause a loss-of-offsite power (LOOP) wherein the LOOP is usually delayed by few seconds or longer. Such an accident is called LOCA with consequential LOOP, or LOCA with delayed LOOP (here, abbreviated as LOCA/LOOP). This paper analyzes the unique conditions that are associated with a LOCA/LOOP, presents a model, and quantifies its contribution to core damage frequency (CDF). The results show that the CDF contribution can be a dominant contributor to risk for certain plant designs, although boiling water reactors (BWRs) are less vulnerable than pressurized water reactors (PWRs).

  10. MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES

    SciTech Connect (OSTI)

    Mossessian, George; Fleishman, Gregory D. [Center For Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2012-04-01T23:59:59.000Z

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

  11. Grounding language models in spatiotemporal context

    E-Print Network [OSTI]

    Roy, Brandon C.

    Natural language is rich and varied, but also highly structured. The rules of grammar are a primary source of linguistic regularity, but there are many other factors that govern patterns of language use. Language models ...

  12. GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks

    E-Print Network [OSTI]

    G. Belanger; F. Boudjema; J. Fujimoto; T. Ishikawa; T. Kaneko; K. Kato; Y. Shimizu

    2006-04-18T23:59:59.000Z

    We describe the main building blocks of a generic automated package for the calculation of Feynman diagrams. These blocks include the generation and creation of a model file, the graph generation, the symbolic calculation at an intermediate level of the Dirac and tensor algebra, implementation of the loop integrals, the generation of the matrix elements or helicity amplitudes, methods for the phase space integrations and eventually the event generation. The report focuses on the fully automated systems for the calculation of physical processes based on the experience in developing GRACE-loop. As such, a detailed description of the renormalisation procedure in the Standard Model is given emphasizing the central role played by the non-linear gauge fixing conditions for the construction of such automated codes. The need for such gauges is better appreciated when it comes to devising efficient and powerful algorithms for the reduction of the tensorial structures of the loop integrals. A new technique for these reduction algorithms is described. Explicit formulae for all two-point functions in a generalised non-linear gauge are given, together with the complete set of counterterms. We also show how infrared divergences are dealt with in the system. We give a comprehensive presentation of some systematic test-runs which have been performed at the one-loop level for a wide variety of two-to-two processes to show the validity of the gauge check. These cover fermion-fermion scattering, gauge boson scattering into fermions, gauge bosons and Higgs bosons scattering processes. Comparisons with existing results on some one-loop computation in the Standard Model show excellent agreement. We also briefly recount some recent development concerning the calculation of mutli-leg one-loop corrections.

  13. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    SciTech Connect (OSTI)

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young, E-mail: cheongho@astroph.chungbuk.ac.kr [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of)

    2014-05-10T23:59:59.000Z

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  14. Geometric renormalization below the ground state

    E-Print Network [OSTI]

    Paul Smith

    2011-12-06T23:59:59.000Z

    The caloric gauge was introduced by Tao with studying large data energy critical wave maps mapping from $\\mathbf{R}^{2+1}$ to hyperbolic space $\\mathbf{H}^m$ in view. In \\cite{BIKT} Bejenaru, Ionescu, Kenig, and Tataru adapted the caloric gauge to the setting of Schr\\"odinger maps from $\\mathbf{R}^{d + 1}$ to the standard sphere $S^2 \\hookrightarrow \\mathbf{R}^3$ with initial data small in the critical Sobolev norm. Here we develop the caloric gauge in a bounded geometry setting with a construction valid up to the ground state energy.

  15. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14T23:59:59.000Z

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  16. Best Possible Strategy for Finding Ground States

    SciTech Connect (OSTI)

    Franz, Astrid; Hoffmann, Karl Heinz; Salamon, Peter

    2001-06-04T23:59:59.000Z

    Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.

  17. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTedRegion | Department of Energy TribesNorthernGround

  18. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based

  19. Hanford Site ground-water surveillance for 1989

    SciTech Connect (OSTI)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01T23:59:59.000Z

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs.

  20. Preliminary results of a dynamic system model for a closed-loop Brayton cycle coupled to a nuclear reactor.

    SciTech Connect (OSTI)

    Wright, Steven Alan

    2003-06-01T23:59:59.000Z

    This paper describes preliminary results of a dynamic system model for a closed-loop Brayton-cycle that is coupled to a nuclear reactor. The current model assumes direct coupling between the reactor and the Brayton-cycle, however only minor additions are required to couple the Brayton-cycle through a heat exchanger to either a heat pipe reactor or a liquid metal cooled reactor. Few reactors have ever been coupled to closed Brayton-cycle systems. As such their behavior under dynamically varying loads, startup and shut down conditions, and requirements for safe and autonomous operation are largely unknown. Sandia National Laboratories has developed steady-state and dynamic models for closed-loop turbo-compressor systems (for space and terrestrial applications). These models are expected to provide a basic understanding of the dynamic behavior and stability of the coupled reactor and power generation loop. The model described in this paper is a lumped parameter model of the reactor, turbine, compressor, recuperator, radiator/waste-heat-rejection system and generator. More detailed models that remove the lumped parameter simplifications are also being developed but are not presented here. The initial results of the model indicate stable operation of the reactor-driven Brayton-cycle system and its ability to load-follow. However, the model also indicates some counter-intuitive behavior for the complete coupled system. This behavior will require the use of a reactor control system to select an appropriate reactor operating temperature that will optimize the performance of the complete spacecraft system. We expect this model and subsequent versions of it to provide crucial information in developing procedures for safe start up, shut down, safe-standby, and other autonomous operating modes. Ultimately, Sandia hopes to validate these models and to perform nuclear ground tests of reactor-driven closed Brayton-cycle systems in our nuclear research facilities.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  2. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  4. Automation of Multi-leg One-loop virtual Amplitudes

    E-Print Network [OSTI]

    D. Maitre

    2010-06-29T23:59:59.000Z

    In the last few years, much progress has been made in the computation of one-loop virtual matrix elements for processes involving many external particles. In this contribution the methods that have enabled this recent progress are briefly reviewed with a focus on their computing and automation aspects.

  5. The long wavelength limit of hard thermal loop effective actions

    E-Print Network [OSTI]

    F T Brandt; J Frenkel; J C Taylor

    2009-01-22T23:59:59.000Z

    We derive a closed form expression for the long wavelength limit of the effective action for hard thermal loops in an external gravitational field. It is a function of the metric, independent of time derivatives. It is compared and contrasted with the static limit, and with the corresponding limits in an external Yang-Mills field.

  6. Combined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization

    E-Print Network [OSTI]

    Cong, Jason "Jingsheng"

    transformation framework was established based on parametric integer linear programming [6-8]. Data dependenceCombined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization Jason Cong, Peng Zhang, Yi Zou Computer Science Department University of California, Los Angeles Los Angeles, CA 90095

  7. 5-loop Konishi from linearized TBA and the XXX magnet

    E-Print Network [OSTI]

    Janos Balog; Arpad Hegedus

    2010-06-08T23:59:59.000Z

    Using the linearized TBA equations recently obtained in [arXiv:1002.1711] we show analytically that the 5-loop anomalous dimension of the Konishi operator agrees with the result obtained previously from the generalized Luscher formulae. The proof is based on the relation between this linear system and the XXX model TBA equations.

  8. An evaluation of inductance loop detectors for speed measurement accuracy

    E-Print Network [OSTI]

    Cronin, Brian Patrick

    1994-01-01T23:59:59.000Z

    . The lag time from the presence of a vehicle at an inductance loop to the actual detection of a vehicle varies. As the lag time varies so does the accuracy of speed measurement. Vehicle size, vehicle speed, detector type, detector sensitivity...

  9. A Radiation Tolerant Phase Locked Loop Design for Digital Electronics

    E-Print Network [OSTI]

    Kumar, Rajesh

    2011-10-21T23:59:59.000Z

    significantly to the chip level Soft Error Rate (SER). The on-chip Phase Locked Loop (PLL) is particularly vulnerable to radiation strikes. In this thesis, we present a radiation hardened PLL design. Each of the components of this design-the voltage controlled...

  10. Closed-Loop Energy Management Control of Large Industrial Facilities 

    E-Print Network [OSTI]

    Childress, R. L.

    2002-01-01T23:59:59.000Z

    providing steam to the process. A Sell Advisor calculates Make-Buy decisions based on real-time electrical prices, fuel prices and boiler loads. Condensing turbines are coordinated with closed-loop control to provide the lowest energy cost to the plant. When...

  11. Closed-Loop Energy Management Control of Large Industrial Facilities

    E-Print Network [OSTI]

    Childress, R. L.

    A case study is presented of a closed-loop control system installed and running at a Pulp and Paper facility in the southeast. A fuzzy logic, ruled-based control system optimally loads multiple steam turbines for maximum electrical generation, while...

  12. Sagnac Interference in Carbon Nanotube Loops Gil Refael,1

    E-Print Network [OSTI]

    Bockrath, Marc

    loops. The conductance as a function of the applied voltage is shown to oscillate due to interference. The period of these oscillations with respect to the gate voltage, as well as the temperatures required calculate interaction effects on the period of the oscillations, and show that even though interactions

  13. A Loop Material Flow System Design for Automated Guided Vehicles

    E-Print Network [OSTI]

    Dessouky, Maged

    A Loop Material Flow System Design for Automated Guided Vehicles Ardavan Asef-Vaziri 1 Maged load automated guided vehicles. The model simultaneously determines both the design are attributed to material handling (Tompkins et al., 1996). Automated guided vehicles (AGVs) are among

  14. ORIGINAL ARTICLE Comparative genomics-guided loop-mediated isothermal

    E-Print Network [OSTI]

    Hsiang, Tom

    ORIGINAL ARTICLE Comparative genomics-guided loop-mediated isothermal amplification sequencing and analytical techniques, genomic sequence data of prok- aryotes are accumulating at a very rapid pace. As of October 2008, there are 873 complete and pub- lished genome sequences, as well as 2025

  15. Optimization of Industrial Applications with Hardware in the Loop

    E-Print Network [OSTI]

    Boyer, Edmond

    of industrial robots integrated in complex robot cells. Trajectory optimizers are usually based on models and with changes of the robot task. Index Terms Industrial robotics, Trajectory optimization, Derivative free with Hardware in the Loop I. INTRODUCTION To reduce production costs, industrial robots must work as fast

  16. Conformal Behavior at Four Loops and Scheme (In)Dependence

    E-Print Network [OSTI]

    Thomas A. Ryttov

    2014-10-01T23:59:59.000Z

    We search for infrared zeros of the beta function and evaluate the anomalous dimension of the mass at the associated fixed point for asymptotically free vector-like fermionic gauge theories with gauge group SU(N). The fixed points of the beta function are studied at the two, three and four loop level in two different explicit schemes. These are the modified regularization invariant, RI', scheme and the minimal momentum subtraction, mMOM, scheme. The search is performed in Landau gauge where the beta function of the gauge parameter vanishes. We then compare our findings to earlier identical investigations performed in the modified minimal subtraction, $\\bar{\\text{MS}}$, scheme. It is found that the value of the anomalous dimension of the mass is smaller at three and four loops than at two loops. This seems to be a generic pattern that is observed in all three different schemes. We then estimate the value of the anomalous dimension to be $\\gamma \\sim 0.225-0.375$ for twelve fundamental flavors and three colors, $\\gamma \\sim 0.500 - 0.593$ for two adjoint flavors and two colors and finally $\\gamma \\sim 1.12-1.70$ for two two-indexed flavors and three colors with the lower and upper bound set by the minimum and maximum value respectively over all three schemes and at three and four loops. Our analysis suggests that the former two theories lie in the conformal window while the latter belongs to the chirally broken phase.

  17. On the q-quantum gravity loop algebra

    E-Print Network [OSTI]

    Seth Major

    2008-02-19T23:59:59.000Z

    A class of deformations of the q-quantum gravity loop algebra is shown to be incompatible with the combinatorics of Temperley-Lieb recoupling theory with deformation parameter at a root of unity. This incompatibility appears to extend to more general deformation parameters.

  18. A new closed loop control method for HVDC transmission

    SciTech Connect (OSTI)

    Karlecik-Maier, F. [Siemens AG, Erlangen (Germany)] [Siemens AG, Erlangen (Germany)

    1996-10-01T23:59:59.000Z

    The paper presents a new closed loop control method which uses information locally available at each converter station and combines and coordinates control possibilities with the objective of improving the dynamic behavior during fault recoveries and disturbances around the operating points.

  19. Three-loop free energy for pure gauge QCD

    SciTech Connect (OSTI)

    Arnold, P.; Zhai, C. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-12-15T23:59:59.000Z

    We compute the free energy density for pure non-Abelian gauge theory at high temperature and zero chemical potential. The three-loop result to [ital O]([ital g][sup 4]) is [ital F]=[ital d][sub [ital A

  20. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  1. Closed-loop real-time control on distributed networks

    E-Print Network [OSTI]

    Ambike, Ajit Dilip

    2004-11-15T23:59:59.000Z

    This thesis is an e?ort to develop closed-loop control strategies on computer networks and study their stability in the presence of network delays and packet losses. An algorithm using predictors was designed to ensure the system stability...

  2. Gravitational Wave Sources from New Physics

    E-Print Network [OSTI]

    Craig J. Hogan

    2006-08-25T23:59:59.000Z

    Forthcoming advances in direct gravitational wave detection from kilohertz to nanohertz frequencies have unique capabilities to detect signatures from or set meaningful constraints on a wide range of new cosmological phenomena and new fundamental physics. A brief survey is presented of the post-inflationary gravitational radiation backgrounds predicted in cosmologies that include intense new classical sources such as first-order phase transitions, late-ending inflation, and dynamically active mesoscopic extra dimensions. LISA will provide the most sensitive direct probes of such phenomena near TeV energies or Terascale. LISA will also deeply probe the broadband background, and possibly bursts, from loops of cosmic superstrings predicted to form in current models of brane inflation.

  3. PHYSICAL PROPERTIES OF COOLING PLASMA IN QUIESCENT ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Landi, E. [Artep, Inc. at Naval Research Laboratory, 4555 Overlook Ave. S.W., 20375-5320, Washington DC (United States); Miralles, M. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-50, Cambridge, MA 02138 (United States); Curdt, W. [Max Planck Institut fuer Sonnensystemforschung, Max Planck Strasse 2, Katlenburg-Lindau 37191 (Germany); Hara, H. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-04-10T23:59:59.000Z

    In the present work, we use SOHO/SUMER, SOHO/UVCS, SOHO/EIT, SOHO/LASCO, STEREO/EUVI, and Hinode/EIS coordinated observations of an active region (AR 10989) at the west limb taken on 2008 April 8 to study the cooling of coronal loops. The cooling plasma is identified using the intensities of SUMER spectral lines emitted at temperatures in the 4.15 {<=} log T {<=} 5.45 range. EIS and SUMER spectral observations are used to measure the physical properties of the loops. We found that before cooling took place these loops were filled with coronal hole-like plasma, with temperatures in the 5.6 {<=} log T {<=} 5.9 range. SUMER spectra also allowed us to determine the plasma temperature, density, emission measure, element abundances, and dynamic status during the cooling process. The ability of EUVI to observe the emitting region from a different direction allowed us to measure the volume of the emitting region and estimate its emission measure. Comparison with values measured from line intensities provided us with an estimate of the filling factor. UVCS observations of the coronal emission above the active region showed no streamer structure associated with AR 10989 at position angles between 242{sup 0}and 253.{sup 0} EIT, LASCO, and EUVI-A narrowband images and UVCS spectral observations were used to discriminate between different scenarios and monitor the behavior of the active region in time. The present study provides the first detailed measurements of the physical properties of cooling loops, a very important benchmark for theoretical models of loop cooling and condensation.

  4. Possible Regulatory Role for the Histidine-Rich Loop in the Zinc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulatory Role for the Histidine-Rich Loop in the Zinc Transport Protein, ZnuA. Possible Regulatory Role for the Histidine-Rich Loop in the Zinc Transport Protein, ZnuA. Abstract:...

  5. Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7.10 -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Nio Geek-Up08.27.10 -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Nio...

  6. High Performance Loop Filter Design for Continuous-time Sigma-delta ADC

    E-Print Network [OSTI]

    Gui, Fan

    2014-11-12T23:59:59.000Z

    Continuous-time (CT) sigma-delta (??) analog-to-digital converters (ADCs) are widely used in wireless transceiver. Loop filter becomes a critical component in the implementation of high resolution large bandwidth CT ?? ADC because it determines loop...

  7. Development of a Water Loop Simulation at the Texas A&M University Main Campus

    E-Print Network [OSTI]

    Xue, H.; Deng, S.; Claridge, D. E.; Liu, M.

    2000-01-01T23:59:59.000Z

    A computer simulation model is an economic and convenient tool to perform analysis of chilled water loop. The primary objective of this paper is developing procedure for simulating and optimizing chilled water loop with computer simulation model. A...

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  10. Safety aspects of ground testing for large nuclear rockets

    SciTech Connect (OSTI)

    Goldman, M.I.

    1988-02-01T23:59:59.000Z

    Present nuclear rocket reactors under test in Nevada are operated at nominal power levels of 1000 Mw. It does not seem unreasonable in the future to anticipate reactors with power levels in the range up to 5,000 Mw for space applications. It has been shown that the normal testing of large nuclear rocket engines at NRDS could impose some restrictions on the fuel performance which would not otherwise be required by space flight operation. The only apparent alternative would require a capability for decontaminating effluent gases prior to release to the atmosphere. In addition to the source restrictions, tests will almost certainly be controlled by wind and atmospheric stability conditions, and the requirements for monitoring and control of off-site exposures will be much more stringent than those presently in force. An analysis of maximum accidents indicates that projections of present credible occurrences cannot be tolerated in larger engine tests. The apparent alternatives to a significant (order of magnitude or better) reduction in credible accident consequences, are the establishment of an underground test facility, a facility in an area equivalent to the Pacific weapons proving ground, or in space.

  11. P a g e | 1 Why can wind delay the shedding of Loop Current eddies?1

    E-Print Network [OSTI]

    a g e | 4 intrudes northward into the Gulf along the Campeche Bank's eastern shelfbreak, and loops44

  12. Running of $?_s$ in the MSSM with three-loop accuracy

    E-Print Network [OSTI]

    Luminita Mihaila

    2007-10-11T23:59:59.000Z

    The evolution of the strong coupling constant $\\alpha_s$ from $M_Z$ to the GUT scale is presented, involving three-loop running and two-loop decoupling. Accordingly, the two-loop transition from the $\\bar{\\rm MS}$ to the $\\bar{\\rm DR}$ scheme is properly taken into account. We find that the three-loop effects are comparable to the experimental uncertainty for $\\alpha_s$.

  13. RELAP-7: Demonstrating the integration of two-phase flow components for an ideal BWR loop

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao; Ling Zou; David Andrs; John Peterson; Ray Berry; Richard Martineua

    2013-06-01T23:59:59.000Z

    This is DOE Level 3 milestone report documenting RELAP-7's capability to simulate an ideal BWR loop.

  14. Photovoltaic ground fault and blind spot electrical simulations.

    SciTech Connect (OSTI)

    Flicker, Jack David; Johnson, Jay

    2013-06-01T23:59:59.000Z

    Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when ground faults went undetected. In order to understand the limitations of fuse-based ground fault protection in PV systems, analytical and numerical simulations of different ground faults were performed. The numerical simulations were conducted with Simulation Program with Integrated Circuit Emphasis (SPICE) using a circuit model of the PV system which included the modules, wiring, switchgear, grounded or ungrounded components, and the inverter. The derivation of the SPICE model and the results of parametric fault current studies are provided with varying array topologies, fuse sizes, and fault impedances. Closed-form analytical approximations for GFPD currents from faults to the grounded current carrying conductor-known as %E2%80%9Cblind spot%E2%80%9D ground faults-are derived to provide greater understanding of the influence of array impedances on fault currents. The behavior of the array during various ground faults is studied for a range of ground fault fuse sizes to determine if reducing the size of the fuse improves ground fault detection sensitivity. The results of the simulations show that reducing the amperage rating of the protective fuse does increase fault current detection sensitivity without increasing the likelihood of nuisance trips to a degree. Unfortunately, this benefit reaches a limit as fuses become smaller and their internal resistance increases to the point of becoming a major element in the fault current circuit.

  15. Closed-Loop Compensation Method for Oscillations Caused by Control Valve Stiction

    E-Print Network [OSTI]

    Wang, Jiandong

    Closed-Loop Compensation Method for Oscillations Caused by Control Valve Stiction Jiandong Wang-loop compensation method to remove oscillations caused by control valve stiction. With the control loop operating movements for the control valve to arrive at a desired position. A systematic way to design the parameters

  16. The Distribution of Loop Lengths in Graphical Models for Turbo Decoding

    E-Print Network [OSTI]

    Smyth, Padhraic

    1 The Distribution of Loop Lengths in Graphical Models for Turbo Decoding Xianping Ge, David model for a K = 6, N = 12, rate 1=2 turbo code. Abstract| This paper analyzes the distribution of loop lengths in graphical models for turbo decoding. The prop- erties of such loops are of signi#12;cant

  17. Dynamic radioactive particle source

    DOE Patents [OSTI]

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26T23:59:59.000Z

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  18. Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS

    E-Print Network [OSTI]

    Kääb, Andreas

    and other forms of creeping mountain permafrost may be the source of a number of hazards. Rock glaciers of large rock avalanche disasters are examples of mountain hazards. In the case of the September 20, 2002, rock-ice avalanche at Kolka-Karmadon in the Russian Caucasus, a combined rock-ice avalanche

  19. SOURCE SELECTION INFORMATION -

    Office of Environmental Management (EM)

    on Energy and Water Development U.S. House of Representatives The Honorable Lamar Alexander Ranking Member SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION...

  20. SOURCE SELECTION INFORMATION -

    Energy Savers [EERE]

    on Energy and Water Development U.S. House of Representatives The Honorable Lamar Alexander SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION REGULATION (FAR)...

  1. SOURCE SELECTION INFORMATION -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SOURCE SELECTION INFORMATION - SEE FEDERAL ACQUISITION REGULATION (FAR) 2.101 AND 3.104 Department of Energy Washington, DC 20585 (enter date here, centered revised template...

  2. Publications | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers, dissertations, books, book chapters, technical reports,...

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25T23:59:59.000Z

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20T23:59:59.000Z

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

    2010-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23T23:59:59.000Z

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19T23:59:59.000Z

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. Sun--Grounding Social Sciences in Cognitive Sciences I Introduction

    E-Print Network [OSTI]

    Sun, Ron

    G Sun--Grounding Social Sciences in Cognitive Sciences I Introduction Sun_8928_001_main.indd 1 1/10/2012 6:35:15 PM #12;G Sun--Grounding Social Sciences in Cognitive Sciences Sun_8928_001_main.indd 2 1/10/2012 6:35:15 PM #12;G Sun--Grounding Social Sciences in Cognitive Sciences 1 Prolegomenato

  11. Cleanup Verification Package for the 618-8 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-08-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

  12. Cleanup Verification Package for the118-F-2 Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron and K. A. Anselm

    2008-02-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities.

  13. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  14. Prevention of significant deterioration application for approval to construct SP-100 Ground Engineering System Test Site

    SciTech Connect (OSTI)

    Not Available

    1990-04-01T23:59:59.000Z

    The following application is being submitted by the US Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352, pursuant to WAC 173-403-080, and in compliance with the Department of Ecology Guide to Processing a Prevention of Significant Deterioration (PSD) Permit'' for a new source of airborne radionuclide emissions at the Hanford Site in Washington State. The new source, the SP-100 Ground Engineering System (GES) Test Site, will be located in the 309 Building of the 300 Area. The US Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the US Department of Defense (DOD) have entered into an agreement to jointly develop space nuclear reactor power system technology. The DOE has primary responsibility for developing and ground testing the nuclear subsystem. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. The SP-100 GES Test Site will provide a location for the operation and testing of a prototype space-based, liquid metal-cooled, fast flux nuclear reactor in an environment closely simulating the vacuum and temperature conditions of space operations. The purpose of the GES is to develop safe, compact, light-weight and durable space reactor power system technology. This technology will be used to provide electric power, in the range of tens to hundreds of kilowatts, for a variety of potential future civilian and military space missions requiring long-term, high-power level sources of energy. 20 refs., 8 figs., 7 tabs.

  15. NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form

    Broader source: Energy.gov (indexed) [DOE]

    audits,trainingeducation; solar PV on existing roofs or <60 kW on ground; wind turbinesolar thermal < 20 kW; ground source heat pump <5.5 tons, closed loop system;efficient...

  16. Template for Expedited NEPA Review of Certain

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    o Solar Thermal Hot Water - such as appropriately sized for small buildings. o Ground Source Heat Pump - 5.5-ton capacity or smaller, horizontalvertical, ground, closed-loop...

  17. On the Blue Loops of Intermediate-Mass Stars

    E-Print Network [OSTI]

    Walmswell, J J; Eldridge, J J

    2015-01-01T23:59:59.000Z

    We consider the blue loops in the Hertzsprung-Russell diagram that occur when intermediate-mass stars begin core helium burning. It has long been known that the excess of helium above the burning shell, the result of the contraction of the convective core during core hydrogen burning, has the effect of making such stars redder and larger than they would be otherwise. The outward motion of the burning shell in mass removes this excess and triggers the loop. Hitherto nobody has attempted to demonstrate why the excess helium has this effect. We consider the effect of the local opacity, which is reduced by excess helium, the shell fuel supply, which is also reduced, and the local mean molecular weight, which is increased. We demonstrate that the mean molecular weight is the decisive reddening factor. The opacity has a much smaller effect and a reduced fuel supply actually favours blueward motion.

  18. Closed-loop guided directional drilling: Fundamentals, concepts and simulations

    SciTech Connect (OSTI)

    Heisig, G.; Oppelt, J. [Baker Hughes INTEQ GmbH, Celle (Germany); Neubert, M. [Technical Univ. Braunschweig (Germany); Donati, F. [Agip S.p.A., Milan (Italy)

    1996-09-01T23:59:59.000Z

    This paper introduces the fundamentals of directional drilling with a closed-loop control. In the discussion of different signal flow concepts a surface controlled system is identified as the original approach to automatic directional drilling. The success of the directional drilling operation depends on the proper layout of the controller in the control loop. A control method is introduced which anticipates direction changes on the planned path. The algorithm is tested by applying computer simulation techniques. The simulator is based on a mathematical model of a directional drilling system with an adjustable stabilizer. Coupling this model with a rock/bit interaction model yields a non-linear differential equation system for the drilling trajectory. The equations can be solved numerically. The simulation results prove the importance of anticipation in the control algorithm.

  19. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System Permit Application Forms Webpage Abstract Provides a list of permit...

  20. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...