National Library of Energy BETA

Sample records for longer projection time

  1. Regional Projections of Climate on Decadal Time Scales: High...

    Office of Scientific and Technical Information (OSTI)

    Regional Projections of Climate on Decadal Time Scales: High resolution global ... Country of Publication: United States Language: English Word Cloud More Like This Full Text ...

  2. Regional Projections of Climate on Decadal Time Scales: High resolution

    Office of Scientific and Technical Information (OSTI)

    global predictions and regionally resolved source response studies (Technical Report) | SciTech Connect Regional Projections of Climate on Decadal Time Scales: High resolution global predictions and regionally resolved source response studies Citation Details In-Document Search Title: Regional Projections of Climate on Decadal Time Scales: High resolution global predictions and regionally resolved source response studies Authors: Tribbia, Joe [1] ; Zhang, Minghua [2] + Show Author

  3. NDMV - Longer Combination Vehicle (LCV) Permit Application |...

    Open Energy Info (EERE)

    Vehicle (LCV) Permit Application Abstract This form is the Nevada Department of Motor Vehicles LCV Application. Form Type ApplicationNotice Form Topic Longer Combination...

  4. Session Chair: John Boyes, SNL TIME PROJECT SPEAKER

    Energy Savers [EERE]

    Session Chair: John Boyes, SNL TIME PROJECT SPEAKER 7:00 am Registration (all day) & Complimentary Breakfast 8:00 Welcome Imre Gyuk - US Department of Energy / Office of Electricity Delivery & Energy Reliability 8:10 DOE Perspective Pat Hoffman & Arun Majumdar - US Department of Energy 8:30 DOE / OE Program Overview Imre Gyuk - US Department of Energy / Office of Electricity Delivery & Energy Reliability 8:40 DOE / ARRA Program Overview Eddie Christy - National Energy Technology

  5. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Thirsty' Metals Key to Longer Battery Lifetimes 'Thirsty' Metals Key to Longer Battery Lifetimes Computations at NERSC show how multiply charged metal ions impact battery capacity June 30, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked for months between charges. A massive battery that stores the intermittent electricity from wind turbines and releases it when

  6. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    SciTech Connect (OSTI)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someones back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  7. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    SciTech Connect (OSTI)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  8. Argon Time Projection Chamber(LArTPC) Data Jessica Esquivel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8256 wire channels - 3456 Collection channels Wires oriented vertically - 4800 Induction channels Wires oriented +-60 degrees 32 8" PMT's - For initial time of...

  9. Fact #656: January 3, 2011 Consumers Hold onto Vehicles Longer | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6: January 3, 2011 Consumers Hold onto Vehicles Longer Fact #656: January 3, 2011 Consumers Hold onto Vehicles Longer Consumers are holding onto both their new and used vehicles for longer periods of time. The length of time a consumer keeps a new vehicle has risen each quarter since 2008 to an average of 63.9 months in the 2nd quarter of 2010. That is 4.5 months longer than the same quarter last year. For used vehicles, the average length is 46.1 months, up 2.3 months from the 2nd

  10. Idaho Completion Projects Accelerated Retrieval Project Overview of the Pit 4 Non-Time Critical Removal Action

    SciTech Connect (OSTI)

    T. L. Clements; R. E. Arbon; B. D. Preussner

    2005-02-01

    This paper presents an overview of the Accelerated Retrieval Project performed by the Idaho Completion Project at the Idaho National Laboratory (INL). Topics include an overall description of the process and methods that will retrieve, characterize, and certify newly generated transuranic (TRU) waste for disposal at the Waste Isolation Pilot Plant (WIPP). The retrieval and characterization of buried TRU waste presents unique challenges. Innovative approaches developed and discussed are: excavation, RCRA waste sampling, visual examination, and deployment of the WIPP Central Characterization Project mobile systems to the INL.

  11. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    SciTech Connect (OSTI)

    Kleinrath, Verena

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  12. Real Time Technology Application Demonstration Project Final Report

    SciTech Connect (OSTI)

    Volpe, John; Hampson, Steve; Johnson, Robert L

    2008-09-01

    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  13. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury...

    Broader source: Energy.gov (indexed) [DOE]

    Remedial Action Project, it represents the number of days without a work-related, lost-time injury or illness, as defined by the Occupational Safety and Health Administration....

  14. Moab Project Exceeds 5 Years of Operations Without Lost-Time...

    Broader source: Energy.gov (indexed) [DOE]

    workers on the Moab Uranium Mill Tailings Remedial Action Project in Utah had a lost-time injury or illness. This represents roughly 2.2 million hours of safe work. Although the...

  15. Moab Project Exceeds 5 Years of Operations Without Lost-Time Injury, Illness

    Broader source: Energy.gov [DOE]

    GRAND JUNCTION, Colo. – It has been more than five years since workers on the Moab Uranium Mill Tailings Remedial Action Project in Utah had a lost-time injury or illness. This represents roughly 2.2 million hours of safe work.

  16. Moab Project Logs 2 Million Work Hours Without Lost-Time Injury or Illness

    Broader source: Energy.gov [DOE]

    GRAND JUNCTION, Colo. – The number 1,584 may not mean much to most people, but for the workers on EM’s Moab Uranium Mill Tailings Remedial Action Project, it represents the number of days without a work-related, lost-time injury or illness, as defined by the Occupational Safety and Health Administration.

  17. Report on Fission Time Projection Chamber M3FT-12IN0210052

    SciTech Connect (OSTI)

    James K. Jewell

    2012-08-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  18. NNSA celebrates completion of UPF project on time, under budget | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration celebrates completion of UPF project on time, under budget | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters

  19. Pantex High Pressure Fire Loop Project Completed On Time, Under Budget |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration High Pressure Fire Loop Project Completed On Time, Under Budget | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  20. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Researchers have developed a new technology to advance the life of lithium-ion batteries. A catechol-based polymer binder, developed at Berkeley Lab, interacting with the oxide layer on the surface of commercial silicon (Si), generates powerful adhesion strength and maintains electrode integrity during the drastic volume changes

  1. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    SciTech Connect (OSTI)

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  2. More Powerful, Longer-Lasting Batteries Rings Around the Earth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powerful, Longer-Lasting Batteries Rings Around the Earth A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 5, NO. 1 BeThereNow Enhancing Long-distance Collaborations SPRING * 2003 S A N D I A T E C H N O L O G Y Sandia Technology is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram engineering and science laboratory operated by Sandia Corporation, a Lockheed Martin company, for the Department of Energy. With main facilities in Albuquerque, New Mexico,

  3. U32: Vehicle Stability and Dynamics: Longer Combination Vehicles

    SciTech Connect (OSTI)

    Petrolino, Joseph; Spezia, Tony; Arant, Michael; Broshears, Eric; Chitwood, Caleb; Colbert, Jameson; Hathaway, Richard; Keil, Mitch; LaClair, Tim J; Pape, Doug; Patterson, Jim; Pittro, Collin

    2011-01-01

    This study investigated the safety and stability of longer combination vehicles (LCVs), in particular a triple trailer combination behind a commercial tractor, which has more complicated dynamics than the more common tractor in combination with a single semitrailer. The goal was to measure and model the behavior of LCVs in simple maneuvers. Example maneuvers tested and modeled were single and double lane changes, a gradual lane change, and a constant radius curve. In addition to test track data collection and a brief highway test, two computer models of LCVs were developed. One model is based on TruckSim , a lumped parameter model widely used for single semitrailer combinations. The other model was built in Adams software, which more explicitly models the geometry of the components of the vehicle, in terms of compliant structural members. Among other results, the models were able to duplicate the experimentally measured rearward amplification behavior that is characteristic of multi-unit combination vehicles.

  4. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

    SciTech Connect (OSTI)

    Leino, R.; Corle, S.

    1995-10-01

    This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

  5. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    SciTech Connect (OSTI)

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01

    This report contributes initial findings from an analysis of significant aspects of the gridSMART Real-Time Pricing (RTP) Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  6. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    SciTech Connect (OSTI)

    Emmanuel Lafond; Paul Ridgway; Ted Jackson; Rick Russo; Ken Telschow; Vance Deason; Yves Berthelot; David Griggs; Xinya Zhang; Gary Baum

    2005-08-30

    The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. The first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to combine a commercial Mach-Zehnder interferometer to a spinning mirror synchronized to the web speed, in order to make almost stationary measurements. The method was demonstrated at up to 10 m/s. Both teams developed their own version of a web simulator that was driving a web of paper at 10 m/s or higher. The Department of Energy and members of the Agenda 2020 started to make a push for merging the two projects. This made sense because their topics were really identical but this was not well received by Prof. Brodeur. Finally IPST decided to reassign the direction of the IPST-INL-GT project in the spring of 1999 to Prof. Chuck Habeger so that the two teams could work together. Also at this time, Honeywell-Measurex dropped as a member of the team. It was replaced by ABB Industrial Systems whose engineers had extensive previous experience of working with ultrasonic sensors on paperboard. INL also finished its work on the project as its competencies were partly redundant with LBNL. From the summer of 1999, the IPST-GT and LBNL teams were working together and helped each other often by collaborating and visiting either laboratory when was necessary. Around the beginning of 2000, began an effort at IPST to create an off-line laser-ultrasonics instrument that could perform automated measurements of paper and paperboard's bending stiffness. It was widely known that the mechanical bending tests of paper used for years by the paper industry were very inaccurate and exhibited poor reproducibility; therefore the team needed a new instrument of reference to validate its future on-line results. In 1999-2000, the focus of the on-line instrument was on a pre-industrial demonstration on a pilot coater while reducing the damage to the web caused by the generation laser, below the threshold where it could be visible by the naked eye. During the spring of 2000 Paul Ridgway traveled to IPST and brought with him a redesigned system still using the same Mach-Zehnder interferometer as before, but this time employing an electric motor-driven spinning mirror instead of the previously belt-driven m

  7. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS ... for CO 2 -EOR and CO 2 transportation for CCS assuming a carbon price are discussed. ...

  8. Testing the performance of real-time incinerator emission monitors. Project report

    SciTech Connect (OSTI)

    Ghorishi, S.B.; Whitworth, W.E.; Goldman, C.G.; Waterland, L.R.

    1997-03-01

    Ten prototypes of continuous emission monitors (CEMs) for measuring trace metal or trace organic species concentrations were tested. Of the 10 CEMs tested, four measured incinerator flue gas concentrations of several specific volatile organic compounds (VOCs), one measured total particulate-bound polynuclear aromatic hydrocarbon (PAH) concentrations, two measured flue gas concentrations of several (up to 14) trace metals, and three measured mercury concentrations. While the testing consisted of obtaining quantitative measurement data on the four measures of CEM performance checked in a relative accuracy test audit (RATA) as described in 40 CFR 60 Appendix F -- relative accuracy (RA), calibration drift (CD), zero drift (ZD), and response time - the primary project objective focused on the RA measurement. Four series of tests were performed, each simultaneously testing up to three monitors measuring the same or similar analyte type. Each test series consisted of performing triplicate Reference Method (RM) measurements at each of three target flue gas monitored analyte concentrations while the tested CEMs were in operation.

  9. U.S. No Longer Building Any Nuclear Weapons | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. No Longer Building Any Nuclear Weapons U.S. No Longer Building Any Nuclear Weapons May...

  10. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Project Management MaRIE is the experimental facility needed to control the time-dependent properties of materials for national security science missions. It...

  11. Colorado - C.R.S. 42-4-505, Longer Vehicle Combinations | Open...

    Open Energy Info (EERE)

    Colorado - C.R.S. 42-4-505, Longer Vehicle Combinations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S....

  12. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    SciTech Connect (OSTI)

    Acciarri, R.; et al.

    2015-04-21

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  13. Chapter 10, Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 10 - 1 Chapter 10 - Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy

  14. Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Projects

  15. Assessment of the 60 km rapid update cycle (RUC) with near real-time aircraft reports. Project report

    SciTech Connect (OSTI)

    Cole, R.E.; Richard, C.; Kim, S.; Bailey, D.

    1998-07-15

    The National Aeronautics and Space Administration (NASA) is developing the Center-TRA-CON Advisory System (CTAS), a set of Air Traffic Management (ATM) Decision Support Tools (DST) for en route (Center) and terminal (TRACON) airspace designed to enable controllers to increase capacity and flight efficiency. A crucial component of the CTAS, or any ATM DST, is the computation of the time-of-flight of aircraft along flight path segments. Earlier NASA studies show that accurate knowledge of the wind through which the aircraft are flying is required to estimate time-of-flight accurately. There are current envisioned to be two sources of wind data for CTAS: The Rapid Update Cycle (RUC) for the Center airspace, a numerical model developed by the National Oceanic and Atmospheric Administration (NOAA) Forecast System Laboratory (FSL) and run operationally by the National Weather Service (NWS) National Center for Environmental Prediction (NCEP); and The Integrated Terminal Weather System (ITWS) Terminal Winds (TW) for the TRACON airspace, developed at MIT Lincoln Laboratory under funding from the Federal Aviation Administration (FAA). This study has three goals: (1) determine the errors in the baseline 60 km resolution RUC forecast wind fields relative to the needs of en route DSTs such as CTAS, (2) determine the benefit of using the TW algorithm to refine the RUC forecast wind fields with near real-time Meteorological Data Collection and Reporting System (MDCRS) reports, and (3) identify factors that influence wind errors in order to improve accuracy and estimate errors in real time.

  16. Brain necrosis after fractionated radiation therapy: Is the halftime for repair longer than we thought?

    SciTech Connect (OSTI)

    Bender, Edward T.

    2012-11-15

    Purpose: To derive a radiobiological model that enables the estimation of brain necrosis and spinal cord myelopathy rates for a variety of fractionation schemes, and to compare repair effects between brain and spinal cord. Methods: Sigmoidal dose response relationships for brain radiation necrosis and spinal cord myelopathy are derived from clinical data using nonlinear regression. Three different repair models are considered and the repair halftimes are included as regression parameters. Results: For radiation necrosis, a repair halftime of 38.1 (range 6.9-76) h is found with monoexponential repair, while for spinal cord myelopathy, a repair halftime of 4.1 (range 0-8) h is found. The best-fit alpha beta ratio is 0.96 (range 0.24-1.73)Conclusions: A radiobiological model that includes repair corrections can describe the clinical data for a variety of fraction sizes, fractionation schedules, and total doses. Modeling suggests a relatively long repair halftime for brain necrosis. This study suggests that the repair halftime for late radiation effects in the brain may be longer than is currently thought. If confirmed in future studies, this may lead to a re-evaluation of radiation fractionation schedules for some CNS diseases, particularly for those diseases where fractionated stereotactic radiation therapy is used.

  17. Project Construction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrating renewable energy into Federal new construction or major renovations requires effective structuring of the construction team and project schedule. This overview discusses key construction team considerations for renewable energy as well as timing and expectations for the construction phase. The project construction phase begins after a project is completely designed and the construction documents (100%) have been issued. Construction team skills and experience with renewable energy technologies are crucial during construction, as is how the integration of renewable energy affects the project construction schedule.

  18. Operation Redwing. Project 3. 1. Effect of length of positive phase of blast on drag-type and semidrag-time industrial buildings

    SciTech Connect (OSTI)

    Sinnamon, G.K.; Haltiwanger, J.D.; Newmark, N.M.

    1985-09-01

    The primary objective of the project was to obtain information regarding the effect of the length of the positive phase of blast on the response of drag and semidrag structures. A total of six steel-frame buildings were tested during this operation. The structure of each type nearest ground zero was located such that if the yield of the weapon was near the lower limit of its predicted range, it would probably undergo considerable inelastic deformation. Conversely, those structures farthest from ground zero were located such that if the yield of the nuclear device was near the upper limit of its predicted range, they would be substantially deformed, but would not collapse. The third building of each type was located at an intermediate point between these two extremes. Instrumentation was provided to obtain records of the transient structural deflections, strains, and accelerations, as well as of overpressure and dynamic pressure versus time at the sites of the various test structures.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in the frequency domain, but frequency domain analysis is limited to systems with linear responses. The nonlinear character of the coupled SSI model and tank structural model requires that the seismic analysis be solved in the time domain. However, time domain SSI analysis is somewhat nontraditional and requires that the appropriate methodology be developed and demonstrated. Moreover, the analysis of seismically induced fluid-structure interaction between the explicitly modeled waste and the primary tank must be benchmarked against known solutions to simpler problems before being applied to the more complex analysis of the DSTs. The objective of this investigation is to establish the methodology necessary to perform the required SSI analysis of the DSTs in the time domain. Specifically, the analysis establishes the capabilities and limitations of the time domain codes ANSYS and Dytran for performing seismic SSI analysis of the DSTs. The benchmarking of the codes Dytran and ANSYS for performing seismically induced fluid-structure interaction (FSI) between the contained waste and the DST primary tank are documented in Abatt (2006) and Carpenter and Abatt (2006), respectively. The results of those two studies show that both codes have the capability to analyze the fluid-structure interaction behavior of the primary tank and contained waste. As expected, Dytran appears to have more robust capabilities for FSI analysis. The ANSYS model used in that study captures much of the FSI behavior, but does have some limitations for predicting the convective response of the waste and possibly the response of the waste in the knuckle region of the primary tank. While Dytran appears to have somewhat stronger capabilities for the analysis of the FSI behavior in the primary tank, it is more practical for the overall analysis to use ANSYS. Thus, Dytran served the purpose of helping to identify limitations in the ANSYS FSI analysis so that those limitations can be addressed in the structural evaluation of the primary tank. The limitations of ANSYS for predicting the details of the convective

  20. Project Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Reports Project Reports This page contains links to project reports summarizing the solid-state lighting projects funded by DOE, providing project descriptions and information on project partners, funding, and research period. The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. 2015 Project Portfolio Overviews of all current DOE-funded R&D projects related to solid-state lighting, including brief description, partners, funding level, and proposed time

  1. Time-Encoded Imagers.

    SciTech Connect (OSTI)

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  2. About Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Projects MicroBooNE Project Web Pages The Project Pages hold information and links for the collaboration and its Project Managers, and also hold links to project Director's and...

  3. Optimal Timing for Assessment of Tumor Response to Neoadjuvant Chemoradiation in Patients With Rectal Cancer: Do All Patients Benefit From Waiting Longer Than 6 Weeks?

    SciTech Connect (OSTI)

    Perez, Rodrigo O.; Angelita and Joaquim Gama Institute, Sao Paulo ; Habr-Gama, Angelita; Sao Juliao, Guilherme P.; Gama-Rodrigues, Joaquim; Sousa, Afonso H.S.; Campos, Fabio Guilherme; Imperiale, Antonio R.; Lynn, Patricio B.; Proscurshim, Igor; Nahas, Sergio Carlos; Ono, Carla Rachel; Buchpiguel, Carlos Alberto; Department of Radiology and Nuclear Medicine, Hospital do Coracao, Sao Paulo

    2012-12-01

    Purpose: To estimate the metabolic activity of rectal cancers at 6 and 12 weeks after completion of chemoradiation therapy (CRT) by 2-[fluorine-18] fluoro-2-deoxy-D-glucose-labeled positron emission tomography/computed tomography ([{sup 18}FDG]PET/CT) imaging and correlate with response to CRT. Methods and Materials: Patients with cT2-4N0-2M0 distal rectal adenocarcinoma treated with long-course neoadjuvant CRT (54 Gy, 5-fluouracil-based) were prospectively studied ( (ClinicalTrials.org) identifier (NCT00254683)). All patients underwent 3 PET/CT studies (at baseline and 6 and 12 weeks from CRT completion). Clinical assessment was at 12 weeks. Maximal standard uptake value (SUVmax) of the primary tumor was measured and recorded at each PET/CT study after 1 h (early) and 3 h (late) from {sup 18}FDG injection. Patients with an increase in early SUVmax between 6 and 12 weeks were considered 'bad' responders and the others as 'good' responders. Results: Ninety-one patients were included; 46 patients (51%) were 'bad' responders, whereas 45 (49%) patients were 'good' responders. 'Bad' responders were less likely to develop complete clinical response (6.5% vs. 37.8%, respectively; P=.001), less likely to develop significant histological tumor regression (complete or near-complete pathological response; 16% vs. 45%, respectively; P=.008) and exhibited greater final tumor dimension (4.3 cm vs. 3.3 cm; P=.03). Decrease between early (1 h) and late (3 h) SUVmax at 6-week PET/CT was a significant predictor of 'good' response (accuracy of 67%). Conclusions: Patients who developed an increase in SUVmax after 6 weeks were less likely to develop significant tumor downstaging. Early-late SUVmax variation at 6-week PET/CT may help identify these patients and allow tailored selection of CRT-surgery intervals for individual patients.

  4. Hydrothermal Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Projects Hydrothermal Projects Hydrothermal Projects Geothermal electricity production has grown steadily, tapping a reliable, nearly inexhaustible reserve of hydrothermal systems where fluid, heat, and permeability intersect naturally in the subsurface. The United States Geological Survey estimates that 30 GW of hydrothermal resources lie beneath the surface--ten times the current installed capacity. Hydrothermal Projects Projects Database Program Links What is Play Fairway

  5. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscopes Plate Boundary Observatory (PBO) and Central Washington Universitys Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the splines in tension method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  6. Analysis of High Precision GPS Time Series and Strain Rates for the Geothermal Play Fairway Analysis of Washington State Prospects Project

    SciTech Connect (OSTI)

    Michael Swyer

    2015-02-22

    Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope’s Plate Boundary Observatory (PBO) and Central Washington University’s Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the ‘splines in tension’ method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.

  7. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  8. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  9. Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accounts Project Accounts A redirector page has been set up without anywhere to redirect to. Last edited: 2016-02-01 08:06:53

  10. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  11. PROJECT MANGEMENT PLAN EXAMPLES Prepare and Issue Project Plan Documents

    Office of Environmental Management (EM)

    and Issue Project Plan Documents Example Example 70 5.2 Information and Reporting Management reporting provides timely and accurate data to apprise BWHC, FDH, and DOE management of current and projected project conditions. Information contained in these reports is obtained from the same database that supports day-to-day management by BWHC. 5.2.1 Project Status Report Reporting for the 324/327 Buildings Stabilization/Deactivation Project is incorporated in the monthly PSR, prepared by BWHC for

  12. Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Slider award map The REE Program funds projects focused on developing economically feasible and environmentally benign technologies for recovering REEs from coal and/or coal by-products. Project Information The listed projects represent the current REE program portfolio. Agreement Number Project Title Performer Name FWP-ORD REE FY2016-2020 Rare Earth Elements (REE) from Coal and Coal By-Products National Energy Technology Laboratory

  13. A limited microbial consortium is responsible for longer-term biostimulation and bioreduction or uranium in a contaminated aquifer

    SciTech Connect (OSTI)

    Gihring, Thomas; Zhang, Gengxin; Brandt, Craig C; Brooks, Scott C; Carroll, Sue L; Criddle, Craig; Green, Stefan; Jardine, Philip M; Kostka, Joel; Lowe, Kenneth Alan; Mehlhorn, Tonia L; Overholt, Will; Watson, David B; Yang, Zamin; Wu, Wei-min; Schadt, Christopher Warren

    2011-01-01

    Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H{sub 2} production during EVO degradation appeared to stimulate NO{sub 3}{sup -}, Fe(III), U(VI), and SO{sub 4}{sup 2-} reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.

  14. Renewable energy projects approved

    Broader source: Energy.gov [DOE]

    Two renewable energy projects representing a $100 million-plus investment by Las Vegas-based Nevada Power Co.—a cost likely to be covered over time by the utility's customers—were approved Wednesday by state regulators.

  15. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  16. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961 Totally unrelated (and many years prior) to WIPP, the Project Gnome detonation was the first U.S. underground nuclear test with the objective of using nuclear explosives for peaceful applications. Project Gnome was intended to provide a detailed understanding of the underground environment created when a nuclear

  17. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  18. CGS-MSFSS Project report

    SciTech Connect (OSTI)

    Harvey-Collard, Patrick

    2015-10-27

    From January 2015 to July 2015, I was doing research at Sandia National Laboratories in Albuquerque, United States. My work there consisted of performing experimental measurements using Sandias unique silicon quantum computing platform. The project is about coupling donor spin quantum bits, or qubits, to quantum dots in a silicon nanostructure based on conventional microchip technology. During the project, I devised a new quantum state readout mechanism that allow better, longer lived measurement signals. The measurement (or readout) mechanism is key to any qubit architecture. Next, I was able to demonstrate a quantum manipulation of the two-electron spin states of the coupled donor and quantum dot system. This constitutes a breakthrough for donor spin qubits in silicon because it could enable larger systems consisting of many qubits. This project will lead to publications in scientific journals, presentations in international conferences, and generates exciting new opportunities for manipulating nature at the nanoscale.

  19. Manhattan Project: Events

    Office of Scientific and Technical Information (OSTI)

    Albert Einstein and Leo Szilard Events The events of the Manhattan Project have been grouped under the time periods listed to the left. A quick overview of the Manhattan Project can be obtained by reading the summaries on each of the eight "Time Periods" pages, located in the left navigation bar. Each summary page also has a listing of the events pages for that particular time period. For a complete menu of all events pages, see the comprehensive list of events below. Comprehensive

  20. ARPA-E Project Selections

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEUP Project Selections September 21, 2011 These projects have been selected for negotiation of awards; final award amounts may vary. Lead Research University Grant Amount Lead University Location (City, State) Project Description 1) Integrated Research Project Awards Texas A&M University $4,500,000 College Station, TX Researchers will receive $4.5 million over the next three years to research aging of used nuclear fuel and canisters that are stored for an extended period of time. Partners

  1. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure whose behavior is fundamentally nonlinear. Thus, the students assigned to this project will develop control techniques that will allow an electrodynamic shake table to...

  2. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  3. Custom Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Small Industrial Lighting Compressed Air ESUE Motors Federal Agriculture Custom Projects No two industrial customers are alike; each has its own unique...

  4. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  5. Project Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Tour Transportation Transportation to the tour will be provided from Hilton Santa Fe Buffalo Thunder to Los Alamos National Laboratory, Technical Area 55. After the...

  6. Project Complete

    Broader source: Energy.gov [DOE]

    DOE has published its Record of Decision announcing and explaining DOEs chosen project alternative and describing any commitments for mitigating potential environmental impacts. The NEPA process...

  7. Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends

    Broader source: Energy.gov [DOE]

    Learn more about the DOE's Buildings of the Future Project. Buildings will no longer be passive objects that consume resources, but rather active participants engaged in the energy system and our community.

  8. Awarded projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects Awarded projects 2016 Allocation Awards This page lists the allocation awards for NERSC for the 2016 allocation year (Jan 12, 2016 through Jan 09, 2017). Read More » Previous Year Awards Last edited: 2016-02-01 08:07:34

  9. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.

  10. LANL C10.2 Projects in FY13

    SciTech Connect (OSTI)

    Batha, Steven H.; Fincke, James R.; Schmitt, Mark J.

    2012-06-07

    LANL has two projects in C10.2: Defect-Induced Mix Experiment (DIME) (ongoing, several runs at Omega; NIF shots this summer); and Shock/Shear (tested at Omega for two years; NIF shots in second half of FY13). Each project is jointly funded by C10.2, other C10 MTEs, and Science Campaigns. DIME is investigating 4{pi} and feature-induced mix in spherically convergent ICF implosions by using imaging of the mix layer. DIME prepared for NIF by demonstrating its PDD mix platform on Omega including imaging mid-Z doped layers and defects. DIME in FY13 will focus on PDD symmetry-dependent mix and moving burn into the mix region for validation of mix/burn models. Re-Shock and Shear are two laser-driven experiments designed to study the turbulent mixing of materials. In FY-2012 43 shear and re-shock experimental shots were executed on the OMEGA laser and a complete time history obtained for both. The FY-2013 goal is to transition the experiment to NIF where the larger scale will provide a longer time period for mix layer growth.

  11. RENOTER Project

    Broader source: Energy.gov [DOE]

    Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process.

  12. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  13. DOE Project Scorecards

    Broader source: Energy.gov [DOE]

    DOE Project Scorecards DOEproject scorecards summarize capital asset project performance compared to the current approved baseline.

  14. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  15. The PROJECT

    Office of Scientific and Technical Information (OSTI)

    PROJECT Copies of this publication are available while supply lasts from the Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Attention: Information Services Telephone: (423) 576-8401 Also Available: The United States Department of Energy: A Summary History, 1977-1994 @ Printed with soy ink on recycled paper The PROJECT U N I T E D S T A T E S D E P A R T M E N T O F E N E R G Y F.G. Gosling History Division Executive Secretariat Management and Administration

  16. Cloudnet Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hogan, Robin

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  17. PROJECT MANAGEMENT PLANS Project Management Plans

    Office of Environmental Management (EM)

    MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in

  18. The Spallation Neutron Source Project

    Broader source: Energy.gov [DOE]

    When the Department of Energy (DOE) set out in the 1990s to develop a neutron scattering research facility that was ten times more powerful than the state of the art, the concept for the project...

  19. Implementation of the Brazilian National Repository - RBMN Project - 13008

    SciTech Connect (OSTI)

    Cassia Oliveira de Tello, Cledola

    2013-07-01

    Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining some requirements of the Brazilian Environmental Regulator (IBAMA). Besides this NPP, in the National Energy Program is previewed the installation of four more plants, by 2030. In November 2008, CNEN launched the Project RBMN (Repository for Low and Intermediate-Level Radioactive Wastes), which aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (authors)

  20. Hydropower Projects

    SciTech Connect (OSTI)

    2015-04-02

    The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government in planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.

  1. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate Students Professor

  2. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings

  3. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency

  4. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental

  5. Hallmark Project

    Office of Environmental Management (EM)

    Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity,

  6. U.S. Department of Energy Project Review Guide for Capital Asset Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    This Guide addresses the various project reviews conducted during the life-cycle of a project based on the stage, complexity and duration of a project. This Guide describes typical reviews, the purpose of each, the timing during the project life-cycle, lines of inquiry, and required documentation. No cancellations.

  7. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Office of Environmental Management (EM)

    Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four

  8. MHK Projects/Manchac Point Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  9. MHK Projects/Claiborne Island Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  10. MHK Projects/Point Pleasant Project | Open Energy Information

    Open Energy Info (EERE)

    el":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St Gabriel, LA Project StateProvince Louisiana Project Country United States Project Resource...

  11. MHK Projects/College Point Project | Open Energy Information

    Open Energy Info (EERE)

    bel":"","visitedicon":"" Project Profile Project Start Date 112008 Project City St James, LA Project StateProvince Louisiana Project Country United States Project Resource...

  12. FUSRAP Project

    Office of Legacy Management (LM)

    Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited

  13. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to this task are (1) to identify the relevant time-frames for the creep-induced pre-load loss and subsequent failure mechanism(s) of these bolted connections; (2) to identify an...

  14. Capital Project Prioritization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capital-Project-Prioritization Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  15. Project Grandmaster

    Energy Science and Technology Software Center (OSTI)

    2013-09-16

    The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves inmore » the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren’t already aware of or different groups of interest they might want to follow.« less

  16. Project Grandmaster

    SciTech Connect (OSTI)

    2013-09-16

    The purpose of the Project Grandmaster Application is to allow individuals to opt-in and give the application access to data sources about their activities on social media sites. The application will cross-reference these data sources to build up a picture of each individual activities they discuss, either at present or in the past, and place this picture in reference to groups of all participants. The goal is to allow an individual to place themselves in the collective and to understand how their behavior patterns fit with the group and potentially find changes to make, such as activities they weren?t already aware of or different groups of interest they might want to follow.

  17. Time Off

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Off Time Off A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505)...

  18. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  19. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital Asset Line Item Projects: (Pre-RCACAP) Projects completed within 110% of CD-2 ... Projects: (Pre- RACCAP) 90% of Projects completed within 110% of CD-2 TPC by FY12. 2b. ...

  20. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed ... projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup ...

  1. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects: (Pre-RCACAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. ... Projects: (Pre- RACCAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 2b. ...

  2. Complete Project List | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Project List Researchers at the Critical Materials Institute work to find ways to diversify supplies of critical materials, develop substitutes, improve reuse and recycling, enable research, sustain the environment, study the supply chain and analyze economics. The institute started with more than 30 projects. Over time, some have merged or ended and others have been added. This page provides a list of the current CMI projects, which can be sorted by clicking on a column header. Project

  3. Western Interconnection Synchrophasor Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a...

  4. Project File System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project File System Project File System Overview The project file system is a global file system available on all NERSC computational systems. It allows sharing of data between users, systems, and/or (via science gateways) the "outside world". Default project directories are provided to every MPP project. Additional project directories can be provided upon request. Purging No, files in project directories are not subject to purging. Backup Daily backups are performed for project

  5. Community Renewables Projects

    Broader source: Energy.gov [DOE]

    This webinar covered introduction and barriers to individual renewable projects, resources for community and group buy projects, and permitting guidelines.

  6. MHK Projects/Admirality Inlet Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    eLabel":"","visitedicon":"" Project Profile Project Start Date 112006 Project City Port Townsend, WA Project StateProvince Washington Project Country United States...

  7. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  8. Preparing for Project Implementation Financing Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 11, 2010 9 - Preparing for Project Implementation Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference Agenda  Seminar Series Overview  Recap Seminar # 8 - "Announcing the PRIZE"  Financing Project Implementation Fred Schoeneborn - ORNL team Robert Varcoe - UAW & General Motors  Questions/Future Seminars Save Energy Now LEADER Web Conference Project Implementation Series

  9. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  10. Step 3: Project Refinement

    Energy Savers [EERE]

    3: Project Refinement 2 1 Potential 3 Refinement 4 Implementation 5 Operations & Maintenance 2 Options 3 Refinement 1/28/2016 2 3 FUNDING AND FINANCING OPTIONS Project Ownership Financing structure is highly dependent on size of the project and the capital available for a given project: * Tribe owns the project (cash purchase or debt) * Tribe hosts the project and buys the electricity (power purchase agreement) * Tribe partners with private sector and co-owns the project (uncertainties about

  11. 2015 DOE Acquisition and Project Management (APM) Workshop Presentations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE Acquisition and Project Management (APM) Workshop Presentations 2015 DOE Acquisition and Project Management (APM) Workshop Presentations Time Presenter Topic Day 1 0820 Paul Bosco, Director, Office of Acquisition and Project Management Project Management Perspective 1000 Stephen Meador, Director, Office of Project Assessments, Science SC Projects Perspective 1400 David Kester, Defense Contract Management Agency EVMS - FROM DATA TO DIAGNOSIS - A DoD Perspective 1500

  12. Project Reports for Haida Corporation- 2010 Project

    Broader source: Energy.gov [DOE]

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  13. Project Information Form for Usability Projects

    Broader source: Energy.gov [DOE]

    For user-centered design projects such as a survey or card sort, complete the user-centered design project information form and send it to the Web Governance Team facilitator.

  14. Project Reports for Chickasaw Nation- 2010 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. Learn more about this project or...

  15. Step 4: Project Implementation

    Energy Savers [EERE]

    Process Step 4: Project Implementation Presentation Agenda * Step 4: Project Implementation - Pre-construction - Contract execution - Interconnection - Project construction - Commissioning * Project Example 2 1/28/2016 2 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation 4 Implementation 3 Potential Options Refinement Implementation Operations & Maintenance Step 4: Implementation 4 Purpose: Contract and begin physical construction of project Tasks: * Finalize

  16. AgraPure Mississippi Biomass Project

    SciTech Connect (OSTI)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is geographically located to be able to service a regional market. Other states have active incentive programs to promote the industry. Mississippi has adopted an incentive program for ethanol and biodiesel; however, the State legislature has not funded this program, leaving Mississippi at a disadvantage when compared to other states in developing the bio-based liquid fuel industry. With all relevant factors being considered, Mississippi offers several advantages to developing the biodiesel industry. As a result of AgraPure's work and plan development, a private investor group has built a 7,000 gallon per day facility in central Mississippi with plans to build a 10 million gallon per year biodiesel facility. The development of a thermochemical conversion/generation facility requires a much larger financial commitment, making a longer operational time necessary to recover the capital invested. Without a renewable portfolio standard to put a floor under the price, or the existence of a suitable steam host, the venture is not economically viable. And so, it has not met with the success of the biodiesel plan. While the necessary components regarding feedstocks, location, permitting and technology are all favorable; the market is not currently favorable for the development of this type of project. In this region there is an abundance of energy generation capacity. Without subsidies or a Mississippi renewable portfolio standard requiring the renewable energy to be produced from Mississippi raw materials, which are not available for the alternative energy source selected by AgraPure, this facility is not economically viable.

  17. Development of Real-Time, Gas Quality Sensor Technology - Fact...

    Broader source: Energy.gov (indexed) [DOE]

    project partners, will bring together real-time, gas quality sensor technology with ... PDF icon Development of Real-Time, Gas Quality Sensor Technology More Documents & ...

  18. BIOMAP Time-Enabled Mapping and Dissemination Tool for Biofuels...

    Open Energy Info (EERE)

    BIOMAP Time-Enabled Mapping and Dissemination Tool for Biofuels Projects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BIOMAP Time-Enabled Mapping and Dissemination...

  19. Computational Pyrolysis Consortium for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Pyrolysis Consortium This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Biotechnology Area Review C. Stuart Daw (PI) March 23-27, 2015 2 * Through computational modeling, enable BETO experimental groups to attain 2017/2022 technical targets faster and more efficiently - FY2017: Accelerate 2017 vapor-phase upgrading demonstration; Guide development of 50% longer life

  20. Mr. Carl Spreng RFLMA Project Coordinator HMWMD-B2

    Office of Legacy Management (LM)

    Spreng RFLMA Project Coordinator HMWMD-B2 Department of Energy Washington , DC 20585 September 9, 2013 Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South Denver, CO 80246-1530 Subject: Notification that GS01 is no longer an RFLMA Point of Compliance (POC) Reference: Rocky Flats Legacy Management Agreement (RFLMA) Attachment 2, Section 5.1, "Monitoring Requirements" Dear Mr. Spreng: In accordance with the criteria provided in Section 5.1 of RFLMA

  1. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of projects completed within 110% of CD-2 TPC by FY11. 80% - No 1 st Qtr FY09 completions. ... projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup ...

  2. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90% of projects completed within 110% of CD-2 TPC by FY11. 75% 76% This is a 3-year ... projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup ...

  3. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCACAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: ...

  4. Buckman Direct Diversion Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buckman Direct Diversion Project Buckman Direct Diversion Project This project takes surface water from the Rio Grande, and then treats and distributes these waters to the city and county of Santa Fe through their drinking water distribution systems. August 1, 2013 Water flumes at Buckman Direct Diversion Project Water flumes at Buckman Direct Diversion Project The City of Santa Fe and Santa Fe County completed the construction of the Buckman Direct Diversion (BDD) Project in December 2010. The

  5. Perspectives on Project Finance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Finance July 29 2014 Project Company (Borrower) Off-take Agreements Feedstock Agreements O&M Agreement EPC Contract (construct) Technology License Agreements Sponsor's Equity Project Level Equity Investors Senior Project Debt Providers Equity Investors Typical Project Finance Structure 2 SOUND PROJECT ECONOMICS Leads to Adequate Debt Service Coverage And Acceptable Equity Returns Market Risk Assessment Competitive positioning. Supply / demand forecasts. Competing suppliers.

  6. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP)

  7. Bradys EGS Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bradys EGS Project DOE: DE-FG36-08GO18200 Kyle Snyder Ezra Zemach Ormat Nevada Inc. Project Officer: Bill Vandermeer Total Project Funding: $6.6M April 22nd, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov - Timeline * Project start date: September 2008, contract singed on June 2009 * Project end date: December 2013 * percent complete: ~50% - Budget * Total project

  8. Projects | Department of Energy

    Energy Savers [EERE]

    Projects Projects The U.S. Department of Energy supports a variety of energy-related projects on tribal lands. Through these projects, tribes have built the institutional capacity to manage their energy needs, assessed the feasibility of energy efficiency and renewable energy installation, and demonstrated the viability of installing renewable energy systems on tribal lands. View a map of projects, get information on project funding history, learn about Tribal Energy Deployment Program staff,

  9. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  10. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities About Us Projects & Facilities Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Projects & Facilities 100 Area 118-K-1 Burial Ground 200...

  11. 2016 Technology Innovation Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects FY 2016 Technology Innovation Project Briefs Demand Response TIP 292: Advanced Heat Pump Water Heater Research TIP 336: Scaled Deployment and Demonstration of Demand...

  12. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  13. Sandia National Laboratories: Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Threat and Intelligence Insight Game-changing projects with a high degree of technical risk realized and produced in support of the warfighter Threat and Intelligence...

  14. GTO Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office funds 154 research and development projects leveraging nearly $500 million in total combined investment. Each project represents a growing technology sector in conventional hydrothermal,...

  15. Evaluation Project 4492

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization area to allow the movement and radio-graphing of component for evaluation to determine the proper Project Execution Plan for dismantlement. Evaluation Project...

  16. All Selected Projects

    Energy Savers [EERE]

    Selected Projects Oct 23, 2009 (rev. Dec. 14, 2010) 99 Projects SMART GRID INVESTMENT GRANTS Type Advanced Metering Infrastructure Customer Systems Electric Systems Distribution...

  17. Campo Net Meter Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campo Net Meter Project Michael Connolly Miskwish, MA EconomistEngineer Campo Kumeyaay Nation Location map Tribal Energy Planning Current 50 MW project Proposed 160 MW ...

  18. Middlesex Community College Geothermal Project

    SciTech Connect (OSTI)

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  19. MHK Projects/Clarence Strait Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Project Country Australia Project Resource Click here Current Tidal Project Nearest Body of Water Clarence Strait Coordinates -12.083533792616, 131.04972839355 Project...

  20. MHK Projects/Twelve Mile Point Project | Open Energy Information

    Open Energy Info (EERE)

    Province Louisiana Project Country United States Project Resource Click here Current Tidal Coordinates 29.9177, -89.9307 Project Phase Phase 1 Project Installed Capacity...

  1. NNSA project receives DOE Secretary's Award for Project Management...

    National Nuclear Security Administration (NNSA)

    project receives DOE Secretary's Award for Project Management Improvement | National ... Blog Home NNSA Blog NNSA project receives DOE Secretary's Award for ... NNSA project ...

  2. Projects - Summer 2016 Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Student Projects

  3. Advanced engineering environment collaboration project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  4. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  5. Fairbanks Geothermal Energy Project

    Broader source: Energy.gov [DOE]

    Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. PROJECT MANGEMENT PLAN EXAMPLES Project Execution Example

    Office of Environmental Management (EM)

    Project Execution Example Example 73 6.3 Project Approach The overall schedule strategy for the PFP project includes ongoing minimum safe activities, combined with stabilization of materials followed by materials disposition, and subsequent transition of the PFP complex to a decommissioned state. The PFP material stabilization baseline was developed using a functionally-based work WBS. The WBS defines all activities required to take each material stream from their current location/conditions

  7. Reynolds Creek Hydroelectric Project, Project Status

    Energy Savers [EERE]

    Hydroelectric Project Project Status November 17, 2009 By : Alvin Edenshaw, President Haida Corporation and Haida Energy, Inc. Mike Stimac, P.E. Vice President, HDR Engineering, Inc. Project Manager November 17, 2009 2 Haida Corporation  Located in Hydaburg on Prince of Wales Island in SE Alaska  Hydaburg population = 350 people (called Kaigani Haida)  Hydaburg is largest Haida Village in Alaska  Subsistence and Commercial Fishing Lifestyle  Substantial Timber Holdings 

  8. January 2016 Project Dashboard

    Broader source: Energy.gov [DOE]

    The Office of Project Management Oversight and Assessments (PM) provides a monthly assessment of DOEs portfolio of capital assets projects, which is summarized in the monthly Project Dashboard report. The current portfolio consists of 32 active projects with established scope, schedule, and cost performance baselines. Based on current performance, projects that are expected to meet their performance baseline are assessed as GREEN, projects that are at-risk of breaching their performance baselines are assessed as YELLOW, and projects that are expected to breach their performance baselines are assessed as RED.

  9. March 2016 Project Dashboard

    Broader source: Energy.gov [DOE]

    The Office of Project Management Oversight and Assessments (PM) provides a monthly assessment of DOE’s portfolio of capital assets projects, which is summarized in the monthly Project Dashboard report. The current portfolio consists of 33 active projects with established scope, schedule, and cost performance baselines. Based on current performance, projects that are expected to meet their performance baseline are assessed as GREEN, projects that are at-risk of breaching their performance baselines are assessed as YELLOW, and projects that are expected to breach their performance baselines are assessed as RED.

  10. December 2015 Project Dashboard

    Broader source: Energy.gov [DOE]

    The Office of Project Management Oversight and Assessments (PM) provides a monthly assessment of DOEs portfolio of capital assets projects, which is summarized in the monthly Project Dashboard report. The current portfolio consists of 32 active projects with established scope, schedule, and cost performance baselines. Based on current performance, projects that are expected to meet their performance baseline are assessed as GREEN, projects that are at-risk of breaching their performance baselines are assessed as YELLOW, and projects that are expected to breach their performance baselines are assessed as RED.

  11. Contract/Project Management

    Office of Environmental Management (EM)

    2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - Two projects completed in the 2 nd Qtr FY09. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects

  12. Project Reports for Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings...

  13. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  14. U.S. China Carbon Capture and Storage Development Project at...

    Office of Scientific and Technical Information (OSTI)

    22 months (312012-12312013), with a 3 month stop from 112013-3312013. The project team endeavored to overcome these project time impacts, focusing heavily on technoeconomic...

  15. ARRA Electrification Projects

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    U.S. Department of Energy funded multiple electrification projects through the American Recovery and Reinvestment Act to accelerate the deployment of electric drive vehicles and charging equipment. These included Clean Cities electric drive projects and transportation electrification projects. Use the interactive map above to learn more about the plan and status of the various projects. The U.S. Department of Energy funded multiple electrification projects through the American Recovery and

  16. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect (OSTI)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

  17. DOE IDIQ Energy Savings Performance Contract Awarded Projects | Department

    Office of Environmental Management (EM)

    of Energy Energy Savings Performance Contract Awarded Projects DOE IDIQ Energy Savings Performance Contract Awarded Projects Excel spreadsheet summarizes the U.S. Department of Energy's (DOE) indefinite-delivery, indefinite-quantity (IDIQ) energy savings performance contract (ESPC) awarded projects. Data is reported at the time of project award. Selected project modification data is included. This data is subject to review by the Federal Energy Management Program and may be modified as

  18. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect (OSTI)

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  19. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

  20. Contract/Project Management

    Office of Environmental Management (EM)

    8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2008 Target FY 2008 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 75% 76% This is a 3-year rolling average Data includes FY06 to FY08. (37/48) 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete

  1. Contract/Project Management

    Office of Environmental Management (EM)

    1 st Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% - No 1 st Qtr FY09 completions. This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of

  2. Contract/Project Management

    Office of Environmental Management (EM)

    3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 72% This is a 3-year rolling average (FY07 to FY09). No 3 rd qtr FY09 completions. 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of

  3. Contract/Project Management

    Office of Environmental Management (EM)

    4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets Contract/Project Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1. Capital Asset Line Item Projects: 90% of projects completed within 110% of CD-2 TPC by FY11. 80% 73% This is a 3-year rolling average (FY07 to FY09). 2. EM Cleanup (Soil and Groundwater Remediation, D&D, and Waste Treatment and Disposal) Projects: 90% of EM cleanup projects complete 80% of scope within 125%

  4. Contract/Project Management

    Office of Environmental Management (EM)

    1 st Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target 1st Qtr FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 73% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to

  5. Contract/Project Management

    Office of Environmental Management (EM)

    Second Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 73% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10).

  6. Contract/Project Management

    Office of Environmental Management (EM)

    Third Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Forecast FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 71% Line Item 70% Pre-CAP 100% Post-CAP This is a projection based on a 3-year rolling average (FY08 to FY10).

  7. Sample Project Execution Plan

    Broader source: Energy.gov [DOE]

    The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects.  The plan serves as the main communication vehicle to ensure that...

  8. Haida Corporation- 2010 Project

    Broader source: Energy.gov [DOE]

    The Reynolds Creek Hydroelectric Project ("Reynolds Creek" or the "Project") is a 5 MW hydroelectric resource to be constructed on Prince of Wales Island, Alaska, approximately 10 miles east of Hydaburg.

  9. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    within 110% of CD-2 TPC by FY11. 80% 72% This is a 3-year rolling average (FY07 to FY09). ... projects. 3. Certified EVM Systems: Post CD-3, 95% of line item projects and EM cleanup ...

  10. Information Technology Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-03

    The Order provides program and project management direction for the acquisition and management of IT projects, investments, and initiatives. Cancels DOE G 200.1-1. Admin Chg 1 approved 1-16-2013.

  11. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- & Post-CAP Actual Comment 1a. Capital Asset Line Item Projects: ...

  12. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: ...

  13. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA...

  14. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: ...

  15. Improving Project Management

    Office of Environmental Management (EM)

    Improving Project Management Report of the Contract and Project Management Working Group November 2014 1 TABLE OF CONTENTS 1. Foreword ........................................................................................................................................................................... 2 2. Executive Summary ...................................................................................................................................................... 3 2.1 Summary of

  16. Acquisition and Project Management

    National Nuclear Security Administration (NNSA)

    4%2A en Acquisition and Project Management Office volunteers get up-close look at Office of Secure Transportation exercise http:nnsa.energy.govblogacquisition-and-project-mana...

  17. Real Time Technology Application Demonstration Project Final Report

    SciTech Connect (OSTI)

    Crumbling, Deana

    2008-04-02

    Each of the 20 1-kg sample bags of Paducah soil will be sampled using a multi-increment (MI) strategy. These MI samples will be analyzed for total PCBs by the Abraxis PCB-HC kit. Processed soil samples will also be pooled to create sufficient volume for analysis for PAHs and PCB Aroclors by the ERT-Edison laboratory. Methanol extracts from Abraxis extractions will be analyzed by the ERT-Edison lab, the Abraxis lab, and the XDS laboratory for TEQ analytes.

  18. GHPsRUS Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Battocletti, Liz

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  19. GHPsRUS Project

    SciTech Connect (OSTI)

    Battocletti, Liz

    2013-07-09

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  20. WIPP Projects Interative Map

    Broader source: Energy.gov [DOE]

    View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov.

  1. Mentors and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentors, Projects Mentors and Projects Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational, collaborative atmosphere Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Students work closely with their mentors, who are Laboratory scientists, on challenging research projects in the Space Weather Summer School. Projects are related to current research topics in space

  2. Step 2: Project Options

    Energy Savers [EERE]

    2: Project Options 2 2 Design 1 Potential 3 Refinement 4 Implementation 2 Options 5 Operations & Maintenance 1/28/2016 2 Presentation Agenda * Step 2: Project Options * Project members and roles * Activity * Project ownership options - Interconnection, net metering, permitting, and considerations * Tools * Case in Point 3 Potential Options Refinement Implementation Operations & Maintenance 4 Step 2: Roles, Business Structures, & Regulatory Considerations Purpose: Determine ownership

  3. Red Lake Weatherization Project

    Energy Savers [EERE]

    REVIEW RED LAKE WEATHERIZATION PROJECT BERT VAN WERT ENERGY ACTIVITIES COORDINATOR Project Overview To develop the capacity to conduct energy audits Implement energy efficiency measures into Tribal homes Develop a Tribally administered Energy Efficiency Program and business PROJECT LOCATION Our project is located at Red Lake Housing Authority Red Lake Band of Chippewa Indians Red Lake , MN Red Lake Band of Chippewas Area overview Reservation (Diminished Lands) and Surroundings Red Lake Band of

  4. Step 4: Project Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Project Implementation Project Implementation 2 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation Step 4: Implementation 3 1 Potential 3 Refinement 5 Operations & Maintenance 2 Options 4 Implementation Step 4: Implementation 1. Pre-construction - Project kickoff - Design and construction documents, plans/schedules, submittals 2. Construction of project - Contract oversight/quality control - Change control 3. Commissioning - Testing and verification -

  5. Project Reports for Pawnee Nation- 2006 Project

    Broader source: Energy.gov [DOE]

    The primary goal of this project is to move the energy vision of the Pawnee Nation forward by conducting specific data collection and analysis tasks to assess the viable options available to Pawnee to meet future energy needs sustainable.

  6. Project Reports for Hualapai Tribe- 2010 Project

    Broader source: Energy.gov [DOE]

    The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.

  7. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally

  8. MHK Projects/Tensas | Open Energy Information

    Open Energy Info (EERE)

    ","visitedicon":"" Project Profile Project Start Date 112009 Project City Butte la Rose, LA Project StateProvince Louisiana Project Country United States Project Resource...

  9. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Energy Savers [EERE]

    with the public interest. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No public comment opportunities available at this time....

  10. Deputy Assistant Secretary for Acquisition and Project Management

    Office of Environmental Management (EM)

    and experts in project management to ensure issues are identified early and lessons learned are being applied in real-time; Selecting proper contract types; tying fee...

  11. US Recovery Act Smart Grid Energy Storage Demonstration Projects...

    Open Energy Info (EERE)

    consumers. The projects include streamlined communication technologies that will allow different parts of the grid to "talk" to each other in real time; sensing and control...

  12. Community Wind Handbook/Research Project Economics & Financing...

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Research Project Economics & Financing Generally defined as the amount of time it...

  13. Now Available: Pacific Northwest Smart Grid Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    project developed and deployed an innovative transactive system that coordinated ... Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies

  14. EA-1902: Northern Wind Project, Roberts County, South Dakota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available on the project webpage, http:www.wapa.govugpEnvironmentNorthernWindFarm.htm. Public Comment Opportunities None available at this time. Documents Available for...

  15. A Hybrid Design of Project-X

    SciTech Connect (OSTI)

    Chou, W.; /Fermilab

    2009-05-01

    Project-X is a leading candidate of the next major accelerator construction project at Fermilab. The mission need of Project-X is to establish an intensity frontier for particle physics research, or more precisely, to build a multi-MW proton source for neutrino and other particle studies. Coupled with an upgraded Main Injector (MI) and Recycler, an 8 GeV superconducting RF (SRF) H- linac meets this need. However, a more cost effective approach would be a hybrid design, namely, a combination of a 2 GeV SRF linac and an 8 GeV rapid cycling synchrotron (RCS) in lieu of an 8 GeV SRF linac. This alternative design also meets the mission need but at a lower cost since a synchrotron is cheaper than a SRF linac. It retains the ability to use a 2 GeV SRF linac for ILC technology development. It reuses the existing Debuncher enclosure and Booster RF. The transport line of 2 GeV H- particles is shorter than the present 8 GeV design since stronger bending magnets can be used. The blackbody radiation stripping of H- particles will no longer be a problem and the requirement of a cryogenic beam screen can be eliminated. The efficiency of stripping foil is higher and injection loss (kJ) will be reduced by a factor of 4. This paper introduces this alternative design and describes briefly the major components in the design.

  16. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Process Systems Evaluation Examples Example 17 Process Systems Evaluation This subject is an integral part of the hierarchical and checklist end points methods that are described elsewhere on this web site. In both cases there are steps to identify systems that must remain operational after a facility is deactivated, as well as spaces that must be accessible. These methods also address deciding which systems are no longer needed, and those considered for preservation for future decommissioning

  17. Desert Peak EGS Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desert Peak EGS Project DOE Award: DE-FC6-02ID14406 Ethan Chabora GeothermEx, a Schlumberger Company Ezra Zemach Ormat Nevada Inc. Project Officer: Bill Vandermeer Total Project Funding: $7.6M April 22nd, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov - Timeline * Project start date: September 2002 * Project end date: Q3 2013 * Percentage complete: 90% - Budget *

  18. Contract/Project Management

    Office of Environmental Management (EM)

    3 First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2013 Target FY 2013 Final FY 2013 Pre- & Post-CAP Final Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 83% Construction 86% Cleanup 80% 70% Pre-CAP 84% Post-CAP This is based on a 3- year rolling average (FY11 to FY13). TPC is Total Project Cost.

  19. Contract/Project Management

    Office of Environmental Management (EM)

    Fourth Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2013 Target FY 2013 Actual FY 2013 Pre- & Post-CAP* Actual Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 83% Construction 84% Cleanup 82% 70% Pre-CAP 84% Post-CAP Based on 3-year rolling period (FY11 to FY13) of 93 projects. TPC is Total Project Cost.

  20. Contract/Project Management

    Office of Environmental Management (EM)

    Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY 2010 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) 90% of projects completed within 110% of CD-2 TPC by FY11. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 85% Line Item 69% Line Item 67% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY08 to FY10). TPC is Total

  1. Contract/Project Management

    Office of Environmental Management (EM)

    First Quarter Overall Contract and Project Management Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual & Forecast FY 2011 Pre- & Post-CAP Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 79% Line Item 71% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is Total

  2. Contract/Project Management

    Office of Environmental Management (EM)

    Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC

  3. Contract/Project Management

    Office of Environmental Management (EM)

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 78% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is

  4. Contract/Project Management

    Office of Environmental Management (EM)

    Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Primary Performance Metrics FY 2011 Target FY 2011 Actual FY 2011 Pre- & Post-CAP Actual Comment 1a. Capital Asset Line Item Projects: (Pre-RCA/CAP) Projects completed within 110% of CD-2 TPC. 1b. Capital Asset Line Item Projects: (Post-RCA/CAP) 90% Line Item 84% Line Item 77% Pre-CAP 100% Post-CAP This is based on a 3-year rolling average (FY09 to FY11). TPC is

  5. Contract/Project Management

    Office of Environmental Management (EM)

    First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 84% Construction 83% Cleanup 85% 77% Pre-CAP 86% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  6. Contract/Project Management

    Office of Environmental Management (EM)

    Second Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 88% Construction 87% Cleanup 89% 77% Pre-CAP 92% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  7. Contract/Project Management

    Office of Environmental Management (EM)

    Third Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Forecast FY 2012 Pre- & Post-CAP Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 87% Construction 87% Cleanup 87% 77% Pre-CAP 90% Post- CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  8. Contract/Project Management

    Office of Environmental Management (EM)

    Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 Contract/Project Management Performance Metric FY 2012 Target FY 2012 Final FY 2012 Pre- & Post-CAP Final Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 86% Construction 87% Cleanup 84% 77% Pre-CAP 89% Post-CAP This is based on a 3- year rolling average (FY10 to FY12). TPC is Total Project Cost.

  9. EM Capital Asset Project List

    Broader source: Energy.gov [DOE]

    Read the EM Capital Asset Project List, which includes the project's name, site, current critical decision and current total project cost.

  10. Principal Associate Director - Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Associate Director - Capital Projects As Principal Associate Director for Capital Projects (interim), Larry Simmons is responsible for institutional large-project...

  11. 2016 DOE Project Management Workshop - Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda 2016 DOE Project Management Workshop - Agenda The workshop agenda is not available at this time. Please check back later. PDF icon Agenda More Documents & Publications 2016 DOE Project Management Workshop - Biographies 2016 DOE Project Management Workshop - Presentations EM QA Working Group September 2011 Notes

  12. MHK Projects/UEK Yukon River Project | Open Energy Information

    Open Energy Info (EERE)

    StateProvince Alaska Project Country United States Project Resource Click here Current Tidal Coordinates 64.7881, -141.2 Project Phase Phase 1 Project Details UEK is has...

  13. SAPHIRE 8 Software Project Plan

    SciTech Connect (OSTI)

    Curtis L.Smith; Ted S. Wood

    2010-03-01

    This project is being conducted at the request of the DOE and the NRC. The INL has been requested by the NRC to improve and maintain the Systems Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) tool set concurrent with the changing needs of the user community as well as staying current with new technologies. Successful completion will be upon NRC approved release of all software and accompanying documentation in a timely fashion. This project will enhance the SAPHIRE tool set for the user community (NRC, Nuclear Power Plant operations, Probabilistic Risk Analysis (PRA) model developers) by providing improved Common Cause Failure (CCF), External Events, Level 2, and Significance Determination Process (SDP) analysis capabilities. The SAPHIRE development team at the Idaho National Laboratory is responsible for successful completion of this project. The project is under the supervision of Curtis L. Smith, PhD, Technical Lead for the SAPHIRE application. All current capabilities from SAPHIRE version 7 will be maintained in SAPHIRE 8. The following additional capabilities will be incorporated: Incorporation of SPAR models for the SDP interface. Improved quality assurance activities for PRA calculations of SAPHIRE Version 8. Continue the current activities for code maintenance, documentation, and user support for the code.

  14. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  15. DIGITAL ARCHITECTURE PROJECT PLAN

    SciTech Connect (OSTI)

    Thomas, Ken

    2014-09-01

    The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new technologies.

  16. Final Project Report

    SciTech Connect (OSTI)

    Zhang, Jin; Zhao, Yiping

    2014-12-05

    In this entire project period from 2005-2014, we have made significant progress in developing novel nanostructures of metal oxides (MOs) for solar hydrogen generation based on photoelectrochemical (PEC). Materials investigated are focused on 1D and 0D MO nanostructures of TiO2, WO3, ZnO, and Fe2O3 in conjunction with quantum dot (QD) sensitization and chemical doping (N or H) to alter their electronic band structures for both visible light absorption and for facilitating interfacial charge transport. In addition, we have used plasmonic metal nanostructures to enhance the PEC performance by improving light absorption of QDs via enhanced scattering of the plamonic metal. Most importantly, we have discovered a multipronged strategy for improving PEC performance: using plasmonic metal nanostructure to enhance light absorption, QDs to improve charge transfer, and chemical doping to increase charge transport in metal oxides for PEC. The combination is critical for overall high efficiency of PEC. This strategy is developed and demonstrated for the first time to our best knowledge.

  17. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  18. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  19. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  20. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  1. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  2. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  3. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  4. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  5. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  6. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  7. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  8. Project Reports for Hualapai Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Hualapai Tribe is located on the end of their existing utility grid which has subjected them to high costs and poor reliability of electric service. The first phase of the project will establish a tribally operated utility to provide service to tribal customers at Grand Canyon West, which has been operating without grid power for the past seven years. The second phase of the project will examine the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation.

  9. Battleground Energy Recovery Project

    SciTech Connect (OSTI)

    Daniel Bullock

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

  10. Structuring small projects

    SciTech Connect (OSTI)

    Pistole, C.O.

    1995-11-01

    One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.

  11. Task 3 - RMC method validation project report

    SciTech Connect (OSTI)

    Sarkinen, R.A.

    1996-08-01

    The EPRI Substation Reliability Centered Maintenance Project Task 3 uses utility data to validate the RCM process for maintenance in substations. At BPA, this project was used to validate the RCM method for a preventive maintenance program for substations. This project was performed by an RCM technical team and all maintenance personnel at the Chemawa Maintenance District Headquarters. The system chosen for, this project involved four transmission lines that feeds 230 kV Santiam Substation. This report explains the process for the system approach-used for the Santiam project and a summary of the results. The current preventive maintenance program is primarily based on time. The RCM approach for a preventive maintenance program realized significant savings.

  12. Gasification Systems Project Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Information Gasifier Optimization Archived Projects Agreement Number Project Title Performer Name Technology Area FE0023497 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation Alstom Power, Inc Gasification Systems FE0023577 Advanced Gasifier and Water Gas Shift Technologies for Low Cost Coal Conversion to High Hydrogen Syngas Gas Technology Institute Coal & Coal-Biomass to Liquids, Gasification Systems FE0023915 Pilot Scale Operation and

  13. Funding for CSES Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding for CSES Projects Funding for CSES Projects High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email CSES Student and Postdoctoral Fellow Program Funding intervals are based on the federal fiscal year spanning the year from October 1 through September 30 of the following year. For all projects

  14. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Projects June 3, 2010 What do you think of the TEDF? How about the UIM project? What would have happened if we had not got the ARRA funding for the NP GPP projects last year? Gobbledegook!? Acronymia? Certainly different from the usual PREx, or QWeak, or DVCS that we hear from the physics side of the house! TEDF, UIM and the others are acronyms used by the facilities people, those trying to build, modernize and maintain our infrastructure. TEDF (Technology and Engineering

  15. Microwave solidification project overview

    SciTech Connect (OSTI)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  16. Tribal Energy Projects

    Energy Savers [EERE]

    PROJECTS U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY TRIBAL ENERGY PROGRAM TRIBAL ENERGY PROGRAM DOE's Tribal Energy Program DOE's Tribal Energy Program Tribal Energy Projects Tribal Energy Projects First Steps Toward Developing Renewable Energy and Energy Efficiency * Strategic planning * Energy options analysis * Capacity building * Organizational development Renewable Energy Development

  17. Project Submission Template

    Energy Savers [EERE]

    Cooperation Project Title: Country/Organizations: Foreign: Foreign POC: U.S: U.S. POC: Technology Area: Scope of Collaborative Research and Development: Justification of Approach: Work Completed to Date: Overview of Proposed Scope for FY12: Summary Brief Description of Specific Project(s): Timeline: Estimated Cost: Status: CONTINUATION or NEW? Type of Contracting Instrument: (Int'l agreements, lab-lab agreement, etc) Participant Organizations General Scope Budget Foreign (Technical Scope) US

  18. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    12-2010 NNSA-B-10-0412 Sandia National Laboratories/New Mexico (SNL/NM) proposes to support the Bio-Response Operational Testing and Evaluation (BOTE) project. The BOTE project would involve multiple releases of a biological simulant, characterization sampling, decontamination, and clearance sampling, at the Idaho National Laboratory (INL) Test Site. Sandia Site Office Bio-Response Operational Testing and Evaluation (BOTE) Project (TA-I, TA-III, & Offsite at INL) INL LACY,SUSAN DOYLENE

  19. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  20. Penobscot Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    With this award, the Penobscot Indian Nation will advance the preconstruction activities required to secure funding for the proposed 227-megawatt (MW) Alder Stream wind project.

  1. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  2. Pit 9 Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 11, 2007 Pit 9 Project Structures Removed For many years, the Pit 9 project at the Department of Energy's Idaho Site was the symbol of frustration for its cleanup program. All of that is coming to a close now, however, as North Wind, Inc. and its subcontractors are successfully tearing down and removing the structures and equipment left over by the original subcontractor for the Pit 9 project. The goal of this dismantlement and disposal project is to remove buildings and equipment to allow

  3. Production Project Accounts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accounting logs. PIs and PI Proxies can request a Project Account by logging into nim and selecting "Request a Collaboration Account" under the blue "Actions" tab. Accessing...

  4. The MAJORANA project

    SciTech Connect (OSTI)

    Elliott, Steven R [Los Alamos National Laboratory

    2009-01-01

    The Majorana Project, a neutrinoless double-beta decay experiment is described with an emphasis on the choice of Ge-detector configuration.

  5. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  6. Fit for Purpose Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that needs to be addressed by current and future Fit-for-Purpose projects includes: Reservoir pressure management - In deep saline formations, pressure increases due to...

  7. Funding for IGPPS Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which may, in certain circumstances, require several months to implement after the start of the fiscal year. For all projects supported with Los Alamos National Laboratory...

  8. Classroom Projects - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford For Students and Kids Classroom Projects Hanford For Students and Kids Hanford Fun Facts Classroom Projects Famous People of Hanford Classroom Projects Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size If you've been assigned to write a report or complete a classroom assignment that involves Hanford, we've got some tools that might help you with your project! Photographs The first is an online photo gallery of pictures. We've got thousands of photographs

  9. Custom Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    Project development assistance funding is available for a variety of purposes, including grant writing, feasibility studies, or technical assistance with design, permitting, or utility interconne...

  10. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects 3-D illustration of tractor trailor cab, garbage truck, and car. NREL research helps optimize the energy efficiency of a wide range of vehicle technologies and...

  11. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA on 242015 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  12. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA on 622014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  13. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 1142014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  14. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 2112014 and does not contain Agency-approved Financial Information. 1 Includes capital projects authorized at the agency level since August 2007 2 Direct capital costs...

  15. Final Project Report

    SciTech Connect (OSTI)

    Wang, Qiang; Dandy, David S.

    2015-05-15

    This is the final technical report of the DOE project DE-FG02-07ER46448 awarded to Colorado State University.

  16. Contract/Project Management

    Office of Environmental Management (EM)

    Second Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2013 Target FY 2013 Forecast FY 2013 Pre- & Post-CAP* Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 83% Construction 85% Cleanup 80% 70% Pre-CAP 84% Post-CAP This is based on a 3- year rolling average (FY11 to FY13). TPC is Total Project Cost.

  17. Contract/Project Management

    Office of Environmental Management (EM)

    3 Third Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2013 Target FY 2013 Forecast FY 2013 Pre- & Post-CAP* Forecast Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90%* 83% Construction 85% Cleanup 80% 70% Pre-CAP 84% Post-CAP This is based on a 3- year rolling average (FY11 to FY13). TPC is Total Project Cost.

  18. Portable Power Projects

    Broader source: Energy.gov [DOE]

    DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

  19. Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Management Project Management Some of the Project Management Division’s many functions involve developing risk management plans, managing project risks, and providing input on prime contractor performance. Some of the Project Management Division's many functions involve developing risk management plans, managing project risks, and providing input on prime contractor performance. Employees in our Project Management Division address projects' planning and execution, as specified in

  20. New Mexico State University Arrowhead Center PROSPER Project

    SciTech Connect (OSTI)

    Peach, James

    2012-12-31

    This document is the final technical report of the Arrowhead Center Prosper Project at New Mexico State University. The Prosper Project was a research and public policy initiative funded by the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy (DOE). The Prosper project (DOE Grant Number DE-NT0004397) began on October 1, 2008 (FY2009, Quarter 1) and ended on December 31, 2012 (FY2013, Quarter 1). All project milestones were completed on time and within the budget. This report contains a summary of ten technical reports resulting from research conducted during the project. This report also contains a detailed description of the research dissemination and outreach activities of the project including a description of the policy impacts of the project. The report also describes project activities that will be maintained after the end of the project.

  1. Project Reports for Kootznoowoo Incorporated- 2010 Project

    Broader source: Energy.gov [DOE]

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  2. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  3. Hydropower Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Hydropower Projects This report covers the Wind and Water Power Technologies Office's hydropower projects from fiscal years 2008 to 2014. PDF icon Hydropower Projects 2008-2014 More Documents & Publications Marine and Hydrokinetic Energy Projects Offshore Wind Projects Real World Demonstration of a New American Low-Head Hydropower Unit

  4. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (EV) charging technologies. It included development of potential solutions for DC fast chargers (DCFC) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The projects period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the City) and Aker Wade Power Technologies, LLC (Aker Wade) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (GHG) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the projects Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  5. ANG coal gasification project management control system report. [Great Plains project

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Much time, money and effort has been spent in the forefront of this project for project controls. The work breakdown structure for the systems has been custom designed. The systems, both manual and computerized, have been well scrutinized and chosen by ANG to represent the most cost effective and efficient way of controlling a project the magnitude of $1.5 billion. These systems have been developed in a manner so that information can be gathered as detailed or as summarized as necessary, and in the most timely and expeditious ways.

  6. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system

    SciTech Connect (OSTI)

    Mittelstadt, W.A.; Krause, P.E.; Wilson, R.E.; Overholt, P.N.; Sobajic, D.J.; Hauer, J.F.; Rizy, D.T.

    1996-07-01

    In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

  7. Wind Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects Wind Energy Projects WIND ENERGY 4 PROJECTS in 5 LOCATIONS 1,025 MW GENERATION CAPACITY 2,190,000 MWh PROJECTED ANNUAL GENERATION * 1,225,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL

  8. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  9. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  10. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  11. Project organizations and schedules

    SciTech Connect (OSTI)

    Briggs, R.J.

    1990-07-01

    The Superconducting Super Collider Laboratory (SSCL) faces the challenge of simultaneously carrying out a large-scale construction project with demanding cost, schedule, and performance goals; and creating a scientific laboratory capable of exploiting this unique scientific instrument. This paper describes the status of the laboratory organization developed to achieve these goals, and the major near-term schedule objectives of the project.

  12. The human genome project

    SciTech Connect (OSTI)

    Yager, T.D.; Zewert, T.E.; Hood, L.E. )

    1994-04-01

    The Human Genome Project (HGP) is a coordinated worldwide effort to precisely map the human genome and the genomes of selected model organisms. The first explicit proposal for this project dates from 1985 although its foundations (both conceptual and technological) can be traced back many years in genetics, molecular biology, and biotechnology. The HGP has matured rapidly and is producing results of great significance.

  13. The Home Microbiome Project

    SciTech Connect (OSTI)

    Gilbert, Jack

    2014-08-25

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  14. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  15. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  16. FutureGen Project Report

    SciTech Connect (OSTI)

    Cabe, Jim; Elliott, Mike

    2010-09-30

    This report summarizes the comprehensive siting, permitting, engineering, design, and costing activities completed by the FutureGen Industrial Alliance, the Department of Energy, and associated supporting subcontractors to develop a first of a kind near zero emissions integrated gasification combined cycle power plant and carbon capture and storage project (IGCC-CCS). With the goal to design, build, and reliably operate the first IGCC-CCS facility, FutureGen would have been the lowest emitting pulverized coal power plant in the world, while providing a timely and relevant basis for coal combustion power plants deploying carbon capture in the future. The content of this report summarizes key findings and results of applicable project evaluations; modeling, design, and engineering assessments; cost estimate reports; and schedule and risk mitigation from initiation of the FutureGen project through final flow sheet analyses including capital and operating reports completed under DOE award DE-FE0000587. This project report necessarily builds upon previously completed siting, design, and development work executed under DOE award DE-FC26- 06NT4207 which included the siting process; environmental permitting, compliance, and mitigation under the National Environmental Policy Act; and development of conceptual and design basis documentation for the FutureGen plant. For completeness, the report includes as attachments the siting and design basis documents, as well as the source documentation for the following: Site evaluation and selection process and environmental characterization Underground Injection Control (UIC) Permit Application including well design and subsurface modeling FutureGen IGCC-CCS Design Basis Document Process evaluations and technology selection via Illinois Clean Coal Review Board Technical Report Process flow diagrams and heat/material balance for slurry-fed gasifier configuration Process flow diagrams and heat/material balance for dry-fed gasifier configuration Full capital cost report and cost category analysis (CAPEX) Full operating cost report and assumptions (OPEX) Comparative technology evaluations, value engineering exercises, and initial air permitting activities are also provided; the report concludes with schedule, risk, and cost mitigation activities as well as lessons learned such that the products of this report can be used to support future investments in utility scale gasification and carbon capture and sequestration. Collectively, the FutureGen project enabled the comprehensive site specific evaluation and determination of the economic viability of IGCC-CCS. The project report is bound at that determination when DOE formally proposed the FutureGen 2.0 project which focuses on repowering a pulverized coal power plant with oxy-combustion technology including CCS.

  17. Project Reports for Citizen Potawatomi Nation- 2003 Project

    Broader source: Energy.gov [DOE]

    The Citizen Potawatomi Nation, ninth largest tribe in the United States and largest group of Potawatomi descendants (with more than 24,000 members), will conduct strategic energy planning, including an analysis of tribal renewable and energy efficiency options, and an analysis of forming a utility to advance tribal sovereignty through social and economic progress. The strategic energy planning process will allow the tribe to evaluate projects in terms of where the tribe wants to be; who it needs to build relationships with to meet its needs; and what the outcome is worth in terms of money, time and cultural impacts.

  18. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    SciTech Connect (OSTI)

    Shen, Yue; Brandt, W. N.; Dawson, Kyle S.; Hall, Patrick B.; McGreer, Ian D.; Fan, Xiaohui; Anderson, Scott F.; Chen, Yuguang; Denney, Kelly D.; Eftekharzadeh, Sarah; Gao, Yang; Green, Paul J.; Greene, Jenny E.; Ho, Luis C.; Horne, Keith; Kelly, Brandon C.; and others

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ?4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ?2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ?10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.

  19. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and

    Office of Environmental Management (EM)

    Risk Assessment Examples Example 54 10.0 PROJECT RISK This section outlines a methodology which will be used to qualitatively/subjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training courses but tailored to the unique risks encountered in the DOE projects. In the context of this section, project risk means risk to one of the project baselines (technical, cost, or schedule) and should not be

  20. Project Reports for Seneca Nation - 2007 Project | Department of Energy

    Energy Savers [EERE]

    Seneca Nation - 2007 Project Project Reports for Seneca Nation - 2007 Project On the three territories of the Seneca Nation, there exist opportunities for energy development from both renewable and nonrenewable resources. Learn more about this project or find details in the below status reports. PDF icon November 2007 status report PDF icon November 2008 status report PDF icon Final report More Documents & Publications Project Reports for Seneca Nation - 2003 Project Project Reports for

  1. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  2. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  3. 2016 Project Portfolio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Project Portfolio 2016 Project Portfolio PDF icon 2016ssl-project-portfolio.pdf More Documents & Publications 2015 Project Portfolio 2014 Solid-State Lighting Project Portfolio ...

  4. Project Reports for Yurok Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Yurok Tribe has a great need for improved energy services on the reservation. The members pay $328 per month per household on average for energy, with just a $9,000 median household income. The project will assess the need for energy efficiency services on the reservation, identify available resources, and develop an implementation plan for meeting these needs. With an unemployment rate of 42%, the job training component of this program will benefit the tribe. Past attempts have been made to provide energy efficiency and renewable energy maintenance services on the reservation, but many of these services have not endured because they were not tribe-driven. This project will build tribal expertise, increase awareness, and form collaborative relationships with local energy services.

  5. Citizen Potawatomi Nation- 2003 Project

    Broader source: Energy.gov [DOE]

    The Citizen Potawatomi Nation, ninth largest tribe in the United States and largest group of Potawatomi descendants (with more than 24,000 members), will conduct strategic energy planning, including an analysis of tribal renewable and energy efficiency options, and an analysis of forming a utility to advance tribal sovereignty through social and economic progress. The strategic energy planning process will allow the tribe to evaluate projects in terms of where the tribe wants to be; who it needs to build relationships with to meet its needs; and what the outcome is worth in terms of money, time and cultural impacts.

  6. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  7. WINDExchange: Wind for Schools Project

    Wind Powering America (EERE)

    Participant Roles & Responsibilities Affiliate Projects Pilot Project Results Project Funding School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Wind for Schools Project The U.S. Department of Energy funds the Wind for Schools project, which helps develop a future wind energy workforce by engaging students at higher education institutions to join Wind Application Centers and serve as project consultants for small wind turbine

  8. Energy Efficiency Project Development

    SciTech Connect (OSTI)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

  9. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The...

  10. Integrated Project Team RM

    Office of Environmental Management (EM)

    Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The

  11. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  12. Tulalip Tribe - Biogas Project

    Energy Savers [EERE]

    Bio-Gas Project Daryl Williams November 18, 2008 Introduction Background Description of Project Partnership Feasibility Study/Business Plan Creation of Quil Ceda Power Funding Creation of Qualco Energy Closing Background Land-Use Changes from Agriculture to Other Types of Development Skykomish River WQ Problems Bacteria Nutrient Loading Relationship Between Tribes and Dairies Poor Economy for Dairy Operations Project Description Sewage Treatment for

  13. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% − 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  14. Out of time? Use scavenger queue on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out of time? Use scavenger queue on Hopper Out of time? Use scavenger queue on Hopper September 18, 2015 by Katie Antypas NERSC is now allowing projects and users who have fewer...

  15. Landlord project multi-year program plan, fiscal year 1999, WBS 1.5

    SciTech Connect (OSTI)

    Dallas, M.D.

    1998-09-22

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste, electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.

  16. Winnebago Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    Following through with the Winnebago Tribe's commitment to reduce energy usage and consumption, the Winnebago Tribe Solar Project will focus on renewable energy production and energy cost savings consistent with protecting our natural environment.

  17. Power Project Loan Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    The loan term is related to the life of the project, but may not exceed 50 years. Interest rates are the lesser of the average weekly yield of municipal bonds for the 12 months preceding the date...

  18. Hualapai Tribe- 2010 Project

    Broader source: Energy.gov [DOE]

    The project will build on the potential for renewable energy development on the Hualapai Reservation that was identified during the Phase l renewable energy resource assessment conducted by the Hualapai Tribe since 2005.

  19. START Program Project Sites

    Broader source: Energy.gov [DOE]

    The Strategic Technical Assistance Response Team (START) Program is part of the DOE Office of Indian Energy effort to assist in the development of tribal renewable energy projects. Through START,...

  20. NATURALHY Project Overview

    Broader source: Energy.gov [DOE]

    Presentation by 05-Florisson to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee.

  1. Lake Charles CCS Project

    SciTech Connect (OSTI)

    Leib, Thomas; Cole, Dan

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials, construction labor, engineering, and other costs. The CCS Project Final Technical Report is based on a Front End Engineering and Design (FEED) study prepared by SK E&C, completed in [June] 2014. Subsequently, Fluor Enterprises completed a FEED validation study in mid-September 2014. The design analyses indicated that the FEED package was sufficient and as expected. However, Fluor considered the construction risk based on a stick-build approach to be unacceptable, but construction risk would be substantially mitigated through utilization of modular construction where site labor and schedule uncertainty is minimized. Fluor’s estimate of the overall EPC project cost utilizing the revised construction plan was comparable to SKE&C’s value after reflecting Fluor’s assessment of project scope and risk characteristic. Development was halted upon conclusion of Phase 2A FEED and the project was not constructed.Transport and Sequestration – The overall objective of the pipeline project was to construct a pipeline to transport captured CO2 from the Lake Charles Clean Energy project to the existing Denbury Green Line and then to the Hastings Field in Southeast Texas to demonstrate effective geologic sequestration of captured CO2 through commercial EOR operations. The overall objective of the MVA portion of the project was to demonstrate effective geologic sequestration of captured CO2 through commercial Enhanced Oil Recovery (EOR) operations in order to evaluate costs, operational processes and technical performance. The DOE target for the project was to capture and implement a research MVA program to demonstrate the sequestration through EOR of approximately one million tons of CO2 per year as an integral component of commercial operations.

  2. Project Management Plan Examples

    Broader source: Energy.gov [DOE]

    The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The elements table below should be used to navigate to the subject...

  3. Capital Project Authorization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This policy applies to capital projects in these asset categories: 1. Transmission investment in assets owned or leased by BPA, whether funded by bonds issued to the U.S....

  4. Pawnee Nation- 2006 Project

    Broader source: Energy.gov [DOE]

    The primary goal of this project is to move the energy vision of the Pawnee Nation forward by conducting specific data collection and analysis tasks to assess the viable options available to Pawnee to meet future energy needs sustainable.

  5. CNEEC - Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of developing systems that can lead to break-out high-efficiency, cost-effective solar energy-to-fuel technologies. The projects are closely tied together through two mechanisms:...

  6. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  7. Offshore Wind Project Map

    Broader source: Energy.gov [DOE]

    Image that shows the demonstration project site and developer headquarters for two funding opportunity announcements: the 2011 Grants for Technology Development and the 2011 Grants for Removing Market Barriers.

  8. Portsmouth Paducah Project Office

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) established the Portsmouth/Paducah Project Office (PPPO) on October 1, 2003, to provide focused leadership to the Environmental Management missions at the...

  9. St. Bernard Project Update

    Broader source: Energy.gov [DOE]

    The folks at St. Bernard Project are helping survivors of Hurricane Katrina get back into their homes -- and are using new technologies to reduce energy and save money for the returning residents.

  10. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    93016 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  11. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thru FY14 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  12. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    122818 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  13. Major Capital Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    121917 500 kV Spare Transformer Project Acquire 5 spares and relocate 2 existing transformers to be used as spares. The spares will be placed strategically across the system....

  14. Manhattan Project: People

    Office of Scientific and Technical Information (OSTI)

    groups of people contributing to the success of the Manhattan Project can be obtained by reading the summary pages for each of the categories, located in the left navigation bar. ...

  15. Chickasaw Nation- 2010 Project

    Broader source: Energy.gov [DOE]

    Under this project, the Chickasaw Nation, Division of Commerce (CNDC) will upgrade old, inefficient lighting systems throughout CNDC to new, energy saving systems. This will be the first step in a...

  16. Project financial evaluation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  17. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2011-11-02

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  18. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  19. PROJECT TASK STATEMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROJECT TASK STATEMENT BETWEEN Sandia Corporation AND British East India Company a corporation of the United Kingdom having a principal office in London, United Kingdom (hereinafter "Participant") Geothermal Dynamics This Project Task Statement (PTS) is under the authority and subject to all terms and conditions of Cooperative Research and Development Agreement (CRADA) No. SC##/####.##.##. A. PURPOSE Sandia National Laboratories (Sandia) and the British East India Company (BEIC) are

  20. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  1. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Integrated Safety Management Examples Example 10 8.2 PFP INTEGRATED SAFETY STRATEGY The following discussion identifies the process that will be used by the PFP Stabilization and Deactivation Project to ensure that the safety of the worker, public, and the environment are adequately addressed during the project. The primary activities involved in the process include the following:  Implementation of the Integrated Safety Management System (ISMS),  Identification, control, or mitigation of

  2. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Development of Detailed End Points - End Point Document Examples Example 28 7.0 ENDPOINTS Chapter 7.0 describes the endpoint development principles and methodology, administration, closure, and turnover package for the 324 and 327 Buildings Stabilization/Deactivation Project. 7.1 Background The endpoint method for the 324 and 327 Buildings Stabilization/Deactivation Project will follow the EM-60 guidance, published in DOE/EM-0318, Rev. 0, U.S. Department of Energy, Office of Environmental

  3. Manhattan Project: Places

    Office of Scientific and Technical Information (OSTI)

    Places "Met Lab" (Metallurgical Laboratory) Oak Ridge: Clinton Engineer Works Hanford Engineer Works Los Alamos Other Places Places of the Manhattan Project Places PLEASE NOTE: The Places pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the places where the Manhattan Project occurred have been grouped into the categories listed to the left. A quick overview of places involved in the

  4. Manhattan Project: Science

    Office of Scientific and Technical Information (OSTI)

    Science In the Laboratory Particle Accelerators and Other Technologies The Atom and Atomic Structure Nuclear Physics Bomb Design and Components Radioactivity Science and technology of the Manhattan Project Science PLEASE NOTE: The Science pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the science and technology of the Manhattan Project have been grouped into the categories listed to the left. A

  5. Hopi Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Hopi Tribe will conduct a feasibility study to determine if development of a utility-scale wind power project with a capacity of approximately 100 MW located on Hopi lands held in fee simple in northern Arizona is feasible. If the feasibility study determines there is no impact or minimal impact to the environment, the tribe may develop the wind power project on two large mesas called East and West Sunset Mountains approximately 16 miles southwest of the city of Winslow.

  6. The Manhattan Project

    Office of Scientific and Technical Information (OSTI)

    The Manhattan Project Sites and Their Contributions * Key Events * Scientists * Its Story * Additional Information * Related Information President Roosevelt Establishes the Manhattan Project President Roosevelt instructs the Army to take responsibility for construction of atomic weapons complex. The Army delegates the task to the Corps of Engineers, which establishes the Manhattan Engineer District. Courtesy of National Nuclear Security Administration August 13, 2012 was the 70th anniversary of

  7. ARM - Science Project Ideas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersScience Project Ideas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Science Project Ideas Do changes in air pressure affect the weather? What is the relationship between air pressure and temperature? Monitor the weather forecast data from the web to find the answer. How does the

  8. BETO Active Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Active Project Management Bioenergy Technologies Office - Program Management Review 6/25/15 Liz Moore Technology Manager eere.energy.gov Program Managers * Manages portfolio within their technology area * Establishes technical and cost goals * Strategic planning for technology area * Budget preparation/justification for technology portfolio * Identifies needs for workshops and FOAs * Oversees portfolio reviews including high-level project status Technology Managers * Plans/conducts

  9. Reynolds Ceek Hydro Project

    Energy Savers [EERE]

    Reynolds Creek Hydroelectric Project Project Status October 28, 2010 By : Alvin Edenshaw, President Haida Corporation and Haida Energy, Inc. Haida Corporation  Located in Hydaburg on Prince of Wales Island in SE Alaska  Hydaburg population = 350 people (called Kaigani Haida)  Hydaburg is largest Haida Village in Alaska  Subsistence and Commercial Fishing Lifestyle  Substantial Timber Holdings  Hydaburg has Excellent School System October 28, 2009 2 Haida Energy, Inc.  Joint

  10. Reynolds Ceek Hydroelelctric Project

    Energy Savers [EERE]

    Hydroelectric Project Project Status November, 2011 By : Alvin Edenshaw, President Haida Corporation and Haida Energy, Inc. June 9, 2010 2 Haida Corporation b Located in Hydaburg on Prince of Wales Island in SE Alaska b Hydaburg population = 350 people (called Kaigani Haida) b Hydaburg is largest Haida Village in Alaska b Subsistence and Commercial Fishing Lifestyle b Substantial Timber Holdings b Hydaburg has Excellent School System June 9, 2010 3 Haida Energy, Inc. b Joint Venture b

  11. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  12. Hualapai Tribal Utility Project

    Office of Environmental Management (EM)

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  13. SLH Timing Belt Powertrain

    SciTech Connect (OSTI)

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine—, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon-#12;fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning a timing-belt based hydroEngine —powertrain: 1. Can a belt handle the high torques and power loads demanded by the SLH? (Yes.) 2. Can the SLH blades be mounted to belt with a connection that can withstand the loads encountered in operation? (Yes.) 3. Can the belt, with blade attachments, live through the required cyclic loading? (Yes.) The research adds to the general understanding of sustainable small hydropower systems by using innovative system testing to develop and demonstrate performance of a novel powertrain solution, enabling a new type of hydroelectric turbine to be commercially developed. The technical effectiveness of the methods investigated has been shown to be positive through an extensive design and testing process accommodating many constraints and goals, with a major emphasis on high cycle fatigue life. Economic feasibility of the innovations has been demonstrated through many iterations of design for manufacturability and cost reduction. The project is of benefit to the public because it has helped to develop a solution to a major problem -- despite the large available potential for new low-head hydropower, high capital costs and high levelized cost of electricity (LCOE) continue to be major barriers to project development. The hydroEngine— represents a significant innovation, leveraging novel fluid mechanics and mechanical configuration to allow lower-cost turbine manufacture and development of low head hydropower resources.

  14. Integrated Projects - Non-DOE Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Integrated Projects » Integrated Projects - Non-DOE Projects Integrated Projects - Non-DOE Projects In addition to the integrated technology validation projects sponsored by DOE, universities, along with state and local government entities throughout the world are partnering with industry to demonstrate integrated hydrogen and fuel cell technologies in real-world applications. GM/DOW Chemical Partnership The first General Motors fuel cell trailer is in place at the Dow

  15. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and

    Office of Environmental Management (EM)

    Technical Baseline Development and Control Examples Example 40 5.0 PROJECT MANAGEMENT AND CONTROL The Project Management and Control section provides an overview of the project management and control systems that will be used to manage the 324/327 Buildings Stabilization/Deactivation Project, addressing the following key elements of project management and control:  Project Management Control System (PMCS) - Work breakdown structure - Baseline development/update - Scheduling - Performance

  16. Project Reports for Citizen Potawatomi Nation - 2005 Project | Department

    Energy Savers [EERE]

    of Energy Citizen Potawatomi Nation - 2005 Project Project Reports for Citizen Potawatomi Nation - 2005 Project The economic future of the Citizen Potawatomi Nation, located in central Oklahoma, depends on affordable and reliable energy. Learn more about this project or find details in the below status reports. PDF icon October 2005 status report PDF icon October 2006 status report More Documents & Publications Project Reports for Citizen Potawatomi Nation - 2003 Project Key Renewable

  17. Project Reports for Native Village of Unalakleet - 2011 Project |

    Energy Savers [EERE]

    Department of Energy Project Reports for Native Village of Unalakleet - 2011 Project Project Reports for Native Village of Unalakleet - 2011 Project The Native Village of Unalakleet (NVU) project is a feasibility study for a retrofit of a tribally owned three-story 14-apartment complex, located in Unalakleet, Alaska. Learn more about this project or find details in the below status reports. PDF icon November 2011 status report PDF icon November 2012 status report PDF icon Final report More

  18. ARM - Field Campaign - Two-Column Aerosol Project (TCAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website ARM Data Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements

  19. Project Reports for Winnebago Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Winnebago Tribe of Nebraska has experienced significant growth over the last five years. Estimated at over 10%, the growth trend has caused the tribe to examine the vital role that energy plays in supporting growth and economic development overall. The project seeks to: (1) investigate the opportunities for wind generation, improving the tribe's energy resource portfolio, and shaping the reservation load profile; (2) analyze renewable generation investment opportunities and their potential job creation and economic development benefits; and (3) conduct a tribal utility formation study to facilitate accomplishment of tribal goals.

  20. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  1. MHK Projects/Hickman Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Hickman Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  2. MHK Projects/Reliance Light Project | Open Energy Information

    Open Energy Info (EERE)

    Reliance Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROAD...

  3. MHK Projects/Malone Field Light Project | Open Energy Information

    Open Energy Info (EERE)

    Malone Field Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"...

  4. MHK Projects/Huffman Light Project | Open Energy Information

    Open Energy Info (EERE)

    Huffman Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  5. MHK Projects/Ironton Light Project | Open Energy Information

    Open Energy Info (EERE)

    Ironton Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  6. MHK Projects/Algiers Light Project | Open Energy Information

    Open Energy Info (EERE)

    Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoo...

  7. MHK Projects/Woodland Light Project | Open Energy Information

    Open Energy Info (EERE)

    Woodland Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROAD...

  8. MHK Projects/Fashion Light Project | Open Energy Information

    Open Energy Info (EERE)

    Fashion Light Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  9. MHK Projects/Yukon River Hydrokinetic Turbine Project | Open...

    Open Energy Info (EERE)

    Yukon River Hydrokinetic Turbine Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  10. MHK Projects/Cat Island Project | Open Energy Information

    Open Energy Info (EERE)

    Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP"...

  11. MHK Projects/Portugal Pre Commercial Pilot Project | Open Energy...

    Open Energy Info (EERE)

    AWS Ocean Energy formerly Oceanergia Project Technology *MHK TechnologiesArchimedes Wave Swing Project Licensing Environmental Monitoring and Mitigation Efforts See...

  12. MHK Projects/Miller Bend Project | Open Energy Information

    Open Energy Info (EERE)

    Miller Bend Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP...

  13. MHK Projects/Hope Field Point Project | Open Energy Information

    Open Energy Info (EERE)

    Hope Field Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"RO...

  14. MHK Projects/Newfound Harbor Project | Open Energy Information

    Open Energy Info (EERE)

    Systems Project Technology *MHK TechnologiesKESC Tidal Generator Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  15. MHK Projects/Old River Outflow Channel Project | Open Energy...

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization UEK Corporation Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  16. MHK Projects/Humboldt County Wave Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Energy Ltd Project Technology *MHK TechnologiesAquaBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  17. MHK Projects/Grand Manan Channel Project | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization Mananook Associates Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  18. MHK Projects/Aquantis Project | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization Aquantis Inc Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  19. MHK Projects/Maine 1 Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesOcean *MHK TechnologiesKensington Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  20. MHK Projects/Ogdensburg Kinetic Energy Project | Open Energy...

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization AER NY Kinetics LLC Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  1. MHK Projects/Luangwa Zambia Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  2. MHK Projects/Chitokoloki Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  3. MHK Projects/Atchafalaya River Hydrokinetic Project II | Open...

    Open Energy Info (EERE)

    Project Phase Phase 1 Main Overseeing Organization UEK Corporation Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  4. MHK Projects/Coal Creek Project | Open Energy Information

    Open Energy Info (EERE)

    Project Technology *MHK TechnologiesUnderwater Electric Kite Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  5. MHK Projects/Griffin Project | Open Energy Information

    Open Energy Info (EERE)

    Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  6. MHK Projects/Jackson Point Project | Open Energy Information

    Open Energy Info (EERE)

    Jackson Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADM...

  7. MHK Projects/Mohawk MHK Project | Open Energy Information

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14408 Environmental Monitoring and...

  8. MHK Projects/Fishers Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing FERC License Docket Number P-14395 Environmental Monitoring and...

  9. MHK Projects/Shelter Island Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Organization Natural Currents Energy Services Project Technology *MHK TechnologiesRED HAWK Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys <<...

  10. MHK Projects/TWEC Project | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Details Based on a 2003 ENI, SEV and Wavegen feasibility study of a wave power plant installation in the Faroe Islands ('Feasibility study...

  11. MHK Projects/Oyster 800 Project | Open Energy Information

    Open Energy Info (EERE)

    4 Project Details Operational testing of Oyster 800 commenced in June 2012 when the machine produced first electrical power to the grid. Project Installed Capacity (MW) 1...

  12. EEnergy Project "MeRegio" (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Gppingen, Germany Coordinates 48.703159, 9.653999 Loading map......

  13. MHK Projects/Cape Islands Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Islands Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  14. MHK Projects/Indian River Tidal Hydrokinetic Energy Project ...

    Open Energy Info (EERE)

    Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  15. MHK Projects/Kingsbridge Tidal Energy Project | Open Energy Informatio...

    Open Energy Info (EERE)

    Kingsbridge Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","t...

  16. MHK Projects/Kachemak Bay Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Kachemak Bay Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  17. MHK Projects/Central Cook Inlet Alaska Tidal Energy Project ...

    Open Energy Info (EERE)

    Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  18. MHK Projects/Portsmouth Area Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Portsmouth Area Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  19. MHK Projects/Deception Pass Tidal Energy Hydroelectric Project...

    Open Energy Info (EERE)

    Deception Pass Tidal Energy Hydroelectric Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice"...

  20. MHK Projects/Spieden Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  1. MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project | Open...

    Open Energy Info (EERE)

    Piscataqua Tidal Hydrokinetic Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"goo...

  2. MHK Projects/Highlands Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROADMA...

  3. MHK Projects/Penobscot Tidal Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Penobscot Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","typ...

  4. MHK Projects/Guemes Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  5. MHK Projects/Tacoma Narrows Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Tacoma Narrows Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  6. MHK Projects/Williams Point Project | Open Energy Information

    Open Energy Info (EERE)

    Williams Point Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"ROAD...

  7. MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project...

    Open Energy Info (EERE)

    Greenwave Rhode Island Ocean Wave Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":...

  8. MHK Projects/Bonnybrook Wastewater Facility Project 2 | Open...

    Open Energy Info (EERE)

    Bonnybrook Wastewater Facility Project 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  9. EEnergy Project "MeRegio" (Smart Grid Project) (Freiamt, Germany...

    Open Energy Info (EERE)

    Freiamt, Germany) Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Freiamt, Germany Coordinates 48.170155, 7.906666...

  10. EEnergy Project "MeRegio" (Smart Grid Project) (Ettenheim, Germany...

    Open Energy Info (EERE)

    Ettenheim, Germany) Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Ettenheim, Germany Coordinates 48.252537, 7.813286...

  11. MHK Projects/Tidal Energy Project Portugal | Open Energy Information

    Open Energy Info (EERE)

    Organization Tidal Energy Pty Ltd Project Technology *MHK TechnologiesDavidson Hill Venturi DHV Turbine Project Licensing Environmental Monitoring and Mitigation Efforts See...

  12. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  13. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  14. Geothermal Energy Projects | Department of Energy

    Energy Savers [EERE]

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects GEOTHERMAL POWER 3 PROJECTS in 5 LOCATIONS 158 MW GENERATION CAPACITY 946,000 MWh PROJECTED ANNUAL GENERATION * 517,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's

  15. The time it takes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fourth rock from the Sun, began its exploration in 2012 as part of NASA's Mars Science Laboratory project and is still trundling about, investi- gating Martian climate and...

  16. NREL: Technology Deployment - Project Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development By employing our project development models, NREL offers a broad range of advisory services that are based off commercial practices and support the entire project development process to help reduce the risks associated with energy efficiency and renewable energy projects. This includes policy and regulatory analysis, financing alternatives, project management, proposal reviews, and project risk and technology assessments. Policy and Regulatory Analysis NREL analyzes federal

  17. Project Analysis Standard Operating Procedure

    Energy Savers [EERE]

    and Project Analysis Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project Management (OAPM) EVMS & PROJECT ANALYSIS SOP MARCH 2014 ii Earned Value Management System (EVMS) and Project Analysis Standard Operating Procedure (EPASOP) OPR: MA-63 March 2014 1. PURPOSE. This EVMS and Project Analysis Standard Operating Procedure (EPASOP) will serve as a primary reference for MA-631

  18. Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Manhattan Project Manhattan Project New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the organization set up by the Army Corps of Engineers to develop and build the bomb, the Department continues to own and manage the Federal properties at most of the major Manhattan Project sites,

  19. Boardman to Hemingway Transmission Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  20. Project Analysis Standard Operating Procedure

    Office of Environmental Management (EM)

    Standard Operating Procedure (EPASOP) Issued by Office of Acquisition and Project Management MA-63 March 12, 2014 DEPARTMENT OF ENERGY Office of Acquisition and Project...

  1. Appliance Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC, Water Heating, Appliances R&D Appliance Projects Appliance Projects Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator Lead Performer: GE Global ...

  2. Project Management Policies & Principles Memo

    Broader source: Energy.gov [DOE]

    Memo enhances and clarifies departmental policy related to project management as a result of the Improving Project Management Study and subsequent Secretarial Memo dated December 2014.

  3. MHK Projects/ | Open Energy Information

    Open Energy Info (EERE)

    50.705279, -1.498938 Project Technology *MHK Technologies Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database...

  4. 20th Century Reanalysis Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20th Century Reanalysis Project 20th Century Reanalysis Project Key Challenges: Assimilate historical weather observations from sources as diverse as 19th century sea captains and...

  5. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  6. 2020 Vision Project Summary

    SciTech Connect (OSTI)

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  7. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  8. Property:Project Resource | Open Energy Information

    Open Energy Info (EERE)

    property. (previous 25) (next 25) M MHK Projects + Current Tidal MHK Projects40MW Lewis project + Wave MHK ProjectsADM 3 + Wave MHK ProjectsADM 4 + Wave MHK ProjectsADM 5...

  9. Project Reports for Penobscot Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Penobscot Nation includes 2,261 members and land holdings of 118,885 acres in various parcels located throughout northern, eastern, and western Maine, including rights to waters of the Penobscot River and many of its tributaries. The tribe is located in a region that has both a cold, harsh climate and very high energy costs. The objectives of the project are to develop an energy vision that in turn will lead to a more detailed, prioritized, long-term strategic plan. Two principle objectives are: (1) for the plan to address the cost burden of their current energy situation and explore ways to make existing tribal public facilities and private residences more energy efficient, and (2) for the plan to identify renewable energy development and production opportunities, always mindful of environmental impacts.

  10. Project ACHIEVE final report

    SciTech Connect (OSTI)

    1997-06-13

    Project ACHIEVE was a math/science academic enhancement program aimed at first year high school Hispanic American students. Four high schools -- two in El Paso, Texas and two in Bakersfield, California -- participated in this Department of Energy-funded program during the spring and summer of 1996. Over 50 students, many of whom felt they were facing a nightmare future, were given the opportunity to work closely with personal computers and software, sophisticated calculators, and computer-based laboratories -- an experience which their regular academic curriculum did not provide. Math and science projects, exercises, and experiments were completed that emphasized independent and creative applications of scientific and mathematical theories to real world problems. The most important outcome was the exposure Project ACHIEVE provided to students concerning the college and technical-field career possibilities available to them.

  11. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    SciTech Connect (OSTI)

    Matsuoka, J.K; Minerbi, L.; Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury; Trettin, L.D.

    1996-05-01

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

  12. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect (OSTI)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  13. Smith Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889,...

  14. Renewable Energy & Energy Efficiency Projects: Loan Guarantee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Renewable Energy & Energy Efficiency Projects: Loan Guarantee Solicitation Plenary III: Project Finance ...

  15. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  16. NNSA Procurement Projects Perspective - Bob Raines, Associate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Perspective - Bob Raines, Associate Administrator for Acquisition and Project Management, NNSA NNSA Procurement Projects Perspective - Bob Raines, Associate Administrator...

  17. Project Management Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporate Implementation Plan EM Contractors for Capital Asset Projects Acquisition and Project Management Continuous Improvement Presentation Acquisition and Project ...

  18. Edwards Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222,...

  19. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  20. Acquisition and Project Management Continuous Improvement Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management...

  1. Geothermal Exploration Cost and Time

    SciTech Connect (OSTI)

    Jenne, Scott

    2013-02-13

    The Department of Energys Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  2. Biofuels: Project summaries

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  3. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  4. Project Execution Plan RM

    Office of Environmental Management (EM)

    Project Execution Plan (PEP) Review Module March 2010 CD-0 O 0 OFFICE OF P C CD-1 F ENVIRO Standard R Project E Rev Critical Decis CD-2 M ONMENTAL Review Plan Execution view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) n Plan e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of

  5. A=HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HTML Documents for Nuclides, A = 3 - 20 The HTML for Nuclides Project is an ongoing project. HTML documents for A = 3 - 20 nuclides provide HTML documents for each individual nuclide within the mass chains of A = 3 - 20 found in the FAS and TUNL publications spanning the years 1959-present. Along with the production of the HTML documents, we are also creating PDF and PS formats of the tables, as well as GIF, PS and PDF formats of the Energy Level Diagrams contained in each publication. At the

  6. Hualapai Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Hualapai Tribe is located on the end of their existing utility grid which has subjected them to high costs and poor reliability of electric service. The first phase of the project will establish a tribally operated utility to provide service to tribal customers at Grand Canyon West, which has been operating without grid power for the past seven years. The second phase of the project will examine the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation.

  7. Rooftop Unit Network Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network Project RTU Network Project Michael Brambley, Ph.D. Pacific Northwest National Laboratory Michael.Brambley@pnnl.gov (509) 375-6875 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Packaged air conditioners and heat pumps (RTUs) are used in about 58% of all cooled commercial buildings, serving about 69% of the cooled commercial building floor space (EIA 2003) - Navigant estimates packaged A/C uses 0.9 quads of electricity for cooling annually and 0.4 quads of heating

  8. CBEI Broker Training Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI Broker Training Project 2015 Building Technologies Office Peer Review Dr. Susan Wachter wachter@wharton.upenn.edu CBEI/University of Pennsylvania Project Summary Timeline: Start date: May, 2014 Planned end date: April, 2016 Key Milestones 1. Broker training course approved; 8/14 2. First training course delivered; 12/9/14 3. Provided summary of survey feedback to CBEI for Go/No Go decision; 1/30/2015 4. Provided proposed delivery partner & final market strategy to CBEI for

  9. Project Reports for Lower Sioux Indian Community - 2010 Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lower Sioux Indian Community - 2010 Project Project Reports for Lower Sioux Indian Community - 2010 Project Lower Sioux intends to continue its efforts to develop wind projects on its lands as a continuation of efforts begun roughly 20 years ago. Learn more about this project or find details in the below status reports. PDF icon November 2009 status report PDF icon October 2010 status report PDF icon Final report More Documents & Publications EIS-0413: Draft

  10. Gridley Biofuels Project Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review 1 Gridley Biofuels Project Technology Area Review: Thermochemical Conversion Dennis Schuetzle, REI International (REII), Sacramento, CA Matt Michaelis, City of Gridley, Gridley CA Alexandria, VA March 26, 2015 A Rice Field near the Sutter Butte Mountains in Northern CA Gridley Biofuels Project Gridley Sacramento Gridley is Centrally Located in the Northern Sacramento Valley 3 Project Goal The primary goal of this final phase (BP2) of the Gridley Biofuels Project during 2015

  11. SC Projects Perspective - Stephen Meador, Director, Office of Project

    Energy Savers [EERE]

    Assessments, Science (SC) | Department of Energy SC Projects Perspective - Stephen Meador, Director, Office of Project Assessments, Science (SC) SC Projects Perspective - Stephen Meador, Director, Office of Project Assessments, Science (SC) Mission The Office of Science delivers scientific discoveries and tools to transform our understanding of nature and advance the energy, economic, and national security of the U.S. PDF icon Workshop 2015 - Stephen Meador_SC Projects Perspective.pdf More

  12. 20th Century Reanalysis Project Featured in HPCWire Podcast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20th Century 20th Century Reanalysis Project Featured in HPCWire Podcast March 11, 2014 earthreanalysis The 20th Century Reanalysis Project is generating a six-hourly, four-dimensional global atmospheric dataset spanning 1871 to 2011 to place current atmospheric circulation patterns into a historical perspective. Long-time NERSC user Dr. Gil Compo and the 20th Century Reanalysis project were featured March 10 in an HPCWire podcast, "Powering the 20th Century Weather Reanalysis

  13. Moab Project Continues Excellent Safety Record | Department of Energy

    Energy Savers [EERE]

    Excellent Safety Record Moab Project Continues Excellent Safety Record December 23, 2014 - 12:00pm Addthis Final cover materials are placed over tailings in the Crescent Junction disposal cell. Final cover materials are placed over tailings in the Crescent Junction disposal cell. MOAB, Utah - The Moab Uranium Mill Tailings Remedial Action Project has had a safe, productive year. The project had no recordable injuries this year, and it has gone more than five years without a lost-time injury or

  14. Project Management Perspective - Paul Bosco, Director, Office...

    Office of Environmental Management (EM)

    Project Management Perspective - Paul Bosco, Director, Office of Acquisition and Project Management Agenda Project Portfolio and Trends Project Success Metrics Other Performance ...

  15. September 2015 Project Dashboard | Department of Energy

    Energy Savers [EERE]

    September 2015 Project Dashboard September 2015 Project Dashboard Post CD-2 Active Projects (as of September 29, 2015) September 2015 Project Dashboard More Documents &...

  16. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  17. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution...

  18. Orita 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Orita 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 2 Geothermal Project Project Location Information Coordinates...

  19. Thermo 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Thermo 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Thermo 2 Geothermal Project Project Location Information Coordinates...

  20. Sou Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates...

  1. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates...

  2. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  3. Combined Heat and Power Projects

    Broader source: Energy.gov [DOE]

    DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles.

  4. RENOTER Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RENOTER Project RENOTER Project Overview of French project on thermoelectric waste heat recovery for cars and trucks with focus on cheap, available, efficient, and sustainable TE materials, as well as efficient material integration and production process. PDF icon aixala.pdf More Documents & Publications RENOTER Project Thermoelectric Generator Development at Renault Trucks-Volvo Group An Overview of Thermoelectric Waste Heat Recovery Activities

  5. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  6. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  7. Information Technology Project Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-12

    This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

  8. Kootznoowoo Incorporated- 2010 Project

    Broader source: Energy.gov [DOE]

    Thayer Lake Hydropower Development (TLHD) consists of a 1 MW+ run of the river hydropower project located in the Tongass Forest in the Admiralty Island National Monument Park that will provide the energy to the City of Angoon and Angoon Community Association (traditional tribe as recognized by Indian Reorganization Act).

  9. PROJECT PROFILE: Brayton Energy

    Broader source: Energy.gov [DOE]

    The Brayton Energy project will integrate a solar power plant’s absorber, energy storage system, and power block into one system. By combining these elements, Brayton Energy hopes to develop a synergistic system that is less expensive to assemble, easier to permit and install, and easier to operate and maintain, resulting in low-cost electricity.

  10. Instream Flow Project

    Broader source: Energy.gov [DOE]

    As a part of the Department of Energy’s Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations.

  11. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  12. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    39 SNL/CA proposes to inventory legacy weapon hardware designs from past experiments currently in storage. This project would involve verifying the contents of 25 containers through a review of drawings and technical papers. Each container would then be opened, and the contents would be inventoried. ✖ Sandia Site Office Inventory Legacy Weapon Hardware

  13. Evaluation Project 4492

    National Nuclear Security Administration (NNSA)

    6 Sandia National Laboratories/New Mexico (SNL/NM), proposes to perform research, development, and testing for the Low-Earth Orbit Nanosatellite Integrated Defense Autonomous System (LEONIDAS) project, to be managed through the U.S. Air Force (USAF) Operationally Responsive Space (ORS) Office. ✖ Sandia Site Office Missile System LEONIDAS Component Development Sandia National Laboratories - New Mexico

  14. Financing Non-Residential Photovoltaic Projects: Options and Implications

    SciTech Connect (OSTI)

    Bolinger, Mark

    2009-01-09

    Installations of grid-connected photovoltaic (PV) systems in the United States have increased dramatically in recent years, growing from less than 20 MW in 2000 to nearly 500 MW at the end of 2007, a compound average annual growth rate of 59%. Of particular note is the increasing contribution of 'non-residential' grid-connected PV systems--defined here as those systems installed on the customer (rather than utility) side of the meter at commercial, institutional, non-profit, or governmental properties--to the overall growth trend. Although there is some uncertainty in the numbers, non-residential PV capacity grew from less than half of aggregate annual capacity installations in 2000-2002 to nearly two-thirds in 2007. This relative growth trend is expected to have continued through 2008. The non-residential sector's commanding lead in terms of installed capacity in recent years primarily reflects two important differences between the non-residential and residential markets: (1) the greater federal 'Tax Benefits'--including the 30% investment tax credit (ITC) and accelerated tax depreciation--provided to commercial (relative to residential) PV systems, at least historically (this relative tax advantage has largely disappeared starting in 2009) and (2) larger non-residential project size. These two attributes have attracted to the market a number of institutional investors (referred to in this report as 'Tax Investors') seeking to invest in PV projects primarily to capture their Tax Benefits. The presence of these Tax Investors, in turn, has fostered a variety of innovative approaches to financing non-residential PV systems. This financial innovation--which is the topic of this report--has helped to overcome some of the largest barriers to the adoption of non-residential PV, and is therefore partly responsible (along with the policy changes that have driven this innovation) for the rapid growth in the market seen in recent years.ii Specifically, due to financial innovation, non-residential entities interested in PV no longer face prohibitively high up-front costs, no longer need to be able to absorb Tax Benefits in order to make the economics pencil out, no longer need to be able to operate and maintain the system, and no longer need to accept the risk that the system does not perform as expected.

  15. Advanced Petroleum-Based Fuels--Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 1 Summary, July 2004

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    The Advanced Petroleum Based Fuels-Diesel Emission Control project is a government/industry collaborative project to identify the optimal combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emission standards for the 2004-2010 time period. This summary describes the results of the first phase of the lubricants study investigating the impact on lubricant formulation on engine-out emissions.

  16. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by providing: 1) the infrastructure to plug into and 2) the on-board equipment capable of plugging into the infrastructure. This project generated the largest dataset to date on shore power TSE utilization and use patterns, providing: insight into driver behavior and acceptance; evidence of cost savings; experience with system operations and management; and data for guiding future development of shore power, whether as a private enterprise or a publicly-subsidized service for meeting air quality goals.

  17. A New Overview of The Trilinos Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heroux, Michael A.; Willenbring, James M.

    2012-01-01

    Since An Overview of the Trilinos Project [ACM Trans. Math. Softw. 31(3) (2005), 397–423] was published in 2005, Trilinos has grown significantly. It now supports the development of a broad collection of libraries for scalable computational science and engineering applications, and a full-featured software infrastructure for rigorous lean/agile software engineering. This growth has created significant opportunities and challenges. This paper focuses on some of the most notable changes to the Trilinos project in the last few years. At the time of the writing of this article, the current release version of Trilinos was 10.12.2.

  18. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  19. Best-in-Class Project Management Initiative Corporate Implementation Plan

    Energy Savers [EERE]

    Best-in-Class Project Management Initiative Corporate Implementation Plan Final Prepared for: U.S. Department of Energy Prepared by: U.S. Army Corps of Engineers, Huntington District and Project Time & Cost, Inc. 2727 Paces Ferry Road, Suite 1-1200 Atlanta, Georgia 30339 March 14, 2008 TOC - 1 Table of Contents Executive Summary ............................................................................................................. i 1.0

  20. EGS Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Projects EGS Projects DOE's EGS Demonstration project at The Geysers in northern California clearly demonstrated a commercial-strength 5 MW resource in FY13. photo courtesy of Calpine Corporation DOE's EGS Demonstration project at The Geysers in northern California clearly demonstrated a commercial-strength 5 MW resource in FY13. photo courtesy of Calpine Corporation EGS projects span research, development, and demonstration. Unlike traditional hydrothermal systems, EGS capture heat from

  1. Portfolio Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Portfolio Projects For printable PDF files of LPO's portfolio projects and LPO's illustrated poster series highlighting clean energy and advanced vehicles manufacturing technologies from its portfolio, please see the LPO Publications page. LPO PORTFOLIO PROJECTS PROJECT LOAN PROGRAM TECHNOLOGY OWNER(S) LOCATION(S) LOAN TYPE LOAN AMOUNT 1 ISSUANCE DATE 1366 TECHNOLOGIES TITLE XVII Solar Manufacturing 1366 Technologies, Inc. Bedford, Massachusetts Loan Guarantee $150 Million Aug 2011

  2. Status of the SPARC Project

    SciTech Connect (OSTI)

    Alesini, D.; Bertolucci, S.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Pirro, G.Di; Drago, A.; Esposito, A.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Fusco, V.; Gallo, A.; Gatti, G.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Ligi, C.; /Frascati /INFN, Milan /Milan U. /INFN, Rome /INFN, Rome /ENEA, Frascati /Milan, Polytechnic /UCLA /SLAC

    2006-01-25

    The SPARC project has entered its installation phase at the Frascati National Laboratories of INFN: its main goal, the promotion of an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments, is being vigorously pursued by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata-INFM-ST. In this paper we will report on the installation and test of some major components, like Ti:Sa laser system, RF gun and RF power system. Advancements in the control and beam diagnostics systems will also be reported, in particular on the emittance-meter device for beam emittance measurements in the drift space downstream the RF gun. Recent results on laser pulse shaping show the feasibility of producing 10 ps flat-top laser pulses in the UV with rise time below 1 ps. First FEL experiments have been proposed, using SASE, seeding and non-linear resonant harmonics.

  3. Rapid Cycling Synchrotron Option for Project X (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    1 mA CW linac is used, the RCS would still be able to meet the Project X requirements but it would be difficult for it to serve a muon collider due to the very long injection time. ...

  4. Sodium Bearing Waste Treatment Project ? Countdown to Startup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    any readiness review, DOE Federal Project Director Ric Craun said. It is also a testament to the state of readiness that these nine findings will be resolved in time to...

  5. HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description

    Office of Environmental Management (EM)

    Name of Primary Selectee Project Type Project Title and Brief Project Description Project Locations Recovery Act Funding* Participant Share Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and

  6. Active Project Justification Statements

    Energy Savers [EERE]

    AcƟve Project JusƟĮcaƟon Statements Date Received PJS Number Title Owner / Author Status ORG Due Date 3/10/2014 P2015-01 DOE-STD-XXXX, DOE Environmental Laboratory ProĮciency TesƟng Program Andrew Lawrence / Debbie Rosano PJS Non Concurrence ResoluƟon AU-20 AdministraƟon and ParƟcipaƟon 10/28/2015 PJS-2015-17 Self-Assessment Standard for DOE Contractor CriƟcality Safety Programs Jeff Roberson / Larry Berg PJS Ready for Project RegistraƟon 12/9/2015 PJS-2015-21 PreparaƟon of Safety

  7. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  8. Yurok Tribe- 2005 Project

    Broader source: Energy.gov [DOE]

    The Yurok Tribe has a great need for improved energy services on the reservation. The members pay $328 per month per household on average for energy, with just a $9,000 median household income. The project will assess the need for energy efficiency services on the reservation, identify available resources, and develop an implementation plan for meeting these needs. With an unemployment rate of 42%, the job training component of this program will benefit the tribe. Past attempts have been made to provide energy efficiency and renewable energy maintenance services on the reservation, but many of these services have not endured because they were not tribe-driven. This project will build tribal expertise, increase awareness, and form collaborative relationships with local energy services.

  9. Project Finance and Investments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finance and Investments Biomass 2014 Growing The Future Bioeconomy Sustainable Bioenergy Supply Chain Year Number of Projects Grant Amount Loan Guarantee Amount Leverage Total Project Cost 2003 114 $21,707,373 $0 $545,381,487 $567,088,860 2004 167 $22,812,049 $0 $136,984,587 $159,796,636 2005 156 $22,237,268 $10,100,000 $193,511,453 $225,848,721 2006 395 $21,209,435 $24,158,862 $190,332,768 $235,701,065 2007 436 $19,123,191 $57,270,743 $243,396,339 $319,790,273 2008 764 $34,239,666 $15,566,169

  10. Final Project Report

    SciTech Connect (OSTI)

    Small, R. Justin; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. This project was only possible due to the highly scalable aspect of the CAM Spectral Element dynamical core, and the significant resources allocated at Yellowstone and NERSC for which we are grateful.

  11. The Nautilus project

    SciTech Connect (OSTI)

    Salis, J. de

    1996-02-01

    The objective of the Nautilus project is to design, build, and evaluate a subsea multiphase electrical booster system to demonstrate its operability and reliability. The subsea station will reflect the integration of existing, tested, and recently developed equipment. The integration of various technologies, control, and maintenance in a subsea environment represents the challenging aspect of the project. Boosted by a helicoaxial pump, the produced multiphase effluent receives enough energy to reach either a host platform or the shore where the classical separation and treatment operations are performed. For deep offshore developments, the concept should induce a lower investment than alternative solutions. The concept should also give access to marginal fields, currently undeveloped for economical reasons, with the benefit of maximizing existing infrastructure. Furthermore, where sea traffic or environment concerns may limit offshore surface developments, Nautilus should demonstrate itself as an economical alternative.

  12. Healy Clean Coal Project

    SciTech Connect (OSTI)

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  13. Hopper scheduled maintenance tomorrow (Sept 19) and /project outage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scheduled maintenance tomorrow (Sept 19) and /project outage Hopper scheduled maintenance tomorrow (Sept 19) and /project outage September 18, 2012 by Helen He There will be a scheduled hardware and software maintenance for Hopper next Wednesday, Sept 19, from 6:30 am to midnight Pacific time. Please plan your work accordingly and check the NERSC Message of the Day (MOTD) for status update: http://www.nersc.gov/live-status/motd/. The /project file system (also known as /global/project) will be

  14. AVEC's Village Wind Projects

    Office of Environmental Management (EM)

    !VEC's Village Wind Projects By Meera Kohler Alaska Village Electric Cooperative Tribal Energy Conference Denver, Colorado October 28, 2010 New turbines in Hooper Bay AVEC is a non-profit member-owned co-op * 53 villages * 22,000 population - Would be the 4th largest city in Alaska after Anchorage, Fairbanks and Juneau * 44% of Village Alaska population * Anvik (smallest) 94 * Hooper Bay (largest) 1,097 * Average population 420 * Anchorage 284,994 * 94% Alaska Native System Information * 48

  15. PNM Prosperity Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNM Prosperity Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  16. POET Project Liberty, LLC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET Project LIBERTY, LLC (formerly Broin Companies) Corporate HQ: Sioux Falls, South Dakota Facility Location: Emmetsburg, Palo Alto County, Iowa Description: This 21-year old Midwest-based company is the nation's largest ethanol producer, which currently operates 26 production facilities in the United States. The company produces and markets more than 1.5 billion gallons of ethanol annually. Their proposal will demonstrate the benefits of integrating an innovative lignocellulose-to- ethanol

  17. Manhattan Project: Processes

    Office of Scientific and Technical Information (OSTI)

    Processes Uranium Mining, Milling, and Refining Uranium Isotope Separation Plutonium Production Bomb Design, Development, and Production Bomb Testing and Weapon Effects Processes PLEASE NOTE: The Processes pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the industrial processes of the Manhattan Project have been grouped into the categories listed to the left. A quick overview of processes involved

  18. Manhattan Project: Resources

    Office of Scientific and Technical Information (OSTI)

    RESOURCES RELATING TO THE MANHATTAN PROJECT In addition to the events, people, places, processes, and science pages that comprise the bulk of this web site, a number of additional resources are also provided: Reference Materials Maps Photo Gallery To Learn More Library Suggested Readings Background on this Site About this Site How to Navigate this Site Site Map Sources Note on Sources, A Nuclear Energy and the Public's Right to Know Sources and Notes (for each page) Sources and notes for this

  19. Reference Model Project (RMP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Model Project (RMP) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Data Analysis and Modeling & Simulation for the Chemical Sciences Project Description Almos every scientific activity at Los Alamos involves data analysis and modeling. From a chemical sciences point of view, such work transforms "raw" data into a form that provides useful information that is predictive, confirmatory, or exploratory. The key to understanding the world around us is the ability to put the chemical data we collect into a meaningful context

  1. JFNK_Projection.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes on Newton-Krylov based Incompressible Flow Projection Solver R.R. Nourgaliev a , M.Christon b , J.Bakosi c a Idaho National Laboratory, Nuclear Science and Technology Division, Thermal Science & Safety Analysis Department, 2525 North Fremont Ave. Idaho Falls, ID 83415-3860 Email: Robert.Nourgaliev@inl.gov b Los Alamos National Laboratory, Computer, Computational and Statistical Sciences Division, Computational Physics Group (CCS-2)) Los Alamos, NM 87545 Email: christon@lanl.gov c Los

  2. Popeye Project: Subsea system

    SciTech Connect (OSTI)

    Ritter, P.B.; Langner, C.G.; Sgouros, G.E.; Saucier, B.J.; Voss, R.K.

    1996-12-31

    The subsea system installed for Shell Offshore Inc. (SOI) Popeye Project represents an advancement in deep water subsea technology. It is a diverless, guidelineless, 10,000 psi cluster manifold concept, the first of its kind. The cluster concept was selected in large part based on SOI`s deep water experience and anticipated future subsea development needs. This paper describes how the innovative Popeye subsea system was selected, designed, tested, and successfully installed.

  3. Popeye project: Subsea system

    SciTech Connect (OSTI)

    Ritter, P.B.; Sgouros, G.E.; Langner, C.G.; Saucier, B.J.; Voss, R.K.

    1997-12-01

    The subsea system installed for the Shell Offshore Inc. (SOI) Popeye project represents an advance in deepwater subsea technology. It is a diverless, guidelineless, 10,000-psi cluster-manifold concept, the first of its kind. The cluster concept was selected in large part based on SOI`s deepwater experience and anticipated future subsea-development needs. This paper describes how the innovative Popeye subsea system was selected, designed, tested, and successfully installed.

  4. BETO Project Management Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Review June 25, 2015 Jonathan Male Director, Bioenergy Technologies Office (BETO) 2 | Bioenergy Technologies Office I. BETO Portfolio II. Coordination of Technology Areas III. Synergies IV. Project Impacts V. Technology Pathways VI. Budget Priorities VII. Other Technologies & Market Trends VIII. New Initiatives Outline 3 | Bioenergy Technologies Office BETO Portfolio * Integration of lessons learned for IBRs - BETO's IBR Investment Report has been finalized and will be

  5. PSERC Current Projects Overview

    Energy Savers [EERE]

    DE-OE0000652 Srivastava, WSU Collaborative educational program on synchrophasor applications for the smart electric grid 1 Project Summary 1. Title: Collaborative educational program on synchrophasor applications for the smart electric grid 2. Principal Investigators (PI): Prof. Anurag K Srivastava, Prof. Mani Venkatasubramaniam, Prof. Dave Bakken, and Prof. Chen-Ching Liu 3. University: Washington State University 4. Contact information: Anurag K Srivastava Assistant Professor, School of

  6. Project Evaluation Models

    Energy Savers [EERE]

    Project Evaluation Models Ian Baring-Gould Alaska Native Village Energy Development Workshop April 30, 2014 2 Why do we need options analysis? 3 There are many different energy resources Which ones are available in Alaska? 4 photovoltaics fuel cells wind turbines batteries diesels microturbines small hydro small modular biomass grid connection ...and many energy conversion technologies 5 ...which have different operating requirements, advantages, disadvantages, costs, etc. Diesel generators Wind

  7. HTS Cable Projects

    Office of Environmental Management (EM)

    Superconductivity Partnerships with Industry ANL Air Liquide DOE Golden LANL AEP ORNL Nexans Niagara Mohawk Super Power American Superconductor NYSERDA BOC Praxair W ? tion systems. This is the most the nation. W superconductivity? HTS Cable Projects www.oe.energy.gov Phone: 202 \ 586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585. Plugging America Into the Future of Power "A National Effort to

  8. Dispersion Modeling Project

    Office of Environmental Management (EM)

    Dispersion Modeling Project Nuclear & Criticality Safety Engineering Andrew Vincent Germantown, MD DOE Workshop Savannah River Nuclear Solutions, LLC June, 2012 SRNS- F3200-2012-00027 2 the Issue * Direction was coming regarding deposition velocity (DV) * Discovery - questioning meteorological data assumptions as specific calculation of DV being pursued (normalization, EPA vs. RG 1.23) * Plan Development and Concurrence * Plan Execution * Potential Impacts Executing the Plan * HSS Bulletin

  9. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    SciTech Connect (OSTI)

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.

  10. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  11. Final Project Report

    SciTech Connect (OSTI)

    Bogucz, E A

    2010-12-13

    This project pursued innovations to improve energy efficiency and indoor environmental quality (IEQ) in commercial and residential buildings. For commercial buildings, the project developed a testbed for intelligent nested environmental systems technologies (iNEST), which monitor and control energy flows and IEQ across a cascade of spaces from individuals desktops to office suites to floors to whole buildings. An iNEST testbed was constructed at Syracuse University and was used to assess the use of devices such as personal badges and CO2 sensors to study how reduced energy use and improved IEQ could be achieved. For residential buildings, resources were targeted in support of DoEs Builders Challenge Program and to recruit Syracuse, NY builders. Three homes in Syracuses Near Westside neighborhood were also registered under the program by Syracuse University team, with an additional home registered by one of the builders. Findings from the work at the iNEST testbed facility, and results from other related projects were disseminated through Syracuse Center of Excellence in Environmental and Energy Systems (SyracuseCoE) 2008 Annual Symposium, the 9th International Healthy Buildings 2009 Conference & Exhibition, and through SyracuseCoEs website and eNewsletters to inform the broader community of researchers, designers and builders. These public communication activities helped enhance the understanding of high performance buildings and facilitate further market acceptance.

  12. Final project report

    SciTech Connect (OSTI)

    Nitin S. Baliga and Leroy Hood

    2008-11-12

    The proposed overarching goal for this project was the following: Data integration, simulation and visualization will facilitate metabolic and regulatory network prediction, exploration, and formulation of hypotheses. We stated three specific aims to achieve the overarching goal of this project: (1) Integration of multiple levels of information such as mRNA and protein levels, predicted protein-protein interactions/associations and gene function will enable construction of models describing environmental response and dynamic behavior. (2) Flexible tools for network inference will accelerate our understanding of biological systems. (3) Flexible exploration and queries of model hypotheses will provide focus and reveal novel dependencies. The underlying philosophy of these proposed aims is that an iterative cycle of experiments, experimental design, and verification will lead to a comprehensive and predictive model that will shed light on systems level mechanisms involved in responses elicited by living systems upon sensing a change in their environment. In the previous years report we demonstrated considerable progress in development of data standards, regulatory network inference and data visualization and exploration. We are pleased to report that several manuscripts describing these procedures have been published in top international peer reviewed journals including Genome Biology, PNAS, and Cell. The abstracts of these manuscripts are given and they summarize our accomplishments in this project.

  13. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  14. The IPHI Project

    SciTech Connect (OSTI)

    Ferdinand, Robin; Beauvais, Pierre-Yves

    2005-06-08

    High Power Proton Accelerators (HPPAs) are studied for several projects based on high-flux neutron sources driven by proton or deuteron beams. Since the front end is considered as the most critical part of such accelerators, the two French national research agencies CEA and CNRS decided to collaborate in 1997 to study and build a High-Intensity Proton Injector (IPHI). The main objective of this project is to master the complex technologies used and the concepts of manufacturing and controlling the HPPAs. Recently, a collaboration agreement was signed with CERN and led to some evolutions in the design and in the schedule. The IPHI design current was maintained at 100 mA in Continuous Wave mode. This choice should allow to produce a high reliability beam at reduced intensity (typically 30 mA) tending to fulfill the Accelerator Driven System requirements. The output energy of the Radio Frequency Quadrupole (RFQ), was reduced from 5 to 3 MeV, allowing then the adjunction and the test, in pulsed operation of a chopper line developed by CERN for the Superconducting Proton Linac (SPL). In a final step, the IPHI RFQ and the chopper line should become parts of the SPL injector. In this paper, the IPHI project and the recent evolutions are reported together with the construction and operation schedule.

  15. OCGen Module Mooring Project

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2015-02-06

    Ocean Renewable Power Company's OCGen Module Mooring Project provided an extensive research, design, development, testing and data collection effort and analysis conducted with respect to a positively buoyant, submerged MHK device secured to the seabed using a tensioned mooring system. Different analytic tools were evaluated for their utility in the design of submerged systems and their moorings. Deployment and testing of a prototype OCGen® system provided significant data related to mooring line loads and system attitude and station keeping. Mooring line loads were measured in situ and reported against flow speeds. The Project made a significant step in the development of designs, methodologies and practices related to floating and mooring of marine hydrokinetic (MHK) devices. Importantly for Ocean Renewable Power Company, the Project provided a sound basis for advancing a technically and commercially viable OCGen® Power System. The OCGen® Power System is unique in the MHK industry and, in itself, offers distinct advantages of MHK devices that are secured to the seabed using fixed structural frames. Foremost among these advantages are capital and operating cost reductions and increased power extraction by allowing the device to be placed at the most energetic level of the water column.

  16. MHK Projects/Duncan Point Project | Open Energy Information

    Open Energy Info (EERE)

    30.3743, -91.2403 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 45 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  17. MHK Projects/Wickliffe Project | Open Energy Information

    Open Energy Info (EERE)

    36.9756, -89.1193 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 29 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  18. MHK Projects/Point Menoir Project | Open Energy Information

    Open Energy Info (EERE)

    30.6436, -91.3029 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 66 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  19. MHK Projects/Kempe Bend Project | Open Energy Information

    Open Energy Info (EERE)

    31.8622, -91.3073 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 54 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...

  20. MHK Projects/Live Oak Project | Open Energy Information

    Open Energy Info (EERE)

    29.7638, -90.0278 Project Phase Phase 1 Project Installed Capacity (MW) 0 PermitLicense Buildout (MW) 18 Device Nameplate Capacity (MW) 40 kW Number of Devices Deployed 0...