Powered by Deep Web Technologies
Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Long Term Options for Energy Supply and Demand Side Management  

Science Journals Connector (OSTI)

A great deal has been said and written about future energy options and the need for responsibility and caution in protecting the world’s natural environment. Clearly, energy policies and environmental policies...

Tom Morron; Fred Denny

1993-01-01T23:59:59.000Z

2

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

No.4 Japan's Long-term Energy Demand and Supply Scenario towe projected Japan's energy demand/supply and energy-relatedcrises (to cut primary energy demand per GDP ( T P E S / G D

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

3

Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting  

Science Journals Connector (OSTI)

Abstract Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030.

F.J. Ardakani; M.M. Ardehali

2014-01-01T23:59:59.000Z

4

The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries  

SciTech Connect

This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita.

Galli, R. (Birkbeck Coll., London (United Kingdom) Univ. della Svizzera Italiana, Lugano (Switzerland). Facolta di Scienze Economiche)

1998-01-01T23:59:59.000Z

5

Global energy efficiency improvement in the long term: a demand- and supply-side perspective  

Science Journals Connector (OSTI)

This study assessed technical potentials for energy efficiency improvement in 2050 in a global ... The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and a...

Wina Graus; Eliane Blomen; Ernst Worrell

2011-08-01T23:59:59.000Z

6

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

to cut primary energy demand per GDP ( T P E S / G D P ) inhowever, primary energy supply per GDP decelerated a declineattention to primary energy supply per GDP, per capita GDP

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

7

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

Factors behind declining demand for oil include a shift fromfuel. In the industrial sector, oil demand will decrease dueto a falling demand for oil for chemical materials. In the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

8

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

ventilation) Introducing net zero energy buildings IncreasedPotential for Achieving Net Zero-Energy Buildings in the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

9

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

primary energy supply growth has gradually slowed down as energy conservation efforts have been enhanced with interest growing in global

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

10

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

As a result, primary energy consumption per GDP in 2050 willC 0 emissions per primary energy consumption in 2050 will bebehind energy consumption, we have paid attention to primary

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

11

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

of new energy sources including solar power will expandfor 60%, solar and other renewable energy sources for 20%,The share for solar and other new energy sources will expand

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

12

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

0 Solar energy • Nuclear CO2 recovery and storage (CCS)Solar C O Emissions after Reductiori I Nuclear I CO2 Capture and Storage (CCS) J energy

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

13

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

growth, population, crude oil prices, industrial materialsin 2050. The imported crude oil price assumption is based onas energy security amid crude oil price spikes. Under the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

14

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

coal for power generation is expected to remain stable due to its stable supply and economiccoal and L N G combustion within Japan. IEEJ Energy Journal Vol.4, No.4 Key Assumptions Economic

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

15

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

16

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

17

Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Long-Term Energy Models: Long-Term Energy Models: Modeling Energy Use and Energy Efficiency James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering Presentation to EIA 2008 Energy Conference 34 ! Years of Energy Information and Analysis Some Modeling History * Original Federal Energy Administration Demand Models in PIES and IEES (1974) - Residential, Industrial, Commercial Sectors * Econometric models * Dynamic specification * Allowed matrix of own-elasticities and cross- elasticities of demand for PIES and IEES - Electricity, Natural Gas, Oil, Coal - Designed to examine implications of changes in energy prices, taxes, price regulation - For analysis of "energy conservation" options, estimate of direct impacts used as reduction of

18

Long-Term Stewardship Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Study Long-Term Stewardship Study Long-Term Stewardship Study The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information associated with long-term stewardship. Long-Term Stewardship Study More Documents & Publications EIS-0226: Notice of Intent to Prepare an Environmental Impact Statement EIS-0226: Notice of Intent to Prepare an Environmental Impact Statement Long-Term Surveillance and Maintenance Program 2003 Report

19

Zambia-Long-Term Generation Expansion Study | Open Energy Information  

Open Energy Info (EERE)

Zambia-Long-Term Generation Expansion Study Zambia-Long-Term Generation Expansion Study Jump to: navigation, search Logo: Zambia-Long-Term Generation Expansion Study Name Zambia-Long-Term Generation Expansion Study Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Implementation, GHG inventory, Background analysis Resource Type Software/modeling tools, Lessons learned/best practices Website http://www.dis.anl.gov/pubs/61 Country Zambia UN Region Eastern Africa References Zambia-Long-Term Generation Expansion Study[1] Abstract The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. Overview "The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The

20

Long-Term Stewardship Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Study Long-Term Stewardship Study Long-Term Stewardship Study The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information associated with long-term stewardship. Long-Term Stewardship Study More Documents & Publications Long-Term Surveillance and Maintenance Program 2003 Report Site Transition Process upon Completion of the Cleanup Mission: Fact Sheet (September 2013) Chairs Meeting - April 2010

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Long-term Energy Plan (Ontario, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-term Energy Plan (Ontario, Canada) Long-term Energy Plan (Ontario, Canada) Long-term Energy Plan (Ontario, Canada) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 2007 State Ontario Program Type Climate Policies Industry Recruitment/Support Renewables Portfolio Standards and Goals Provider Ontario Ministry of Energy Currently, Ontario's electricity system has a capacity of approximately 35,000 MW of power. The Ontario Power Authority forecasts that more than 15,000 MW will need to be renewed, replaced or added by 2030.

22

Long-Term Stewardship Resource Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Long-Term Stewardship Resource Center Long-Term Stewardship Resource Center WELCOME TO THE DEPARTMENT OF ENERGY'S LONG-TERM STEWARDSHIP RESOURCE CENTER The purpose of this web site is to provide the public and the Department of Energy's (DOE) community with a variety of information resources for long-term stewardship (LTS) responsibilities. LTS includes the physical controls, institutions, information and other mechanisms needed to ensure protection of people and the environment at sites or portions of sites where DOE has completed or plans to complete "cleanup" (e.g., landfill closures, remedial actions, corrective actions, removal actions and facility stabilization) and where legacy contamination will remain hazardous. The DOE's Legacy Management (LM) procedures for DOE sites

23

Long Term Operation of Renewable Energy Building  

E-Print Network (OSTI)

As part of a renewable energy project, a building was designed and constructed to demonstrate several renewable energy technologies at the Wind Test Center of the Alternative Energy Institute (AEI). The systems are passive and active heating, solar...

Nelson, V.; Starcher, K.; Davis, D.

1996-01-01T23:59:59.000Z

24

Long-term electricity demand forecasting for power system planning using economic, demographic and climatic variables  

Science Journals Connector (OSTI)

The stochastic planning of power production overcomes the drawback of deterministic models by accounting for uncertainties in the parameters. Such planning accounts for demand uncertainties by using scenario sets and probability distributions. However, in previous literature, different scenarios were developed by either assigning arbitrary values or assuming certain percentages above or below a deterministic demand. Using forecasting techniques, reliable demand data can be obtained and inputted to the scenario set. This article focuses on the long-term forecasting of electricity demand using autoregressive, simple linear and multiple linear regression models. The resulting models using different forecasting techniques are compared through a number of statistical measures and the most accurate model was selected. Using Ontario's electricity demand as a case study, the annual energy, peak load and base load demand were forecasted up to the year 2025. In order to generate different scenarios, different ranges in the economic, demographic and climatic variables were used. [Received 16 October 2007; Revised 31 May 2008; Revised 25 October 2008; Accepted 1 November 2008

F. Chui; A. Elkamel; R. Surit; E. Croiset; P.L. Douglas

2009-01-01T23:59:59.000Z

25

Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning  

E-Print Network (OSTI)

management system demand-side management energy efficiencyresource plans and demand side management (DSM) program

Satchwell, Andrew

2014-01-01T23:59:59.000Z

26

Long-Term Stewardship Resource Center FAQS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Stewardship Resource Center FAQS Long-Term Stewardship Resource Center FAQS Long-Term Stewardship Resource Center FAQS IS DOE RESPONSIBLE FOR LONG-TERM STEWARDSHIP IF DOE TRANSFERS PROPERTY TO A PUBLIC ENTITY? By Order from the Secretary of Energy, The DOE, including the National Nuclear Security Administration must comply with Order 454.1: Use of Institutional Controls, www.directives.doe.gov/directives/0454.1-APolicy/view. The Order requires DOE to maintain institutional controls as long as necessary to perform their intended protective purposes and to seek sufficient funds. DOE must also determine whether responsibility for required institutional controls on transferred property can be maintained by subsequent owners consistent with applicable law. If this implementation responsibility cannot be

27

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

28

Integrating short-term demand response into long-term investment planning  

E-Print Network (OSTI)

discussions of the model in [79] and [80], and [81] for an application. 6 Developed by the Tennessee Valley Authority (TVA) and Oak Ridge National Laboratory (ORNL) of the United States of America [82]. EPRG No 1113 5 Planning (IRP) was developed.7... Integrating short-term demand response into long-term investment planning Cedric De Jonghe, Benjamin F. Hobbs and Ronnie Belmans 20 March 2011 CWPE 1132 & EPRG 1113 www.eprg.group.cam.ac.uk EP RG W...

De Jonghe, Cedric; Hobbs, Benjamin F.; Belmans, Ronnie

2011-03-20T23:59:59.000Z

29

South Africa Long Term Mitigation Scenarios | Open Energy Information  

Open Energy Info (EERE)

South Africa Long Term Mitigation Scenarios South Africa Long Term Mitigation Scenarios Jump to: navigation, search Tool Summary LAUNCH TOOL Name: South Africa Long Term Mitigation Scenarios Agency/Company /Organization: South Africa Department of Environment Affairs and Tourism Sector: Energy, Land Topics: Background analysis, Low emission development planning Resource Type: Case studies/examples Website: www.erc.uct.ac.za/Research/publications/07Scenario_team-LTMS_Scenarios Country: South Africa Southern Africa Coordinates: -30.559482°, 22.937506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-30.559482,"lon":22.937506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Analytical frameworks to incorporate demand response in long-term resource planning  

Science Journals Connector (OSTI)

Abstract Many utilities are obligated by state regulatory or legislative requirements to consider demand response (DR) as part of their resource planning process. There are several ways to incorporate DR into resource planning modeling and each has its advantages and disadvantages. We explore the current analytical frameworks for incorporating DR into long-term resource planning. We also consider whether current approaches accurately and realistically model DR resources in capacity expansion and production cost models and whether barriers exist to incorporating DR into resource planning models in a more robust fashion. We identify 10 specific recommendations for enhancing and expanding the current approaches.

Andrew Satchwell; Ryan Hledik

2014-01-01T23:59:59.000Z

31

Long-Term U.S. Energy Outlook: Different Perspectives  

U.S. Energy Information Administration (EIA) Indexed Site

Paul Holtberg, Moderator Paul Holtberg, Moderator April 26, 2011 | Washington, D.C. Long-Term U.S. Energy Outlook: Different Perspectives Speakers 2 Paul Holtberg, 2011 EIA Energy Conference Washington, D.C., April 26, 2011 * John Conti, Assistant Administrator of Energy Analysis, Energy Information Administration * Mark Finley, General Manager, Global Energy Markets and U.S. Economics, BP * Douglas Meade, Director of Research, INFORUM Forecasts/projections and uncertainty 3 Paul Holtberg, 2011 EIA Energy Conference Washington, D.C., April 26, 2011 * Forecast or projections? * Know your analyst * Tools * Uncertainty - Basic underlying trends (e.g., population growth, economic growth, social norms) - Technology (e.g., new technologies, improved technology, breakthroughs vs. evolutionary, new applications)

32

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials  

Science Journals Connector (OSTI)

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials ... †Department of Energy Engineering, School of

Pilgun Oh; Seungjun Myeong; Woongrae Cho; Min-Joon Lee; Minseong Ko; Hu Young Jeong; Jaephil Cho

2014-09-02T23:59:59.000Z

33

California Long Term Energy Efficiency Strategic Plan (CPUC, 2008) The Long Term Energy Efficiency Strategic Plan (Plan) was developed through a collaborative process  

E-Print Network (OSTI)

California Long Term Energy Efficiency Strategic Plan (CPUC, 2008) The Long Term Energy Efficiency together over an elevenmonth period. This Plan sets forth a roadmap for energy efficiency in California costeffective deep levels of energy efficiency improvements including building shell upgrades, highefficiency

34

Long-Term Stewardship Related Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication & Engagement » Long-Term Stewardship » Communication & Engagement » Long-Term Stewardship » Long-Term Stewardship Related Information Long-Term Stewardship Related Information DOE Orders & Policies DOE O 200.l - Information Management Program, 09/30/1996 DOE O 430.1B - Real Property Asset Management, 09/24/2003 DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, 11/29/2010 DOE O 458.1 Chg 2, Radiation Protection of the Public and the Environment, 06/06/2011 DOE O 430.1B Chg 2, Real Property and Asset Management, 09/24/2003 DOE P 454.1 - Use of Institutional Controls, 04/09/2003 and Guidance DOE Home Page for Guidance and Resources for LTS-related Requirements DOE Documents - Transition from Cleanup to LTS Site Transition Process upon Completion of the Cleanup Mission: Fact

35

China-Medium and Long Term Energy Conservation Plan | Open Energy  

Open Energy Info (EERE)

Medium and Long Term Energy Conservation Plan Medium and Long Term Energy Conservation Plan Jump to: navigation, search Name China-Medium and Long Term Energy Conservation Plan Agency/Company /Organization Government of China Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Implementation, Policies/deployment programs, Background analysis Resource Type Publications Website http://www.beconchina.org/ener Country China UN Region Eastern Asia References China EE[1] Overview "Energy conservation is a long-term strategic guideline in China's economic and social development, and an extremely urgent matter at present. The NDRC has therefore formulated the Plan of Energy Conservation, which aims to push the whole society towards energy conservation and energy intensity reduction, to remove energy bottlenecks, to build an energy

36

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

Fleet energy production and demand scenario (red) . . . . .Fleet energy production and demand scenario (red) . . . . .mass . . . . . . . . . . Fleet energy production and demand

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

37

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

38

Analytical Frameworks to Incorporate Demand Response in Long-term Resource Planning  

E-Print Network (OSTI)

Cost- effectiveness of Demand Response. ” Prepared for theon the National Action Plan on Demand Response, February.Role of Automated Demand Response. ” LBNL-4189E, November.

Satchwell, Andrew

2014-01-01T23:59:59.000Z

39

The hydrogen energy economy: its long-term role in greenhouse gas reduction  

E-Print Network (OSTI)

The hydrogen energy economy: its long-term role in greenhouse gas reduction Geoff Dutton, Abigail for Climate Change Research Technical Report 18 #12;The Hydrogen Energy Economy: its long term role 2005 This is the final report from Tyndall research project IT1.26 (The Hydrogen energy economy: its

Watson, Andrew

40

Long-Term Global Trade-Offs Related to Nuclear Energy  

SciTech Connect

An overall comparative assessment of different energy systems and their potential long-term role in contributing to a sustainable energy mix is examined through the use of a global, long-term Energy, Economics, Environment (E{sup 3}) model. This model is used to generate a set of surprise-free futures that encompass a range of economic potentialities. The focus of this study is nuclear energy (NE), and the range of possible futures embodies extrema of NE growth [a Basic Option (BO)] to an NE Phase Out (PO). These NE scenario extrema are expressed against a background that reflects E{sup 3} circumstances ranging from a Business-As-Usual (BAU) to one that is Ecologically Driven (ED), with the latter emphasizing price-induced reductions in greenhouse-gas (GHG) emissions associate with a mix of fossil energy sources. Hence, four ''views-of-the-future'' scenarios emerge to form the framework of this study: BAU/BO, BAU/PO, ED/BO, and ED/PO. Model results ranging from (regional and temporal) primary- and nuclear-energy demands, carbon-dioxide emissions, nuclear-material (plutonium) accumulations and attendant proliferation-risk implications, Gross National Product (GNP) impacts, and a range of technology requirements provide essential input to the subject assessment.

Krakowski, R.A.

1999-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The significant role of energy calculations in the success of long-term energy guarantees  

SciTech Connect

Situations can arise in long-term energy-savings guarantees in which changes, beyond those caused by the energy conservation measures, will happen to the building or its usage and affect building energy usage and demand. These changes typically occur after the time period that is used to establish a historical usage baseline for the guarantee. When this occurs, a calculated baseline adjustment can provide an effective method of accommodating the change while still retaining the basic tenants of the original energy guarantee. To fill their intended function, baseline adjustments must be accepted as being fair and equitable by both the owner and the performance contractor who is providing the energy guarantee. This is best achieved through energy calculations that logically and objectively apply the physical laws of HVAC to the specific characteristics of the situation. This paper presents examples of the types of situations encountered in four years of extensive performance contracting experience and the calculation approaches that are proving to be the most successful.

Willson, J.K. [LG and E Enertech, Inc., Louisville, KY (United States)

1998-12-31T23:59:59.000Z

42

Prospective Outlook on Long-Term Energy Systems (POLES) | Open Energy  

Open Energy Info (EERE)

Prospective Outlook on Long-Term Energy Systems (POLES) Prospective Outlook on Long-Term Energy Systems (POLES) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Prospective Outlook on Long-Term Energy Systems (POLES) Agency/Company /Organization: European Commission, Enerdata, in collaboration with LEPII Sector: Climate, Energy Focus Area: Renewable Energy, Greenhouse Gas Topics: Low emission development planning Resource Type: Software/modeling tools Complexity/Ease of Use: Advanced Website: www.enerdata.net/docssales/press-office-20th-world-energy-congress.pdf Cost: Free Related Tools Modular Applied General Equilibrium Tool (MAGNET) WorldScan SEAGA Intermediate Level Handbook

43

Coal investment and long-term supply and demand outlook for coal in the Asia-Pacific Region  

SciTech Connect

The theme of this symposium to look ahead almost a quarter century to 2020 gives one the freedom to speculate more than usual in projections for coal. It is important to attempt to take a long term look into the future of coal and energy, so that one can begin to prepare for major changes on the horizon. However, it would be a mistake to believe that the crystal ball for making long term projections is accurate for 2020. Hopefully it can suggest plausible changes that have long term strategic importance to Asia`s coal sector. This paper presents the medium scenario of long term projects of coal production, consumption, imports and exports in Asia. The second part of the paper examines the two major changes in Asia that could be most important to the long term role of coal. These include: (1) the impact of strict environmental legislation on energy and technology choices in Asia, and (2) the increased role of the private sector in all aspects of coal in Asia.

Johnson, C.J.

1997-12-31T23:59:59.000Z

44

The Energy Demand Forecasting System of the National Energy Board  

Science Journals Connector (OSTI)

This paper presents the National Energy Board’s long term energy demand forecasting model in its present state of ... results of recent research at the NEB. Energy demand forecasts developed with the aid of this....

R. A. Preece; L. B. Harsanyi; H. M. Webster

1980-01-01T23:59:59.000Z

45

Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Algal Biofuels Algal Biofuels: Long-Term Energy Benefits Driv e U.S. Research Algal biofuels can help build U.S. energy security as part of a broad national strategy to cultivate...

46

Sustaining Long-Term Energy Savings for a Major Texas State Agency Performance Contracting Initiative  

E-Print Network (OSTI)

SUSTAINING LONG-TERM ENERGY SAVINGS FOR A MAJOR TEXAS STATE AGENCY PERFORMANCE CONTRACTING INITIATIVE Tarek Bou-Saada, Energy Manager Texas Health and Human Services Commission Charles Culp, Ph.D., P.E., FASHRAE, LEED-AP Dept. of Architecture... 1 SUSTAINING LONG-TERM ENERGY SAVINGS FOR A MAJOR TEXAS STATE AGENCY PERFORMANCE CONTRACTING INITIATIVE Tarek Bou-Saada Energy Manager Texas Health and Human Services Commission Austin, TX Charles Culp, Ph.D., P.E. Associate...

Culp, C.; Bou-Saada, T. E.

47

Impacts of high energy prices on long-term energy-economic scenarios for Germany  

E-Print Network (OSTI)

Impacts of high energy prices on long-term energy-economic scenarios for Germany Volker Krey1 , Dag and Technology Evaluation (IEF-STE), 52425 Jülich, Germany 2) DIW Berlin, Königin-Luise-Str. 5, 14195 Berlin, Germany 3) �ko-Institut, Novalisstr. 10, 10115 Berlin, Germany Abstract Prices of oil and other fossil

48

Long-term energy consumptions of urban transportation: A prospective...  

Open Energy Info (EERE)

Bangalore can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of...

49

What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's New for the Department of Energy's (DOE) Long-Term What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) On 11 February 2011, the Department replaced its DOE Order 5400.5 Radiation Protection of the Public and the Environment, Chg 2, dated 1-7-93 except for Chapter III (-Derived Concentration Guides for Air and Water‖) and Figure IV-1 (-Surface Contamination Guidelines‖) with a new DOE Order 458.1 Radiation Protection and the Environment. In DOE Order 458.1, DOE establishes more requirements to protect the public and the environment against undue risk from radiation (including long-term stewardship requirements) associated with radiological activities conducted under the control of the Department of Energy (DOE) pursuant to the Atomic

50

Application of Inverse Models for Long-Term-Energy-Monitoring in the German Enbau: Monitor Project  

E-Print Network (OSTI)

. a detailed monitoring takes place during the first two years of operation. after this period a long-term energy monitoring was established in order to evaluate the sustainability of the innovative designs and systems. fraunhofer ise defined enhanced...

Neumann, C.; Herkel, S.; Lohnert, G.; Voss, K.; Wagner, A.

2006-01-01T23:59:59.000Z

51

Development and Update of Models for Long-Term Energy and GHG...  

Office of Environmental Management (EM)

Update of Models for Long-Term Energy and GHG Impact Evaluation 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

52

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...pel-let equal to the laser energy incident on the...handle tens of thousands of laser pulses of dev-astating...instru-mentation and control technology, ener-gy...neces-sary (20). In the laser approach, convert-ing...solar-thermal-electric conver-sion, wind, hydropower, and combus-tion...

John P. Holdren

1978-04-14T23:59:59.000Z

53

China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment  

SciTech Connect

We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

2012-01-13T23:59:59.000Z

54

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

1993-05-01T23:59:59.000Z

55

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network (OSTI)

A long-term investment planning model for mixed energy infrastructure integrated with renewable energy Jinxu Ding and Arun Somani Department of Electrical and Computer Engineering Iowa State University Ames, IA 50011 Email: {jxding,arun}@iastate.edu Abstract--The current energy infrastructure heavily

56

What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS) https://www.directives.doe.gov/directives/0458.1-BOrder/view On 11 February 2011, the Department replaced its DOE Order 5400.5 Radiation Protection of the Public and the Environment, Chg 2, dated 1-7-93 except for Chapter III (-Derived Concentration Guides for Air and Water‖) and Figure IV-1 (-Surface Contamination Guidelines‖) with a new DOE Order 458.1 Radiation Protection and the Environment. In DOE Order 458.1, DOE establishes more requirements to protect the public and the environment against undue risk from radiation (including long-term stewardship requirements) associated with radiological activities conducted under the control of the Department of Energy (DOE) pursuant to

57

Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications  

E-Print Network (OSTI)

1 Comparison of closed and open thermochemical processes, for long-term thermal energy storage-term thermal storage, second law analysis * Corresponding author: E-mail: mazet@univ-perp.fr Nomenclature c Energy Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France b Université de Perpignan Via

Paris-Sud XI, Université de

58

Addressing Global Warming, Air Pollution Health Damage, and Long-Term Energy Needs Simultaneously  

E-Print Network (OSTI)

Addressing Global Warming, Air Pollution Health Damage, and Long-Term Energy Needs Simultaneously that will reduce air pollution and address climate change. Data, computer model results, and new emission air-pollution-related deaths and millions of cases of asthma and respiratory disease each year

Patzek, Tadeusz W.

59

Implications of Long-Term Trends in the Energy Efficiency of Computing and  

NLE Websites -- All DOE Office Websites (Extended Search)

Implications of Long-Term Trends in the Energy Efficiency of Computing and Implications of Long-Term Trends in the Energy Efficiency of Computing and Communications Speaker(s): Jonathan Koomey Date: November 14, 2012 - 4:00pm Location: 90-3122 Seminar Host/Point of Contact: Alan Meier Long-standing trends in the energy efficiency of computing promise an explosion in data collected from mobile sensors, controls, and portable computing devices. This talk will describe the research that revealed those efficiency trends and the implications of those trends for our ability to understand and respond to the world around us. The talk will also summarize work in progress characterizing related trends in mobile communications, sensors, batteries, and energy harvesting. A recording of this talk will be available on the UCB Energy and Resources

60

POST-KYOTO POLICY IMPLICATIONS ON THE ENERGY SYSTEM: A TIAM-FR LONG-TERM PLANNING EXERCISE  

E-Print Network (OSTI)

marginal costs, the primary energy consumption and the energy mix. This paper compares global efforts of CO. Keywords CO2 mitigation targets, global energy system, long-term modelling Acknowledgement This researchPOST-KYOTO POLICY IMPLICATIONS ON THE ENERGY SYSTEM: A TIAM-FR LONG-TERM PLANNING EXERCISE Sandrine

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Long-Term Surveillance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Surveillance Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report September 2013 LMS/ESL/S10692 ESL-RPT-2013-03 This page intentionally left blank LMS/ESL/S10692 ESL-RPT-2013-03 Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report September 2013 This page intentionally left blank U.S. Department of Energy Long-Term Surveillance Operations and Maintenance FY 2013 Year-End Summary Report September 2013 Doc. No. S10692 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction ............................................................................................................................1

62

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network (OSTI)

and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

63

China End-Use Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

64

Global energy demand to 2060  

SciTech Connect

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

65

Long-Term Security of Supply Assessment under Open Electricity Market - Energy Policy Impacts in Slovenia  

Science Journals Connector (OSTI)

Following the steady demand growth and diminishing generation capacity margin due to lack of generation investment, Slovenia is already importing almost a quarter of electricity needed to cover its demand. Coupled with the deregulated electricity market ... Keywords: security of supply, optimal policy measures, energy balance, ELMASplus, generation expansion planning

Iztok Zlatar; Borut Kozan; Andrej F. Gubina

2008-11-01T23:59:59.000Z

66

Study of Long-Term Transport Action Plan for ASEAN | Open Energy  

Open Energy Info (EERE)

Long-Term Transport Action Plan for ASEAN Long-Term Transport Action Plan for ASEAN Jump to: navigation, search Name Study of Long-Term Transport Action Plan for ASEAN Agency/Company /Organization Association of Southeast Asian Nations (ASEAN), Institution for Transport Policy Studies (ITPS), Clean Air Asia, Transport Research Laboratory (TRL), Mizuho Information & Research Institute (MHIR) Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

67

Energy demand simulation for East European countries  

Science Journals Connector (OSTI)

The analysis and created statistical models of energy consumption tendencies in the European Union (EU25), including new countries in transition, are presented. The EU15 market economy countries and countries in transition are classified into six clusters by relative indicators of Gross Domestic Product (GDP/P) and energy demand (W/P) per capita. The specified statistical models of energy intensity W/GDP non-linear stochastic tendencies have been discovered with respect to the clusters of classified countries. The new energy demand simulation models have been developed for the demand management in timeâ??territory hierarchy in various scenarios of short-term and long-term perspective on the basis of comparative analysis methodology. The non-linear statistical models were modified to GDP, W/P and electricity (E/P) final consumption long-term forecasts for new associated East European countries and, as an example, for the Baltic Countries, including Lithuania.

Jonas Algirdas Kugelevicius; Algirdas Kuprys; Jonas Kugelevicius

2007-01-01T23:59:59.000Z

68

eShare: A Capacitor-Driven Energy Storage and Sharing Network for Long-Term Operation  

E-Print Network (OSTI)

eShare: A Capacitor-Driven Energy Storage and Sharing Network for Long-Term Operation Ting Zhu, Yu, Twin Cities {tzhu, yugu, tianhe, zhzhang}@cs.umn.edu Abstract The ability to move energy around makes it feasible to build distributed energy storage systems that can robustly ex- tend the lifetime of networked

Zhang, Zhi-Li

69

Long-Term Shifts in Life-Cycle Energy Efficiency and Carbon Intensity  

Science Journals Connector (OSTI)

System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. ... Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. ... Schipper, L.; Saenger, C.; Sudardshan, A.Transport and carbon emissions in the United States: The Long View Energies 2011, 4, 563– 581 ...

Sonia Yeh; Gouri Shankar Mishra; Geoff Morrison; Jacob Teter; Raul Quiceno; Kenneth Gillingham; Xavier Riera-Palou

2013-02-14T23:59:59.000Z

70

Evaluation of the long-term power generation mix: The case study of South Korea's energy policy  

Science Journals Connector (OSTI)

Abstract This paper presents a practical portfolio model for the long-term power generation mix problem. The proposed model optimizes the power generation mix by striking a trade-off between the expected cost of power generation and its variability. We use Monte Carlo simulation techniques to consider the uncertainty associated with future electricity demand, fuel prices and their correlations, and the capital costs of power plants. Unlike in the case of conventional power generation mix models, we employ \\{CVaR\\} (Conditional Value-at-Risk) in designing variability to consider events that are rare but enormously expensive. A comprehensive analysis on South Korea's generation policy using the portfolio model shows that a large annual cost is additionally charged to substitute a portion of nuclear energy with other alternatives. Nonetheless, if Korea has to reduce its dependency on nuclear energy because of undermined social receptivity from the Fukushima disaster, it turns out that LNG or coal could be a secure candidate from an economic perspective.

Daiki Min; Jaewoo Chung

2013-01-01T23:59:59.000Z

71

Energy efficiency, resilience to future climates and long-term sustainability: the role of the built environment  

Science Journals Connector (OSTI)

...energy, and carbon capture and storage. Someone bidding to research...heat exchangers can reduce waste when air and water leave buildings...infrastructure of energy, water, waste and other supplies and disposals...resilience to future climates and long-term sustainability: the role of...

2010-01-01T23:59:59.000Z

72

Residential energy use: an international perspective on long-term trends in Denmark, Norway and Sweden  

Science Journals Connector (OSTI)

This paper examines residential energy use in the Scandinavian countries: Denmark, Norway and Sweden, over the period 1973–1999. The paper uses a decomposition approach to investigate differences in residential energy demand structure and end-use intensities and discusses both differences in absolute levels of energy use and differences over time. Comparisons are also made to other countries that have been analysed in the IEA energy efficiency indicator project. The analysis shows that, in contrast to Denmark and Sweden, Norway saw a growth in total residential energy use between 1973 and 1999. This can be partially explained by the fact that Norway started from a lower per capita income level in the early 1970s but has since then enjoyed a rapid income growth that drove up house area and consequently put a pressure on energy use. But the analysis also shows that Denmark and Sweden achieved significant reductions of residential energy intensities between 1973 and 1990, while the reductions in Norway were negligible. After 1990, the picture changed; there was a strong decline in residential energy intensities in Norway and a high rate of energy savings compared to most other countries analysed by the IEA, while energy savings in Denmark and Sweden more or less came to a halt.

Fridtjof Unander; Ingunn Ettestřl; Mike Ting; Lee Schipper

2004-01-01T23:59:59.000Z

73

Energy technologies and their impact on demand  

SciTech Connect

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

74

Long Term Innovative Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Hydrogen and DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop Bryan Pivovar With Input/Feedback from Rod Borup (LANL), Debbie Myers (ANL), DOE and others as noted in presentation Lakewood, CO March 16, 2010 Long Term Innovative Technologies National Renewable Energy Laboratory Innovation for Our Energy Future Innovative/Long Term and RELEVANT Mission of DOE Mission of EERE (Applied Program) Mission of HFCT To enable the widespread commercialization of hydrogen and fuel cells in diverse sectors of the economy-with emphasis on applications that will most effectively strengthen the nation's energy security and improve our stewardship of the environment-through research, development, and demonstration of critical improvements in the technologies, and through diverse activities to overcome

75

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

76

Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNITED STATES DEPARTMENT OF UNITED STATES DEPARTMENT OF ENERGY Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On- going Mission Sites February 2012 Introduction Long-term stewardship (LTS) includes the physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where the U.S. Department of Energy (DOE) has completed or plans to complete cleanup (e.g., landfill closures, remedial actions, removal actions, and facility stabilization). This concept includes land-use controls, information management, monitoring and maintenance. DOE has ongoing mission areas related to advancing energy and nuclear security, promoting scientific discovery and innovation, and ensuring environmental responsibility

77

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

78

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

79

Energy Demand Staff Scientist  

E-Print Network (OSTI)

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

80

LONG-TERM GOAL The long-term goal of this research project is to determine if energy reflectance measurements can  

E-Print Network (OSTI)

of newborn hearing screening and when middle-ear fluid is suspected. Energy reflectance measures provide al. 2008). Here, we present measurements of energy reflectance on normal-hearing, healthy newborn with permission from Navid Shahnaz.) Keefe et al. (2000) reported energy reflectance (ER) measurements from

Voss, Susan E.

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Long-Term Stewardship Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Long Term Stewardship Office of Long Term Stewardship LONG-TERM STEWARDSHIP STUDY Volume I - Report Prepared to comply with the terms of a settlement agreement: Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998). Final Study October 2001 - i - Foreword The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information associated with long-term stewardship. The Study

82

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

83

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

84

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

A Brief History of Nuclear Energy . . . . . . . . NuclearBrief History of Nuclear Energy The history of nuclear powerRisk The history of nuclear energy to date reflects

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

85

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

5.3.2 Nuclear Energy System Model . . . . . . . . . . .Brief History of Nuclear Energy . . . . . . . . Nuclear FuelModeling . . . . . . . . . . . . . 5.3 Nuclear Energy System

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

86

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

87

Energy Department Issues Report to Congress on Long-Term Stewardship...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases Energy Department Issues Report to Congress on ... Energy Department Issues Report to...

88

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

report, National Nuclear Security Administration, Departmentproliferation and security risks of nuclear energy systemsthe proliferation and security risk posed by nuclear energy

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

89

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

Ethics, Implementa- tion, Uncertainties. Nuclear Energy Agency, Organization for Economic Co- Operation and Development,

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

90

The Solar Energy Institute: A long-term investment in America's youth  

SciTech Connect

Unlike students of a generation ago, today's high school students have had limited personal experience with the energy issues that influence their everyday lives. They have no personal knowledge of the Arab Oil Embargo or the long lines at gas pumps that students in the 1970s encountered. Unlike their counterparts of the 1980s, who demonstrated against nuclear power plant construction projects, today's students have had very little exposure to energy debates of any national or international consequence. What's more, they have only vague memories of the Persian Gulf War and the fight over energy supplies. Fearing that the absence of crucial, real-life experiences has negatively impacted the energy literacy of today's students, numerous entities have implemented programs designed to introduce young people to a cornucopia of diverse energy issues that affect every aspect of daily life. As part of this educational movement, the Arizona Department of Commerce Energy Office recognized the fact that young people face an increasingly uncertain energy picture and, as such, one must provide them an education that will allow them to make informed energy decisions in the future. To this end, the Energy Office founded the Solar Energy Institute. What the author has gathered from his two years of experience operating the Solar Energy Institute is that the energy IQ of America's youth, specifically their solar energy IQ, is deficient. The other conclusion he has been able to draw from the program of study is that this summer camp is having a positive impact on students' energy literacy as measured by test scores and a follow-up survey of participants.

Arwood, J.W.

1999-07-01T23:59:59.000Z

91

The Long-Term Economic Impacts of Implementing the Energy Security Leadership Council's  

E-Print Network (OSTI)

. First, higher real GDP and income levels mean that the consumption of energy and oil will be higher, all flows in the economy, such as energy use, with macroeconomic aggregates, such as GDP, consumption, the LIFT model was used to simulate the impact of its policies compared to a LIFT baseline projection

Hill, Wendell T.

92

Achieving A Long Term Business Impact by Improving the Energy Effectiveness and Reliability of Electric Motors  

E-Print Network (OSTI)

capability. The Corporate Motor Technology Team (CMTT) conceived and led a program to optimize the cost effectiveness and reliability of new motors and developed criteria to determine whether to repair or replace motors that fail. The higher energy efficiency...

Whelan, C. D.

93

A Solar Energy System for Long-Term Deployment of AUVs David A. Patch  

E-Print Network (OSTI)

feasible, is politically, an unsatisfactory solution. Both aluminum- air and zinc-air semi-fuel cells have). The AUVs developed, therefore, were not as constrained to meet the low cost requirements necessary internal systems vs. energy available for mission specific subsystems. If mission endurance exceeds

94

Technology learning for renewable energy: Implications for South Africa's long-term mitigation scenarios  

Science Journals Connector (OSTI)

Technology learning can make a significant difference to renewable energy as a mitigation option in South Africa's electricity sector. This article considers scenarios implemented in a Markal energy model used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy technologies decline, considers the theoretical background and how this can be implemented in modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050, respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario, instead of imposing a cost of Rand 52/t CO2-eq (at 10% discount rate), reduced costs due to technology learning turn renewables into negative cost option. Our results show that technology learning flips the costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline from R92 per ton to R3. Including assumptions about technology learning turns renewable from a higher-cost mitigation option to one close to zero. We conclude that a future world in which global investment in renewables drives down unit costs makes it a much more cost-effective and sustainable mitigation option in South Africa.

Harald Winkler; Alison Hughes; Mary Haw

2009-01-01T23:59:59.000Z

95

Long-term policies needed to address energy use and price volatility  

SciTech Connect

This paper reports on the gasoline price spike after the Exxon Valdez oil spill and the home heating fuel price increases last winter, which make the third sharp increase in the price of petroleum products that US citizens have experienced in the past 18 months. Although the United States is in a better position to deal with these price increases than in the 1970s because of increased energy efficiency and the existence of the Strategic Petroleum Reserve (SPR), concerns remain about recent trends showing increasing oil consumption, increased reliance on imports from the Persian Gulf, and the SPR's role in reducing the impact of these incidents.

Not Available

1990-09-01T23:59:59.000Z

96

Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site  

SciTech Connect

This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

None

2008-09-01T23:59:59.000Z

97

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

98

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

99

Summary, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary, Long-Term Nuclear Technology Research and Development Plan Summary, Long-Term Nuclear Technology Research and Development Plan In 1998, DOE established the Nuclear Energy...

100

University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle  

SciTech Connect

The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. [Minnesota Geological Survey, St. Paul, MN (United States)

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle  

SciTech Connect

The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. (Minnesota Geological Survey, St. Paul, MN (United States))

1991-12-01T23:59:59.000Z

102

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

103

An ECG patch combining a customized ultra-low-power ECG SoC with Bluetooth low energy for long term ambulatory monitoring  

Science Journals Connector (OSTI)

This paper presents the development of an ECG patch aiming at long term patient monitoring. The use of the recently standardized Bluetooth Low Energy (BLE) technology, together with a customized ultra-low-power ECG System on Chip (ECG SoC). including ... Keywords: Bluetooth low energy, ECG patch, mHealth

Marco Altini; Salvatore Polito; Julien Penders; Hyejung Kim; Nick Van Helleputte; Sunyoung Kim; Firat Yazicioglu

2011-10-01T23:59:59.000Z

104

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

105

The impact of future energy demand on renewable energy production – Case of Norway  

Science Journals Connector (OSTI)

Abstract Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export.

Eva Rosenberg; Arne Lind; Kari Aamodt Espegren

2013-01-01T23:59:59.000Z

106

CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term  

SciTech Connect

Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

Sathaye, J.; Goldman, N. (eds.)

1991-07-01T23:59:59.000Z

107

CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term  

SciTech Connect

Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and Co{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted for China, India, Indonesia and South Korea in Asia.

Sathaye, J.; Goldman, N. (eds.)

1991-07-01T23:59:59.000Z

108

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik…

2013-01-01T23:59:59.000Z

109

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

110

Long-Term Surveillance Plan...  

NLE Websites -- All DOE Office Websites (Extended Search)

AL/62350-235 AL/62350-235 REV. 1 LONG-TERM SURVEILLANCE PLAN FOR THE ESTES GULCH DISPOSAL SITE NEAR RIFLE, COLORADO November 1997 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (615) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 Long-Term Surveillance Plan for the Estes Gulch Disposal Site Near Rifle... http://lts1.lm.doe.gov/documents/rfl/ltsp.html 1 of 25 5/20/2009 1:38 PM Prepared for U.S. Department of Energy Environmental Restoration Division UMTRA Project Team Albuquerque, New Mexico Prepared by Jacobs Engineering Group Inc. Albuquerque, New Mexico

111

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

112

Energy Demand and Supply  

Science Journals Connector (OSTI)

The world consumption of primary energy has been on the increase ever since the Industrial Revolution . The energy consumption in 1860 is estimated to have ... particularly marked since WWII when the sources of primary

Kimio Uno

1995-01-01T23:59:59.000Z

113

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

114

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

115

What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System  

Science Journals Connector (OSTI)

......Rossello-Busquet and Soler, 2012). In future, by combining concepts from consumption feedback, home automation and demand response research (LaMarche et al., 2011), HEMSs are expected to become two-way solutions allowing for both: monitoring......

Tobias Schwartz; Gunnar Stevens; Timo Jakobi; Sebastian Denef; Leonardo Ramirez; Volker Wulf; Dave Randall

2014-04-01T23:59:59.000Z

116

World Energy Use — Trends in Demand  

Science Journals Connector (OSTI)

In order to provide adequate energy supplies in the future, trends in energy demand must be evaluated and projections of future demand developed. World energy use is far from static, and an understanding of the demand

Randy Hudson

1996-01-01T23:59:59.000Z

117

Demand Response and Energy Efficiency  

E-Print Network (OSTI)

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5..., 2009 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

118

Vehicle Technologies Office: Long-Term Exploratory Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Exploratory Long-Term Exploratory Research to someone by E-mail Share Vehicle Technologies Office: Long-Term Exploratory Research on Facebook Tweet about Vehicle Technologies Office: Long-Term Exploratory Research on Twitter Bookmark Vehicle Technologies Office: Long-Term Exploratory Research on Google Bookmark Vehicle Technologies Office: Long-Term Exploratory Research on Delicious Rank Vehicle Technologies Office: Long-Term Exploratory Research on Digg Find More places to share Vehicle Technologies Office: Long-Term Exploratory Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines

119

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

120

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Long Term Innovative Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Department of Energy's goals of reducing greenhouse gas emissions, petroleum use, and air pollution, and building a more diverse, secure, and efficient energy infrastructure....

122

What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System  

Science Journals Connector (OSTI)

......to seven households over a period...edition of the Energy Efficiency Action Plan...Consumption. Energy Efficiency in Household Appliances...Council on energy efficiency and repealing...Standards-Households in the informations......

Tobias Schwartz; Gunnar Stevens; Timo Jakobi; Sebastian Denef; Leonardo Ramirez; Volker Wulf; Dave Randall

2014-04-01T23:59:59.000Z

123

Long-Term Surveillance Plan  

Office of Legacy Management (LM)

~- ~- 1 .. I I . I I I ' I I I I I t I ' 1 .. ~ * -. . * * , . -. * . - l' ** ... * . DOE/Al/62350-60F ~--- - · ---,~REV. 1 CONTROLLED COPY NO. United States Department of Energy LONG-TERM SURVEILLANCE PLAN fOR THE SHIPROCK DISPOSAL SITE; SHIPROCK, NEW MEXICO September 1994 Uranium Mill Tailings Remedial Action Project INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Available in paper copy and microfiche. Number of pages in this report: 1 1 3 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (615) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce

124

Energy Demand-Energy Supplies  

Science Journals Connector (OSTI)

Just a few years after the U.S. celebrated its first centennial it passed another milestone. In about 1885, coal replaced wood as the nation’s primary energy source. Wood, properly managed, is a renewable reso...

V. P. Kenney; J. W. Lucey

1985-01-01T23:59:59.000Z

125

What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System  

Science Journals Connector (OSTI)

......Figure 10. Providing Energy Feedback on multiple...checked their current energy consumption before...commercial breaks. The integration of the HEMS into...important factor for sustainable use. To an extent...provides significant challenge to householders...monitoring of their energy usage in situations......

Tobias Schwartz; Gunnar Stevens; Timo Jakobi; Sebastian Denef; Leonardo Ramirez; Volker Wulf; Dave Randall

2014-04-01T23:59:59.000Z

126

What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System  

Science Journals Connector (OSTI)

......usage at home. The need...of their energy use from...estimated their consumption based on...the HEMS on average every 5...domestic energy consumption provided...we see an average electricity...with the consumption in the year...domestic energy consumption...monitoring in the home, but also......

Tobias Schwartz; Gunnar Stevens; Timo Jakobi; Sebastian Denef; Leonardo Ramirez; Volker Wulf; Dave Randall

2014-04-01T23:59:59.000Z

127

Long-Term Environmental Stewardship  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Environmental Stewardship Long-Term Environmental Stewardship The Long-Term Environmental Stewardship Program ensures protection of human health and the environment, following site remediations. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Continuing environmental commitment Long-term stewardship activities are designed to prevent exposures to residual contamination and waste including groundwater monitoring ongoing pump-and-treatment activities maintenance of barriers and other contaminant structures periodic inspections control of site access posted signs Long-term environmental stewardship (LTES) data access DOE requires that data used to make decisions concerning LTES conditions be readily accessible to the public. To accomplish this, sample analysis data

128

Demand Response - Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's...

129

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

130

Planning for the Transition to Long-Term Stewardship at Three U.S. Department of Energy-Chicago Operations Office Facilities  

SciTech Connect

This paper describes a pilot study that resulted in the generation of draft planning documents for the upcoming transition from remediation construction to long-term stewardship at three national laboratories managed by the U.S. Department of Energy (DOE)-Chicago Operations Office (CH). The remediation construction work at these facilities is being completed under the DOE's Office of Environmental Management (EM) Program. Once the remediation is complete, the responsibility for long-term stewardship (LTS) of the closed waste sites is expected to be transferred to the DOE organization responsible for managing each of the three facilities (i.e., the site landlord). To prepare for this transfer, an extensive planning effort is required. This pilot study utilized the DOE guidance in effect at the time to (1) develop a series of documents identifying applicable requirements that the LTS Programs will need to satisfy, issues that need to be resolved before the transfer can proceed, and criteria to be used to determine when active remediation is complete and a given site is ready for transfer to the LTS Program; (2) examine alternate structures for possible LTS Programs; and (3) develop draft LTS Implementation Plans. This advanced planning effort yielded a number of observations and lessons learned that are applicable to any facility approaching the end of its remediation construction phase.

Moos, L. P.; Ditmars, J. D.; Heston, S. L.; Granzen, G. A.; Holzemer, M. J.; Bennett, D. B.

2003-02-26T23:59:59.000Z

131

Energy demand and population changes  

SciTech Connect

Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

Allen, E.L.; Edmonds, J.A.

1980-12-01T23:59:59.000Z

132

What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System  

Science Journals Connector (OSTI)

......Indeed, a scan of publications on smart grid and HEMS technologies (Massoud Amin...DEUTSCHE NORMUNGSROADMAP E-ENERGY-SMART GRID. (2010). DiSalvo C. , Sengers...S. , Wollenberg B. F. Toward a smart grid: power delivery for the 21st century......

Tobias Schwartz; Gunnar Stevens; Timo Jakobi; Sebastian Denef; Leonardo Ramirez; Volker Wulf; Dave Randall

2014-04-01T23:59:59.000Z

133

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network (OSTI)

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

134

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

135

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

136

Energy Demand Analysis at a Disaggregated Level  

Science Journals Connector (OSTI)

The purpose of this chapter is to consider energy demand at the fuel level or at the ... . This chapter first presents the disaggregation of energy demand, discusses the information issues and introduces framewor...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

137

Seasonal temperature variations and energy demand  

Science Journals Connector (OSTI)

This paper presents an empirical study of the relationship between residential energy demand and temperature. Unlike previous studies in this ... different regions and to the contrasting effects on energy demand ...

Enrica De Cian; Elisa Lanzi; Roberto Roson

2013-02-01T23:59:59.000Z

138

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

Further improvement of coal and LNG-fired power generationdegree-Celsius coal-IGCC and LNG-GTCC The same as for theWind Biomass, elc. I Oil-fired I LNG-lired II Coal-fired Si

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

139

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

As a result, Japan's nuclear power generation capacity isnuclear power is assumed to account for 60% of electricity generation, Japanprojects Japan Atomic Power Co. 's Tsuruga-1 nuclear plant (

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

140

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

of 1,500-degree-Celsius combined cycle plants. Oil thermalintegrated gasification combined cycle) and other highlyof 1,700-degree-Celsius combined cycle generation systems.

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

Consumption of coking coal mainly for steelmaking will dropelectricity and town gas. Coking coal consumption mainly for

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

142

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network (OSTI)

Research, "Household Projections for Japan (nationwideJapan is expected to start the introduction of fixed household

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

143

Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030  

SciTech Connect

The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

Eisenberg, Joel Fred [ORNL

2008-01-01T23:59:59.000Z

144

Wind energy, with an annual growth of about 30%, represents one of the fastest growing renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance  

E-Print Network (OSTI)

renewable energy sources. Continuous long-term monitoring of wind turbines can greatly reduce maintenance the profitability of wind turbines. A decentralized wind turbine monitoring system has been developed and installed on a 500 kW wind turbine in Germany. During its operation, temporary malfunctions of the installed sensing

Stanford University

145

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

ED2, September. CEC (2005b) Energy demand forecast methodsCalifornia Baseline Energy Demands to 2050 for Advancedof a baseline scenario for energy demand in California for a

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

146

Long Term World Oil Supply  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: The following pages summarize a recent EIA presentation on estimates of the world conventional oil resource base and the year when production from it will peak and then begin to decline. A version of this presentation was given by former EIA Administrator Jay Hakes to the April 18, 2000 meeting of the American Association of Petroleum Geologists in New Orleans, Louisiana. Specific information about this presentation may be obtained from John Wood (john.wood@eia.doe.gov), Gary Long (gary.long@eia.doe.gov) or David Morehouse (david.morehouse@eia.doe.gov). Long Term World Oil Supply http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld001.htm [8/10/2000 4:56:23 PM] Slide 2 of 20 http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld002.htm [8/10/2000 4:56:24 PM]

147

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

148

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

149

SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY  

Energy.gov (U.S. Department of Energy (DOE))

As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

150

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

Piette, Mary Ann

2009-01-01T23:59:59.000Z

151

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

152

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

153

Harmony Search Algorithm for Transport Energy Demand Modeling  

Science Journals Connector (OSTI)

The transport sector is one of the major consumers of energy production throughout the world. Thus, the estimation of medium and long-term energy consumption based on socio-economic and transport related indic...

Halim Ceylan; Huseyin Ceylan

2009-01-01T23:59:59.000Z

154

Long Term Care | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

the Federal government and NNSA's commitment to its employees. Long Term Care icon Federal employees can elect to participate in the Federal Long Term Care Insurance...

155

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

156

CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 3, China, India, Indonesia, and South Korea  

SciTech Connect

Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and Co{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted for China, India, Indonesia and South Korea in Asia.

Sathaye, J.; Goldman, N. [eds.

1991-07-01T23:59:59.000Z

157

Energy-Efficient Dry-Type Distribution Transformers: New Opportunities to Cut Energy Bills and Lock-in Long-Term Energy Savings  

E-Print Network (OSTI)

opportunity in energy-efficient transformers has become more widely acknowledged, an informal collaborative effort has formed to further develop the market for energy-efficient transformers. This collaborative involves representatives ofutilities, federal... opportunity in energy-efficient transformers has become more widely acknowledged, an informal collaborative effort has formed to further develop the market for energy-efficient transformers. This collaborative involves representatives ofutilities, federal...

deLaski, A.; Suozzo, M.

158

Coordination of Energy Efficiency and Demand Response  

SciTech Connect

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

159

Behavioral Economics Applied to Energy Demand Analysis: A Foundation  

U.S. Energy Information Administration (EIA) Indexed Site

the U.S., to project the production, imports, conversion, consumption, and prices of energy over a long-term (30-year) forecast horizon, subject to assumptions on macroeconomic...

160

Global Energy: Supply, Demand, Consequences, Opportunities  

SciTech Connect

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2008-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

162

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

163

Drivers of Future Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

trends - Household income migration urbanization * Policy: China Energy Outlook - Air pollution - Climate change 4 (1) Industrial energy intensity: The energy intensity of...

164

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

165

Real-Time Demand Side Energy Management  

E-Print Network (OSTI)

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology Espańa, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

166

Driving Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

how they should invest in energy efficiency for their homes and buildings. Effective marketing can address this issue. By providing relevant information in compelling ways, energy...

167

Industry continues to cut energy demand  

Science Journals Connector (OSTI)

The U.S.'s 10 most energy-intensive industries are continuing to reduce their energy demand, with the chemical industry emerging as a leader in industrial energy conservation, says the Department of Energy in a report to Congress.The chemical industry is ...

1981-01-12T23:59:59.000Z

168

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

169

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

170

Long-Term Engineered Cap Performance  

Energy.gov (U.S. Department of Energy (DOE))

Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance

171

Long-Term Management and Storage of Elemental Mercury | Department...  

Office of Environmental Management (EM)

Mercury Export Ban Act of 2008 (MEBA) (Public Law No. 110-414) requires the Department of Energy (DOE) to establish a facility for the long-term management and storage of elemental...

172

World population and energy demand growth: the potential role of fusion energy in an efficient world  

Science Journals Connector (OSTI)

...substantial amounts of nuclear and solar energy to meet their long-term needs...substantial amounts of nuclear and solar energy to meet their long-term needs...use must be made of nuclear and solar energies. Both sources have the advantage...

1999-01-01T23:59:59.000Z

173

Energy demand and supply, energy policies, and energy security in the Republic of Korea  

Science Journals Connector (OSTI)

The Republic of Korea (ROK) has enjoyed rapid economic growth and development over the last 30 years. Rapid increases in energy use—especially petroleum, natural gas, and electricity, and especially in the industrial and transport sectors—have fueled the ROK's economic growth, but with limited fossil fuel resources of its own, the result has been that the ROK is almost entirely dependent on energy imports. The article that follows summarizes the recent trends in the ROK energy sector, including trends in energy demand and supply, and trends in economic, demographic, and other activities that underlie trends in energy use. The ROK has been experiencing drastic changes in its energy system, mainly induced by industrial, supply security, and environmental concerns, and energy policies in the ROK have evolved over the years to address such challenges through measures such as privatization of energy-sector activities, emphases on enhancing energy security through development of energy efficiency, nuclear power, and renewable energy, and a related focus on reducing greenhouse gas emissions. The assembly of a model for evaluating energy futures in the ROK (ROK2010 LEAP) is described, and results of several policy-based scenarios focused on different levels of nuclear energy utilization are described, and their impacts on of energy supply and demand in the ROK through the year 2030 are explored, along with their implications for national energy security and long-term policy plans. Nuclear power continues to hold a crucial position in the ROK's energy policy, but aggressive expansion of nuclear power alone, even if possible given post-Fukushima global concerns, will not be sufficient to attain the ROK's “green economy” and greenhouse gas emissions reduction goals.

Hoseok Kim; Eui-soon Shin; Woo-jin Chung

2011-01-01T23:59:59.000Z

174

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

iv Chapter 5: National energy demand and potential energyAs Figure 1-2 shows, HVAC energy demand is comparable to thefor reducing this high energy demand reaches beyond

Shehabi, Arman

2010-01-01T23:59:59.000Z

175

Report, Long-Term Nuclear Technology Research and Development Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

176

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

177

Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)  

Science Journals Connector (OSTI)

As agricultural system comprises natural processes that are ruled by thermodynamics, the energy utilization is well suited for assessing the sustainability in the management of natural resources. The goals of this paper are 1) to assess the energy use efficiency of the main crops during the 1992–2005 period in Inland Pampa (Argentina); 2) to evaluate the database structure in terms of energy allocation; 3) to assess the changes in technical efficiency using frontier analysis and 4) to identify the best explanatory variables for energy efficiency variability. Results showed an upward trend in productivity per unit area in the crops analyzed (excluding sunflower). Summer soybean and sunflower showed higher energy efficiency values by the end of time series. The main shift in the energy use pattern was the reduction of the energy allocated to tillage. The overall performance of the wheat and soybean crops in the study area appears to be closer to the energy usage pattern shown by the top 5% energy use efficiency crop fields. The exploratory analysis using classification and regression trees (CART) revealed that the energy allocation to tillage; and the crop specie were the attributes that mainly explained the energy efficiency changes.

Diego Omar Ferraro

2012-01-01T23:59:59.000Z

178

Automobile technology, hydrogen and climate change: a long term modelling analysis  

Science Journals Connector (OSTI)

The transitions in the global automobile sector in the 21st century are uncertain both in terms of technologies and energy carriers. A key driving force of technological change in the long term could be the need to mitigate GHG emissions. This paper examines the role of the passenger car sector in a GHG mitigation strategy and presents a scenario of the automobile technology choices when a price on greenhouse gas emissions is imposed on the global energy system. The analysis has been conducted with ERIS, a multiregional energy systems, 'bottom up' optimisation model that endogenises technology learning and allows a detailed technology representation, in addition to capturing competing demands for transportation fuels, including hydrogen. Our results provide some policy insights by illustrating the potential for hydrogen to contribute to climate change mitigation, but show that fuel cell cars are an option for climate policy only over the very long term.

Hal Turton; Leonardo Barreto

2007-01-01T23:59:59.000Z

179

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

these trends lead to declining natural gas consumption byNatural gas demand has been rising in California and this trendnatural gas demands regionally, to account for variability in energy usage trends

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

180

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

Importance Total off- site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decreaseImportance Total off-site energy demand (2030) 20% decrease

Stadler, Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cumulative energy demand for selected renewable energy technologies  

Science Journals Connector (OSTI)

Calculation of Cumulative Energy Demand (CED) of various energy systems and the computation of their Energy Yield Ratio (EYR) suggests that one single renewable energy technology cannot be said to be the ... Due ...

Dirk Gürzenich; Jyotirmay Mathur…

1999-05-01T23:59:59.000Z

182

Demand Response Initiatives at CPS Energy  

E-Print Network (OSTI)

Demand Response Initiatives at CPS Energy Clean Air Through Energy Efficiency (CATEE) Conference December 17, 2013 ESL-KT-13-12-53 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 CPSE’s DR Program • DR... than the military bases and Toyota combined. • Schools & Universities contributed 6 MW’s of Demand Response in 2013. 2013 DR Participants Trinity University - $5,654 Fort Sam ISD - $18,860 Judson ISD - $45,540 Alamo Colleges - $98,222 UTSA - $168...

Luna, R.

2013-01-01T23:59:59.000Z

183

Long-Term Surveillance Operations and Maintenance Fiscal Year 2014 Year-End Summary Report  

Energy.gov (U.S. Department of Energy (DOE))

The Long-Term Surveillance Operations and Maintenance (LTS–O&M) subtask has a critical long-term surveillance and maintenance (LTS&M) role for the U.S. Department of Energy (DOE) Office of...

184

Overview of Demand Side Response | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Energy Officials Need to Know High Electric Demand Days: Clean Energy Strategies for Improving Air Quality Demand Response in U.S. Electricity Markets: Empirical Evidence...

185

Response to several FOIA requests - Renewable Energy. Demand...  

Energy Savers (EERE)

Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg251500.pdf....

186

Managing Energy Demand With Standards and Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Energy Demand With Standards and Information Managing Energy Demand With Standards and Information Speaker(s): Sebastien Houde Date: September 13, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne The goal of this talk is to discuss two interrelated research projects that aim to assess the welfare effects of energy policies that rely on standards and information. The first project focuses on the Energy Star certification program. Using unique micro-data on the US refrigerator market, I first show that consumers respond to certification in different ways. Some consumers appear to rely heavily on Energy Star and pay little attention to electricity costs, others are the reverse, and still others appear to be insensitive to both electricity costs and Energy Star. I then develop a

187

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

DemandDirect DemandDirect Jump to: navigation, search Name DemandDirect Place Woodbury, Connecticut Zip 6798 Sector Efficiency, Renewable Energy, Services Product DemandDirect provides demand response, energy efficiency, load management, and distributed generation services to end-use electricity customers in order to reduce electricity consumption, improve grid reliability, and promote renewable energy. Coordinates 44.440496°, -72.414991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.440496,"lon":-72.414991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Reducing Energy Demand: What Are the Practical Limits?  

Science Journals Connector (OSTI)

Reducing Energy Demand: What Are the Practical Limits? ... Global demand for energy could be reduced by up to 73% through practical efficiency improvements “passive systems”, the last technical components in each energy chain. ... This paper aims to draw attention to the opportunity for major reduction in energy demand, by presenting an analysis of how much of current global energy demand could be avoided. ...

Jonathan M. Cullen; Julian M. Allwood; Edward H. Borgstein

2011-01-12T23:59:59.000Z

189

Long-Term Surveillance Plan...  

Office of Legacy Management (LM)

documentsrflltsp.html 1 of 25 5202009 1:38 PM Prepared for U.S. Department of Energy Environmental Restoration Division UMTRA Project Team Albuquerque, New Mexico...

190

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network (OSTI)

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

191

Building Energy Software Tools Directory: Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand Modeling Energy Demand Modeling The software is intended to be used for Energy Demand Modeling. This can be utilized from regional to national level. A Graphical User Interface of the software takes the input from the user in a quite logical and sequential manner. These input leads to output in two distinct form, first, it develops a Reference Energy System, which depicts the flow of energy from the source to sink with all the losses incorporated and second, it gives a MATLAB script file for advance post processing like graphs, visualization and optimizations to develop and evaluate the right energy mix policy frame work for a intended region. Keywords Reference Energy System, Software, GUI, Planning, Energy Demand Model EDM, Energy Policy Planning Validation/Testing

192

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

Demand Management Institute (DMI) Demand Management Institute (DMI) Jump to: navigation, search Name Demand Management Institute (DMI) Address 35 Walnut Street Place Wellesley, Massachusetts Zip 02481 Sector Buildings Product Provides analysis for buildings on reducing energy use Website http://www.dmiinc.com/ Coordinates 42.3256508°, -71.2530294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3256508,"lon":-71.2530294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Kitchen Table Strategy: Home Inspectors Driving Demand for Home Energy Upgrades  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20/2012 20/2012 1 Benjamin Gromicko, InterNACHI "Kitchen Table" Strategy: Home Inspectors Driving Demand for Home Energy Upgrades 3/20/2012 2 Benjamin Gromicko, InterNACHI "Although the home performance industry's delivery of comprehensive energy and comfort improvements has been growing across the country, it continues to struggle in creating consumer attention and demand. Our industry's delivery timing is off. We are not yet engaging the homeowner at their sweet spot of making improvements -- right after they purchase a home! This is when they move most aggressively with all sorts of home improvement projects -- and, unfortunately, seldom with any concerns of energy use. I strongly believe the home inspection industry is in a prime position to educate new homeowners on the long-term

194

Long-Term Stewardship Program Science and Technology Requirements  

SciTech Connect

Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

Joan McDonald

2002-09-01T23:59:59.000Z

195

Demand Response and Smart Metering Policy Actions Since the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the...

196

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called...

197

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called...

198

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network (OSTI)

EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

199

Forecasting Energy Demand Using Fuzzy Seasonal Time Series  

Science Journals Connector (OSTI)

Demand side energy management has become an important issue for energy management. In order to support energy planning and policy decisions forecasting the future demand is very important. Thus, forecasting the f...

?Irem Uçal Sar?; Ba¸sar Öztay¸si

2012-01-01T23:59:59.000Z

200

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

services provided to the energy markets, Order 745 advancesin the wholesale energy market (both day-ahead and real-the capacity market is. The energy market does not feature

Shen, Bo

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

202

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

044E 044E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Coordination of Energy Efficiency and Demand Response Charles Goldman, Michael Reid, Roger Levy and Alison Silverstein Environmental Energy Technologies Division January 2010 The work described in this report was funded by the Department of Energy Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes

203

A methodology to assess energy-demand savings and cost effectiveness of retrofitting in existing Swedish residential buildings  

Science Journals Connector (OSTI)

Abstract Swedish residential buildings are typically retrofitted on a case-by-case basis. Large numbers of building consultants are involved in the decision-making, and stakeholders find it difficult to quantify the sustainable profits from retrofits and to make an efficient selection of the optimal alternative. The present paper presents an approach to design and assess energy-demand retrofitting scenarios. This aims to contribute to retrofitting decision-making regarding the main archetypes of existing Swedish residential buildings and to the evaluation of their long-term cost effectiveness. The approach combines energy-demand modeling and retrofit option rankings with life-cycle cost analysis (LCCA). Four types of typical Swedish residential buildings are used to demonstrate the model. Retrofits in the archetypes are defined, analyzed and ranked to indicate the long-term energy savings and economic profits. The model indicates that the energy saving potential of retrofitting is 36–54% in the archetypes. However, retrofits with the largest energy-saving potential are not always the most cost effective. The long-term profits of retrofitting are largely dominated by the building types. The finding can contribute to the standardization of future retrofitting designs on municipality scale in Sweden.

Qian Wang; Sture Holmberg

2015-01-01T23:59:59.000Z

204

Long-term care and the elderly  

E-Print Network (OSTI)

Long-term care expenditures represent one of the largest uninsured financial risks facing the elderly. Medicaid provides incomplete insurance against these costs: unlimited nursing home benefits with a deductible equal to ...

Coe, Norma B

2005-01-01T23:59:59.000Z

205

Driving Demand for Home Energy Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Demand for Home Energy Improvements Driving Demand for Home Energy Improvements Title Driving Demand for Home Energy Improvements Publication Type Report Year of Publication 2010 Authors Fuller, Merrian C., Cathy Kunkel, Mark Zimring, Ian M. Hoffman, Katie L. Soroye, and Charles A. Goldman Tertiary Authors Borgeson, Merrian Pagination 136 Date Published 09/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency-they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars1 flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements2, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula-and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs-there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers-especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

206

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

207

Assessment of least-cost pathways for decarbonising Europe's power supply : a model-based long-term scenario analysis accounting for the characteristics of renewable energies.  

E-Print Network (OSTI)

??This work analyses technological least-cost pathways for deep emission reductions in the European power sector. It seeks a better understanding of the role renewable energies… (more)

Pfluger, Benjamin

2013-01-01T23:59:59.000Z

208

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network (OSTI)

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

Vera Rosales, Fabian 1986-

2012-12-11T23:59:59.000Z

209

E-Print Network 3.0 - analogs long-term performance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

goals demand them to be used. Analogies are thus forever nascent in Sapper's long-term memory... . Sapper forms analogies using spreading-activation within a semantic network model...

210

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data in California and for climate zones within those areas. The staff California Energy Demand 2008-2018 forecast

211

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

212

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

213

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network (OSTI)

and Demand Response History Energy Management Activities o #and Demand Response History Energy Management Activities

Olsen, Daniel

2013-01-01T23:59:59.000Z

214

Balancing of Energy Supply and Residential Demand  

Science Journals Connector (OSTI)

Power demand of private households shows daily fluctuations and ... (BEV) and heat pumps. This additional demand, especially when it remains unmanaged, will ... to an increase in fluctuations. To balance demand,

Martin Bock; Grit Walther

2014-01-01T23:59:59.000Z

215

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

216

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

217

Modeling supermarket refrigeration energy use and demand  

SciTech Connect

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

218

Optimal Control Strategy of Solar Heating Systems Using a Long Term Heat Storage  

Science Journals Connector (OSTI)

...the estimation of the energy gain expected from optimizing the control of a given gas/solar heating system using a long term heat storage in the ground.

M. Boucher; M. Pottier; Y. Lenoir; R. Lidin…

1984-01-01T23:59:59.000Z

219

Competitive Technologies, Equipment Vintages and the Demand for Energy  

Science Journals Connector (OSTI)

Macroeconometric modelling of energy demand resorts to two approaches leading to models ... of view. The first approach specifies the demand of a group of consumers for a single form of energy, independent of the...

F. Carlevaro

1988-01-01T23:59:59.000Z

220

Examining Synergies between Energy Management and Demand Response: A  

E-Print Network (OSTI)

LBNL-5719E Examining Synergies between Energy Management and Demand Response: A Case Study at Two Summary #12;Introduction Energy Management · · · · · · · · · · #12;Demand Response #12;#12;Bentley Prince-Project Personnel Changes #12;Enablement of Demand Response Capabilities due to Energy Management Improvement

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Long-Term Lightweight MaterialVehicle Technologies Office: Long-Term Lightweight Materials Researchs Research  

Energy.gov (U.S. Department of Energy (DOE))

In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent.

222

Idaho National Laboratory Site Long-Term Stewardship Implementation Plan  

SciTech Connect

The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

B. E. Olaveson

2006-07-27T23:59:59.000Z

223

Energy and Security in Northeast Asia: Supply and Demand, Conflict and  

E-Print Network (OSTI)

3 Energy Policies and Energy Demand in Northeastissue of whether rising energy demand generates new securityoverall regional energy demand (Fesharaki, Sara Banaszak,

Fesharaki, Fereidun; Banaszak, Sarah; WU, Kang; Valencia, Mark J.; Dorian, James P.

1998-01-01T23:59:59.000Z

224

Chapter 3 Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys technologies...

225

Long-term nuclear waste storage urged  

Science Journals Connector (OSTI)

Long-term nuclear waste storage urged ... Nuclear waste should be stored for at least 100 years before being disposed of permanently, says a multinational committee from the International Council of Scientific Unions (ICSU). ... The recommendations of the ICSU Committee on Terrestrial Disposal of Nuclear Wastes, headed by geochemistry professor William S. Fyfe of the University of Western Ontario, were published in ... ...

1984-08-27T23:59:59.000Z

226

Long-term surveillance plan for the South Clive disposal site Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-09-01T23:59:59.000Z

227

EnergySolve Demand Response | Open Energy Information  

Open Energy Info (EERE)

EnergySolve Demand Response EnergySolve Demand Response Jump to: navigation, search Name EnergySolve Demand Response Place Somerset, New Jersey Product Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee avoidance, and flexible bill payment solutions. Coordinates 45.12402°, -92.675379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.12402,"lon":-92.675379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Reducing Energy Demand in Buildings Through State Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

229

Reducing Energy Demand in Buildings Through State Energy Codes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

230

A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of  

NLE Websites -- All DOE Office Websites (Extended Search)

Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year ActualWeather Data Title A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year ActualWeather Data Publication Type Journal Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Buildings consume more than one third of the world's total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

231

Transition of Long-Term Response Action Management Requirements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transition of Long-Term Response Action Management Requirements Transition of Long-Term Response Action Management Requirements The purpose of this memorandum is to provide you...

232

Vehicle Technologies Office: Long-Term Lightweight Materials...  

Energy Savers (EERE)

Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long...

233

Hydrogen Storage Technologies: Long-Term Commercialization Approach...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies: Long-Term Commercialization Approach with First Products First Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First Presented...

234

Los Alamos National Laboratory announces strategy for long-term...  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategy for long-term environmental sustainability Los Alamos National Laboratory announces strategy for long-term environmental sustainability Provides a blueprint for protecting...

235

Los Alamos National Laboratory: Long-Term Environmental Stewardship...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Stewardship Long-Term Strategy for Environmental Stewardship and Sustainability Long-Term Strategy for Environmental Stewardship and Sustainability (pdf) From...

236

Residential Energy Demand Reduction Analysis and Monitoring Platform - REDRAMP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dramatic Peak Residential Dramatic Peak Residential Demand Reduction in the Desert Southwest Yahia Baghzouz Center for Energy Research University of Nevada, Las Vegas Golden, CO Overview * Project description * Subdivision energy efficiency features * Home energy monitoring * Demand side management * Feeder loading * Battery Energy Storage System * Future Work Team Members Project Objective and Methodology * The main objective is to reduce peak power demand of a housing subdivision by 65% (compared to housing development that is built to conventional code). * This objective will be achieved by - Energy efficient home construction with roof- integrated PV system - Demand Side Management - Battery Energy Storage System Project schematic Diagram Project Physical Location: Las Vegas, NV Red Rock Hotel/Casino

237

Building Energy Software Tools Directory: Demand Response Quick Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Demand Response Quick Assessment Tool Demand response quick assessment tool image The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. This assessment tool will predict the energy and demand savings, the economic savings, and the thermal comfort impact for various demand responsive strategies. Users of the tool will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tool will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points

238

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response  

E-Print Network (OSTI)

Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor...Oncor Energy Efficiency Programs Solar Photovoltaic and Demand Response October 10, 2012 ENERGY EFFICIENCY PROGRAMS OVERVIEW ?Program rules and guidelines established by Public Utility Commission of Texas (PUCT) ?All Texas investor...

Tyra, K.; Hanel, J.

2012-01-01T23:59:59.000Z

239

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

ABORATORY Japan’s Residential Energy Demand Outlook to 2030o r n i a Japan’s Residential Energy Demand Outlook to 2030residential sector, where energy demand has grown vigorously

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

240

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

of Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response underof Distributed Energy Resources and Demand Response under

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network (OSTI)

on the forecast of total energy demand. Based on this, weadjustment spurred energy demand for construction of newenergy services. Primary energy demand grew at an average

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

242

Guidance for Developing and Implementing Long-Term Surveillance Plans for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Developing and Implementing Long-Term Surveillance Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites (November 2012) Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites More Documents & Publications Title I Disposal Sites Annual Report Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance Title II Disposal Sites Annual Report

243

Guidance for Developing and Implementing Long-Term Surveillance Plans for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Developing and Implementing Long-Term Surveillance Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites (November 2012) Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites More Documents & Publications Title I Disposal Sites Annual Report Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance Title II Disposal Sites Annual Report

244

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

Goldman, Charles

2010-01-01T23:59:59.000Z

245

Distributed Automated Demand Response - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore National Laboratory Contact LLNL About This Technology...

246

Demand Response (transactional control) - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest National Laboratory Contact PNNL About...

247

Regulation Services with Demand Response - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created...

248

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

249

Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-01-01T23:59:59.000Z

250

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

251

Demand Response Energy Consulting LLC | Open Energy Information  

Open Energy Info (EERE)

Response Energy Consulting LLC Response Energy Consulting LLC Jump to: navigation, search Name Demand Response & Energy Consulting LLC Place Delanson, New York Zip NY 12053 Sector Efficiency Product Delanson-based demand response and energy efficiency consultants. Coordinates 42.748995°, -74.185794° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.748995,"lon":-74.185794,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Energy Source Demand per Household Coal, Oil, Gas, Heat, Electricity Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japan’

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

253

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

both types of programs. Xcel Energy markets both energyEnergy Efficiency Marketing Xcel Energy Paul Suskie Chairman

Goldman, Charles

2010-01-01T23:59:59.000Z

254

Site Transition Summary: Cleanup Completion to Long-Term Stewardship at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary: Cleanup Completion to Long-Term Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Long-term stewardship (LTS) includes the physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where the U.S. Department of Energy (DOE) has completed or plans to complete cleanup (e.g., landfill closures, remedial actions, removal actions, and facility stabilization). This concept includes land-use controls, information management, monitoring and maintenance. Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites

255

Retrofitting Existing Buildings for Demand Response & Energy Efficiency  

E-Print Network (OSTI)

Retrofitting Existing Buildings for Demand Response & Energy Efficiency www, enable demand response, improve productivity for older facilities. - Use technologies which minimize are notified by PG&E by 3pm the day prior to the critical event. - Customers with Auto-Demand Response enabled

California at Los Angeles, University of

256

Energy demand and economic consequences of transport policy  

Science Journals Connector (OSTI)

Transport sector is a major consumer of energy. Concern of energy scarcity and price fluctuations enhanced significance of ... sector in national planning. This paper analyses energy demand for transport services...

J. B. Alam; Z. Wadud; J. B. Alam…

2013-09-01T23:59:59.000Z

257

Energy Demand and the Environmental Effects of CSF  

Science Journals Connector (OSTI)

In Greece the demand for energy is a substantial element in the analysis... • energy is a crucial determinant of production costs. Thus, energy prices play a key role in assessing.....

Nicos Christodoulakis; Sarantis Kalyvitis

2001-01-01T23:59:59.000Z

258

Network-Driven Demand Side Management Website | Open Energy Informatio...  

Open Energy Info (EERE)

UtilityElectricity Service Costs) for this property. This task of the International Energy Agency is a broad, systematic examination of the potential for demand-side...

259

Energy Efficient Grooming of Scheduled Sub-wavelength Traffic Demands  

Science Journals Connector (OSTI)

We investigate how awareness of demand holding times can be exploited for energy efficient traffic grooming in optical networks. We present an optimal formulation for minimizing the...

Chen, Ying; Jaekel, Arunita

260

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

Assisting Mexico in Developing Energy Supply and Demand Projections Assisting Mexico in Developing Energy Supply and Demand Projections Jump to: navigation, search Name Assisting Mexico in Developing Energy Supply and Demand Projections Agency/Company /Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Software/modeling tools Website http://www.dis.anl.gov/news/Me Country Mexico UN Region Latin America and the Caribbean References Assisting Mexico in Developing Energy Supply and Demand Projections[1] "CEEESA and the team of experts from Mexico analyzed the country's entire energy supply and demand system using CEEESA's latest version of the popular ENPEP-BALANCE software. The team developed a system representation, a so-called energy network, using ENPEP's powerful graphical user

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

262

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

263

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Renewable energy spillage, operating costs and capacityfocused on renewable energy utilization, cost of operationssystem operating costs, • renewable energy utilization,

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

264

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

energy scenarios to explore alternative energy pathways indo not include the alternative energy pathways (such asmodeling to investigate alternative energy supply strategies

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

265

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

Analysis of Energy Demand (MAED-2) AgencyCompany Organization: International Atomic Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Pathways...

266

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners  

E-Print Network (OSTI)

to inform projected energy and demand reductions in regionaldown to reflect energy and demand savings due to spillover (market and estimate the energy and demand savings associated

Vine, Edward

2007-01-01T23:59:59.000Z

267

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

268

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

269

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

270

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

271

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

272

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

273

Long-Term Natural Gas Infrastructure Needs U.S. Department of...  

Energy Savers (EERE)

Long-Term Natural Gas Infrastructure Needs U.S. Department of Energy Quadrennial Energy Review, Public Meeting 7 July 28, 2014 Denver, Colorado Arne Olson, Partner 2 2 Western...

274

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

275

Transaction Costs and their Impact on Energy Demand Behaviour  

Science Journals Connector (OSTI)

The very recent trends in energy demand are incompatible with empirically fitted price elasticities. ... associated with investment decisions of households — for energy conservation and/or fuel substitution — may...

Erich Unterwurzacher; Franz Wirl

1989-01-01T23:59:59.000Z

276

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

1.2 Limitations to Large-Scale Renewable EnergyImpacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

277

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

278

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Programs Integrated Energy Audit Provide engineeringtechnicians performed energy audits and provided advice to8 PG&E’s Integrated Energy Audit, a program for businesses

Goldman, Charles

2010-01-01T23:59:59.000Z

279

Response to several FOIA requests - Renewable Energy. Demand for Fossil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to several FOIA requests - Renewable Energy. Demand for Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg_251_500.pdf. Demand for Fossil Fuels. Renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And they will be

280

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

has for years used “New York Energy $mart” as the umbrellaevent days. The New York State Energy Research & DevelopmentEnergy Challenge”). The New York State Energy Research and

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Long-term stabilisation of grid connected wind farms with FACTS controllers  

Science Journals Connector (OSTI)

The increasing power demand has led to the growth of new technologies that play an integral role in shaping the future energy market. Keeping in view of the environmental constraints, grid connected wind turbines are promising in increasing system reliability. This paper presents the impact of FACTS controllers on the long-term dynamic stability of power systems connected with wind farms based on doubly fed induction generator systems. The stability assessment is made first for a three-phase short circuit without the FACTS controllers in the power network and then with the FACTS controllers. The long-term dynamic simulation results yield information on: 1) the impact of faults and slow wind speed changes on the performance of wind driven induction generators; 2) the change in controllable parameters of the FACTS controllers following the faults and wind speed changes; 3) transient reactive power ratings of FACTS controllers for enhancement of rotor speed stability of induction generators and angle stability of synchronous generators.

N. Senthil Kumar; M. Abdullah Khan

2010-01-01T23:59:59.000Z

282

CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 4, Ghana, Sierra Leone, Nigeria and the Gulf Cooperation Council (GCC) countries  

SciTech Connect

Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

Sathaye, J.; Goldman, N. [eds.

1991-07-01T23:59:59.000Z

283

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA | Open  

Open Energy Info (EERE)

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Details Activities (3) Areas (2) Regions (0) Abstract: Three wells have been drilled by the Los Angeles Department of Water and Power at the Coso Hot Springs KGRA. A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). This paper presents the equipment and techniques involved and the results from the long-term test conducted between December 1985 and February 1986. Author(s): Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.;

284

Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-02-01T23:59:59.000Z

285

Monitoring and Tracking Long-Term Finance to Support Climate Action | Open  

Open Energy Info (EERE)

Monitoring and Tracking Long-Term Finance to Support Climate Action Monitoring and Tracking Long-Term Finance to Support Climate Action Jump to: navigation, search Tool Summary Name: Monitoring and Tracking Long-Term Finance to Support Climate Action Agency/Company /Organization: Organisation for Economic Co-Operation and Development (OECD) Sector: Energy, Climate Topics: Finance, GHG inventory Resource Type: Publications, Lessons learned/best practices Website: www.oecd.org/dataoecd/57/57/48073739.pdf Cost: Free Monitoring and Tracking Long-Term Finance to Support Climate Action Screenshot References: Monitoring and Tracking Long-Term Finance to Support Climate Action[1] "This paper highlights the relevant information that needs to be tracked in order to build a comprehensive MRV system for climate finance, proposing

286

SAR Image: Niwot Ridge (Long term Ecological  

NLE Websites -- All DOE Office Websites (Extended Search)

Image: Baltimore Ecosystem study (BES1), Image: Baltimore Ecosystem study (BES1), 2009-07-28 SAR Image: Niwot Ridge (Long term Ecological Research Site in Colorado), 2010-12-14 ORNL DAAC News ORNL DAAC News SUMMER 2011 T he ORNL Distrib- uted Active Archive Center (DAAC) is a NASA-sponsored source for biogeochemical and ecological data and services useful i n e n v i r o n m e n t a l research. The ORNL D A A C c u r r e n t l y archives and distributes greater than 900 prod- ucts categorized as Field Campaign, Land Validation, Regional and Global, or Model Archive. Please visit us online at http://daac.ornl.gov for a comprehensive description of data, and tools available from the ORNL DAAC. Archived news can be found at http://daac.ornl.gov/ news.shtml. http://www.nasa.gov * Synthetic Aperture Radar (SAR) Subsets

287

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency savings that are achieved through monitoring- based commissioning, as well as documenting best practicesEnergy Efficiency Alliance Sue Gander Director, Environment, Energy, and Natural Resources Division National Governors Association—Center for Best Practices

Goldman, Charles

2010-01-01T23:59:59.000Z

288

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

289

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

290

ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS  

E-Print Network (OSTI)

ENABLING ENERGY DEMAND RESPONSE WITH VEHICULAR MESH NETWORKS Howard CheHao Chang1, Haining Du2. Using VMesh to connect disjoint sensor networks One of our expectations for VMesh is to enable demand response (DR) [1] for automatic utility usage retrievals and price dispatching. DR is a project in- itiated

Chuah, Chen-Nee

291

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

292

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

293

Energy Demand Modelling Introduction to the PhD project  

E-Print Network (OSTI)

Energy Demand Modelling Introduction to the PhD project Erika Zvingilaite Risø DTU System Analysis for optimization of energy systems Environmental effects Global externalities cost of CO2 Future scenarios for the Nordic energy systems 2010, 2020, 2030, 2040, 2050 (energy-production, consumption, emissions, net costs

294

ORIGINAL PAPER Short-and Long-term Effects of Ginkgo Biloba Extract on Sexual  

E-Print Network (OSTI)

and memory, con- fusion, lack of energy, depressed mood, dizziness, and tinnitus (for review, see Kleijnen to provide an empirical examination of the effects of both short- and long-term GBE administration

Meston, Cindy

295

USA Energy Demand and World Markets  

Science Journals Connector (OSTI)

In the AEO95 model reference case scenario, the United States is projected to consume 104 quadrillion Btu of primary energy resources in 2010, 19 percent more than in 1993. Primary energy consumption includes ...

Charles E. Brown Ph.D.

2002-01-01T23:59:59.000Z

296

High Energy Demand and Supply Scenario  

Science Journals Connector (OSTI)

An adequate energy supply system is a key issue in ... industrialization that will call for a significantly larger energy supply. Sustaining economic growth in the industrialized ... will add considerably to the ...

H.-H. Rogner; W. Sassin

1980-01-01T23:59:59.000Z

297

Estimating Demand Response Market Potential | Open Energy Information  

Open Energy Info (EERE)

Estimating Demand Response Market Potential Estimating Demand Response Market Potential Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Estimating Demand Response Market Potential Focus Area: Energy Efficiency, - Utility Topics: Socio-Economic Website: www.ieadsm.org/Files/Tasks/Task%20XIII%20-%20Demand%20Response%20Resou Equivalent URI: cleanenergysolutions.org/content/estimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Resource Integration Planning This resource presents demand response (DR) potential results from top-performing programs in the United States and Canada, as well as a DR

298

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

fits into historical demand side management (DSM) concepts.response. Demand Side Management Energy Efficiency (Daily) -requirements and demand side management issues have also

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

299

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

300

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

302

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

303

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

304

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

305

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

306

Agreement for Energy Conservation and Demand Side Management Services Template  

Energy.gov (U.S. Department of Energy (DOE))

Document features a template agreement between a U.S. Federal agency and a utility company for the implementation of energy conservation measures (ECMs) and demand side management (DSM) services.

307

Outlook for Energy Supply and Demand in China  

Science Journals Connector (OSTI)

In the new century, China has entered the phase of Homeland Construction. As the process of urbanization and industrialization accelerates, demand on energy has experienced unprecedentedly rapid growth. By far .....

Yande Dai

2013-01-01T23:59:59.000Z

308

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

309

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

to ensure reliability. Capacity market programs: Customerswholesale, forward capacity markets offer new opportunitiesinto the forward-capacity market. Coordination of Energy

Goldman, Charles

2010-01-01T23:59:59.000Z

310

Long-term corrosion testing pan.  

SciTech Connect

This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing needs. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to meet all future testing needs, given that all testing is consolidated to a single location. This report is a revision to SAND2007-7027 to address DOE comments and add a series of tests to address NWTRB recommendations.

Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

2008-08-01T23:59:59.000Z

311

Long-term corrosion testing plan.  

SciTech Connect

This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

2009-02-01T23:59:59.000Z

312

Transuranic waste: long-term planning  

SciTech Connect

Societal concerns for the safe handling and disposal of toxic waste are behind many of the regulations and the control measures in effect today. Transuranic waste, a specific category of toxic (radioactive) waste, serves as a good example of how regulations and controls impact changes in waste processing - and vice versa. As problems would arise with waste processing, changes would be instituted. These changes improved techniques for handling and disposal of transuranic waste, reduced the risk of breached containment, and were usually linked with regulatory changes. Today, however, we face a greater public awareness of and concern for toxic waste control; thus, we must anticipate potential problems and work on resolving them before they can become real problems. System safety analyses are valuable aids in long-term planning for operations involving transuranic as well as other toxic materials. Examples of specific system safety analytical methods demonstrate how problems can be anticipated and resolution initiated in a timely manner having minimal impacts upon allocation of resource and operational goals. 7 refs., 1 fig.

Young, K.C.

1985-07-01T23:59:59.000Z

313

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network (OSTI)

Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

Olsen, Daniel

2012-01-01T23:59:59.000Z

314

2003 Long-Term Surveillance and Maintenance Program Report  

SciTech Connect

Radioactive waste was created by the Federal Government and private industry at locations around the country in support of national defense, research, and civilian power-generation programs. If not controlled, much of this legacy waste would remain hazardous to human health and the environment indefinitely. Current technology does not allow us to render this waste harmless, so the available methods to control risk rely on consolidation, isolation, and long-term management of the waste. The U.S. Department of Energy (DOE) has an obligation to safely control the radioactive waste and to inform and train future generations to maintain and, perhaps, improve established protections. DOE is custodian for much of the radioactive and other hazardous waste under control of the Federal Government. DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 and the Defense Decontamination and Decommissioning (D&D) Program and the Surplus Facilities Management Program in the 1980s. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978. These federal programs and legislation were established to identify, remediate, and manage legacy waste. Remedial action is considered complete at a radioactive waste site when the identified hazardous material is isolated and the selected remedial action remedy is in place and functioning. Radioactive or other hazardous materials remain in place as part of the remedy at many DOE sites. Long-term management of radioactive waste sites incorporates a set of actions necessary to maintain protection of human health and the environment. These actions include maintaining physical impoundment structures in good repair to ensure that they perform as designed, preventing exposure to the wastes by maintaining access restrictions and warnings, and recording site conditions and activities for future custodians. Any actions, therefore, that will prevent exposure to the radioactive waste now or in the future are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE’s responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation’s nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE’s legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM–50), as well as management of remedies involving ground water and surface water contaminated by former processing activities.

None

2004-07-01T23:59:59.000Z

315

Combination of Long Term and Short Term Forecasts, with Application to Tourism  

E-Print Network (OSTI)

Combination of Long Term and Short Term Forecasts, with Application to Tourism Demand Forecasting that are combined. As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we con- sider 33 source countries, as well as the aggregate. The novel

Abu-Mostafa, Yaser S.

316

Vehicle Technologies Office: Lightweight Materials Long-Term Applied  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Applied Research: Magnesium and Carbon Fiber to someone by E-mail Long-Term Applied Research: Magnesium and Carbon Fiber to someone by E-mail Share Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Facebook Tweet about Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Twitter Bookmark Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Google Bookmark Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Delicious Rank Vehicle Technologies Office: Lightweight Materials Long-Term Applied Research: Magnesium and Carbon Fiber on Digg Find More places to share Vehicle Technologies Office: Lightweight

317

Energy Demand and GHG Mitigation Options  

Science Journals Connector (OSTI)

N. African countries, although not committed to reduce their GHG emissions, can take advantage of their high ... CSP potential in order to contribute to the GHG mitigation effort by providing clean energy (potent...

Leonidas Paroussos; Pantelis Capros…

2013-01-01T23:59:59.000Z

318

Modelling and Assessment of Energy Demand  

Science Journals Connector (OSTI)

Until the four-fold increase in oil prices in 1973 energy* was generally taken as abundantly available cheap commodity with the result that its consumption was increasing very rapidly. It increased by a factor...

A. M. Khan

1984-01-01T23:59:59.000Z

319

LEAPs and Bounds—an Energy Demand and Constraint Optimised Model of the Irish Energy System  

Science Journals Connector (OSTI)

This paper builds a model of energy demand and supply for Ireland with a focus on evaluating, and providing insights for, energy efficiency policies. The demand-side comprises sectoral sub-models, with a ... line...

Fionn Rogan; Caiman J. Cahill; Hannah E. Daly; Denis Dineen…

2014-06-01T23:59:59.000Z

320

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a Memorandum of Understanding in late 2010 to "establish guiding principles under which research activities (between LWRS and LTO) could be

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water Reactor Sustainability (LWRS) Program and EPRI's Long-Term Operations (LTO) Program. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a Memorandum of Understanding in late 2010 to "establish guiding principles under which research activities (between LWRS and LTO) could be

322

Summary Final Long-Term Management and Storage of Elemental Mercury Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement Environmental Impact Statement Final LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY Final Supplemental Environmental Impact Statement LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY DOE/EIS-0423-S1 September 2013 SUMMARY AND GUIDE FOR STAKEHOLDERS U.S. Department of Energy Office of Environmental Management Washington, DC AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT For additional information on this Mercury Storage SEIS, contact: David Levenstein, Document Manager Office of Environmental Compliance (EM-11) U.S. Department of Energy Post Office Box 2612 Germantown, MD 20874 Website: http://www.mercurystorageeis.com Printed with soy ink on recycled paper FINAL LONG-TERM MANAGEMENT AND

323

Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia  

Science Journals Connector (OSTI)

Abstract In the light of European energy-climate package and its measures for increasing security of supply, decreasing the impact on environment and stimulating sustainability, Croatia as a new EU (European Union) member state needs to reconsider and develop new energy policy towards energy efficiency and renewable energy sources. Croatian long-term energy demand and its effect on the future national GHG (greenhouse gas) emissions are analysed in this paper. For that purpose the NeD model was constructed (National energy demand model). The model is comprised out of six modules, each representing one sector: industry, transport, households, services, agriculture and construction. The model is based on bottom up approach. The analysis has shown that energy policy measures, identified through this paper, can potentially achieve energy savings up to 157 PJ in the year 2050, which presents a 40% decrease to referent (frozen efficiency) scenario. Results obtained in this paper were also compared to the Croatian National Energy Strategy for the years 2020 and 2030. It was shown that if already implemented policies were properly taken into account the actual final energy demand for the year 2030 would be 43% lower than projected by the Croatian National Energy Strategy.

Tomislav Pukšec; Brian Vad Mathiesen; Tomislav Novosel; Neven Dui?

2014-01-01T23:59:59.000Z

324

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

325

Assessment of Achievable Potential from Energy Efficiency and Demand  

Open Energy Info (EERE)

Assessment of Achievable Potential from Energy Efficiency and Demand Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the United States (U.S.) (2010-2030) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the United States (U.S.) (2010-2030) Focus Area: Energy Efficiency, - Utility Topics: Policy Impacts Website: www.edisonfoundation.net/IEE/Documents/EPRI_AssessmentAchievableEEPote Equivalent URI: cleanenergysolutions.org/content/assessment-achievable-potential-energ Language: English Policies: Regulations Regulations: Mandates/Targets This report discusses the 2008 U.S. Energy Information Administration statistic that electricity consumption in the United States is predicted to

326

Driving change : evaluating strategies to control automotive energy demand growth in China ; Evaluating strategies to control automotive energy demand growth in China .  

E-Print Network (OSTI)

??As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with… (more)

Bonde Ĺkerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

327

Adapting Advances in Remediation Science to Long-Term Surveillance  

SciTech Connect

Several facets of groundwater remediation stand to gain from the advances made during recent years in disciplines that contribute to remediation science. Engineered remedies designed to aggressively remove subsurface contamination should benefit from this progress, and more passive cleanup methods and the long-term monitoring of such passive approaches may benefit equally well if not more. The U.S. Department of Energy Office of Legacy Management (LM) has adopted a strategic plan that is designed to take advantage of technological improvements in the monitoring and assessment of both active and passive groundwater remedies. Flexible adaptation of new technologies, as they become available, to long-term surveillance at LM sites is expected to reduce site stewardship costs while ensuring the future protection of human health and the environment. Some of the technologies are expected to come from government initiatives that focus on the needs of subsurface monitoring. Additional progress in monitoring science will likely result from continual improvements in our understanding of contaminant fate-and-transport processes in the groundwater and the vadose zone.

Peterson, Dave [S.M. Stoller Corporation

2006-03-01T23:59:59.000Z

328

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters May 2, 2012 - 6:47pm Addthis Diagram of a tankless water heater. Diagram of a tankless water heater. How does it work? Tankless water heaters deliver hot water as it is needed, eliminating the need for storage tanks. Tankless water heaters, also known as demand-type or instantaneous water heaters, provide hot water only as it is needed. They don't produce the standby energy losses associated with storage water heaters, which can save you money. Here you'll find basic information about how they work, whether a tankless water heater might be right for your home, and what criteria to use when selecting the right model. Check out the Energy Saver 101: Water Heating infographic to learn if a tankless water heater is right for you.

329

COMBINING DIVERSE DATA SOURCES FOR CEDSS, AN AGENT-BASED MODEL OF DOMESTIC ENERGY DEMAND  

E-Print Network (OSTI)

purposes of calculating energy demand for water-heating, thethese questions, and energy demand. Given the lack of real-to calculate “useful energy demand” for space heating. With

Gotts, Nicholas Mark; Polhill, Gary; Craig, Tony; Galan-Diaz, Carlos

2014-01-01T23:59:59.000Z

330

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand Natural Gas Demand Annual Energy Outlook 2008 with Projections to 2030 Natural Gas Demand Figure 72. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 73. Total natural gas consumption, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Fastest Increase in Natural Gas Use Is Expected for the Buildings Sectors In the reference case, total natural gas consumption increases from 21.7 trillion cubic feet in 2006 to a peak value of 23.8 trillion cubic feet in 2016, followed by a decline to 22.7 trillion cubic feet in 2030. The natural gas share of total energy consumption drops from 22 percent in 2006

331

Water supply and demand in an energy supply model  

SciTech Connect

This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

Abbey, D; Loose, V

1980-12-01T23:59:59.000Z

332

Energy Conservation and Commercialization in Gujarat: Report On Demand Side  

Open Energy Info (EERE)

Energy Conservation and Commercialization in Gujarat: Report On Demand Side Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: eco3.org/wp-content/plugins/downloads-manager/upload/Report%20on%20Dem Equivalent URI: cleanenergysolutions.org/content/energy-conservation-and-commercializa Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning

333

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network (OSTI)

, electrical consumption, demand and fees were tracked separately. The remaining data include only one energy stream (e.g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other... Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel Oil E7 Coal E8 Wood E9 Paper E10 Other Gas E11 Other Energy E12 ESL-IE-00-04-17 Proceedings from the Twenty-second National...

Razinha, J. A.; Heffington, W. M.

334

ADB-Methods and Tools for Energy Demand Projection | Open Energy  

Open Energy Info (EERE)

ADB-Methods and Tools for Energy Demand Projection ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary Name: Methods and Tools for Energy Demand Projection Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Pathways analysis Resource Type: Presentation, Software/modeling tools Website: cdm-mongolia.com/files/2_Methods_Hoseok_16May2010.pdf Cost: Free Methods and Tools for Energy Demand Projection Screenshot References: Methods and Tools for Energy Demand Projection[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Methods and Tools for Energy Demand Projection" Retrieved from "http://en.openei.org/w/index.php?title=ADB-Methods_and_Tools_for_Energy_Demand_Projection&oldid=398945" Categories:

335

Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-08-01T23:59:59.000Z

336

Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2  

SciTech Connect

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1993-12-01T23:59:59.000Z

337

Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01T23:59:59.000Z

338

An Analytical Framework for Long Term Policy for Commercial Deployment and  

Open Energy Info (EERE)

An Analytical Framework for Long Term Policy for Commercial Deployment and An Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Jump to: navigation, search Tool Summary LAUNCH TOOL Name: An Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Focus Area: Clean Fossil Energy Website: sequestration.mit.edu/pdf/MichaelHamilton_thesis_dec2009.pdf Equivalent URI: cleanenergysolutions.org/content/analytical-framework-long-term-policy Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report addresses obstacles to commercial deployment of carbon capture and sequestration (CCS) and provides policy recommendations for successful

339

Energy demand and indoor climate of a traditional low-energy building in a hot climate.  

E-Print Network (OSTI)

?? Energy demand in the built environment is quite important. China holds a large population and the energy use in the building sector is about… (more)

Li, Ang

2009-01-01T23:59:59.000Z

340

Opportunities for Energy Efficiency and Demand Response in the California  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Publication Type Report LBNL Report Number LBNL-4849E Year of Publication 2010 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2010 Publisher CEC/LBNL Keywords cement industry, cement sector, demand response, electricity use, energy efficiency, market sectors, mineral manufacturing, technologies Abstract This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Application-oriented modelling of domestic energy demand  

Science Journals Connector (OSTI)

Abstract Detailed residential energy consumption data can be used to offer advanced services and provide new business opportunities to all participants in the energy supply chain, including utilities, distributors and customers. The increasing interest in the residential consumption data is behind the roll-out of smart meters in large areas and led to intensified research efforts in new data acquisition technologies for the energy sector. This paper introduces a novel model for generation of residential energy consumption profiles based on the energy demand contribution of each household appliance and calculated by using a probabilistic approach. The model takes into consideration a wide range of household appliances and its modular structure provides a high degree of flexibility. Residential consumption data generated by the proposed model are suitable for development of new services and applications such as residential real-time pricing schemes or tools for energy demand prediction. To demonstrate the main features of the model, an individual household consumption was created and the effects of a possible change in the user behaviour and the appliance configuration presented. In order to show the flexibility offered in creation of the aggregated demand, the detailed simulation results of an energy demand management algorithm applied to an aggregated user group are used.

J.K. Gruber; S. Jahromizadeh; M. Prodanovi?; V. Rako?evi?

2014-01-01T23:59:59.000Z

342

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

343

Recommendation 188: Long-Term Stewardship Implementation | Department...  

Energy Savers (EERE)

ORSSAB offers Recommendations and Comments on the Long-Term Stewardship Implementation Plan for the DOE Oak Ridge. Recommendation 188 DOE response to recommendation 188 More...

344

Porvair signs long term supply agreement with Honeywell  

Science Journals Connector (OSTI)

The Microfiltrex Division of the Porvair Filtration Group has signed a long term agreement to supply components to a range of Honeywell programmes.

2007-01-01T23:59:59.000Z

345

Long-Term Lightweight MaterialVehicle Technologies Office: Long...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lightweight Materials Researchs Research In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by...

346

Long-Term Strategy for Environmental Stewardship and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Strategy for Environmental Stewardship & Sustainability Hawks nesting Bike rider commutes to work at LANL A bobcat walking on LANL property Weather monitoring at LANL...

347

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

348

Measured energy savings and demand reduction from a reflective roof membrane on a large retail store in Austin  

E-Print Network (OSTI)

the abated annual energy and demand expenditures, simplea/c annual abated energy and demand expenditures and presentof future abated energy and demand expenditures is estimated

Konopacki, Steven J.; Akbari, Hashem

2001-01-01T23:59:59.000Z

349

The Challenge of Long-Term Climate Change  

Science Journals Connector (OSTI)

...such as wind energy, biomass fuels...and improved energy efficiency in...rise rapidly if per capita emissions are...photovoltaic energy—in combination with...public good that demands communal action for...domestic product (GDP) (4), similar...

K. Hasselmann; M. Latif; G. Hooss; C. Azar; O. Edenhofer; C. C. Jaeger; O. M. Johannessen; C. Kemfert; M. Welp; A. Wokaun

2003-12-12T23:59:59.000Z

350

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

351

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

352

Long Term Roadmap for DPNC September 2003  

E-Print Network (OSTI)

fundamental level, the properties of matter, energy, space and time. In the past 50 years, discoveries made of matter-antimatter asymmetry, of dark matter and of dark energy). The DPNC is currently engaged that was unimaginable just decades ago. In fact this year is the 30th anniversary of the discovery of the Neutral

Schibler, Ueli

353

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

354

The long-term management of nuclear emergencies: the principles  

Science Journals Connector (OSTI)

......Article Articles Off-Site Nuclear Emergency Management...long-term management of nuclear emergencies: the principles...Environmental Sciences and Policy, Central European University...LONG-TERM MANAGEMENT OF NUCLEAR EMERGENCIES: THE PRINCIPLES...Environmental Sciences and Policy, Central European University......

Keith Baverstock; Aleg Cherp; Patrick Gray

2004-06-01T23:59:59.000Z

355

Long-Term Observations of Indoor and Outdoor Radon Concentrations  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Article Long-Term Observations of Indoor and Outdoor...Lapere Two sets of data obtained by long-term observations of radon concentration...phosphogypsum was used. Around a nuclear waste storage place containing radium, 22 dosemeters......

J. Uyttenhove; R. Lapere

1988-08-01T23:59:59.000Z

356

In situ long-term monitoring system for radioactive contaminants  

Science Journals Connector (OSTI)

......74074, USA A long-term in situ subsurface...locations around a waste site, are allowed...high-level liquid waste in 177 underground storage tanks, 2100 metric...or stored solid waste and more than...are remediated, long-term monitoring of......

D. M. Klein; E. G. Yukihara; S. W. S. McKeever; J. S. Durham; M. S. Akselrod

2006-09-01T23:59:59.000Z

357

LONG-TERM SOLAR CYCLE EVOLUTION: REVIEW OF RECENT DEVELOPMENTS  

E-Print Network (OSTI)

LONG-TERM SOLAR CYCLE EVOLUTION: REVIEW OF RECENT DEVELOPMENTS I. G. USOSKIN1 and K. MURSULA2 1 September 2003) Abstract. The sunspot number series forms the longest directly observed index of solar of the recent achievements and findings in long-term evolution of solar activity cycles such as determinism

Usoskin, Ilya G.

358

St. Louis Sites Fact Sheet LONG-TERM STEWARDSHIP  

E-Print Network (OSTI)

to the St. Louis District, Corps of Engineers, FUSRAP Project Office, 8945 Latty Avenue, Berkeley, Missouri signs. The Long-term Stewardship Plan is being developed for the FUSRAP St. Louis Sites now to allowSt. Louis Sites Fact Sheet LONG-TERM STEWARDSHIP "Gateway to Excellence" U.S. Army Corps

US Army Corps of Engineers

359

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

360

A Supply-Demand Model Based Scalable Energy Management System for Improved Energy  

E-Print Network (OSTI)

the dependency of an electronic system to primary energy sources (i.e. AC power or battery). For reliable energy generation and consumption parameters. The system uses economics inspired supply-demand modelA Supply-Demand Model Based Scalable Energy Management System for Improved Energy Utilization

Bhunia, Swarup

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Long-term Repository Benefits of Using Cermet Waste Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Benefits Long-Term Benefits Long-term Repository Benefits of Using Cermet Waste Packages A cermet waste package may improve the long-term performance of the YM repository by two mechanisms: reducing (1) the potential for nuclear criticality in the repository and (2) the long-term release rate of radionuclides from the waste package. In the natural environment, the centers of uranium ore deposits have remained intact for very long time periods while the outer edges of the ore deposit have degraded. A cermet waste package may operate in the same way. The sacrificial, slow degradation of the waste package and the DU oxide protects the SNF uranium dioxide in the interior of the package long after the package has failed. Page 2 of 4 Follow the link below to learn more about Cermets:

362

Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs  

SciTech Connect

The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

1995-03-01T23:59:59.000Z

363

Predicting the Long-Term Behavior of a Micro-Solar Power System JAEIN JEONG, Cisco Systems  

E-Print Network (OSTI)

35 Predicting the Long-Term Behavior of a Micro-Solar Power System JAEIN JEONG, Cisco Systems DAVID CULLER, University of California, Berkeley Micro-solar power system design is challenging because it must address long-term system behavior under highly variable solar energy conditions and consider a large space

California at Berkeley, University of

364

Trophic interactions of fish communities at midwater depths enhance long-term carbon storage and benthic production on continental slopes  

Science Journals Connector (OSTI)

...communities at midwater depths enhance long-term carbon storage and benthic production on continental...and transferring carbon to deep long-term storage. Global peaks in biomass and...energy extraction industries, and waste disposal [3-8]. Research...

2014-01-01T23:59:59.000Z

365

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

366

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

that energy efficiency or energy intensity for a particularbased upon trends in energy intensity parameters which areBuilding type (12) Energy intensity Industrial Shipments

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

367

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper  

Science Journals Connector (OSTI)

Modeling Fossil Energy Demands of Primary Nonferrous Metal Production: The Case of Copper ... Alumbrera (Argentina) ...

Pilar Swart; Jo Dewulf

2013-11-22T23:59:59.000Z

368

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network  

E-Print Network (OSTI)

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi of an on-demand minimum energy routing protocol and suggests mechanisms for their imple- mentation. We of an on-demand minimum energy routing protocol in terms of energy savings with an existing on-demand ad

369

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

370

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

371

National patterns of energy demand and expenditures by Hispanics  

SciTech Connect

This paper is based on ongoing research, at Argonne National Laboratory, being done for the Office of Minority Economic Impact (MI) of the US Department of Energy. Under its legislative mandate MI is required to assess the impact of government policy, programs, and actions on US minorities. In line with this mission Argonne is currently involved in characterizing and analyzing the patterns of energy demand and expenditures of minorities. A major barrier associated with this task is the availability of sufficient data. With the possible exception of blacks, analysis of the patterns of energy demand for most minority population categories is all but impossible because of small sample sizes. The major source of residential energy consumption data, the Residential Energy Consumption Survey, only collects data on 5000 to 7000 households. For many minority population categories, this number of observations make any meaningful statistical analysis at least at the regional Census level practically impossible, with any further refinement of the analysis becoming even more difficult. In this paper our primary purpose is to describe the patterns of energy demand for Hispanics and nonhispanics but ancillary to that briefly present one possible solution to the data availability problem.

Poyer, D.A.

1987-01-01T23:59:59.000Z

372

DOE Announces Up to $15.3 Million for Long-Term Hydrogen Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up to $15.3 Million for Long-Term Hydrogen Vehicle Up to $15.3 Million for Long-Term Hydrogen Vehicle Development DOE Announces Up to $15.3 Million for Long-Term Hydrogen Vehicle Development August 14, 2008 - 2:40pm Addthis WASHINGTON- U.S. Department of Energy (DOE) Under Secretary Clarence H. "Bud" Albright, Jr. today announced the selection of 10 cost-shared hydrogen storage research and development projects, which will receive up to $15.3 million over five years, subject to annual appropriations. These projects are part of President Bush's Hydrogen Fuel Initiative that committed $1.2 billion on research and development (R&D) for hydrogen-powered fuel cells. The projects also support the President's Advanced Energy Initiative to reduce our Nation's dependence on foreign energy sources by changing the way we power our cars, homes, and

373

Wind farm—Long term noise and vibration measurements  

Science Journals Connector (OSTI)

Most of the energy produced in Quebec comes from renewable sources. The concept of wind energy emerged in the late 1990’s and has since become a complementary source of energy alongside hydroelectricity. Wind farms are generally seen as a good sustainable way to produce energy. However they are not implemented without some impact on the environment. SNC-Lavalin Environment has performed many surveys in recent years for wind farm projects including noise measurements both before and after their commissioning. This presentation will give an overview of one such project where long term noise and vibration measurements where conducted. Vibration measurements as well as outdoor indoor and low frequencies noise measurements were completed both with and without the wind turbines in operation. Data will be presented showing different problems encountered in the analysis phase. For example multiple intermittent and non-steady noise sources were present during measurement (wind turbines car pass-bys wind in the trees human activities). Methods used to overcome these obstacles will be discussed (use of statistical parameters linear regression) and the effect of the wind turbine operation on the noise level (including low frequencies) and vibration level will be presented.

2013-01-01T23:59:59.000Z

374

Wind Farm - Long term noise and vibration measurements  

Science Journals Connector (OSTI)

Most of the energy produced in Quebec comes from renewable sources. The concept of wind energy emerged in the late 1990's and has since become a complementary source of energy alongside hydroelectricity. Wind farms are generally seen as a good sustainable way to produce energy. However they are not implemented without some impact on the environment. SNC-Lavalin Environment has performed many surveys in recent years for wind farm projects including noise measurements both before and after their commissioning. This presentation will give an overview of one such project where long term noise and vibration measurements where conducted. Vibration measurements as well as outdoor indoor and low frequencies noise measurements were completed both with and without the wind turbines in operation. Data will be presented showing different problems encountered in the analysis phase. For example multiple intermittent and non-steady noise sources were present during measurement (wind turbines car pass-bys wind in the trees human activities). Methods used to overcome these obstacles will be discussed (use of statistical parameters linear regression) and the effect of the wind turbine operation on the noise level (including low frequencies) and vibration level will be presented.

Martin Meunier

2013-01-01T23:59:59.000Z

375

Energy Efficiency Funds and Demand Response Programs - National Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds and Demand Funds and Demand Response Programs - National Overview Charles Goldman Lawrence Berkeley National Laboratory November 2, 2006 Federal Utility Partnership Working Group San Francisco CA Overview of Talk * National Overview * Energy Efficiency Programs and Funds * Demand Response Programs and Funds * FEMP Resources on Public Benefit Funds *Suggestions for Federal Customers DSM Spending is increasing! * 2006 Utility DSM and Public Benefit spending is ~$2.5B$ - $1B for C&I EE programs * CA utilities account for 35% of total spending 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1994 2000 2005 2006 Costs (in billion $) DSM Costs Load Management Gas EE Other States Electric EE California Electric EE EE Spending in 2006 (by State) $ Million < 1 (23) 1 - 10 (2) 11 - 50 (13) 51 - 100 (7) > 100 (5) 790 101 257

376

Breaking down the silos: the integration of energy efficiency, renewable energy, demand response and climate change  

Science Journals Connector (OSTI)

This paper explores the feasibility of integrating energy efficiency program evaluation with the emerging need for the evaluation of programs from different “energy cultures” (demand response, renewable energy, a...

Edward Vine

2008-02-01T23:59:59.000Z

377

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

378

Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment.  

E-Print Network (OSTI)

??The advancement of renewable energy technologies and the deregulation of theelectricity market have seen the emergence of Demand response (DR) programs. Demand response is a… (more)

Adika, Christopher Otieno

2014-01-01T23:59:59.000Z

379

Long-term investigation of microbial fuel cells treating primary sludge or digested sludge  

E-Print Network (OSTI)

. Biogas production was produced from primary sludge and quantified. Total energy production in MFCs could: Microbial fuel cell Primary sludge Digested sludge Energy Biogas a b s t r a c t The long-term performance. Digested sludge can be further composted for agriculture uses, and biogas can be con- verted

380

SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS  

SciTech Connect

The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm the effectiveness of the sorbents tested over extended operation on two different boilers, and to determine balance-of-plant impacts. The first long-term test was conducted on FirstEnergy's BMP, Unit 3, and the second test was conducted on AEP's Gavin Plant, Unit 1. The Gavin Plant testing provided an opportunity to evaluate the effects of sorbent injected into the furnace on SO{sub 3} formed across an operating SCR reactor. This report presents the results from those long-term tests. The tests determined the effectiveness of injecting commercially available magnesium hydroxide slurry (Gavin Plant) and byproduct magnesium hydroxide slurry (both Gavin Plant and BMP) for sulfuric acid control. The results show that injecting either slurry could achieve up to 70 to 75% overall sulfuric acid removal. At BMP, this overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NOX control than at removing SO{sub 3} formed in the furnace. The long-term tests also determined balance-of-plant impacts from slurry injection during the two tests. These include impacts on boiler back-end temperatures and pressure drops, SCR catalyst properties, ESP performance, removal of other flue gas species, and flue gas opacity. For the most part the balance-of-plant impacts were neutral to positive, although adverse effects on ESP performance became an issue during the BMP test.

Gary M. Blythe; Richard McMillan

2002-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Long-term Environmental and Economic Impacts of Coal Liquefaction in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-term Environmental and Economic Long-term Environmental and Economic Impacts of Coal Liquefaction in China Background The growth of the economy and the accompanying increase in energy consumption in the People's Republic of China (China) are impacting the world's energy markets and global environment. That impact was seen in rising oil prices prior to the economic collapse of 2008. China plans to move ahead in the use of its coal resources as a source of transportation fuels. It is important that the U.S. have the best possible

382

Vehicle Technologies Office: Long-Term Exploratory Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Exploratory Research Long-Term Exploratory Research Long-term research addresses the chemical instabilities that impede the development of advanced batteries. Researchers focus on synthesizing novel components into battery cells and determining failure modes, while maintaining strengths in materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. Goals include developing a better understanding of why systems fail, creating models that predict system failure and permit system optimization, and investigating new and promising materials. The work concentrates on six research areas: Advanced cell chemistry, Non-carbonaceous anodes, New electrolytes, Novel cathode materials, Advanced diagnostics and analytical methods, and Phenomenological modeling.

383

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-12-01T23:59:59.000Z

384

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01T23:59:59.000Z

385

Uranium 2014 resources, production and demand  

E-Print Network (OSTI)

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

386

Modelling future private car energy demand in Ireland  

Science Journals Connector (OSTI)

Targeted measures influencing vehicle technology are increasingly a tool of energy policy makers within the EU as a means of meeting energy efficiency, renewable energy, climate change and energy security goals. This paper develops the modelling capacity for analysing and evaluating such legislation, with a focus on private car energy demand. We populate a baseline car stock and car activity model for Ireland to 2025 using historical car stock data. The model takes account of the lifetime survival profile of different car types, the trends in vehicle activity over the fleet and the fuel price and income elasticities of new car sales and total fleet activity. The impacts of many policy alternatives may only be simulated by such a bottom-up approach, which can aid policy development and evaluation. The level of detail achieved provides specific insights into the technological drivers of energy consumption, thus aiding planning for meeting climate targets. This paper focuses on the methodology and baseline scenario. Baseline results for Ireland forecast a decline in private car energy demand growth (0.2%, compared with 4% in the period 2000–2008), caused by the relative growth in fleet efficiency compared with activity.

Hannah E. Daly; Brian P. Ó Gallachóir

2011-01-01T23:59:59.000Z

387

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

388

Long-term Kinetics of Uranyl Desorption from Sediments Under...  

NLE Websites -- All DOE Office Websites (Extended Search)

results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under...

389

Long-Term Stewardship Science and Technology Requirements  

SciTech Connect

To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified.

McDonald, J.K.; Nickelson, R.A.

2002-05-16T23:59:59.000Z

390

Long-term Stewardship Science and Technology Requirements  

SciTech Connect

To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified.

Mcdonald, Jaimee Kristen; Nickelson, Reva Anne

2002-08-01T23:59:59.000Z

391

Significant Characteristics to Abstract Content: Long Term Preservation of Information  

Science Journals Connector (OSTI)

The (automatic) extraction of significant characteristics of files is an important feature of all long term preservation activities. We propose, however, that for the necessary automatic evaluation of the outc...

Manfred Thaller; Volker Heydegger…

2008-01-01T23:59:59.000Z

392

Long term experiences with HDD SCR Catalysts | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

term experiences with HDD SCR Catalysts Long term experiences with HDD SCR Catalysts Test bench results and on-road experiences of more than 1 million km offer comparisons of...

393

Long-Term Surveillance Plan for the Sherwood Project (UMTRCA...  

Office of Legacy Management (LM)

Title II of UMTRCA. A general license is issued by the NRC for the custody and long-term care, including monitoring, maintenance, and emergency measures necessary to ensure that...

394

Long-Term Surveillance Plan for the Burrell Vicinity Property...  

Office of Legacy Management (LM)

Title I of UMTRCA. A general license is issued by the NRC for the custody and long-term care, including monitoring, maintenance, and emergency measures necessary to ensure that...

395

Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs  

U.S. Energy Information Administration (EIA) Indexed Site

Experts Meeting: Behavioral Economics Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | Washington, DC Meeting Agenda Jim Turnure, Director, Office of Energy Consumption and Efficiency Analysis July 17, 2013 2 * EIA WELCOME AND INTRODUCTION (15 minutes) * ORIENTATION/PRESENTATION: OVERVIEW OF EIA RESIDENTIAL AND COMMERCIAL DEMAND MODELS AND CURRENT METHODS FOR INCORPORATING ENERGY EFFICIENCY/EFFICIENCY PROGRAMS (30 minutes) * ORIENTATION/PRESENTATION: BEHAVIORAL ECONOMICS GENERAL OVERVIEW AND DISCUSSION (45 minutes) * EXPERTS ROUNDTABLE DISCUSSION/BRAINSTROMING: HOW CAN EIA BENEFIT FROM APPLICATION OF BEHAVIORAL ECONOMICS TO RESIDENTIAL AND COMMERCIAL ENERGY DEMAND MODELING?

396

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

produce the greatest energy and demand savings. Aeration andand C.Y. Chang (2005). "Energy Demand in Sludge Dewatering."be modified to reduce energy demand during demand response

Lekov, Alex

2010-01-01T23:59:59.000Z

397

Modeling Energy Demand Dependency in Smart Multi-Energy Systems  

Science Journals Connector (OSTI)

Smart local energy networks provide an opportunity for more penetration of distributed energy resources. However, these resources cause an ... for internal and external dependencies in Smart Multi-Energy Systems ...

N. Neyestani; Maziar Yazdani Damavandi…

2014-01-01T23:59:59.000Z

398

Long-term hydraulic properties of subsurface flow constructed wetlands  

E-Print Network (OSTI)

LONG-TERM HYDRAULIC PROPERTIES OF SUBSURFACE FLOW CONSTRUCTED WETLANDS A Thesis by GLENN ALLEN TURNER Submitted to the Office of Graduate studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1994 Major Subject: Agricultural Engineering LONG-TERM HYDRAULIC PROPERTIES OF SUBSURFACE FLOW CONSTRUCTED WETLANDS by GLENN ALLEN TURNER Submitted to Texas A&M University in partial fulfdlment of the requirements for the degree...

Turner, Glenn Allen

2012-06-07T23:59:59.000Z

399

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

400

Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1  

SciTech Connect

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Long-term surveillance plan for the Lowman, Idaho, disposal site  

SciTech Connect

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1993-09-01T23:59:59.000Z

402

Demand Response Resources for Energy and Ancillary Services (Presentation)  

SciTech Connect

Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

Hummon, M.

2014-04-01T23:59:59.000Z

403

Behavioral Economics Applied to Energy Demand Analysis: A Foundation  

Reports and Publications (EIA)

Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to the framework. In real life, however, such strong assumptions tend to be less than fully valid. Behavioral economics refers to the study and formalizing of theories regarding deviations from traditionally-modeled economic decision-making in the behavior of individuals. The U.S. Energy Information Administration (EIA) has an interest in behavioral economics as one influence on energy demand.

2014-01-01T23:59:59.000Z

404

Systematic Flights Obtain Long-Term Data Set of Cloud Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Systematic Flights Obtain Long-Term Data Set of Cloud Properties Systematic Flights Obtain Long-Term Data Set of Cloud Properties Beginning in January 2009, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is sponsoring the first-of-its-kind long-term airborne research campaign to obtain data from low-level clouds above its Southern Great Plains (SGP) site. The five-month campaign is centered near Lamont, Oklahoma, a mid-latitude region that experiences a wide range of cloud types, including the "thin" clouds that are the focus of the campaign. Thin clouds contain so little water that the sun can be seen through them. Scientists refer to such clouds as "clouds with low-optical water depth," or CLOWD. Because these clouds are often tenuous and scattered, even some of the best

405

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

Not Available

1994-03-01T23:59:59.000Z

406

GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders  

SciTech Connect

We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab.

Roblin, Yves [JLAB; Morozov, Vasiliy [JLAB; Terzic, Balsa [JLAB; Aturban, Mohamed A. [Old Dominion University; Ranjan, D. [Old Dominion University; Zubair, Mohammed [Old Dominion University

2013-06-01T23:59:59.000Z

407

Long-term surveillance plan for the Tuba City, Arizona disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

NONE

1996-02-01T23:59:59.000Z

408

Collaboration in long-term stewardship at DOE Hanford Site  

SciTech Connect

The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large parcel that includes one of the six (6) cocooned reactors on site. These accomplishments relied upon the transparency between DOE cleanup programs and their contractors working together to successfully transition the land while addressing the challenges that arise. All parties, the three different DOE Programs and their respective prime contractors are dedicated to working together and continuing the progress of transitioning land to LTS, in alignment with the Program Plan and compliant with contractual requirements. This paper highlights the accomplishments and collaborative efforts to address the challenges faced as work progresses from the cleanup to transitioning of land parcels to LTS Program.

Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

2013-01-10T23:59:59.000Z

409

LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575  

SciTech Connect

The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between the contractors and DOE-RL. Information Management (IM) is a key part of the LTS program. The IM Program identifies, locates, stores, protects and makes accessible Hanford LTS records and data to support the transfer of property ultimately to LM. As such, DOE-RL manages the Hanford LTS Program in a manner consistent with LM's goals, policies, and procedures.

MOREN RJ; GRINDSTAFF KD

2012-01-11T23:59:59.000Z

410

Meeting the Clean Energy Demand:? Nanostructure Architectures for Solar Energy Conversion  

Science Journals Connector (OSTI)

Meeting the Clean Energy Demand:? Nanostructure Architectures for Solar Energy Conversion ... This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. ...

Prashant V. Kamat

2007-02-01T23:59:59.000Z

411

CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020  

E-Print Network (OSTI)

prepared the industrial forecast. Mark Ciminelli forecasted energy for transportation, communication developed the energy efficiency program estimates. Glen Sharp prepared the residential sector forecast ................................................................................................................... 2 EndUser Natural Gas Forecast Results

412

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under  

E-Print Network (OSTI)

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand and wastage through better demand-side management and control is considered a key solution ingredient of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management

Boutaba, Raouf

413

Long-Term Mitigation Strategies and Marginal Abatement Cost Curves: A Case Study on Brazil  

E-Print Network (OSTI)

in the power sector, renewable power, electric vehicles, energy efficiency improvements in combustion enginesLong-Term Mitigation Strategies and Marginal Abatement Cost Curves: A Case Study on Brazil Adrien World Bank, Washington D.C., USA 3The World Bank, Brasilia, Brazil Abstract Decision makers facing

Paris-Sud XI, Université de

414

RESEARCH Open Access Short and long-term carbon balance of bioenergy  

E-Print Network (OSTI)

, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricityRESEARCH Open Access Short and long-term carbon balance of bioenergy electricity production fueled

415

Revisiting the Long-Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices  

E-Print Network (OSTI)

of Energy from U.S. Wind Power Projects. Berkeley, Calif. :J. and K. Porter. 2011. Wind Power and Electricity Markets.different purchasers of wind power in the U.S. , long- term

Bolinger, Mark

2014-01-01T23:59:59.000Z

416

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network  

E-Print Network (OSTI)

An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi the necessary features of an on-demand minimum energy routing protocol and suggests mechanisms the performance of an on-demand minimum energy routing protocol in terms of energy savings with an existing on

Brown, Timothy X.

417

STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS  

E-Print Network (OSTI)

STRENGTH AND ENERGY DEMANDS FROM THE AUGUST 1999 KOCAELI EARTHQUAKE GROUND MOTIONS A. Sari 1 and L the demands placed on structures during earthquakes one might also employ an energy-based approach, especially such as absorbed energy (Chou and Uang, 2000) and input energy (Chapman, 1999). Understanding seismic demands

Manuel, Lance

418

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network (OSTI)

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

419

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

420

U.S. Energy Demand: Some Low Energy Futures  

Science Journals Connector (OSTI)

...sophistication for energy consumption. | Journal Article...ac-tivities related to fuel conservation. The...processes, not only in fuel con-servation...History ofthe Steam Engine (Cambridge Univ...coal-fired steam to diesel) but much is at-tributable...sophistication for energy consumption. The scenarios...

1978-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National Action Plan on Demand Response | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Action Plan on Demand Response National Action Plan on Demand Response Presentation-given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008...

422

Energy demand of German households and saving potential  

Science Journals Connector (OSTI)

The implementation of the principles of sustainable development requires both using potentialities in saving resources and cutting down emissions (efficiency strategies) as well as more conscious patterns of behaviour of the actors involved (sufficiency strategies). Starting from the current situation of annual CO2 emissions of about 10 t and a sustainability goal of 1â??2 t CO2 emissions per inhabitant and year, the question arises in how far households can contribute to achieve this goal. Therefore, in this paper, the environmental impacts of the energy demand of German households will be evaluated by means of describing its status quo and there from deriving saving potentials.

Anke Eber; Dominik Most; Otto Rentz; Thomas Lutzkendorf

2008-01-01T23:59:59.000Z

423

AVTA: PHEV Demand and Energy Cost Demonstration Report  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a demonstration with Tacoma Power on plug-in hybrid electric vehicle demand and energy cost, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

424

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network (OSTI)

.g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel... that are widely scattered). Therefore, the correlations of implementation costs with electrical consumption and natural gas are also investigated in Tables 2 and 4, because they are highly important both nationally and in Texas. In fact, the total number...

Razinha, J. A.; Heffington, W. M.

425

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network (OSTI)

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

426

A Novel Harmony Search Algorithm for One-Year-Ahead Energy Demand Estimation Using Macroeconomic Variables  

Science Journals Connector (OSTI)

In this paper we tackle a problem of one-year ahead energy demand estimation from macroeconomic variables. A modified Harmony ... the proposed approach in a real problem of Energy demand estimation in Spain, from...

Sancho Salcedo-Sanz…

2014-01-01T23:59:59.000Z

427

Energy Demand Forecasting in China Based on Dynamic RBF Neural Network  

Science Journals Connector (OSTI)

A dynamic radial basis function (RBF) network model is proposed for energy demand forecasting in this paper. Firstly, we ... detail. At last, the data of total energy demand in China are analyzed and experimental...

Dongqing Zhang; Kaiping Ma; Yuexia Zhao

2011-01-01T23:59:59.000Z

428

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

429

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

430

United Illuminating - ZREC and LREC Long Term Contracts (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United Illuminating - ZREC and LREC Long Term Contracts United Illuminating - ZREC and LREC Long Term Contracts (Connecticut) United Illuminating - ZREC and LREC Long Term Contracts (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate $325.50 per ZREC; $200 per LREC Program Info Funding Source RPS Start Date 05/01/2012 State Connecticut Program Type Performance-Based Incentive Provider The United Illuminating Company Note: The deadline for the second request for proposals (RFP) under this program is June 13, 2013.

431

NETL: Gasification - Long-Term Candle Filter Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Candle Filter Tests Long-Term Candle Filter Tests National Carbon Capture Center at the Power Systems Development Facility Southern Company Services, Inc. Project Number: NT0000749 Project Description The National Carbon Capture Center advancement of hot gas filtration technology provides the design for optimal, long-term evaluation of material performance for particulate control device (PCD) filter elements. Testing is performed using the commercially available Siemens PCD, due to its demonstrated excellent collection efficiency during normal operation. The PCD, located downstream of the primary gas cooler, houses up to 91 candle-type filter elements. They're currently used in the development of candle filters that can efficiently remove particulates at varying temperatures, using low-cost materials and innovative design.

432

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2009 Chapter 2 - Liquid Fuels World liquids consumption in the IEO2009 reference case increases from 85 million barrels per day in 2006 to 107 million barrels per day in 2030. Unconventional liquids, at 13.4 million barrels per day, make up 12.6 percent of total liquids production in 2030. Figure 25. World Liquids Consumption by Region and Country Group, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 26. World Liquids Supply in Three Cases, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

433

Three Case Studues of the Application of Energy Systems Optimization Best Prectices for Automatic Demand Response  

E-Print Network (OSTI)

Three Case Studies of the Application of Energy Systems Optimization Best Practices for Automatic Demand Response Yifu Shi Kelly Guiberteau Carlos Yagua, P.E. James Watt, P.E. Energy Systems Laboratory, Texas A&M University College.... INTRODUCTION The overall goal of the demand response program is to reduce facilities peak energy demand to reduce the cost of electricity for both Austin Energy and their customer. Reducing the demand mitigates the need to construct additional...

Shi, Y.; Guiberteau, K.; Yagua, C.; Watt, J.

2013-01-01T23:59:59.000Z

434

Long-term serviceability of elastomers in modern engine coolants  

SciTech Connect

The aging of elastomers in engine coolants after extended periods of service can be both a physical process (stress/strain relaxation) and/or a chemical change. Engine coolants are essentially aqueous and non-aqueous electrolytes coupled with inorganic inhibitor systems, as well as new organic acid systems. The long-term effects of this environment are reviewed. Chemical and functional tests are utilized to model these aging processes. This review will offer a better understanding of the long-term suitability of typical candidate elastomers.

Bussem, H.; Farinella, A.C.; Hertz, D.L. Jr. [Seals Eastern Inc., Red Bank, NJ (United States)

1999-08-01T23:59:59.000Z

435

Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

NONE

1996-03-01T23:59:59.000Z

436

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

storage and its potential impact on the electric utilities and introduces the demand side plant concept....

Michel, M.

1989-01-01T23:59:59.000Z

437

Household energy consumption and its demand elasticity in Thailand  

Science Journals Connector (OSTI)

This study concentrates on the analysis of energy consumption, expenditure on oil and LPG use in cars and aims to examine the elasticity effect of various types of oil consumption. By using the Deaton's analysis framework, the cross-sectional data of Thai households economic survey 2009 were used. By defining energy goods in the scope of automobile fuel, the results reflect the low importance of high-quality automobile fuel on all income level households. Thai households tend to vary the quality rather than the quantity of thermal energy. All income groups have a tendency to switch to lower quality fuel. Middle and high-middle households (Q3 and Q4) are the income groups with the greatest tendency to switch to lower-quality fuel when a surge in the price of oil price occurs. The poorest households (Q1) are normally insensitive to a change of energy expenditure in terms of quality and quantity. This finding illustrates the LPG price subsidy policy favours middle and high-middle income households. The price elasticity of energy quantity demand is negative in all income levels. High to middle income families are the most sensitive to changes in the price of energy.

Montchai Pinitjitsamut

2012-01-01T23:59:59.000Z

438

CSEM WP 165R Demand-Side Management and Energy Efficiency  

E-Print Network (OSTI)

CSEM WP 165R Demand-Side Management and Energy Efficiency Revisited Maximilian Auffhammer, Carl, California 94720-5180 www.ucei.org #12;Demand-Side Management and Energy Efficiency Revisited Maximilian associated with energy efficiency demand side management (DSM) programs. This claim is based on point

Auffhammer, Maximilian

439

39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)  

E-Print Network (OSTI)

. Energy & Environment (12) 19740 (24740) Combustion & Air Pollution Cntrl (12) 19612 Int. Life Cycle:20 12711 Adv. Project Management for Construction (12) 12742 Data Mining in Infrastructure (6) 12750 Infrastructure Systems (12) 12651/751 Air Quality Engr. (9/12) TR10:3011:50/NA 12740 Data Acq

McGaughey, Alan

440

39610 Energy Conversion & Supply (6) 39611 Energy Demand &Utilization (6)  

E-Print Network (OSTI)

() 19740 (24740) Comb. & Air Pollution Ctrl 19612 Int. Life Cycle Assessment (12) 19739 (18875) Econ& Engr Combustion & Air Pollution (12) 24642 Fuel Cell Systems (12)MW9:3011:20 24643 S.T. Electrochem. Energy Course (18) 12711 Adv. Project Management for Construction (12) 12742 Data Mining

McGaughey, Alan

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

U.S. Energy Demand: Some Low Energy Futures  

Science Journals Connector (OSTI)

...energy consumption per unit of output fell...I to 1.5 percent per year from 1950 to...en-ergy consumption per capita rose by 50...Between 1946 and 1973 amenities such as...enable resource production from low-grade ores...Exporting Countries (OPEC) (fall 1973) and...

1978-04-14T23:59:59.000Z

442

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

443

Site transition framework for long-term surveillance and maintenance  

SciTech Connect

This document provides a framework for all U.S. Department of Energy (DOE) facilities and sites where DOE may have anticipated long-term surveillance and maintenance (LTSM) responsibilities. It is a tool to help facilitate a smooth transition from remediation to LTSM, providing a systematic process for affected parties to utilize in analyzing the baseline to understand and manage the actions from EM mission completion through a site’s transition into LTSM. The framework is not meant to provide an exhaustive list of the specific requirement and information that are needed. Sites will have unique considerations that may not be adequately addressed by this tool, and it is anticipated that a team comprised of the transferring and receiving organization will use judgment in utilizing this augmenting with other DOE guidance. However the framework should be followed to the extent possible at each site; and adapted to accommodate unique site-specific requirements, needs, and documents. Since the objective of the tool is facilitate better understanding of the conditions of the site and the actions required for transfer, the transition team utilizing the checklist is expected to consult with management of both the receiving and transferring organization to verify that major concerns are addressed. Ideally, this framework should be used as early in the remediation process as possible. Subsequent applications of the Site Transition Framework (STF) to the site should be conducted periodically and used to verify that all appropriate steps have been or will be taken to close-out the site and that actions by both organization are identified to transfer the site to LTSM. The requirements are provided herein.

none,

2014-04-01T23:59:59.000Z

444

Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid  

E-Print Network (OSTI)

Real-Time Demand Response with Uncertain Renewable Energy in Smart Grid Libin Jiang and Steven Low manages user load through real-time demand response and purchases balancing power on the spot market and demand response in the presence of uncertain renewable supply and time-correlated demand. The overall

Low, Steven H.

445

Evaluation of ground energy storage assisted electric vehicle DC fast charger for demand charge reduction and providing demand response  

Science Journals Connector (OSTI)

Abstract In 2012 there was approximately 2400 electric vehicle DC Fast Charging stations sold globally. According to Pike Research (Jerram and Gartner, 2012), it is anticipated that by 2020 there will be approximately 460,000 of them installed worldwide. A typical public DC fast charger delivers a maximum power output of 50 kW which allows a typical passenger vehicle to be 80% charged in 10–15 min, compared with 6–8 h for a 6.6 kW AC level 2 charging unit. While DC fast chargers offer users the convenience of being able to rapidly charge their vehicle, the unit's high power demand has the potential to put sudden strain on the electricity network, and incur significant demand charges. Depending on the utility rate structure, a DC fast charger can experience annual demand charges of several thousand dollars. Therefore in these cases there is an opportunity to mitigate or even avoid the demand charges incurred by coupling the unit with an appropriately sized energy storage system and coordinating the way in which it integrates. This paper explores the technical and economical suitability of coupling a ground energy storage system with a DC fast charge unit for mitigation or avoidance of demand charges and lessening the impact on the local electricity network. This paper also discusses the concept of having the system participate in demand response programs in order to provide grid support and to further improve the economic suitability of an energy storage system.

Donald McPhail

2014-01-01T23:59:59.000Z

446

NETL: Mercury Emissions Control Technologies - Long-Term Carbon Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Carbon Injection Field Test for > 90% Long-Term Carbon Injection Field Test for > 90% Mercury Removal for a PRB Unit with a Spray Drier and Fabric Filter The intent of DOE's Phase I and II field tests was to work with industry to evaluate the most promising mercury control technologies at full-scale in a variety of configurations. Although longer-term tests were conducted, the test period was not sufficient to answer many fundamental questions about long-term consistency of mercury removal and reliability of the system when integrated with plant processes. As the technologies move towards commercial implementation, it is critical to accurately define the mercury removal performance and costs so that power companies and policy makers can make informed decisions. Therefore, the overall objective of this Phase III project is to determine the mercury removal performance, long-term emissions variability, and associated O&M costs of activated carbon injection for >90% mercury control over a 10 to 12 month period on a unit that represents the combination of coal and emission control equipment that will be used for many new and existing power plants.

447

IAEA-TECDOC-1403 The long term stabilization of  

E-Print Network (OSTI)

. This includes managing the legacy of accidents and past practices, including that from uranium mining and radioactive substance and of uranium mining and milling sites. In the past, often little or no care was takenIAEA-TECDOC-1403 The long term stabilization of uranium mill tailings Final report of a co

448

GLOBAL WARMING: THE PSYCHOLOGY OF LONG TERM RISK Guest Editorial  

E-Print Network (OSTI)

GLOBAL WARMING: THE PSYCHOLOGY OF LONG TERM RISK Guest Editorial Beyond its objective basis in natural science, understanding, discussion, and res- olution of the policy issue labeled "global warming the global warming problem. In public discussion, natu- ral scientists tend to frame the issue through

Todorov, Alex

449

Software architecture awareness in long-term software product evolution  

Science Journals Connector (OSTI)

Software architecture has been established in software engineering for almost 40 years. When developing and evolving software products, architecture is expected to be even more relevant compared to contract development. However, the research results ... Keywords: Architecture knowledge management, Cooperative and human aspects, Long-term evolution, Qualitative empirical studies, Software architecture, Software products

Hataichanok Unphon; Yvonne Dittrich

2010-11-01T23:59:59.000Z

450

Long-Term Management and Storage of Elemental Mercury  

Energy.gov (U.S. Department of Energy (DOE))

In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) required DOE to establish a facility for the long-term management and storage of elemental mercury.

451

Stochastic modelling of long-term investment risks  

Science Journals Connector (OSTI)

......Stochastic modelling of long-term investment risks A.D. WILKIE R. Watson Sons...them are the uncertainties of future investment variables, which include inflation...changes in capital values).These investment risks affect inviduals in their own......

A.D. WILKIE

1995-01-01T23:59:59.000Z

452

Long-Term Considerations on Wind Power's Environmental Impact  

E-Print Network (OSTI)

environmentally sound technology for producing electricity · Rapid growth in installations · Estimates on acc manufacturing and decommissioning in a long term perspective · manufacturing of turbines by 2020 alloys), blades (glass fibre, deposit) - Cables have significant influence · Uncertainties concerning

453

Technological Advancement and Long-Term Economic Growth in Asia  

E-Print Network (OSTI)

-term economic growth. We further realize that the innovation process must be sup- ported by a complex set4 Technological Advancement and Long-Term Economic Growth in Asia Jeffrey D. Sachs and John W. Mc to think very hard about the linkages between technology and economic development. The harder we think

454

The Uses of Wood: Long Term Prospects [and Discussion  

Science Journals Connector (OSTI)

...July 1975 research-article The Uses of Wood: Long Term Prospects [and Discussion...The longer term prospects for the use of wood depend upon the continued availability of suitable material and the ability of wood products to compete in cost and performance...

1975-01-01T23:59:59.000Z

455

Grand Challenges for Biological and Environmental Research: A Long-Term Vision  

SciTech Connect

The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

2010-12-01T23:59:59.000Z

456

Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)  

SciTech Connect

The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1981-03-01T23:59:59.000Z

457

Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies  

SciTech Connect

The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1980-03-01T23:59:59.000Z

458

Analysis of the influence of residential location on light passenger vehicle energy demand.  

E-Print Network (OSTI)

??New Zealand???s current urban environment assumes a constant availability and affordability of energy (oil) and as such the energy demand of private vehicles is rarely… (more)

Williamson, Mark

2013-01-01T23:59:59.000Z

459

Energy Transfer on Demand: Photoswitch-Directed Behavior of Metal–Porphyrin Frameworks  

Science Journals Connector (OSTI)

Energy Transfer on Demand: Photoswitch-Directed Behavior of Metal–Porphyrin Frameworks ... were used to est. the ligand strain energies in the and all other topol. ...

Derek E. Williams; Joseph A. Rietman; Josef M. Maier; Rui Tan; Andrew B. Greytak; Mark D. Smith; Jeanette A. Krause; Natalia B. Shustova

2014-08-12T23:59:59.000Z

460

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado. Revision 1  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Act on (UMTRA) Project Bodo Canyon disposal site at Durango, Colorado, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal call continues to function as designed This LTSP was prepared as a requirement for DOE acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) from processing uranium ore. This LTSP documents that the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a). Following the introduction, contents of this report include the following: site final condition; site drawings and photographs; permanent site surveillance features; ground water monitoring; annual site inspections; unscheduled inspections; custodial maintenance; corrective action; record keeping and reporting requirements; emergency notification and reporting; quality assurance; personal health and safety; list of contributions; and references.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Demands and Efficiency Strategies in Data Center Buildings  

SciTech Connect

Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

Shehabi, Arman

2009-09-01T23:59:59.000Z

462

Modeling the Long-Term Market Penetration of Wind in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Long-Term Market Penetration of Wind in the United States July 2003 * NREL/CP-620-34469 W. Short, N. Blair, D. Heimiller, and V. Singh Presented at the American Wind Energy Association (AWEA) WindPower 2003 Conference Austin, Texas May 21, 2003 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

463

Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance  

SciTech Connect

This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

none,

2012-03-01T23:59:59.000Z

464

Employing demand response in energy procurement plans of electricity retailers  

Science Journals Connector (OSTI)

Abstract This paper proposes a new framework in which demand response (DR) is incorporated as an energy resource of electricity retailers in addition to the commonly used forward contracts and pool markets. In this way, a stepwise reward-based DR is proposed as a real-time resource of the retailer. In addition, the unpredictable behavior of customers participating in the proposed reward-based DR is modeled through a scenario-based participation factor. The overall problem is formulated as a stochastic optimization approach in which pool prices and customers’ participation in DR are uncertain variables. The feasibility of the problem is evaluated on a realistic case of the Australian National Electricity Market (NEM) and solved using General Algebraic Modeling System (GAMS) software.

Nadali Mahmoudi; Mehdi Eghbal; Tapan K. Saha

2014-01-01T23:59:59.000Z

465

Demand Response Architectures and Load Management Algorithms for Energy-Efficient Power Grids: A Survey  

Science Journals Connector (OSTI)

A power grid has four segments: generation, transmission, distribution and demand. Until now, utilities have been focusing on streamlining their generation, transmission and distribution operations for energy efficiency. While loads have traditionally ... Keywords: Smart grid, energy efficiency, demand-side load management, demand response, load shifting

Yee Wei Law; Tansu Alpcan; Vincent C. S. Lee; Anthony Lo; Slaven Marusic; Marimuthu Palaniswami

2012-11-01T23:59:59.000Z

466

Demand-Side Load Scheduling Incentivized by Dynamic Energy Hadi Goudarzi, Safar Hatami, and Massoud Pedram  

E-Print Network (OSTI)

Demand-Side Load Scheduling Incentivized by Dynamic Energy Prices Hadi Goudarzi, Safar Hatami growth in electrical energy consumption under worst- case demand conditions [1]. To avoid expending 90089 {hgoudarz, shatami, pedram}@usc.edu Abstract--Demand response is an important part of the smart

Pedram, Massoud

467

Does financial development contribute to SAARC?S energy demand? From energy crisis to energy reforms  

Science Journals Connector (OSTI)

Abstract SAARC members urgently need to secure sustainable energy supplies at affordable prices. Alarmingly high oil prices in the face of ever increasing energy demand have resulted in severe pressure on resources of SAARC members. The objective of this study examine the relationship among energy consumption, economic growth, relative prices of energy, FDI and different financial development indicators (i.e., broad money supply, liquid liabilities, domestic credit provided by banking sector and domestic credit to private sector) in the panel of selected SAARC countries namely Bangladesh, India, Nepal, Pakistan and Sri Lanka over a period of 1975–2011. Panel cointegration test suggest that the variables are cointegrated and have a long-run relationship between them. In addition, three different panel data methods i.e. pooled least square, fixed effects and random effects have been used to test the validity of the “energy-growth nexus via financial development” in the SAARC region. Specification tests (i.e., F-test and Hausman test) indicate that the fixed effect model considered as the best model to examine the relationship between energy and growth determinants, this implies that variables are apparently influenced by country effects only. The fixed effect model shows that there is a significant relationship among energy consumption, economic growth, FDI and financial development (FD) proxies, however, FD indicators has a larger impact on increasing energy demand, followed by GDP per capita and FDI. Therefore, it is concluded that there is a trade-off between the energy and growth variables in SAARC region, collective efforts is required to transform SAARC region from an energy-starved to an energy efficient region.

Arif Alam; Ihtisham Abdul Malik; Alias Bin Abdullah; Asmadi Hassan; Faridullah; Usama Awan; Ghulam Ali; Khalid Zaman; Imran Naseem

2015-01-01T23:59:59.000Z

468

Demand Reduction  

Energy.gov (U.S. Department of Energy (DOE))

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

469

Carbon-cycle models for better long-term predictions | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon-cycle models for better long-term predictions Carbon-cycle models for better long-term predictions Reduced variation among models should improve precision Improved...

470

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network (OSTI)

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde Ĺkerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

471

Demand Response - Policy: More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response - Policy: More Information Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI's goal was to outline workable market rules, public policies, and regulatory criteria to incorporate customer-based demand response resources into New England's electricity markets and power systems. NEDRI promoted best practices and coordinated

472

Uranium 2009 resources, production and demand  

E-Print Network (OSTI)

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

473

Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible Electrification and Mitigation: Long-Term GHG Deep-Cut Scenario Compatible with Economic Development Speaker(s): Taishi Sugiyama Date: August 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Lynn Price We have analyzed scenarios of Japanese energy systems in the 21st century with special focus on the electrification and climate change mitigation. We have described the causality pathway as to how the major drivers will have impacts on the structure of energy systems and found the followings: (1) Steady electrification in the building sector is expected driven by technological progresses and social change in the absence of climate change policy; (2) With strong greenhouse gas emission constraints, the combination of accelerated electrification across all sectors and

474

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

475

The Global Historical Climatology Network: Long-Term Monthly Temperature,  

NLE Websites -- All DOE Office Websites (Extended Search)

The Global Historical Climatology Network: Long-Term Monthly Temperature, The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data (1992) (NDP-041) DOI: 10.3334/CDIAC/cli.ndp041 data Data PDF PDF File graphics NDP-041 Temperature Stations graphics NDP-041 Precipitation Stations Please note: the latest version of the Global Historical Climatology Network (GHCN) is available directly from NOAA's National Climatic Data Center. Investigators R. S. Vose, R. L. Schmoyer, P. M. Steurer, T. C. Peterson, R. Heim, T. R. Karl, and J. K. Eischeid This NDP contains monthly temperature, precipitation, sea-level pressure, and station-pressure data for thousands of meteorological stations worldwide. The database was compiled from pre-existing national, regional, and global collections of data as part of the Global Historical Climatology

476

Long-term planetary integration with individual time steps  

E-Print Network (OSTI)

We describe an algorithm for long-term planetary orbit integrations, including the dominant post-Newtonian effects, that employs individual timesteps for each planet. The algorithm is symplectic and exhibits short-term errors that are $O(\\epsilon\\Omega^2\\tau^2)$ where $\\tau$ is the timestep, $\\Omega$ is a typical orbital frequency, and $\\epsilon\\ll1$ is a typical planetary mass in solar units. By a special starting procedure long-term errors over an integration interval $T$ can be reduced to $O(\\epsilon^2\\Omega^3\\tau^2T)$. A sample 0.8 Myr integration of the nine planets illustrates that Pluto can have a timestep more than 100 times Mercury's, without dominating the positional error. Our algorithm is applicable to other $N$-body systems.

Prasenjit Saha; Scott Tremaine

1994-03-24T23:59:59.000Z

477

Preparing Class B and C Waste for Long Term Storage  

SciTech Connect

Commercial Nuclear Generating Stations outside of the Atlantic Compact will lose access to the Barnwell Disposal Facility in July of 2008. Many generators have constructed Interim On-Site Storage Buildings (IOSB) in which to store class B and C waste in the future as other permanent disposal options are developed. Until such time it is important for these generators to ensure class B and C waste generation is minimized and waste generated is packaged to facilitate long term storage. (authors)

Snyder, M.W. [Sacramento Municipal Utility District - Rancho Seco (United States)

2008-07-01T23:59:59.000Z

478

Long-term-consequence analysis of no action alternative 2  

SciTech Connect

This report is a supplement to the Waste Isolation Pilot Plant (WIPP) Disposal-Phase Supplemental Environmental Impact Statement. Data and information is described which pertains to estimated impacts from postulated long-term release of radionuclides and hazardous constituents from alpha-bearing wastes stored at major generator/storage sites after loss of institutional control (no action alternative 2). Under this alternative, wastes would remain at the generator sites and not be emplaced at WIPP.

Buck, J.W.; Bagaasen, L.M.; Staven, L.H.; Serne, R.J. [and others

1996-07-01T23:59:59.000Z

479

Segmented vs conventional numerals: legibility and long term retention  

E-Print Network (OSTI)

the environmental chamber. Sub jects The subjects were thirty male students between the ages of 1g and 27 from the Industrial Engineering department at Texas A&M University. Subjects were divided into three groups of 10. Procedure Exposure time and number... December 1971 Ma]or Subject: Industrial Engineering SEGMENTED VS CONVENTIONAL NUMERALS: LEGIBILITY AND LONG TERM RETENTION A Thesis STEVE EDGAR HILL Approved as to style and content by: Elias Chairman of Committee) r. A. W. ortham (Head...

Hill, Steve Edgar

1971-01-01T23:59:59.000Z

480

Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand  

Science Journals Connector (OSTI)

Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand ... potential of solar energy all over the world is many times larger than the current total primary energy demanded. ... The magnitudes of the free energies derived from formal potentials are detd. ...

Manuel A. Méndez; Pekka Peljo; Micheál D. Scanlon; Heron Vrubel; Hubert H. Girault

2014-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "long-term energy demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2010  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 10 and 11, 2010. The U.S. Environmental Protection Agency (EPA) Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, analyzed the samples. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

None

2011-01-10T23:59:59.000Z

482

Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

None

2009-12-21T23:59:59.000Z

483

A study of industrial equipment energy use and demand control.  

E-Print Network (OSTI)

??Demand and duty factors were measured for selected equipment [air compressors, electric furnaces, injection-molding machines, a welder, a granulator (plastics grinder), a sheet metal press… (more)

Dooley, Edward Scott

2012-01-01T23:59:59.000Z

484

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

485

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...of activation products with long half-lives means that some fusion reactor structural...grow for a time in some regions while remaining steady or falling in others. For example...an-nual use of coal, oil, natural gas, hydropower, nuclear fission,, geothermal...

John P. Holdren

1978-04-14T23:59:59.000Z

486

Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks  

E-Print Network (OSTI)

Energy-Agile Laptops: Demand Response of Mobile Plug Loads Using Sensor/Actuator Networks Nathan@me.berkeley.edu Abstract--This paper explores demand response techniques for managing mobile, distributed loads with on observed. Our first simulation study explores a classic demand response scenario in which a large number

Culler, David E.

487

Definition: Interruptible Load Or Interruptible Demand | Open Energy  

Open Energy Info (EERE)

Interruptible Load Or Interruptible Demand Interruptible Load Or Interruptible Demand Jump to: navigation, search Dictionary.png Interruptible Load Or Interruptible Demand Demand that the end-use customer makes available to its Load-Serving Entity via contract or agreement for curtailment.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available. Also Known As non-firm service Related Terms transmission lines, electricity generation, transmission line, firm transmission service, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interruptible_Load_Or_Interruptible_Demand&oldid=502615"

488

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

489

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

490

Physical Stability of Long-Term Surface Barriers-Assessment of Potentially Disruptive Natural Events  

NLE Websites -- All DOE Office Websites (Extended Search)

] ] a -" m HI BHI-00145 Rev. 00 Physical Stability of Long-Term Surface Barriers - Assessment of Potentially Disruptive Natural Events Authors N. R. Wing IT Hanford, Inc. F. M. Corpuz Bechtel Hanford, Inc. K. L. Petersen Pacific Northwest Laboratoy A. M. Tallman Westinghouse Hanford Company Date Published May 1995 HANFORD Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management Bechtel Hanford, Inc. Flichland, Washington Approved for Public Release . b q q BHI-00145 ma) Ou: NIA TSD: NIA ERA: NIA APPROVAL PAGE Title of Dccumw PHYSICAL STABILITY OF LONG-TERM SURFACE BARRIERS - ASSESSMENT OF POTE.INTI.ALLYDISRUPTIVE NATURAL Author(s): N. R. Wq, lT ~Otd, Inc. K. L. PetmerL hCi.fiC Northwest Labmtory F. M. Corpuz, Bechkl Hanford, Inc. A. M. Tai.lmaq W-owe HEUlfOd Corqnny Approvai: J. G. Zoghbi, Acting Manager, Technology Demonstration

491

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

492

Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets  

E-Print Network (OSTI)

Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

Ehrhard, R.; Hamilton, G.

2008-01-01T23:59:59.000Z

493

A method to calculate the cumulative energy demand (CED) of lignite extraction  

Science Journals Connector (OSTI)

For the utilisation of an energy carrier such as lignite, the whole life cycle including necessary energy supply processes have to be considered. Therefore using the ‘Cumulative Energy Demand’ (CED) is especially...

Michael Röhrlich; Mark Mistry…

2000-11-01T23:59:59.000Z

494

Modelling useful energy demand system as derived from basic needs in the household sector  

Science Journals Connector (OSTI)

Inter-fuel substitution in the household sector depends on whether their target energy use is similar or not. To account ... for the effect of end-use application on energy demand, the concept of useful energy is...

Zahra A. Barkhordar; Yadollah Saboohi

2014-10-01T23:59:59.000Z

495

Local Government Implementation of Long-Term Stewardship at Two DOE Facilities  

SciTech Connect

The Department of Energy (DOE) is responsible for cleaning up the radioactive and chemical contamination that resulted from the production of nuclear weapons. At more than one hundred sites throughout the country DOE will leave some contamination in place after the cleanup is complete. In order to protect human health and the environment from the remaining contamination DOE, U.S. Environmental Protection Agency (EPA), state environmental regulatory agencies, local governments, citizens and other entities will need to undertake long-term stewardship of such sites. Long-term stewardship includes a wide range of actions needed to protect human health in the environment for as long as the risk from the contamination remains above acceptable levels, such as barriers, caps, and other engineering controls and land use controls, signs, notices, records, and other institutional controls. In this report the Environmental Law Institute (ELI) and the Energy Communities Alliance (ECA) examine how local governments, state environmental agencies, and real property professionals implement long-term stewardship at two DOE facilities, Losa Alamos National Laboratory and Oak Ridge Reservation.

John Pendergrass; Roman Czebiniak; Kelly Mott; Seth Kirshenberg; Audrey Eidelman; Zachary Lamb; Erica Pencak; Wendy Sandoz

2003-08-13T23:59:59.000Z

496

Comfort-Aware Home Energy Management Under Market-Based Demand-Response  

E-Print Network (OSTI)

Comfort-Aware Home Energy Management Under Market-Based Demand-Response Jin Xiao, Jian Li, Raouf-based pricing. In peak capping, each home is allocated an energy quota. In market-based pricing, the price of energy varies based on market supply-demand. Market-based This research was supported by World Class

Boutaba, Raouf

497

Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure  

Open Energy Info (EERE)

Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole Tools Project Description Draka has engaged top academic, national laboratory and industry research scientists to develop the myriad of technical advances required - from glass chemistry to encapsulation metallurgy. Draka will develop the required advances in buffer tubing, cladding, wire insulation materials and cable packaging as well as coordinate activities of other participants. Draka Communications will develop the required advances in glass chemistry, fiber coatings and fiber drawing technologies. AltaRock Energy, Inc., a renewable energy company focused on research & development, will provide well field services and EGS wells for long-term testing and validation of the cable at Geysers, California. Tetramer has been engaged for the required advances in candidate materials for fiber coating and encapsulation technologies. Sandia will provide laboratory testing and validation of Draka's fiber solutions at elevated temperatures, pressures and hydrogen levels. Permatools (a Sandia EGS spin-off) will provide EGS tools to validate the finished cable design and will also coordinate in-well testing. Permatools (a Sandia EGS spin-off) will provide EGS tools to validate the finished cable design and will also coordinate in-well testing.

498

Generation Scheduling for Power Systems with Demand Response and a High Penetration of Wind Energy.  

E-Print Network (OSTI)

??With renewable energy sources and demand response programs expanding in many power systems, traditional unit commitment and economic dispatch approaches are inadequate. The power system… (more)

Liu, Guodong

2014-01-01T23:59:59.000Z

499

Sustainable Energy Resources for Consumers (SERC)- On-Demand Tankless Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters.

500

The Impact on Consumer Behavior of Energy Demand Side Management Programs Measurement Techniques and Methods.  

E-Print Network (OSTI)

??Much effort has gone into measuring the impact of Demand Side Management (DSM) programs on energy usage, particularly in regards to electric usage. However, there… (more)

Pursley, Jeffrey L

2014-01-01T23:59:59.000Z