National Library of Energy BETA

Sample records for long-term energy demand

  1. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  2. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect (OSTI)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  3. Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency

    U.S. Energy Information Administration (EIA) Indexed Site

    Long-Term Energy Models: Modeling Energy Use and Energy Efficiency James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering Presentation to EIA 2008 Energy Conference 34 ! Years of Energy Information and Analysis Some Modeling History * Original Federal Energy Administration Demand Models in PIES and IEES (1974) - Residential, Industrial, Commercial Sectors * Econometric models * Dynamic specification * Allowed matrix of

  4. Long-Term Stewardship Resource Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Stewardship Resource Center Long-Term Stewardship Resource Center WELCOME TO THE DEPARTMENT OF ENERGY'S LONG-TERM STEWARDSHIP RESOURCE CENTER The purpose of this web site is to provide the public and the Department of Energy's (DOE) community with a variety of information resources for long-term stewardship (LTS) responsibilities. LTS includes the physical controls, institutions, information and other mechanisms needed to ensure protection of people and the environment at sites or

  5. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  6. DOE - Fossil Energy: 2012 Long Term Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 Expt FTA Freeport LNG Expansion, L.P. Dkt. Index 3066 12-18-LNG 022812 Expt FTA Cambridge Energy, LLC Dkt. Index Withdrawn 92112 12-32-LNG 032312 Expt Non-FTA Jordan Cove...

  7. Tribal Renewable Energy Webinar: Project Development for Long Term Tribal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy Development for Long Term Tribal Energy Tribal Renewable Energy Webinar: Project Development for Long Term Tribal Energy July 27, 2016 11:00AM to 12:30PM MDT Get details about the DOE Office of Indian Energy's five-step process for developing renewable energy projects on tribal lands and how they are important to the success of any energy project. The webinar will cover how to determine project savings and production potential estimates, define project options,

  8. Long-Term Stewardship Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Stewardship Study Long-Term Stewardship Study The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between DOE, the Natural Resources Defense Council, and 38 other plaintiffs [Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998)]. The Study describes and analyzes several issues and a variety of information

  9. China-Medium and Long Term Energy Conservation Plan | Open Energy...

    Open Energy Info (EERE)

    Medium and Long Term Energy Conservation Plan Jump to: navigation, search Name China-Medium and Long Term Energy Conservation Plan AgencyCompany Organization Government of China...

  10. Long-Term Grout Performance | Department of Energy

    Office of Environmental Management (EM)

    Grout Performance Long-Term Grout Performance Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance PDF icon Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance More Documents & Publications Long-Term Engineered Cap Performance Estimating Waste Inventory and Waste Tank Characterization DOE EM Project Experience & Lessons Learned for In Situ Decommissioning (Feb. 2013)

  11. Using Social Media for Long-Term Branding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Social Media for Long-Term Branding Better Buildings Residential Network Marketing ... Effective Strategies for Participating in Utility Planning Marketing & Driving Demand ...

  12. Energy use in buildings in a long-term perspective

    SciTech Connect (OSTI)

    Urge-Vorsatz, Diana; Petrichenko, Ksenia; Staniec, Maja; Eom, Jiyong

    2013-06-01

    Energy services in and related to buildings are responsible for approximately one-third of total global final energy demand and energy-related greenhouse gas emissions. They also contribute to the other key energy-related global sustainability challenges including lack of access to modern energy services, climate change, indoor and outdoor air pollution, related and additional health risks and energy dependence. The aim of this paper is to summarize the main sustainability challenges related to building thermal energy use and to identify the key strategies for how to address these challenges. The paper’s basic premises and results are provided by and updated from the analysis conducted for the Global Energy Assessment: identification of strategies and key solutions; scenario assessment; and the comparison of the results with other models in the literature.

  13. Using Social Media for Long-Term Branding | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Media for Long-Term Branding Using Social Media for Long-Term Branding Better Buildings Residential Network Marketing and Outreach Peer Exchange Call Series: Using Social Media for Long-Term Branding, Call Slides and Discussion Summary, February 27, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Effective Strategies for Participating in Utility Planning Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Leveraging

  14. Long-term energy generation planning under uncertainty

    SciTech Connect (OSTI)

    Escudero, L.F.; Paradinas, I.; Salmeron, J.; Sanchez, M.

    1998-07-01

    In this work the authors deal with the hydro-thermal coordination problem under uncertainty in generators availability, fuel costs, exogenous water inflow and energy demand. The objective is to minimize the system operating cost. The decision variables are the fuel procurement for each thermal generation site, the energy generated by each thermal and hydro-generator and the release and spilled water from reservoirs. Control variables are the stored water in reservoirs and the stored fuel in thermal plants at the end of each time period. The main contribution on the proposed topic focus in the simultaneous inclusion of the hydro-network and the thermal generation related constraints, as well as the stochastic aspect of the aforementioned parameters. The authors report their computational experience on real problems drawn from the Spanish hydro-thermal generation system. A case tested includes 85 generators (42 thermal plants with a global 27084MW capacity) and 57 reservoirs.

  15. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research PDF icon algal_biofuels_factsheet.pdf More Documents & Publications 2015 Peer Review Presentations-Algal Feedstocks Algae Biofuels Technology Bioenergy Technologies Office Fiscal Year 2014 Annual Report

  16. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

    2014-04-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

  17. Long-Term Global Trade-Offs Related to Nuclear Energy

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1999-08-25

    An overall comparative assessment of different energy systems and their potential long-term role in contributing to a sustainable energy mix is examined through the use of a global, long-term Energy, Economics, Environment (E{sup 3}) model. This model is used to generate a set of surprise-free futures that encompass a range of economic potentialities. The focus of this study is nuclear energy (NE), and the range of possible futures embodies extrema of NE growth [a Basic Option (BO)] to an NE Phase Out (PO). These NE scenario extrema are expressed against a background that reflects E{sup 3} circumstances ranging from a Business-As-Usual (BAU) to one that is Ecologically Driven (ED), with the latter emphasizing price-induced reductions in greenhouse-gas (GHG) emissions associate with a mix of fossil energy sources. Hence, four ''views-of-the-future'' scenarios emerge to form the framework of this study: BAU/BO, BAU/PO, ED/BO, and ED/PO. Model results ranging from (regional and temporal) primary- and nuclear-energy demands, carbon-dioxide emissions, nuclear-material (plutonium) accumulations and attendant proliferation-risk implications, Gross National Product (GNP) impacts, and a range of technology requirements provide essential input to the subject assessment.

  18. Finding Long-Term Solutions for Nuclear Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Solutions for Nuclear Waste Finding Long-Term Solutions for Nuclear Waste December 21, 2015 - 1:00pm Addthis The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by <a href="https://www.flickr.com/photos/mandj98/">James Marvin Phelps</a>. The Department of Energy is working toward long-term solutions for nuclear waste storage. | Photo by James Marvin Phelps. Franklin (Lynn) Orr Franklin (Lynn) Orr Under Secretary for

  19. Coal investment and long-term supply and demand outlook for coal in the Asia-Pacific Region

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-12-31

    The theme of this symposium to look ahead almost a quarter century to 2020 gives one the freedom to speculate more than usual in projections for coal. It is important to attempt to take a long term look into the future of coal and energy, so that one can begin to prepare for major changes on the horizon. However, it would be a mistake to believe that the crystal ball for making long term projections is accurate for 2020. Hopefully it can suggest plausible changes that have long term strategic importance to Asia`s coal sector. This paper presents the medium scenario of long term projects of coal production, consumption, imports and exports in Asia. The second part of the paper examines the two major changes in Asia that could be most important to the long term role of coal. These include: (1) the impact of strict environmental legislation on energy and technology choices in Asia, and (2) the increased role of the private sector in all aspects of coal in Asia.

  20. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Biofuels: Long-Term Energy Benefits Driv e U.S. Research Algal biofuels can help build U.S. energy security as part of a broad national strategy to cultivate ...

  1. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    SciTech Connect (OSTI)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  2. Long-Term US Industrial Energy Use and CO2 Emissions

    SciTech Connect (OSTI)

    Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

    2007-12-03

    We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

  3. Planning India's long-term energy shipment infrastructures for electricity and coal

    SciTech Connect (OSTI)

    Brian H. Bowen; Devendra Canchi; Vishal Agarwal Lalit; Paul V. Precke; F.T. Sparrow; Marty W. Irwin

    2010-01-15

    The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both the expansion of transmission and generation capacity. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions. 15 refs., 10 figs., 7 tabs.

  4. Long-Term Energy Scenario Models: A Review of the Literature and Recommendations

    SciTech Connect (OSTI)

    2009-01-18

    What primary energy resources will replace conventional oil and gas? A key finding of this study is that energy demands can be satisfied by a wide range of energy resources.

  5. The implications of future building scenarios for long-term building energy research and development

    SciTech Connect (OSTI)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  6. Development and Update of Long-Term Energy and GHG Emission Macroecono...

    Broader source: Energy.gov (indexed) [DOE]

    Approach: Create a Long Term Base Case Major Inputs 9 Light Vehicles (Car and Light Truck) Heavy Vehicles (GVW Class 3-8) Medium: Class 3-6 Truck Heavy:...

  7. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    U.S. Energy Information Administration (EIA) Indexed Site

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  8. Energy technologies and their impact on demand

    SciTech Connect (OSTI)

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  9. Local government involvement in long term resource planning for community energy systems

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  10. A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Buskirk, R. D.; Kantner, C. L. S.; Gerke, B. F.; Chu, S.

    2014-11-14

    We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declinedmore »faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs.« less

  11. A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs

    SciTech Connect (OSTI)

    Van Buskirk, R. D.; Kantner, C. L. S.; Gerke, B. F.; Chu, S.

    2014-11-14

    We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declined faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs.

  12. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect (OSTI)

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  13. Energy Department Issues Report to Congress on Long-Term Stewardship...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Library Press Releases Energy Department Issues Report to Congress on ... Energy Department Issues Report to Congress on ...

  14. The Solar Energy Institute: A long-term investment in America's youth

    SciTech Connect (OSTI)

    Arwood, J.W.

    1999-07-01

    Unlike students of a generation ago, today's high school students have had limited personal experience with the energy issues that influence their everyday lives. They have no personal knowledge of the Arab Oil Embargo or the long lines at gas pumps that students in the 1970s encountered. Unlike their counterparts of the 1980s, who demonstrated against nuclear power plant construction projects, today's students have had very little exposure to energy debates of any national or international consequence. What's more, they have only vague memories of the Persian Gulf War and the fight over energy supplies. Fearing that the absence of crucial, real-life experiences has negatively impacted the energy literacy of today's students, numerous entities have implemented programs designed to introduce young people to a cornucopia of diverse energy issues that affect every aspect of daily life. As part of this educational movement, the Arizona Department of Commerce Energy Office recognized the fact that young people face an increasingly uncertain energy picture and, as such, one must provide them an education that will allow them to make informed energy decisions in the future. To this end, the Energy Office founded the Solar Energy Institute. What the author has gathered from his two years of experience operating the Solar Energy Institute is that the energy IQ of America's youth, specifically their solar energy IQ, is deficient. The other conclusion he has been able to draw from the program of study is that this summer camp is having a positive impact on students' energy literacy as measured by test scores and a follow-up survey of participants.

  15. Evaluation of the long-term energy analysis program used for the 1978 EIA Administrator's Report to Congress

    SciTech Connect (OSTI)

    Peelle, R. W.; Weisbin, C. R.; Alsmiller, Jr., R. G.

    1981-10-01

    An evaluation of the Long-Term Energy Analysis Program (LEAP), a computer model of the energy portion of the US economy that was used for the 1995-2020 projections in its 1978 Annual Report to Congress, is presented. An overview of the 1978 version, LEAP Model 22C, is followed by an analysis of the important results needed by its users. The model is then evaluated on the basis of: (1) the adequacy of its documentation; (2) the local experience in operating the model; (3) the adequacy of the numerical techniques used; (4) the soundness of the economic and technical foundations of the model equations; and (5) the degree to which the computer program has been verified. To show which parameters strongly influence the results and to approach the question of whether the model can project important results with sufficient accuracy to support qualitative conclusions, the numerical sensitivities of some important results to model input parameters are described. The input data are categorized and discussed, and uncertainties are given for some parameters as examples. From this background and from the relation of LEAP to other available approaches for long-term energy modeling, an overall evaluation is given of the model's suitability for use by the EIA.

  16. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect (OSTI)

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  17. Long-Term Modeling of Wind Energy in the United States

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Wise, Marshall A.; Lurz, Joshua P.; Barrie, Daniel

    2007-09-30

    An improved representation of wind energy has been developed for the ObjECTS MiniCAM integrated assessment modeling framework. The first version of this wind model was used for the CCTP scenarios, where wind accounts for between 9% and 17% of U.S. electricity generation by 2095. Climate forcing stabilization policies tend to increase projected deployment. Accelerated technological development in wind electric generation can both increase output and reduce the costs of wind energy. In all scenarios, wind generation is constrained by its costs relative to alternate electricity sources, particularly as less favorable wind farm sites are utilized. These first scenarios were based on exogenous resource estimates that do not allow evaluation of resource availability assumptions. A more detailed representation of wind energy is under development that uses spatially explicit resource information and explicit wind turbine technology characteristics.

  18. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  19. Long-Term Stewardship Study

    Energy Savers [EERE]

    Environmental Management Office of Long Term Stewardship LONG-TERM STEWARDSHIP STUDY Volume I - Report Prepared to comply with the terms of a settlement agreement: Natural Resources Defense Council, et al. v. Richardson, et al., Civ. No. 97-936 (SS) (D.D.C. Dec. 12, 1998). Final Study October 2001 - i - Foreword The Department of Energy (DOE) has prepared this Long-term Stewardship Study ("Study" or "Final Study") to comply with the terms of a settlement agreement between

  20. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect (OSTI)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  1. Experimentally validated long-term energy production prediction model for solar dish/Stirling electric generating systems

    SciTech Connect (OSTI)

    Stine, W.B.

    1995-12-31

    Dish/Stirling solar electric systems are currently being tested for performance and longevity in order to bring them to the electric power generation market. Studies both in Germany and the United States indicate that a significant market exists for these systems if they perform in actual installations according to tested conditions, and if, when produced in large numbers their cost will drop to goals currently being projected. In the 1980`s, considerable experience was gained operating eight dish/Stirling systems of three different designs. One of these recorded the world`s record for converting solar energy into electricity of 29.4%. The approach to system performance prediction taken in this presentation results from lessons learned in testing these early systems, and those currently being tested. Recently the IEA through the SolarPACES working group, has embarked on a program to develop uniform guidelines for measuring and presenting performance data. These guidelines are to help potential buyers who want to evaluate a specific system relative to other dish/Stirling systems, or relative to other technologies such as photovoltaic, parabolic trough or central receiver systems. In this paper, a procedure is described that permits modeling of long-term energy production using only a few experimentally determined parameters. The benefit of using this technique is that relatively simple tests performed over a period of a few months can provide performance parameters that can be used in a computer model requiring only the input of insolation and ambient temperature data to determine long-term energy production information. A portion of this analytical procedure has been tested on the three 9-kW(e) systems in operation in Almeria, Spain. Further evaluation of these concepts is planned on a 7.5-kW(e) system currently undergoing testing at Cal Poly University in Pomona, California and later on the 25 kW(e) USJVP systems currently under development.

  2. Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site

    SciTech Connect (OSTI)

    2008-09-01

    This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

  3. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  4. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  5. CO sub 2 emissions from developing countries: Better understanding the role of energy in the long term

    SciTech Connect (OSTI)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

  6. CO sub 2 emissions from developing countries: Better understanding the role of Energy in the long term

    SciTech Connect (OSTI)

    Ketoff, A.; Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist energy demand in developing will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted fro Argentina, Brazil, Mexico and Venezuela in Latin America.

  7. Energy Demand | Open Energy Information

    Open Energy Info (EERE)

    affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the...

  8. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  9. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's ...

  10. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  11. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  12. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's electricity delivery infrastructure to assure consumers a robust, reliable electric power system that meets their increasing demand for energy. OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demand response

  13. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  14. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  15. Model for Analysis of Energy Demand (MAED-2) | Open Energy Information

    Open Energy Info (EERE)

    demand based on medium- to long-term scenarios of socio-economic, technological and demographic developments. " References "MAED 2" Retrieved from "http:en.openei.orgw...

  16. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  17. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  18. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY

    Broader source: Energy.gov [DOE]

    As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

  19. Long-Term Surveillance and Maintenance Requirements for Remediated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements for Remediated FUSRAP Sites Long-Term Surveillance and Maintenance ... to the U.S. Department of Energy (DOE) for long-term surveillance and maintenance (LTS&M). ...

  20. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    Broader source: Energy.gov [DOE]

    Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance...

  1. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  2. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  3. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  4. Adapting Advances in Remediation Science to Long-Term Surveillance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Adapting Advances in Remediation Science to Long-Term Surveillance Adapting Advances in Remediation Science to Long-Term Surveillance Paper and presentation presented at the Waste Managent 2006 Conference. February 26 through March 2, 2006, Tucson, Arizona. David Peterson PDF icon Adapting Advances in Remediation Science to Long-Term Surveillance More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Long-Term

  5. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  6. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  7. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  8. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  9. Clean Cities Now, Vol. 18, No. 2, Winter 2014/2015: Past, Present, Future: Propane Proves Dependable Over the Long Term (Newsletter), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    8, No. 2 Winter 2014/2015 Inside: 2013: One Year-One Billion and Beyond Northern Colorado Cements Success With Partnerships Braun's Express Celebrates Petroleum Reduction Past, Present, Future: Propane proves dependable over the long term Carl Lisek, left, South Shore Clean Cities Coor- dinator, and Lorrie Lisek, Wisconsin Clean Cities Coordinator, were selected by the Society of Innovators of Northwest Indiana as the September 2014 innovators of the month. In This Issue Events Spur EV Adoption

  10. Long-Term Surveillance Plan...

    Office of Legacy Management (LM)

    AL/62350-235 REV. 1 LONG-TERM SURVEILLANCE PLAN FOR THE ESTES GULCH DISPOSAL SITE NEAR RIFLE, COLORADO November 1997 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (615) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 Long-Term Surveillance Plan for the Estes Gulch Disposal Site Near

  11. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  12. MAXI INVESTIGATION INTO THE LONG-TERM X-RAY VARIABILITY FROM THE VERY-HIGH-ENERGY ?-RAY BLAZAR Mrk 421

    SciTech Connect (OSTI)

    Isobe, Naoki [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA) 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Sato, Ryosuke; Ueda, Yoshihiro; Hayashida, Masaaki; Shidatsu, Megumi; Kawamuro, Taiki [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Ueno, Shiro; Matsuoka, Masaru [ISS Science Project Office, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Sugizaki, Mutsumi; Sugimoto, Juri; Mihara, Tatehiro [MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Negoro, Hitoshi, E-mail: n-isobe@ir.isas.jaxa.jp [Department of Physics, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-01

    The archetypical very-high-energy ?-ray blazar Mrk 421 was monitored for more than three years with the Gas Slit Camera on board Monitor of All Sky X-ray Image (MAXI), and its long-term X-ray variability was investigated. The MAXI light curve in the 3-10 keV range was transformed into the periodogram in the frequency range f = 1 × 10{sup –8}-2 × 10{sup –6} Hz. The artifacts on the periodogram, resulting from data gaps in the observed light curve, were extensively simulated for variations with a power-law-like power spectrum density (PSD). By comparing the observed and simulated periodograms, the PSD index was evaluated as ? = 1.60 ± 0.25. This index is smaller than that obtained in the higher-frequency range (f ? 1 × 10{sup –5} Hz), namely, ? = 2.14 ± 0.06 in the 1998 ASCA observation of the object. The MAXI data impose a lower limit on the PSD break at f {sub b} = 5 × 10{sup –6} Hz, consistent with the break of f {sub b} = 9.5 × 10{sup –6} Hz suggested from the ASCA data. The low-frequency PSD index of Mrk 421 derived with MAXI falls well within the range of typical values among nearby Seyfert galaxies (? = 1-2). The physical implications from these results are briefly discussed.

  13. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  14. Calculating impacts of energy standards on energy demand in U...

    Office of Scientific and Technical Information (OSTI)

    Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model Citation Details In-Document Search Title: Calculating ...

  15. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  16. Reducing Energy Demand in Buildings Through State Energy Codes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building Technologies Office's Program Peer Review PDF icon bldgcodes03_guttman_040213.pdf More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review Atmospheric Pressure Deposition for Electrochromic Windows Building America System Research

  17. CO{sub 2} emissions from developing countries: Better understanding the role of Energy in the long term. Volume 2, Argentina, Brazil, Mexico, and Venezuela

    SciTech Connect (OSTI)

    Ketoff, A.; Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist energy demand in developing will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted fro Argentina, Brazil, Mexico and Venezuela in Latin America.

  18. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  19. Long Term Care | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Care icon Federal employees can elect to participate in the Federal Long Term Care Insurance Program (FLTCIP) which provides long term care insurance to Federal employees,...

  20. Vehicle Technologies Office: Long-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Magnesium and Carbon Fiber) | Department of Energy Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent. Magnesium Even though magnesium (Mg) can reduce component weight by more than 60 percent, its use is currently limited

  1. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  2. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  3. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for ...

  4. International Energy Outlook 2016-World energy demand and economc outlook -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Analysis & Projections International Energy Outlook 2016 Release Date: May 11, 2016 | Next Release Date: September 2017 | Complete PDF anticipated May 23 Chapter 1. World energy demand and economic outlook Overview The International Energy Outlook 2016 (IEO2016) Reference case projects significant growth in worldwide energy demand over the 28-year period from 2012 to 2040. Total world consumption of marketed energy expands from 549 quadrillion British

  5. Upcoming Long-Term Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Long-Term Operating Schedule Print This schedule is also available as an .xls spreadsheet.

  6. Upcoming Long-Term Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Long-Term Operating Schedule Print This schedule is also available as an .xls spreadsheet.

  7. Upcoming Long-Term Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Long-Term Operating Schedule Print This schedule is also available as an .xls spreadsheet.

  8. Current Long-Term Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Long-Term Operating Schedule Print This schedule is also available as an .xls spreadsheet.

  9. Current Long-Term Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Long-Term Operating Schedule Print This schedule is also available as an .xls spreadsheet.

  10. Current Long-Term Operating Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Long-Term Operating Schedule Print This schedule is also available as an .xls spreadsheet.

  11. Statement by Energy Secretary Samuel W. Bodman on House Passage of H.R. 6- Creating Long-Term Energy Alternatives for The Nation Act

    Broader source: Energy.gov [DOE]

    "I'm pleased that the new Congress is joining us in taking our nation's energy security seriously.  And I look forward to working with the Congress as it works on this and other energy legislation...

  12. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called ...

  13. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  14. Long-term Contract Information and Registrations

    Broader source: Energy.gov [DOE]

    DOE/FE orders granting long-term authorization to export liquefied natural gas by vessel require authorization holders to file long-term contract information with DOE/FE for LNG exports and long...

  15. Sandia National Laboratories: Long-term Stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-term Stewardship Environmental Management System Pollution Prevention Information Repository Index Long-term Stewardship About Long-term Stewardship Groundwater sampling The goal of the LTS Program is the long-term protection of human health and the environment from hazards associated with residual contamination at former Environmental Restoration Project (ER) sites, and minimization of Sandia's environmental liability by ensuring environmental compliance with the requirements provided in

  16. Long-Term Engineered Cap Performance

    Broader source: Energy.gov [DOE]

    Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance

  17. Site Transition Framework for Long-Term Surveillance and Maintenance

    Broader source: Energy.gov [DOE]

    The Site Transition Framework (STF) provides a framework for all U.S. Department of Energy (DOE) facilities and sites where DOE may have anticipated long-term surveillance and maintenance (LTS&...

  18. Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP

    Energy Savers [EERE]

    Sites | Department of Energy Requirements for Remediated FUSRAP Sites Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites This document summarizes radiological conditions at sites remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and transferred to the U.S. Department of Energy (DOE) for long-term surveillance and maintenance (LTS&M). Source document citations are presented. Most of these sites meet criteria for unrestricted use; a

  19. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  20. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect (OSTI)

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  1. Long-Term Stewardship Baseline Report and Transition Guidance

    SciTech Connect (OSTI)

    Kristofferson, Keith

    2001-11-01

    Long-term stewardship consists of those actions necessary to maintain and demonstrate continued protection of human health and the environment after facility cleanup is complete. As the Department of Energy’s (DOE) lead laboratory for environmental management programs, the Idaho National Engineering and Environmental Laboratory (INEEL) administers DOE’s long-term stewardship science and technology efforts. The INEEL provides DOE with technical, and scientific expertise needed to oversee its long-term environmental management obligations complexwide. Long-term stewardship is administered and overseen by the Environmental Management Office of Science and Technology. The INEEL Long-Term Stewardship Program is currently developing the management structures and plans to complete INEEL-specific, long-term stewardship obligations. This guidance document (1) assists in ensuring that the program leads transition planning for the INEEL with respect to facility and site areas and (2) describes the classes and types of criteria and data required to initiate transition for areas and sites where the facility mission has ended and cleanup is complete. Additionally, this document summarizes current information on INEEL facilities, structures, and release sites likely to enter long-term stewardship at the completion of DOE’s cleanup mission. This document is not intended to function as a discrete checklist or local procedure to determine readiness to transition. It is an overarching document meant as guidance in implementing specific transition procedures. Several documents formed the foundation upon which this guidance was developed. Principal among these documents was the Long-Term Stewardship Draft Technical Baseline; A Report to Congress on Long-Term Stewardship, Volumes I and II; Infrastructure Long-Range Plan; Comprehensive Facility Land Use Plan; INEEL End-State Plan; and INEEL Institutional Plan.

  2. Operational Simulation Tools and Long Term Strategic Planning for High

    Energy Savers [EERE]

    Penetrations of PV in the Southeastern U.S. | Department of Energy Operational Simulation Tools and Long Term Strategic Planning for High Penetrations of PV in the Southeastern U.S. Operational Simulation Tools and Long Term Strategic Planning for High Penetrations of PV in the Southeastern U.S. EPRI logo.jpg In collaboration with the Tennessee Valley Authority Southern Company, the Sacramento Municipal Utility District, the California Independent System Operator, and other partners,

  3. Long-Term Stewardship - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive Land-Use Plan - Environmental Impact Statement (HCP EIS), and 64 FR 61615, "Record ... DOE directives, and Hanford Site procedures. hidden Long-Term Stewardship ...

  4. Missouri Entices With Rebates, Lends for the Long-Term | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missouri Entices With Rebates, Lends for the Long-Term Missouri Entices With Rebates, Lends for the Long-Term When the Missouri Agricultural Energy Savings Team-A Revolutionary ...

  5. Assessment of Energy Savings Potential from the Use of Demand...

    Office of Scientific and Technical Information (OSTI)

    Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California Citation Details In-Document Search Title: Assessment of Energy ...

  6. Coordination of Energy Efficiency and Demand Response: A Resource...

    Open Energy Info (EERE)

    Coordination of Energy Efficiency and Demand Response: A Resource of the National Action Plan for Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  7. Chapter 3 Demand-Side Resources | Department of Energy

    Energy Savers [EERE]

    Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys ...

  8. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Energy Savers [EERE]

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. PDF icon serc_webinar_presentation_20111004.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  9. Agreement Template for Energy Conservation and Demand Side Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services | Department of Energy Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below. PDF icon Download the template agreement. PDF icon Download the model agreement

  10. Summary, Long-Term Nuclear Technology Research and Development Plan |

    Energy Savers [EERE]

    Department of Energy Summary, Long-Term Nuclear Technology Research and Development Plan Summary, Long-Term Nuclear Technology Research and Development Plan In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on the broad range of non-defense DOE nuclear technology programs. The NERAC recommended development of a long-range R&D program. This R&D

  11. Site Transition Framework for Long-Term Surveillance and Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework for Long-Term Surveillance and Maintenance Site Transition Framework for Long-Term Surveillance and Maintenance Site Transition Framework for Long-Term Surveillance and ...

  12. Long-Term Surveillance and Maintenance Requirements for Remediated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites Long-Term ...

  13. Long-Term Surveillance and Maintenance Program 2003 Report |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program 2003 Report Long-Term Surveillance and Maintenance Program 2003 Report Long-Term Surveillance and Maintenance Program 2003 Report PDF icon Long-Term Surveillance and ...

  14. Recommendation 188: Long-Term Stewardship Implementation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    88: Long-Term Stewardship Implementation Recommendation 188: Long-Term Stewardship Implementation ORSSAB offers Recommendations and Comments on the Long-Term Stewardship ...

  15. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate: Long-Term Utility and Monitoring Data (Revised)

    SciTech Connect (OSTI)

    Parker, D.; Sherwin, J.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  16. Achieving Very High Efficiency and Net Zero Energy in an Existing Home in a Hot-Humid Climate. Long-Term Utility and Monitoring Data

    SciTech Connect (OSTI)

    Parker, D.

    2012-10-01

    This study summarizes the first six months of detailed data collected on a single family home that experienced a series of retrofits targeting reductions in energy use. The project was designed to develop data on how envelope modifications and renewable measures can result in considerable energy reductions and potentially net zero energy for an existing home. Originally published in February 2012, this revised version of the report contains further research conducted on the Parker residence. Key updates include one full year of additional data, an analysis of cooling performance of the mini-split heat pump, an evaluation of room-to-room temperature distribution, and an evaluation of plug-in automobile charging performance, electricity consumption, and load shape.

  17. Guidance for Developing and Implementing Long-Term Surveillance Plans for

    Energy Savers [EERE]

    UMTRCA Title I and Title II Disposal Sites | Department of Energy Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites Guidance for Developing and Implementing Long-Term Surveillance Plans for UMTRCA Title I and Title II Disposal Sites (November 2012) PDF icon Guidance for Developing and Implementing Long-Term

  18. Long-Term Stewardship Program Science and Technology Requirements

    SciTech Connect (OSTI)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  19. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of the U.S. solar ...

  20. ADB-Methods and Tools for Energy Demand Projection | Open Energy...

    Open Energy Info (EERE)

    ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods and Tools for Energy Demand Projection AgencyCompany...

  1. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    U.S. Energy Information Administration (EIA) Indexed Site

    Behavioral Economics Applied to Energy Demand Analysis: A Foundation October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Behavioral Economics Applied to Energy Demand Analysis i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  2. Assumption to the Annual Energy Outlook 2014 - Commercial Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    chosen to meet the projected service demands for the seven major end uses. Once technologies are chosen, the energy consumed by the equipment stock (both existing and purchased...

  3. Site Transition Summary: Cleanup Completion to Long-Term Stewardship at

    Energy Savers [EERE]

    Department of Energy On-going Mission Sites | Department of Energy Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Site Transition Summary: Cleanup Completion to Long-Term Stewardship at Department of Energy On-going Mission Sites Long-term stewardship (LTS) includes the physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where the U.S. Department of Energy

  4. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  5. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  6. Tankless or Demand-Type Water Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a demand water heater at each hot water outlet. ENERGY STAR estimates that a typical family can save 100 or more per year with an ENERGY STAR qualified tankless water heater....

  7. DOE - Fossil Energy: 2011 Long Term Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impt Expt Country Application Link Company Dkt. Index Ord. No. 11-09-LNG 012511 I Egypt BG LNG Services, LLC Dkt. Index 2917 11-51-LNG 042111 E Re-export Freeport LNG...

  8. Long-Term Nuclear Industry Outlook - 2004

    SciTech Connect (OSTI)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  9. Demand for oil and energy in developing countries

    SciTech Connect (OSTI)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  10. Over 150 years of long-term fertilization alters spatial scaling...

    Office of Scientific and Technical Information (OSTI)

    Prev Next Title: Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity You are accessing a document from the Department of Energy's...

  11. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA Conference July 15, 2014 | Washington, DC By Trisha Hutchins, Office of Energy Consumption and Efficiency Analysis Light-duty vehicle energy demand, demographics, and travel behavior Examining changes in light-duty vehicle travel trends 2 EIA Conference: Light-duty vehicle energy demand, demographics, and travel behavior July 15, 2014 * Recent data indicate possible structural shift in travel behavior, measured as vehicle miles traveled (VMT) - VMT per licensed driver, vehicles per capita,

  12. Titanium for long-term tritium storage

    SciTech Connect (OSTI)

    Heung, L.K.

    1994-12-01

    Due to the reduction of nuclear weapon stockpile, there will be an excess of tritium returned from the field. The excess tritium needs to be stored for future use, which might be several years away. A safe and cost effective means for long term storage of tritium is needed. Storing tritium in a solid metal tritide is preferred to storing tritium as a gas, because a metal tritide can store tritium in a compact form and the stored tritium will not be released until heat is applied to increase its temperature to several hundred degrees centigrade. Storing tritium as a tritide is safer and more cost effective than as a gas. Several candidate metal hydride materials have been evaluated for long term tritium storage. They include uranium, La-Ni-Al alloys, zirconium and titanium. The criteria used include material cost, radioactivity, stability to air, storage capacity, storage pressure, loading and unloading conditions, and helium retention. Titanium has the best combination of properties and is recommended for long term tritium storage.

  13. Los Alamos National Laboratory: Long-Term Environmental Stewardship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    green? Click image to learn more Next Enduring Environmental Stewardship Long-Term Strategy for Environmental Stewardship and Sustainability Long-Term Strategy for Environmental...

  14. Los Alamos National Laboratory announces strategy for long-term...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy for long-term environmental sustainability Los Alamos National Laboratory announces strategy for long-term environmental sustainability Provides a blueprint for protecting ...

  15. Los Alamos National Laboratory: Long-Term Environmental Stewardship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Strategy for Environmental Stewardship and Sustainability Long-Term Strategy for Environmental Stewardship and Sustainability (pdf) From today for years to come Over the ...

  16. Hydrogen Storage Technologies: Long-Term Commercialization Approach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: Long-Term Commercialization Approach with First Products First Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First Presented ...

  17. Building America Case Study: Initial and Long Term Movement of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation PROJECT INFORMATION Project Name: Initial and Long-Term Movement of Cladding Installed Over ...

  18. Transition of Long-Term Response Action Management Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transition of Long-Term Response Action Management Requirements Transition of Long-Term Response Action Management Requirements The purpose of this memorandum is to provide you ...

  19. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  20. Summary Final Long-Term Management and Storage of Elemental Mercury Supplemental Environmental Impact Statement

    Office of Environmental Management (EM)

    Environmental Impact Statement Final LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY Final Supplemental Environmental Impact Statement LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY DOE/EIS-0423-S1 September 2013 SUMMARY AND GUIDE FOR STAKEHOLDERS U.S. Department of Energy Office of Environmental Management Washington, DC AVAILABILITY OF THIS FINAL LONG-TERM MANAGEMENT AND STORAGE OF ELEMENTAL MERCURY SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT For additional information on this

  1. EnergySolve Demand Response | Open Energy Information

    Open Energy Info (EERE)

    Demand Response Place: Somerset, New Jersey Product: Somerset-based utility bill outsourcing company that provides electronic utility bill auditing, tariff analysis, late fee...

  2. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 4, Ghana, Sierra Leone, Nigeria and the Gulf Cooperation Council (GCC) countries

    SciTech Connect (OSTI)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world`s share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates).

  3. Using Community-Based Social Marketing to Drive Demand for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the ...

  4. Long-term control of root growth

    DOE Patents [OSTI]

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  5. Demand Response and Energy Storage Integration Study- Past Workshops

    Broader source: Energy.gov [DOE]

    The project was initiated and informed by the results of two DOE workshops; one on energy storage and the other on demand response. The workshops were attended by members of the electric power industry, researchers, and policy makers; and the study design and goals reflect their contributions to the collective thinking of the project team.

  6. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information Administration Appendix A Behavioral Economics Applied to Energy Demand Analysis: A Foundation Release date: October 15, 2014 Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to

  7. Numerical simulation experiments on the long-term evolution of...

    Office of Scientific and Technical Information (OSTI)

    the long-term evolution of a CO2 plume under a sloping caprock Citation Details In-Document Search Title: Numerical simulation experiments on the long-term evolution of a CO2 plume ...

  8. Long-term Contract Information and Registrations | Department...

    Energy Savers [EERE]

    Long-Term Contract Information and Registrations at U.S. LNG Export Facilities DOEFE ... contract information with DOEFE for LNG exports and long-term natural gas supply. ...

  9. Why is a long-term strategy important?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why is a long-term strategy important? Why is a long-term strategy important? Because we protect the environment. That is our practice today, and it is our commitment to a...

  10. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT...

    Office of Scientific and Technical Information (OSTI)

    LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE Citation Details In-Document Search Title: LONG-TERM COLLOID ...

  11. Long-Term Surveillance Operations and Maintenance Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Year-End Summary Report Long-Term Surveillance Operations and Maintenance Fiscal Year ... PDF icon Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End ...

  12. Long-term corrosion testing pan.

    SciTech Connect (OSTI)

    Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

    2008-08-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing needs. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to meet all future testing needs, given that all testing is consolidated to a single location. This report is a revision to SAND2007-7027 to address DOE comments and add a series of tests to address NWTRB recommendations.

  13. Long-term corrosion testing plan.

    SciTech Connect (OSTI)

    Wall, Frederick Douglas; Brown, Neil R. (Los Alamos National Laboratory, Los Alamos, NM)

    2009-02-01

    This document describes the testing and facility requirements to support the Yucca Mountain Project long-term corrosion testing program. The purpose of this document is to describe a corrosion testing program that will (a) reduce model uncertainty and variability, (b) reduce the reliance upon overly conservative assumptions, and (c) improve model defensibility. Test matrices were developed for 17 topical areas (tasks): each matrix corresponds to a specific test activity that is a subset of the total work performed in a task. A future document will identify which of these activities are considered to be performance confirmation activities. Detailed matrices are provided for FY08, FY09 and FY10 and rough order estimates are provided for FY11-17. Criteria for the selection of appropriate test facilities were developed through a meeting of Lead Lab and DOE personnel on October 16-17, 2007. These criteria were applied to the testing activities and recommendations were made for the facility types appropriate to carry out each activity. The facility requirements for each activity were assessed and activities were identified that can not be performed with currently available facilities. Based on this assessment, a total of approximately 10,000 square feet of facility space is recommended to accommodate all future testing, given that all testing is consolidated to a single location. This report is a revision to SAND2008-4922 to address DOE comments.

  14. Long-Term Surveillance Operations and Maintenance Fiscal Year 2014 Year-End

    Energy Savers [EERE]

    Summary Report | Department of Energy 4 Year-End Summary Report Long-Term Surveillance Operations and Maintenance Fiscal Year 2014 Year-End Summary Report The Long-Term Surveillance Operations and Maintenance (LTS-O&M) subtask has a critical long-term surveillance and maintenance (LTS&M) role for the U.S. Department of Energy (DOE) Office of Legacy Management (LM). LM needs knowledge and tools to ensure that implementation of LTS&M will be informed, efficient, and cost-effective.

  15. Long-Term Management and Storage of Elemental Mercury | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Long-Term Management and Storage of Elemental Mercury Long-Term Management and Storage of Elemental Mercury In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) (Public Law No. 110-414) requires the Department of Energy (DOE) to establish a facility for the long-term management and storage of elemental mercury (generated with the U.S.). DOE used the National Environmental Policy Act (NEPA)

  16. Long-term management of high-level radioactive waste (HLW) and spent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear fuel (SNF) | Department of Energy Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor to generate nuclear energy but that has been removed from the reactor as no

  17. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-06-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers` socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  18. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-01-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers' socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  19. 2003 Long-Term Surveillance and Maintenance Program Report

    SciTech Connect (OSTI)

    2004-07-01

    Radioactive waste was created by the Federal Government and private industry at locations around the country in support of national defense, research, and civilian power-generation programs. If not controlled, much of this legacy waste would remain hazardous to human health and the environment indefinitely. Current technology does not allow us to render this waste harmless, so the available methods to control risk rely on consolidation, isolation, and long-term management of the waste. The U.S. Department of Energy (DOE) has an obligation to safely control the radioactive waste and to inform and train future generations to maintain and, perhaps, improve established protections. DOE is custodian for much of the radioactive and other hazardous waste under control of the Federal Government. DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 and the Defense Decontamination and Decommissioning (D&D) Program and the Surplus Facilities Management Program in the 1980s. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978. These federal programs and legislation were established to identify, remediate, and manage legacy waste. Remedial action is considered complete at a radioactive waste site when the identified hazardous material is isolated and the selected remedial action remedy is in place and functioning. Radioactive or other hazardous materials remain in place as part of the remedy at many DOE sites. Long-term management of radioactive waste sites incorporates a set of actions necessary to maintain protection of human health and the environment. These actions include maintaining physical impoundment structures in good repair to ensure that they perform as designed, preventing exposure to the wastes by maintaining access restrictions and warnings, and recording site conditions and activities for future custodians. Any actions, therefore, that will prevent exposure to the radioactive waste now or in the future are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE’s responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation’s nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE’s legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM–50), as well as management of remedies involving ground water and surface water contaminated by former processing activities.

  20. Marketing & Driving Demand Collaborative - Social Media Tools & Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy & Driving Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better Buildings webinar on January 6, 2011. PDF icon Marketing & Driving Demand Collaborative More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating

  1. Missouri Entices With Rebates, Lends for the Long-Term | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Missouri Entices With Rebates, Lends for the Long-Term Missouri Entices With Rebates, Lends for the Long-Term When the Missouri Agricultural Energy Savings Team-A Revolutionary Opportunity (MAESTRO) first reached out to farmers to offer loans for efficiency upgrades, they were surprised to find the farmers often declined this offer. What MAESTRO soon realized was that they needed to find another way to generate initial interest. MAESTRO decided to offer rebates for three levels of

  2. Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs

    U.S. Energy Information Administration (EIA) Indexed Site

    Experts Meeting: Behavioral Economics as Applied to Energy Demand Analysis and Energy Efficiency Programs EIA Office of Energy Consumption and Efficiency Analysis July 17, 2013 | Washington, DC Meeting Agenda Jim Turnure, Director, Office of Energy Consumption and Efficiency Analysis July 17, 2013 2 * EIA WELCOME AND INTRODUCTION (15 minutes) * ORIENTATION/PRESENTATION: OVERVIEW OF EIA RESIDENTIAL AND COMMERCIAL DEMAND MODELS AND CURRENT METHODS FOR INCORPORATING ENERGY EFFICIENCY/EFFICIENCY

  3. Demand Response Resources for Energy and Ancillary Services (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.

    2014-04-01

    Demand response (DR) resources present a potentially important source of grid flexibility particularly on future systems with high penetrations of variable wind an solar power generation. However, DR in grid models is limited by data availability and modeling complexity. This presentation focuses on the co-optimization of DR resources to provide energy and ancillary services in a production cost model of the Colorado test system. We assume each DR resource can provide energy services by either shedding load or shifting its use between different times, as well as operating

  4. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications (EIA)

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administration’s second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  5. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... codes in 2012 * Total potential savings in all 9 states (wfull compliance in 2014): * Annual energy cost savings: 303 million (in 2015) * Cumulative through 2035: over 51 ...

  6. Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End

    Energy Savers [EERE]

    Summary Report | Department of Energy 3 Year-End Summary Report Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report LTS-O&M is at the core of LM efforts to fulfill a strategy that includes objectives published in the 2011-2020 Strategic Plan (DOE 2011). PDF icon Long-Term Surveillance Operations and Maintenance Fiscal Year 2013 Year-End Summary Report More Documents & Publications Long-Term Surveillance Operations and Maintenance Fiscal Year

  7. Tankless Demand Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  8. Projecting household energy consumption within a conditional demand framework

    SciTech Connect (OSTI)

    Teotia, A.; Poyer, D.

    1991-01-01

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  9. Projecting household energy consumption within a conditional demand framework

    SciTech Connect (OSTI)

    Teotia, A.; Poyer, D.

    1991-12-31

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  10. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term

    Energy Savers [EERE]

    Natural Gas Applications | Department of Energy 5 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications Please note: To view the complete docket listing, please click the 'Docket Index' link pertaining to a particular docket. Docket Indexes and Service Lists that are not listed can be obtained by contacting the Docket Room Manager at 202-586-9478 or

  11. DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 5: Long-Term

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Technologies | Department of Energy 5: Long-Term Innovative Technologies DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 5: Long-Term Innovative Technologies Report from Breakout Group 5 of the DOE Fuel Cell Pre-Solicitation Workshop, March 16-17, 2010 PDF icon fuelcell_pre-solicitation_wkshop_innovative_tech.pdf More Documents & Publications DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature Fuel Cell System BOP & FUEL Processors For

  12. The application of compressed sensing to long-term acoustic emission-based

    Office of Scientific and Technical Information (OSTI)

    structural health monitoring (Conference) | SciTech Connect Conference: The application of compressed sensing to long-term acoustic emission-based structural health monitoring Citation Details In-Document Search Title: The application of compressed sensing to long-term acoustic emission-based structural health monitoring Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI)

  13. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  14. Grand Junction, Colorado, Disposal Site Long-Term Surveillance...

    Office of Legacy Management (LM)

    ... Grand Junction, Colorado, Disposal Site Long-Term Surveillance and Maintenance Program The Grand Junction Office has provided cost-effective and efficient stewardship for more than ...

  15. Long Term Environment and Economic Impacts of Coal Liquefaction...

    Office of Scientific and Technical Information (OSTI)

    Long Term Environment and Economic Impacts of Coal Liquefaction in China Fletcher, Jerald 01 COAL, LIGNITE, AND PEAT The project currently is composed of six specific tasks - three...

  16. Long-Term Biological Monitoring of an Impaired Stream: Implications...

    Office of Scientific and Technical Information (OSTI)

    Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and ...

  17. Experimental apparatus and software design for dynamic long-term...

    Office of Scientific and Technical Information (OSTI)

    reliability testing of a spring-mass MEMS device. Citation Details In-Document Search Title: Experimental apparatus and software design for dynamic long-term reliability ...

  18. Long-Term Strategy for Environmental Stewardship and Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Strategy for Environmental Stewardship & Sustainability Hawks nesting Bike rider commutes to work at LANL A bobcat walking on LANL property Weather monitoring at LANL...

  19. The relationship between interannual and long-term cloud feedbacks...

    Office of Scientific and Technical Information (OSTI)

    climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. ...

  20. Strontium Isotopes Test Long-Term Zonal Isolation of Injected...

    Office of Scientific and Technical Information (OSTI)

    Water after Hydraulic Fracturing Citation Details In-Document Search Title: Strontium Isotopes Test Long-Term Zonal Isolation of Injected and Marcellus Formation Water after ...

  1. Long-Term Strategy for Environmental Stewardship and Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Strategy for Environmental Stewardship & Sustainability Hawks nesting Bike rider commutes to work at LANL A bobcat walking on LANL property Weather monitoring at LANL ...

  2. An Analytical Framework for Long Term Policy for Commercial Deployment...

    Open Energy Info (EERE)

    Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Jump to: navigation, search...

  3. Long-Term Stewardship Resource Center FAQS

    Broader source: Energy.gov [DOE]

    By Order from the Secretary of Energy, The DOE, including the National Nuclear Security Administration must comply with Order 454.1: Use of Institutional Controls, www.directives.doe.gov/directives...

  4. Demand Response - Policy: More Information | Department of Energy

    Energy Savers [EERE]

    Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the

  5. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  6. Recommendations for Long-term Stewardship

    Office of Environmental Management (EM)

    Environmental Management Budget Request | Department of Energy 228: Recommendations on the FY 2017 DOE Oak Ridge Environmental Management Budget Request Recommendation 228: Recommendations on the FY 2017 DOE Oak Ridge Environmental Management Budget Request ORSSAB agrees with DOE cleanup priorities and provides a ranking of near-term projects. The board also suggests consideration of additional projects. PDF icon Recommendation 228 More Documents & Publications Recommendation 228:

  7. Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings | Department of Energy Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term Energy Savings The LEED Platinum K-12 school in Greensburg, Kansas. <em>Photo from Joah Bussert, Greensburg GreenTown, NREL 19952</em> The LEED Platinum K-12 school in Greensburg, Kansas. Photo from Joah Bussert, Greensburg GreenTown, NREL 19952 On May 4, 2007, a massive tornado

  8. Energy Demands and Efficiency Strategies in Data Center Buildings

    SciTech Connect (OSTI)

    Shehabi, Arman

    2009-09-01

    Information technology (IT) is becoming increasingly pervasive throughout society as more data is digitally processed, stored, and transferred. The infrastructure that supports IT activity is growing accordingly, and data center energy demands haveincreased by nearly a factor of four over the past decade. Data centers house IT equipment and require significantly more energy to operate per unit floor area thanconventional buildings. The economic and environmental ramifications of continued data center growth motivate the need to explore energy-efficient methods to operate these buildings. A substantial portion of data center energy use is dedicated to removing the heat that is generated by the IT equipment. Using economizers to introduce large airflow rates of outside air during favorable weather could substantially reduce the energy consumption of data center cooling. Cooling buildings with economizers is an established energy saving measure, but in data centers this strategy is not widely used, partly owing to concerns that the large airflow rates would lead to increased indoor levels of airborne particles, which could damage IT equipment. The environmental conditions typical of data centers and the associated potential for equipment failure, however, are not well characterized. This barrier to economizer implementation illustrates the general relationship between energy use and indoor air quality in building design and operation. This dissertation investigates how building design and operation influence energy use and indoor air quality in data centers and provides strategies to improve both design goals simultaneously.As an initial step toward understanding data center air quality, measurements of particle concentrations were made at multiple operating northern California data centers. Ratios of measured particle concentrations in conventional data centers to the corresponding outside concentrations were significantly lower than those reported in the literature for office or residential buildings. Estimates using a material-balance model match well with empirical results, indicating that the dominant particle sources and losses -- ventilation and filtration -- have been characterized. Measurements taken at a data center using economizers show nearly an order of magnitude increase in particle concentration during economizer activity. However, even with the increase, themeasured particle concentrations are still below concentration limits recommended in most industry standards. The research proceeds by exploring the feasibility of using economizers in data centers while simultaneously controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at a data center using economizers and varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to the measurements when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh the increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration couldsignificantly reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design. The emphasis of the dissertation then shifts to evaluate the energy benefits of economizer use in data centers under different design strategies. Economizer use with high ventilation rates is compared against an alternative, water-side economizer design that does not affect indoor particle concentrations. Building energy models are employed to estimate energy savings of both economizer designs for data centers in

  9. The relationship between interannual and long-term cloud feedbacks

    SciTech Connect (OSTI)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; Klein, Stephen A.

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual and long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.

  10. Tankless or Demand-Type Water Heaters | Department of Energy

    Energy Savers [EERE]

    or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also known as ...

  11. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also...

  12. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  13. Demand Response and Smart Metering Policy Actions Since the Energy Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act of 2005: A Summary for State Officials | Department of Energy Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Officials This report represents a review of policy developments on demand response and other related areas such as smart meters and smart grid. It has been prepared by the Demand Response Coordinating

  14. LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |

    Energy Savers [EERE]

    Department of Energy LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water

  15. LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs: DOE-NE's Light Water

  16. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating

  17. Generating Demand for Multifamily Building Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Strategies to Address Split Incentives in Multifamily Buildings Outreach to Multifamily Landlords and Tenants Trends in Multifamily Programs: What's Working and

  18. Regulation Services with Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Technology Marketing Summary Grid Friendly(tm)

  19. South Korea-ANL Distributed Energy Resources and Demand Side...

    Open Energy Info (EERE)

    is part of a team that assists the Korean government in analyzing the economic and environmental benefits of distributed resources and demand side management (DSM). DSM has...

  20. Network-Driven Demand Side Management Website | Open Energy Informatio...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnetwork-driven-demand-side-management Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  1. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentestimating-demand-response-market-pot Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  2. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool AgencyCompany Organization: National Renewable...

  3. DOE Announces Up to $15.3 Million for Long-Term Hydrogen Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Up to $15.3 Million for Long-Term Hydrogen Vehicle Development DOE Announces Up to $15.3 Million for Long-Term Hydrogen Vehicle Development August 14, 2008 - 2:40pm Addthis WASHINGTON- U.S. Department of Energy (DOE) Under Secretary Clarence H. "Bud" Albright, Jr. today announced the selection of 10 cost-shared hydrogen storage research and development projects, which will receive up to $15.3 million over five years, subject to annual

  4. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect (OSTI)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

  5. National Action Plan on Demand Response, June 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy Independence and Security Act of 2007 (EISA), entitled "Electricity Sector Demand Response." This National Action Plan is designed to meet three objectives: Identify "requirements for technical assistance to

  6. Zambia : long-term generation expansion study - executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Buehring, W.; Veselka, T.; Decision and Information Sciences

    2008-02-28

    The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The analysis involved the hydro operations studies of the Zambezi river basin and the systems planning studies for the least-cost generation expansion planning. Two well-known and widely accepted computer models were used in the analysis: PC-VALORAGUA model for the hydro operations and optimization studies and the WASP-III Plus model for the optimization of long-term system development. The WASP-III Plus model is a part of the Argonne National Laboratory's Energy and Power Evaluation Model (ENPEP). The analysis was conducted in close collaboration with the Zambia Electricity Supply Corporation (ZESCO). On the initiative from The World Bank, the sponsor of the study, ZESCO formed a team of experts that participated in the analysis and were trained in the use of computer models. Both models were transferred to ZESCO free of charge and installed on several computers in the ZESCO corporate offices in Lusaka. In September-October 1995, two members of the ZESCO National Team participated in a 4-week training course at Argonne National Laboratory near Chicago, U.S.A., focusing on the long-term system expansion planning using the WASP and VALORAGUA models. The hydropower operations studies were performed for the whole Zambezi river basin, including the full installation of the Kariba power station, and the Cahora Bassa hydro power station in Mozambique. The analysis also included possible future projects such as Itezhi-Tezhi, Kafue Gorge Lower, and Batoka Gorge power stations. As hydropower operations studies served to determine the operational characteristics of the existing and future hydro power plants, it was necessary to simulate the whole Zambezi river basin in order to take into account all interactions and mutual influences between the hydro power plants. In addition, it allowed for the optimization of reservoir management and optimization of hydro cascades, resulting in the better utilization of available hydro potential. Numerous analyses were performed for different stages of system development. These include system configurations that correspond to years 1997, 2001, 2015 and 2020. Additional simulations were performed in order to determine the operational parameters of the three existing hydro power stations Victoria Falls, Kariba, and Kafue Gorge Upper, that correspond to the situation before and after their rehabilitation. The rehabilitation works for these three major power stations, that would bring their operational parameters and availability back to the design level, are planned to be carried out in the period until 2000. The main results of the hydro operations studies are presented in Table ES-1. These results correspond to VALORAGUA simulations of system configurations in the years 2001 and 2015. The minimum, average, and maximum electricity generation is based on the simulation of monthly water inflows that correspond to the chronological series of unregulated water inflows at each hydro profile in the period from April 1961 to March 1990. The recommended hydrology dataset provided in the Hydrology Report of the SADC Energy Project AAA 3.8 was used for this study.

  7. Update on DOE/NNSA Long Term Stewardship Programs

    Broader source: Energy.gov [DOE]

    At the August 13, 2014 Committee meeting Tom Longo DOE, Explained What the Office of Legacy Management Does and how the Sites Across the DOE Complex are Managed for Long Term Stewardship.

  8. Long-Term Ecological Monitoring Field Sampling Plan for 2007

    SciTech Connect (OSTI)

    T. Haney R. VanHorn

    2007-07-31

    This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007 investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.

  9. RACORO long-term, systematic aircraft observations of boundary...

    Office of Scientific and Technical Information (OSTI)

    22 January and 30 June 2009. This was the first time that a long-term aircraft campaign ... set of instrumentsmore to measure solar and thermal radiation, cloud microphysics, ...

  10. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    1997-12-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  11. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  12. Experimental apparatus and software design for dynamic long-term

    Office of Scientific and Technical Information (OSTI)

    reliability testing of a spring-mass MEMS device. (Conference) | SciTech Connect Experimental apparatus and software design for dynamic long-term reliability testing of a spring-mass MEMS device. Citation Details In-Document Search Title: Experimental apparatus and software design for dynamic long-term reliability testing of a spring-mass MEMS device. No abstract prepared. Authors: Parson, Ted Blair ; Reu, Phillip L. ; Tanner, Danelle Mary ; Boyce, Brad Lee ; Epp, David S. Publication Date:

  13. Long-term inverter operation demonstration at Sandia National Laboratories.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Long-term inverter operation demonstration at Sandia National Laboratories. Citation Details In-Document Search Title: Long-term inverter operation demonstration at Sandia National Laboratories. No abstract prepared. Authors: Ellis, Abraham ; Kuszmaul, Scott S. ; Gonzalez, Sigifredo Publication Date: 2009-06-01 OSTI Identifier: 966623 Report Number(s): SAND2009-3488C TRN: US200921%%513 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource

  14. Los Alamos National Laboratory announces strategy for long-term

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental sustainability Strategy for long-term environmental sustainability Los Alamos National Laboratory announces strategy for long-term environmental sustainability Provides a blueprint for protecting the environment while accomplishing the Lab's national security missions. March 1, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  15. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework

    SciTech Connect (OSTI)

    Zhou, Yuyu; Clarke, Leon E.; Eom, Jiyong; Kyle, G. Page; Patel, Pralit L.; Kim, Son H.; Dirks, James A.; Jensen, Erik A.; Liu, Ying; Rice, Jennie S.; Schmidt, Laurel C.; Seiple, Timothy E.

    2014-01-01

    As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into climate policy and regional energy system planning. In this study, we presented a detailed building energy model with a U.S. state-level representation, nested in the GCAM integrated assessment framework. We projected state-level building energy demand and its spatial pattern over the century, considering the impact of climate change based on the estimates of heating and cooling degree days derived from downscaled USGS CASCaDE temperature data. The result indicates that climate change has a large impact on heating and cooling building energy and fuel use at the state level, exhibiting large spatial heterogeneity across states (ranges from -10% to +10%). The sensitivity analysis reveals that the building energy demand is subject to multiple key factors, such as the magnitude of climate change, the choice of climate models, and the growth of population and GDP, and that their relative contributions vary greatly across the space. The scale impact in building energy use modeling highlights the importance of constructing a building energy model with the spatially-explicit representation of socioeconomics, energy system development, and climate change. These findings will help the climate-based policy decision and energy system, especially utility planning related to building sector at the U.S. state and regional level facing the potential climate change.

  16. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  17. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  18. Response to several FOIA requests - Renewable Energy. Demand...

    Broader source: Energy.gov (indexed) [DOE]

    Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that ...

  19. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    According to one source, U.S. electric utilities spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. PDF icon Chapter 3: Demand-Side ...

  20. Long-term surveillance plan for the Tuba City, Arizona disposal site

    SciTech Connect (OSTI)

    1996-02-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

  1. Formation of Interfacial Layer and Long-Term Cyclability of Li-O2 Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Joint Center for Energy Storage Research July 28, 2014, Research Highlights Formation of Interfacial Layer and Long-Term Cyclability of Li-O2 Batteries Surface morphology of air electrode at discharge (a,c) and charge (b, d) conditions after first (a, b) and 10th (c, d) cycles. Scientific Achievement Identified key factors that affect the long term cycle life of Li-O2 batteries under full discharge/charge conditions. Significance and Impact The interfacial layer which in situ forms on air

  2. The relationship between interannual and long-term cloud feedbacks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; Klein, Stephen A.

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less

  3. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    SciTech Connect (OSTI)

    2012-03-01

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  4. DOE Issues Final Mercury Storage Environmental Impact Statement: Texas Site Is Preferred for Long-Term Mercury Storage

    Broader source: Energy.gov [DOE]

    WASHINGTON – The Department of Energy has prepared a Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement to analyze the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven locations

  5. Fabricate-on-Demand Vacuum Insulating Glazings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fabricate-on-Demand Vacuum Insulating Glazings Fabricate-on-Demand Vacuum Insulating Glazings 1 of 3 PPG developed and commercialized the Intercept® Spacer System that revolutionized the manufacture of double-pane insulated glazing units (IGUs) 25 years ago. Over 125 PPG-licensed Intercept® Spacer System lines are in operation in the US. Currently in use in more than 600 million residential windows, the Intercept® Spacer System is the top-selling product of its kind in North America. Image:

  6. Residential Demand Module of the National Energy Modeling System: Model Documentation 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Demand Module of the National Energy Modeling System: Model Documentation 2014 August 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | NEMS Residential Demand Module Documentation Report 2014 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  7. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLong-Term Microwave Radiometer Intercomparison ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Long-Term Microwave Radiometer Intercomparison 2001.04.01 - 2001.09.30 Lead Scientist : Richard Cederwall For data sets, see below. Summary Make the spare MWR operational. Ingest data from the spare MWR. Input the output data of the spare MWR and ingest to VAP. Provide data to IOP participants.

  8. Site transition framework for long-term surveillance and maintenance

    SciTech Connect (OSTI)

    2014-04-01

    This document provides a framework for all U.S. Department of Energy (DOE) facilities and sites where DOE may have anticipated long-term surveillance and maintenance (LTSM) responsibilities. It is a tool to help facilitate a smooth transition from remediation to LTSM, providing a systematic process for affected parties to utilize in analyzing the baseline to understand and manage the actions from EM mission completion through a site’s transition into LTSM. The framework is not meant to provide an exhaustive list of the specific requirement and information that are needed. Sites will have unique considerations that may not be adequately addressed by this tool, and it is anticipated that a team comprised of the transferring and receiving organization will use judgment in utilizing this augmenting with other DOE guidance. However the framework should be followed to the extent possible at each site; and adapted to accommodate unique site-specific requirements, needs, and documents. Since the objective of the tool is facilitate better understanding of the conditions of the site and the actions required for transfer, the transition team utilizing the checklist is expected to consult with management of both the receiving and transferring organization to verify that major concerns are addressed. Ideally, this framework should be used as early in the remediation process as possible. Subsequent applications of the Site Transition Framework (STF) to the site should be conducted periodically and used to verify that all appropriate steps have been or will be taken to close-out the site and that actions by both organization are identified to transfer the site to LTSM. The requirements are provided herein.

  9. Energy Upgrade California Drives Demand From Behind the Wheel

    Broader source: Energy.gov [DOE]

    With a goal of "energy efficiency or bust," the California Center for Sustainable Energy (CCSE) recently completed a statewide tour of its ongoing Energy Upgrade California Roadshow. The mobile...

  10. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  11. Residential Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  12. U.S. Energy Information Administration NEMS Residential Demand...

    Gasoline and Diesel Fuel Update (EIA)

    Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 200678,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Housing unit energy consumption by...

  13. Cogeneration of electricity: Cost-effective over long term

    SciTech Connect (OSTI)

    Barger, R.L.; Barham, J. )

    1991-08-01

    This article describes the determination of the cost-effectiveness of a cogeneration project five years after it became operational in 1984. The cogeneration project uses digester sludge gas from a wastewater treatment plant. The topics covered include the history of electrical cogeneration at the site, cogeneration economics in the short term and the long term, and the factors in cost-effectiveness.

  14. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  15. Using Community-Based Social Marketing to Drive Demand for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Using Community-Based Social Marketing to Drive Demand for Energy Efficiency Slides presented in the "What's Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C. PDF icon Using Community-Based Social Marketing More Documents & Publications Targeted Marketing and Program

  16. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    SciTech Connect (OSTI)

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01

    The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and behaviors of complex biological and environmental systems, leading to robust solutions for DOE missions and strategic goals. In March 2010, the Biological and Environmental Research Advisory Committee held the Grand Challenges for Biological and Environmental Research: A Long-Term Vision workshop to identify scientific opportunities and grand challenges for BER science in the coming decades and to develop an overall strategy for drafting a long-term vision for BER. Key workshop goals included: (1) Identifying the greatest scientific challenges in biology, climate, and the environment that DOE will face over a 20-year time horizon. (2) Describing how BER should be positioned to address those challenges. (3) Determining the new and innovative tools needed to advance BER science. (4) Suggesting how the workforce of the future should be trained in integrative system science. This report lays out grand research challenges for BER - in biological systems, climate, energy sustainability, computing, and education and workforce training - that can put society on a path to achieve the scientific evidence and predictive understanding needed to inform decision making and planning to address future energy needs, climate change, water availability, and land use.

  17. NREL: Technology Deployment - NREL's Long-Term Relationship with GSA Stands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Test of Time NREL's Long-Term Relationship with GSA Stands the Test of Time News NREL Helps Federal Agencies Reach New Efficiency Targets Publications Plug-Load Control and Behavioral Change Research in GSA Office Buildings Sponsors U.S. General Services Administration Related Stories Strengthening Homeland Security through Sustainable Energy Alaska Native Village Benefits from Strategic Energy Planning Assistance U.S. Navy Yielding Valuable Results in Hawaii and Guam Fossil Fuel

  18. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect (OSTI)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  19. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    SciTech Connect (OSTI)

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  20. Assisting Mexico in Developing Energy Supply and Demand Projections...

    Open Energy Info (EERE)

    AgencyCompany Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Softwaremodeling tools Website http:...

  1. Long-Term Stewardship Related Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maintenance DOE M 413.3-1 Project Management for the Acquisition of Capital Assets, March 28, 2003 Cultural and Natural Resource Laws and Guidance Other LTS Related Requirements ...

  2. Long-Term U.S. Energy Outlook: Different Perspectives

    U.S. Energy Information Administration (EIA) Indexed Site

    * Tools * Uncertainty - Basic underlying trends (e.g., population growth, economic growth, social norms) - Technology (e.g., new technologies, improved technology, breakthroughs ...

  3. Long term experiences with HDD SCR Catalysts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Test bench results and on-road experiences of more than 1 million km offer comparisons of fresh and used catalyst activity and NOx conversion capability using appropriate methods of catalyst analysis. PDF icon deer08_hofmann.pdf More Documents & Publications BLUETEC - Heading for 50 State Diesel Fuel Efficiency of New European HD Vehicles The PUREM SCR System with AdBlue

  4. Prospective Outlook on Long-Term Energy Systems (POLES) | Open...

    Open Energy Info (EERE)

    focused on: LEDS icon social bw.png Social LEDS icon economic blue.png Economic LEDS icon environmental blue.png Environmental Learn more about the topics for assessing the impacts...

  5. South Africa Long Term Mitigation Scenarios | Open Energy Information

    Open Energy Info (EERE)

    of each option. How, then, is South Africa to grow and develop in order to reduce poverty, while at the same time retooling its economy in order to reduce its greenhouse gas...

  6. Zambia-Long-Term Generation Expansion Study | Open Energy Information

    Open Energy Info (EERE)

    Implementation, GHG inventory, Background analysis Resource Type Softwaremodeling tools, Lessons learnedbest practices Website http:www.dis.anl.govpubs61 Country Zambia UN...

  7. Long-term energy consumptions of urban transportation: A prospective...

    Open Energy Info (EERE)

    emissions, if and only if they are implemented in the framework of appropriate urban planning. LEDSGP green logo.png This tool is included in the Transportation Toolkit from...

  8. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  9. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  10. A Full Demand Response Model in Co-Optimized Energy and

    SciTech Connect (OSTI)

    Liu, Guodong; Tomsovic, Kevin

    2014-01-01

    It has been widely accepted that demand response will play an important role in reliable and economic operation of future power systems and electricity markets. Demand response can not only influence the prices in the energy market by demand shifting, but also participate in the reserve market. In this paper, we propose a full model of demand response in which demand flexibility is fully utilized by price responsive shiftable demand bids in energy market as well as spinning reserve bids in reserve market. A co-optimized day-ahead energy and spinning reserve market is proposed to minimize the expected net cost under all credible system states, i.e., expected total cost of operation minus total benefit of demand, and solved by mixed integer linear programming. Numerical simulation results on the IEEE Reliability Test System show effectiveness of this model. Compared to conventional demand shifting bids, the proposed full demand response model can further reduce committed capacity from generators, starting up and shutting down of units and the overall system operating costs.

  11. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    U.S. Energy Information Administration (EIA) Indexed Site

    with the modeling of changing energy markets for ... to work, family, and education are likely more important ... there are persistent, systematic departures from ...

  12. Assumption to the Annual Energy Outlook 2014 - Residential Demand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    oil, liquefied petroleum gas, natural gas, kerosene, electricity, wood, geothermal, and solar energy. The module's output includes number of households, equipment stock, average...

  13. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  14. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  15. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Materials were also translated into Spanish in order to reach the city's large Hispanic population. Financing: The program subsidized residential energy assessments and offered ...

  16. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  17. Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance

    Office of Environmental Management (EM)

    6, 2008 Page 1 of 6 Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance Attendees: Representatives from Department of Energy-Headquarters (DOE-HQ) and the U.S. Nuclear Regulatory Commission staff (NRC) met at the DOE offices in Germantown, Maryland on 5 March 2008. Representatives from Department of Energy- Savannah River (DOE-SR), Department of Energy-Idaho (DOE-ID), Department of Energy-Richland (DOE-RL), Department of Energy-River Protection

  18. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  19. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  20. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world`s largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China`s energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China`s energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  1. An overview of energy supply and demand in China

    SciTech Connect (OSTI)

    Liu, F.; Davis, W.B.; Levine, M.D.

    1992-05-01

    Although China is a poor country, with much of its population still farming for basic subsistence in rural villages, China is rich in energy resources. With the world's largest hydropower potential, and ranking third behind the US and USSR in coal reserves, China is in a better position than many other developing countries when planning for its future energy development and self-sufficiency. China is now the third largest producer and consumer of commercial energy, but its huge populace dilutes this impressive aggregate performance into a per capita figure which is an order of magnitude below the rich industrialized nations. Despite this fact, it is still important to recognize that China's energy system is still one of the largest in the world. A system this size allows risk taking and can capture economies of scale. The Chinese have maintained rapid growth in energy production for several decades. In order to continue and fully utilize its abundant resources however, China must successfully confront development challenges in many areas. For example, the geographic distribution of consumption centers poorly matches the distribution of resources, which makes transportation a vital but often weak link in the energy system. Another example -- capital -- is scarce relative to labor, causing obsolete and inefficiently installed technology to be operated well beyond what would be considered its useful life in the West. Major improvements in industrial processes, buildings, and other energy-using equipment and practices are necessary if China's energy efficiency is to continue to improve. Chinese energy planners have been reluctant to invest in environmental quality at the expense of more tangible production quotas.

  2. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  3. Physical Stability of Long-Term Surface Barriers-Assessment of Potentially Disruptive Natural Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ] a -" m HI BHI-00145 Rev. 00 Physical Stability of Long-Term Surface Barriers - Assessment of Potentially Disruptive Natural Events Authors N. R. Wing IT Hanford, Inc. F. M. Corpuz Bechtel Hanford, Inc. K. L. Petersen Pacific Northwest Laboratoy A. M. Tallman Westinghouse Hanford Company Date Published May 1995 HANFORD Prepared for the U.S. Department of Energy Office of Environmental Restoration and Waste Management Bechtel Hanford, Inc. Flichland, Washington Approved for Public Release .

  4. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    2010-01-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  5. Delamination Failures in Long-Term Field Aged PV Modules from Point of View

    Broader source: Energy.gov (indexed) [DOE]

    Dehumidifiers -- v3.0 More Documents & Publications Beverage Vending Machines Metal Halide Lamp Ballasts and Fixtures Residential Dishwashers of Encapsulant | Department of Energy

    PowerPoint presentation was originally given by Tsuyoshi Shioda of Mitsui Chemicals, Inc. on Feb. 26, 2014 during the opening session of the 2013 NREL PV Module Reliability Workshop. It summarizes the study of long-term, field-aged photovoltaic modules with typical delamination failures from the point of

  6. The impact of demand-controlled ventilation on energy use in buildings

    SciTech Connect (OSTI)

    Braun, J.E.; Brandemuehl, M.J.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies. The strategies included different combinations of economizer and demand-controlled ventilation controls and energy analyses were performed for a range of typical buildings, systems, and climates. Only single zone buildings were considered, so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates, and for buildings that have low relative internal gains (i.e., low occupant densities). As much as 10% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger, but were strongly dependent upon the occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules (e.g., stores and restaurants) as compared with office buildings. In some cases, the primary heating energy was reduced by a factor of 10 with demand-controlled ventilation as compared with fixed ventilation rates.

  7. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Price, Lynn

    2011-06-08

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  8. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  9. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    SciTech Connect (OSTI)

    Rodney C. Ewing

    2004-10-07

    Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

  10. Long term prediction and the SSC (Superconducting Super Collider)

    SciTech Connect (OSTI)

    Talman, R.

    1990-09-01

    Successful operation of the Superconducting Supercollider (SSC) will depend on the stable circulation of particles for tens of millions of turns around the rings, in the presence of small nonlinear deflecting fields. One design challenge is to set specifications for the maximum allowable field imperfections of this sort, consistent with the required. stability. Another challenge is to plan for the inclusion of field compensating elements that will ameliorate the effects of errors. The tools'' available for projecting the long term stability are theoretical, both analytic and numerical, and experimental. These aspects are reviewed. 19 refs.

  11. Interactive long-term simulation for power system restoration planning

    SciTech Connect (OSTI)

    Fountas, N.A.; Hatziargyriou, N.D. [National Technical Univ., Athens (Greece)] [National Technical Univ., Athens (Greece); Orfanogiannis, C.; Tasoulis, A. [Public Power Corp., Athens (Greece)] [Public Power Corp., Athens (Greece)

    1997-02-01

    The problem of restoring a power system following a complete blackout is complex and multi-faceted. Many control actions have to be performed on time, while constraints such as power balance and system stability have to be carefully respected. In this paper, the application of long-term dynamic analysis in studying frequency and voltage responses due to load and generation mismatches in isolated systems or during extension of the existing system in the restoration phase is presented. Simulation results covering the main steps of the Hellenic power system restoration process following a recent total blackout are presented and discussed.

  12. Regulating for the long term: SMCRA and acid mine drainage

    SciTech Connect (OSTI)

    Shea, C.W.

    1995-12-31

    With the passage of the Surface Mining Control and Reclamation Act of 1977 (SMCRA), regulators and industry representatives expected to solve the problem of pollution of the Nation`s waterways caused by acidic discharges from coal mines. Eighteen years after the passage of SMCRA, hard issues of predicting, regulating and treating acid mine drainage remain. Acid mine drainage is most common in the coal seams of the Midwest and Appalachia: Pennsylvania, West Virginia, Maryland, Ohio, Illinois, and Tennessee. This article discusses regulation of coal mines and acid mine drainage for the long term.

  13. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W., Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

  14. Long-Term Spatial Data Preservation and Archiving: What Are the Issues?

    SciTech Connect (OSTI)

    BLEAKLY, DENISE R.

    2002-01-01

    The Department of Energy (DOE) is moving towards Long-Term Stewardship (LTS) of many environmental restoration sites that cannot be released for unrestricted use. One aspect of information management for LTS is geospatial data archiving. This report discusses the challenges facing the DOE LTS program concerning the data management and archiving of geospatial data. It discusses challenges in using electronic media for archiving, overcoming technological obsolescence, data refreshing, data migration, and emulation. It gives an overview of existing guidance and policy and discusses what the United States Geological Service (USGS), National Oceanic and Atmospheric Administration (NOAA) and the Federal Emergency Management Agency (FEMA) are doing to archive the geospatial data that their agencies are responsible for. In the conclusion, this report provides issues for further discussion around long-term spatial data archiving.

  15. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Environmental Quality, and for the Challenge of Global Climate Change | Department of Energy S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change Fact Sheet: U.S. and China Actions Matter for Global Energy Demand, for Global Environmental Quality, and for the Challenge of Global Climate Change December 5, 2008 - 4:58pm Addthis The U.S. is committed to working together with China to tackle current energy

  16. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  17. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  18. Long-Term Probability Distribution of Wind Turbine Planetary Bearing Loads (Poster)

    SciTech Connect (OSTI)

    Jiang, Z.; Xing, Y.; Guo, Y.; Dong, W.; Moan, T.; Gao, Z.

    2013-04-01

    Among the various causes of bearing damage and failure, metal fatigue of the rolling contact surface is the dominant failure mechanism. The fatigue life is associated with the load conditions under which wind turbines operate in the field. Therefore, it is important to understand the long-term distribution of the bearing loads under various environmental conditions. The National Renewable Energy Laboratory's 750-kW Gearbox Reliability Collaborative wind turbine is studied in this work. A decoupled analysis using several computer codes is carried out. The global aero-elastic simulations are performed using HAWC2. The time series of the drivetrain loads and motions from the global dynamic analysis are fed to a drivetrain model in SIMPACK. The time-varying internal pressure distribution along the raceway is obtained analytically. A series of probability distribution functions are then used to fit the long-term statistical distribution at different locations along raceways. The long-term distribution of the bearing raceway loads are estimated under different environmental conditions. Finally, the bearing fatigue lives are calculated.

  19. The impact of demand-controlled and economizer ventilation strategies on energy use in buildings

    SciTech Connect (OSTI)

    Brandemuehl, M.J.; Braun, J.E.

    1999-07-01

    The overall objective of this work was to evaluate typical energy requirements associated with alternative ventilation control strategies for constant-air-volume (CAV) systems in commercial buildings. The strategies included different combinations of economizer and demand-controlled ventilation, and energy analyses were performed for four typical building types, eight alternative ventilation systems, and twenty US climates. Only single-zone buildings were considered so that simultaneous heating and cooling did not exist. The energy savings associated with economizer and demand-controlled ventilation strategies were found to be very significant for both heating and cooling. In general, the greatest savings in electrical usage for cooling with the addition of demand-controlled ventilation occur in situations where the opportunities for economizer cooling are less. This is true for warm and humid climates and for buildings that have relatively low internal gains (i.e., low occupant densities). As much as 20% savings in electrical energy for cooling were possible with demand-controlled ventilation. The savings in heating energy associated with demand-controlled ventilation were generally much larger but were strongly dependent upon the building type and occupancy schedule. Significantly greater savings were found for buildings with highly variable occupancy schedules and large internal gains (i.e., restaurants) as compared with office buildings. In some cases, the primary heating energy was virtually eliminated by demand-controlled ventilation as compared with fixed ventilation rates. For both heating and cooling, the savings associated with demand-controlled ventilation are dependent on the fixed minimum ventilation rate of the base case at design conditions.

  20. Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann

    2005-09-02

    This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

  1. Summary of Characteristics and Energy Efficiency Demand-side Management Programs in the Southeastern United States

    SciTech Connect (OSTI)

    Glatt, Sandy

    2010-04-01

    This report is the first in a series that seeks to characterize energy supply and industrial sector energy consumption, and summarize successful industrial demand-side management (DSM) programs within each of the eight North American Electric Reliability Corporation (NERC) regions.

  2. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  3. The Long-Term Inflow and Structural Test Program

    SciTech Connect (OSTI)

    SUTHERLAND,HERBERT J; JONES,PERRY L.; NEAL,BYRON A.

    2000-10-17

    The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this test program. This turbine and its two sister turbines are located in Bushland, TX a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. These three-axis anemometers are placed approximately 2-diameters upstream of the turbine in a pattern designed to describe the inflow. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

  4. Demonstrating the Safety of Long-Term Dry Storage - 13468

    SciTech Connect (OSTI)

    McCullum, Rod; Brookmire, Tom; Kessler, John; Leblang, Suzanne; Levin, Adam; Martin, Zita; Nesbit, Steve; Nichol, Marc; Pickens, Terry

    2013-07-01

    Commercial nuclear plants in the United States were originally designed with the expectation that used nuclear fuel would be moved directly from the reactor pools and transported off site for either reprocessing or direct geologic disposal. However, Federal programs intended to meet this expectation were never able to develop the capability to remove used fuel from reactor sites - and these programs remain stalled to this day. Therefore, in the 1980's, with reactor pools reaching capacity limits, industry began developing dry cask storage technology to provide for additional on-site storage. Use of this technology has expanded significantly since then, and has today become a standard part of plant operations at most US nuclear sites. As this expansion was underway, Federal programs remained stalled, and it became evident that dry cask systems would be in use longer than originally envisioned. In response to this challenge, a strong technical basis supporting the long term dry storage safety has been developed. However, this is not a static situation. The technical basis must be able to address future challenges. Industry is responding to one such challenge - the increasing prevalence of high burnup (HBU) used fuel and the need to provide long term storage assurance for these fuels equivalent to that which has existed for lower burnup fuels over the past 25 years. This response includes a confirmatory demonstration program designed to address the aging characteristics of HBU fuel and set a precedent for a learning approach to aging management that will have broad applicability across the used fuel storage landscape. (authors)

  5. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  6. Regional Differences in the Price-Elasticity of Demand for Energy

    SciTech Connect (OSTI)

    Bernstein, M. A.; Griffin, J.

    2006-02-01

    At the request of the National Renewable Energy Laboratory (NREL), the RAND Corporation examined the relationship between energy demand and energy prices with the focus on whether the relationships between demand and price differ if these are examined at different levels of data resolution. In this case, RAND compares national, regional, state, and electric utility levels of data resolution. This study is intended as a first step in helping NREL understand the impact that spatial disaggregation of data can have on estimating the impacts of their programs. This report should be useful to analysts in NREL and other national laboratories, as well as to policy nationals at the national level. It may help them understand the complex relationships between demand and price and how these might vary across different locations in the United States.

  7. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  8. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  9. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect (OSTI)

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

  10. An Organophosphine Oxide Redox Shuttle Additive that Delivers Long-term

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overcharge Protection for 4 V Lithium-ion Batteries - Joint Center for Energy Storage Research 4, 2015, Research Highlights An Organophosphine Oxide Redox Shuttle Additive that Delivers Long-term Overcharge Protection for 4 V Lithium-ion Batteries Organophosphine oxide groups not only can provide suitable steric protection of the generated radical cation, but also can increase the redox potential to 4.5 V, which is suitable for overcharge protection of LiMn2O4 cathode material Scientific

  11. Long-term impacts of aerosols on the vertical development of...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Long-term impacts of aerosols on the vertical development of clouds and precipitation Citation Details In-Document Search Title: Long-term impacts of aerosols on ...

  12. Long-term management of high-level radioactive waste (HLW) and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) ...

  13. MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT...

    Office of Scientific and Technical Information (OSTI)

    Conference: MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT INTERFACIAL DISLOCATIONS Citation Details In-Document Search Title: MODELING OF LONG-TERM FATE OF ...

  14. Delamination Failures in Long-Term Field Aged PV Modules from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Delamination Failures in Long-Term Field Aged PV Modules from Point of View of ...

  15. Building America Case Study: Long-Term Monitoring of Mini-Split...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast Devens and ... (BSC) evaluated the long-term performance of MSHPs in 8 homes during a period of 3 years. ...

  16. Complete Fiber/Copper Cable Solution for Long-Term Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete FiberCopper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Complete FiberCopper Cable Solution for Long-Term ...

  17. Long-Term Storage of Cesium and Strontium at the Hanford Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Storage of Cesium and Strontium at the Hanford Site OAS-L-14-04 March 2014 ... SUBJECT: INFORMATION: Audit Report on "Long-Term Storage of Cesium and Strontium at ...

  18. The economics of long-term global climate change

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report is intended to provide an overview of economic issues and research relevant to possible, long-term global climate change. It is primarily a critical survey, not a statement of Administration or Department policy. This report should serve to indicate that economic analysis of global change is in its infancy few assertions about costs or benefits can be made with confidence. The state of the literature precludes any attempt to produce anything like a comprehensive benefit-cost analysis. Moreover, almost all the quantitative estimates regarding physical and economic effects in this report, as well as many of the qualitative assertions, are controversial. Section I provides background on greenhouse gas emissions and their likely climatic effects and on available policy instruments. Section II considers the costs of living with global change, assuming no substantial efforts to reduce greenhouse gas emissions. Section III considers costs of reducing these emissions, though the available literature does not contain estimates of the costs of policies that would, on the assumptions of current climate models, prevent climate change altogether. The individual sections are not entirely compartmentalized, but can be read independently if necessary.

  19. LONG-TERM PERIODICITY VARIATIONS OF THE SOLAR RADIUS

    SciTech Connect (OSTI)

    Qu, Z. N.; Xie, J. L.

    2013-01-01

    In order to study the long-term periodicity variations of the solar radius, daily solar radius data from 1978 February to 2000 September at the Calern Observatory are used. Continuous observations of the solar radius are difficult due to the weather, seasonal effects, and instrument characteristics. Thus, to analyze these data, we first use the Dixon criterion to reject suspect values, then we measure the cross-correlation between the solar radius and sunspot numbers. The result indicates that the solar radius is in complete antiphase with the sunspot numbers and shows lead times of 74 months relative to the sunspot numbers. The Lomb-Scargle and date compensated discrete Fourier transform methods are also used to investigate the periodicity of the solar radius. Both methods yield similar significance periodicities around {approx}1 yr, {approx}2.6 yr, {approx}3.6 yr, and {approx}11 yr. Possible mechanisms for these periods are discussed. The possible physical cause of the {approx}11 yr period is the cyclic variation of the magnetic pressure of the concentrated flux tubes at the bottom of the solar convection zone.

  20. Long-term proliferation and safeguards issues in future technologies

    SciTech Connect (OSTI)

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

  1. Global recycling services for short and long term risk reduction

    SciTech Connect (OSTI)

    Arslan, M.; Grygiel, J.M.; Drevon, C.; Lelievre, F.; Lesage, M.; Vincent, O.

    2013-07-01

    New schemes are being developed by AREVA in order to provide global solutions for safe and non-proliferating management of used fuels, thereby significantly contributing to overall risks reduction and sustainable nuclear development. Utilities are thereby provided with a service through which they will be able to send their used fuels and only get returned vitrified and compacted waste, the only waste remaining after reprocessing. This waste is stable, standard and has demonstrated capability for very long term interim storage. They are provided as well with associated facilities and all necessary services for storage in a demonstrated safely manner. Recycled fuels, in particular MOX, would be used either in existing LWRs or in a very limited number of full MOX reactors (like the EPR reactor), located in selected countries, that will recycle MOX so as to downgrade the isotopic quality of the Pu inventories in a significant manner. Reprocessed uranium also can be recycled. These schemes, on top of offering demonstrated operational advantages and a responsible approach, result into optimized economics for all shareholders of the scheme, as part of reactor financing (under Opex or Capex form) will be secured thanks to the value of the recycled flows. It also increases fuel cost predictability as recycled fuel is not subject to market fluctuations as much and allows, in a limited span of time, for clear risk mitigation. (authors)

  2. Gas Generation Rates as an Indicator for the Long Term Stability of Radioactive Waste Products

    SciTech Connect (OSTI)

    Steyer, S.; Brennecke, P.; Bandt, G.; Kroger, H.

    2007-07-01

    Pursuant to the 'Act on the Peaceful Utilization of Atomic Energy and the Protection against its Hazards' (Atomic Energy Act) the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz, BfS) is legally responsible for the construction and operation of federal facilities for the disposal of radioactive waste. Within the scope of this responsibility, particular due to par. 74(1) Ordinance on Radiation Protection, BfS defines all safety-related requirements on waste packages envisaged for disposal, establishes guidelines for the conditioning of radioactive waste and approves the fulfillment of the waste acceptance requirements within the radioactive waste quality control system. BfS also provides criteria to enable the assessment of methods for the treatment and packaging of radioactive waste to produce waste packages suitable for disposal according to par. 74(2) Ordinance on Radiation Protection. Due to the present non-availability of a repository in Germany, quality control measures for all types of radioactive waste products are carried out prior to interim storage with respect to the future disposal. As a result BfS approves the demonstrated properties of the radioactive waste packages and confirms the fulfillment of the respective requirements. After several years of storage the properties of waste packages might have changed. By proving, that such changes have no significant impact on the quality of the waste product, the effort of requalification could be minimized. Therefore, data on the long-term behavior of radioactive waste products need to be acquired and indicators to prove the long-term stability have to be quantified. Preferably, such indicators can be determined easily with non-destructive methods, even for legacy waste packages. A promising parameter is the gas generation rate. The relationship between gas generation rate and long term stability is presented as first result of an ongoing study on behalf of BfS. Permissible gas generation rates that ensure adequate product stability with respect to future disposal are to be identified. (authors)

  3. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  4. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  5. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  6. Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2015-01-01

    This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

  7. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  8. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    SciTech Connect (OSTI)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

    2009-05-26

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

  9. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  10. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  11. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  12. Long Term Corrosion/Degradation Test Six Year Results

    SciTech Connect (OSTI)

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in the performance assessment for the SDA. The corrosion on the carbon steel, beryllium, and aluminum were more evident with a clear difference in corrosion performance between the 4-ft and 10-ft levels. Notable surface corrosion products were evident as well as numerous pit initiation sites. Since the corrosion of the beryllium and aluminum is characterized by pitting, the geometrical character of the corrosion becomes more significant than the general corrosion rate. Both pitting factor and weight loss data should be used together. For six-year exposure, the maximum carbon steel corrosion rate was 0.3643 MPY while the maximum beryllium corrosion rate was 0.3282 MPY and the maximum aluminum corrosion rate was 0.0030 MPY.

  13. Why is a long-term strategy important?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why You Might Want to Add More Insulation Why You Might Want to Add More Insulation August 19, 2014 - 10:06am Addthis Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Insulation is important all year round, and by adding extra insulation you can save money and energy. | Photo courtesy of Dennis Schroeder, National Renewable Energy Lab Elizabeth Spencer Communicator, National

  14. NREL: Energy Analysis - dGen: Distributed Generation Market Demand Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Distributed Generation Market Demand (dGen) model is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The dGen model builds on and provides significant advances over NREL's deprecated Solar Deployment System (SolarDS) model. The dGen model can help develop deployment forecasts for distributed resources,

  15. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect (OSTI)

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  16. RACORO long-term, systematic aircraft observations of boundary...

    Office of Scientific and Technical Information (OSTI)

    Water Depths (CLOWD). This type of cloud is common globally, and the Earth's radiative energy balance is particularly sensitive to small changes in their optical properties. ...

  17. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers...

    Office of Scientific and Technical Information (OSTI)

    of Energy sites using a group of common soil bacteria of the genus Cellulomonas. ... Sponsoring Org: USDOE - Office of Science (SC) Country of Publication: United States ...

  18. Long Term Environment and Economic Impacts of Coal Liquefaction...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology... Collaboration, and Training on Clean Coal Technologies) as well as planning ...

  19. Record of Decision - ROD - Long-Term Regional Dialogue - July...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Conservation Council CSE Customer Service Engineers CY Calendar Year DOE Richland United States Department of Energy, Hanford, Washington site DSIs Direct-Service...

  20. Monitoring and Tracking Long-Term Finance to Support Climate...

    Open Energy Info (EERE)

    Sector: Energy, Climate Topics: Finance, GHG inventory Resource Type: Publications, Lessons learnedbest practices Website: www.oecd.orgdataoecd575748073739.pdf Cost:...

  1. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  2. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF

    Office of Scientific and Technical Information (OSTI)

    RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE (Technical Report) | SciTech Connect LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE Citation Details In-Document Search Title: LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and

  3. Long-Term Biological Monitoring of an Impaired Stream: Implications for

    Office of Scientific and Technical Information (OSTI)

    Environmental Management [Special Issue] (Journal Article) | SciTech Connect Long-Term Biological Monitoring of an Impaired Stream: Implications for Environmental Management [Special Issue] Citation Details In-Document Search Title: Long-Term Biological Monitoring of an Impaired Stream: Implications for Environmental Management [Special Issue] The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of

  4. Long-term measurements of submicrometer aerosol chemistry at the Southern

    Office of Scientific and Technical Information (OSTI)

    Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) (Journal Article) | SciTech Connect Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) Citation Details In-Document Search Title: Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) In this study the long-term trends of non-refractory

  5. Microsoft PowerPoint - DETL_long_term_inverter_testing_wcomments.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration under contract DE-AC04-94AL85000. LONG-TERM INVERTER OPERATION DEMONSTRATION SANDIA NATIONAL LABORATORIES Department 6335 Solar Systems Sigifredo Gonzalez, Scott Kuszmaul, Abraham Ellis 34th IEEE PV Specialists Conference Philadelphia, PA 12 June, 2009 LONG-TERM INVERTER OPERATION RE-CHARACTERIZATION REQUIREMENTS Purpose Analyze the effects of long term operation and exposure on the performance of the utility interconnected PV inverter Parameters Identify the influential

  6. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  7. Impacts of Long-term Drought on Power Systems in the U.S. Southwest...

    Energy Savers [EERE]

    ... Long-Term Reliability Assessment, North American Electric Reliability Corporation, Atlanta GA (www.nerc.com,) November 2011. NERC 2012, Summer Reliability Assessment 20102, North ...

  8. Long-Term Demonstration of Hydrogen Production from Coal at Elevated...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen ...

  9. Site Transition Summary: Clean-up Completion to Long Term Stewardship

    Broader source: Energy.gov [DOE]

    At the August 13, 2014 Committee meeting Tom Longo DOE, Provided Information on the Long Term Stewardship Process that the Office of Legacy Management is Responsible for.

  10. Long-Term Surveillance Operations and Maintenance Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy (DOE) Office of Legacy Management (LM). LM needs knowledge and tools to ensure that implementation of LTS&M will be informed, efficient, and cost-effective. ...

  11. DOE Publishes Long-Term Testing Investigation of Retail Lamps

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's CALiPER program has released another special report on LED lamps that are available through the retail marketplace and targeted toward general consumers. CALiPER...

  12. Chapter 10, Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 10 - 1 Chapter 10 - Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy

  13. Long Term Applications Received by DOE/FE to Export

    Office of Environmental Management (EM)

    Award | Department of Energy Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year Award Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year Award The Locally Employed Staff (LES)/Foreign Service National (FSN) of the Year Award is designed to recognize special contributions made by the Department's LES/FSN's in achieving the U.S. Department of Energy's (DOE) and United States Government's (USG) foreign policy goals and objectives. The LES/FSN of the

  14. Calculating impacts of energy standards on energy demand in U.S. buildings with uncertainty in an integrated assessment model

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2015-10-01

    In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The paper finds that aggressive building-energy codes and equipment standards are an effective, cost-saving way to reduce energy consumption in buildings and greenhouse gas emissions in U.S. states. This conclusion is robust to significant uncertainties in population, economic activity, climate, carbon prices, and technology performance and costs.

  15. Impact of Pyrophoric Events on Long-Term Repository Performance

    SciTech Connect (OSTI)

    Richard Gregg

    2005-09-01

    This paper provides an overview of a feature, event, and process (FEP) screening argument developed for the issue of pyrophoricity as it pertains to the post-closure interment of Department of Energy (DOE) spent nuclear fuel (DSNF) at the Yucca Mountain Repository.

  16. Long Term Applications Received by DOE/FE to Export

    Office of Environmental Management (EM)

    Bcfd: FTA 0.77 Bcfd: non-FTA Approved (11-115-LNG) Approved (F) (11-128-LNG) Jordan Cove Energy Project, L.P. 1.2 Bcfd: FTA 0.8 Bcfd: non-FTA (g) Approved (11-127-LNG)...

  17. EIS-0269: Long-Term Management of Depleted Uranium Hexaflouride

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this programmatic environmental impact statement to assess the potential impacts of alternative management strategies for depleted uranium hexafluoride currently stored at three DOE sites: Paducah site near Paducah, Kentucky; Portsmouth site near Portsmouth, Ohio; and K-25 site on the Oak Ridge Reservation in Oak Ridge, Tennessee.

  18. Long Term Applications Received by DOE/FE to Export

    Broader source: Energy.gov (indexed) [DOE]

    Exports, LLC 2.0 Bcfd (e) * Approved (11-59-LNG) Approved (C) (11-59-LNG) Carib Energy (USA) LLC 0.03 Bcfd: FTA 0.04 Bcfd: non-FTA (f) (m) Approved (11-71-LNG) Approved (F)...

  19. Long Term Applications Received by DOE/FE to Export

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exports, LLC 2.0 Bcfd (e) * Approved (11-59-LNG) Approved (C) (11-59-LNG) Carib Energy (USA) LLC 0.03 Bcfd: FTA 0.04 Bcfd: non-FTA (f) (m) Approved (11-71-LNG) Approved (F) ...

  20. OECD/NEA study on the economics of the long-term operation of nuclear power plants

    SciTech Connect (OSTI)

    Lokhov, A.; Cameron, R.

    2012-07-01

    The OECD Nuclear Energy Agency (NEA) established the Ad hoc expert group on the Economics of Long-term Operation (LTO) of Nuclear Power Plants. The primary aim of this group is to collect and analyse technical and economic data on the upgrade and lifetime extension experience in OECD countries, and to assess the likely applications for future extensions. This paper describes the key elements of the methodology of economic assessment of LTO and initial findings for selected NEA member countries. (authors)

  1. Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance

    Office of Environmental Management (EM)

    6 Summary Notes from 22 July 2008 Generic Technical Issue Discussion on Long-Term Engineered Cap Performance Attendees: Representatives from the U.S. Department of Energy (DOE)-Headquarters and the U.S. Nuclear Regulatory Commission (NRC) staff met at the DOE offices in Germantown, Maryland on 22 July 2008. Representatives from South Carolina Department of Health and Environmental Control, DOE-Savannah River, and DOE- Office of River Protection participated in the meeting via a teleconference

  2. The U.S. regulatory framework for long-term management of uranium mill tailings

    SciTech Connect (OSTI)

    Smythe, C.; Bierley, D.; Bradshaw, M.

    1995-03-01

    The US established the regulatory structure for the management, disposal, and long-term care of uranium mill tailings in 1978 with the passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Pub. L. 95-604). This legislation has governed the cleanup and disposal of uranium tailings at both inactive and active sites. The passage of the UMTRCA established a federal regulatory program for the cleanup and disposal of uranium mill tailings in the US. This program involves the DOE, the NRC, the EPA, various states and tribal governments, private licensees, and the general public. The DOE has completed surface remediation at 14 sites, with the remaining sites either under construction or in planning. The DOE`s UMTRA Project has been very successful in dealing with public and agency demands, particularly regarding disposal site selection and transportation issues. The active sites are also being cleaned up, but at a slower pace than the inactive sites, with the first site tentatively scheduled for completion in 1996.

  3. Carmine Difiglio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carmine Difiglio About Us Carmine Difiglio - Deputy Director for Energy Security Carmine Difiglio Dr. Carmine Difiglio serves as Deputy Director for Energy Security, Office of Energy Policy and Systems Analysis (EPSA). In this capacity, Dr. Difiglio provides the Director of EPSA and the Secretary of Energy policy analysis, analytic support, and policy advice concerning U.S. energy security, including energy supply and demand, energy markets, long-term strategies to enhance U.S. energy security,

  4. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  5. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

    2010-06-01

    We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

  6. Report, Long-Term Nuclear Technology Research and Development Plan |

    Energy Savers [EERE]

    Advanced Manufacturing | Department of Energy Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing PDF icon pcast_july2012.pdf PDF icon pcast_annex1_july2012.pdf PDF icon pcast_annex2_july2012.pdf PDF icon pcast_annex3_july2012.pdf More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing The Advanced

  7. Transition of Long-Term Response Action Management Requirements

    Office of Environmental Management (EM)

    Facility | Department of Energy Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October 30, 2014 - 12:00pm Addthis Savannah River Remediation (SRR) Salt Waste Processing Facility (SWPF) Integration Manager Keith Harp (front right) points to the spot where the Savannah River Site’s liquid waste facilities transfer lines will connect to lines from the SWPF, which

  8. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  9. Property:OpenEI/UtilityRate/DemandRatchetPercentage | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Ratchet Percentage Pages using the property "OpenEIUtilityRateDemandRatchetPercentag...

  10. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  11. Towards Long-Term Corrosion Resistance in FE Service Environments

    SciTech Connect (OSTI)

    G. R. Holcomb and P. Wang

    2010-10-01

    The push for carbon capture and sequestration for fossil fuel energy production has materials performance challenges in terms of high temperature oxidation and corrosion resistance. Such challenges will be illustrated with examples from several current technologies that are close to being realized. These include cases where existing technologies are being modified—for example fireside corrosion resulting from increased corrosivity of flue gas in coal boilers refit for oxy-fuel combustion, or steam corrosion resulting from increased temperatures in advanced ultra supercritical steam boilers. New technology concepts also push the high temperature corrosion and oxidation limits—for example the effects of multiple oxidants during the use of high CO2 and water flue gas used as turbine working fluids.

  12. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politčcnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politčcnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  13. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  14. Uranium enrichment: investment options for the long term

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables.

  15. Annual Energy Outlook 2009 with Projections to 2030

    SciTech Connect (OSTI)

    2009-03-01

    The Annual Energy Outlook 2009 (AEO2009), prepared by the Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2030, based on results from EIA’s National Energy Modeling System (NEMS). EIA published an “early release” version of the AEO2009 reference case in December 2008.

  16. Heat extracted from the long term flow test in the Fenton Hill HDR reservoir

    SciTech Connect (OSTI)

    Kruger, Paul; Robinson, Bruce

    1994-01-20

    A long-term flow test was carried out in the Fenton Hill HDR Phase-2 reservoir for 14 months during 1992-1993 to examine the potential for supplying thermal energy at a sustained rate as a commercial demonstration of HDR technology. The test was accomplished in several segments with changes in mean flowrate due to pumping conditions. Re-test estimates of the extractable heat content above a minimum useful temperature were based on physical evidence of the size of the Fenton Hill reservoir. A numerical model was used to estimate the extent of heat extracted during the individual flow segments from the database of measured production data during the test. For a reservoir volume of 6.5x10{sup 6}m{sup 3}, the total heat content above a minimum temperature of 150{degree} C was 1.5x10{sup 15}J. For the total test period at the three sustained mean flowrates, the integrated heat extracted was 0.088x10{sup 15}J, with no discernable temperature decline of the produced fluid. The fraction of energy extracted above the abandonment temperature was 5.9%. On the basis of a constant thermal energy extraction rate, the lifetime of the reservoir (without reservoir growth) to the abandonment temperature would be 13.3 years, in good agreement with the pre-test estimate of 15.0 years for the given reservoir volume.

  17. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect (OSTI)

    Fukasawa, T.; Hoshino, K.; Takano, M.; Sato, S.; Shimazu, Y.

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  18. Residential-energy-demand modeling and the NIECS data base: an evaluation

    SciTech Connect (OSTI)

    Cowing, T.G.; Dubin, J.A.; McFadden, D.

    1982-01-01

    The purpose of this report is to evaluate the 1978-1979 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance choice and utilization decisions. The NIECS contains detailed energy usage information at the household level for 4081 households during the April 1978 to March 1979 period. Among the data included are information on the structural and thermal characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics, and actual energy consumption. The survey covers the four primary residential fuels-electricity, natural gas, fuel oil, and liquefied petroleum gas - and includes detailed information on recent household conservation and retrofit activities. Section II contains brief descriptions of the major components of the NIECS data set. Discussions are included on the sample frame and the imputation procedures used in NIECS. There are also two extensive tables, giving detailed statistical and other information on most of the non-vehicle NIECS variables. Section III contains an assessment of the NIECS data, focusing on four areas: measurement error, sample design, imputation problems, and additional data needed to estimate appliance choice/use models. Section IV summarizes and concludes the report.

  19. Assessing the Role of Iron Sulfides in the Long Term Sequestration of

    Office of Scientific and Technical Information (OSTI)

    Uranium by Sulfate-Reducing Bacteria (Technical Report) | SciTech Connect Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria Citation Details In-Document Search Title: Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed

  20. Assessing the Role of Iron Sulfides in the Long Term Sequestration of

    Office of Scientific and Technical Information (OSTI)

    Uranium by Sulfate-Reducing Bacteria (Technical Report) | SciTech Connect Technical Report: Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria Citation Details In-Document Search Title: Assessing the Role of Iron Sulfides in the Long Term Sequestration of Uranium by Sulfate-Reducing Bacteria This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of

  1. Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by

    Office of Scientific and Technical Information (OSTI)

    Sulfate Reducing Bacteria (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria Citation Details In-Document Search Title: Assessing the Role of Iron Sulfides in the Long Term Sequestration of U by Sulfate Reducing Bacteria This four-year project's overarching aim was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term

  2. Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 1 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth1"...

  3. Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy...

    Open Energy Info (EERE)

    1 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 11 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth11" Showing 2...

  4. Property:OpenEI/UtilityRate/FixedDemandChargeMonth2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 2 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth2"...

  5. Property:OpenEI/UtilityRate/FixedDemandChargeMonth3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 3 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth3"...

  6. Property:OpenEI/UtilityRate/FixedDemandChargeMonth6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 6 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth6"...

  7. Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 8 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth8"...

  8. Property:OpenEI/UtilityRate/FixedDemandChargeMonth7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 7 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth7"...

  9. Property:OpenEI/UtilityRate/FixedDemandChargeMonth9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 9 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth9"...

  10. Property:OpenEI/UtilityRate/FixedDemandChargeMonth5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 5 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth5"...

  11. Property:OpenEI/UtilityRate/FixedDemandChargeMonth4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 4 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth4"...

  12. Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy...

    Open Energy Info (EERE)

    2 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 12 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth12" Showing 2...

  13. Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy...

    Open Energy Info (EERE)

    0 Jump to: navigation, search This is a property of type Number. Name: Fixed Demand Charge Month 10 Pages using the property "OpenEIUtilityRateFixedDemandChargeMonth10" Showing 2...

  14. Long-Term Operation Of Ground-Based Atmospheric Sensing Systems In The Tropical Western Pacific

    SciTech Connect (OSTI)

    Ivey, Mark; Jones, Larry J.; Porch, W. M.; Apple, Monty L.; Widener, Kevin B.

    2004-10-14

    Three semi-autonomous atmospheric sensing systems were installed in the tropical western Pacific region. The first of these Atmospheric Radiation and Cloud Stations (ARCS) began operation in 1996. Each ARCS is configured as a system-of-systems since it comprises an ensemble of independent instrument systems. The ARCS collect, process, and transmit large volumes of cloud, solar and thermal radiation, and meteorological data to support climate studies and climate-modeling improvements as part of the U.S Department of Energy’s Atmospheric and Radiation Measurement (ARM) Program. Data from these tropical ARCS stations have been used for satellite ground-truth data comparisons and validations, including comparisons for MTI and AQUA satellite data. Our experiences with these systems in the tropics led to modifications in their design. An ongoing international logistics effort is required to keep gigabytes per day of quality-assured data flowing to the ARM program’s archives. Design criteria, performance, communications methods, and the day-to-day logistics required to support long-term operations of ground-based remote atmospheric sensing systems are discussed. End-to-end data flow from the ARCS systems to the ARM Program archives is discussed.

  15. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    SciTech Connect (OSTI)

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  16. EIS-0480: Long-Term Experimental and Management Plan for the...

    Broader source: Energy.gov (indexed) [DOE]

    Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. ...

  17. Evaluation of Long-Term Cloud-Resolving Modeling with ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Long-Term Cloud-Resolving Modeling with ARM Data Zeng, Xiping NASAGSFC Tao, Wei-Kuo NASAGoddard Space Flight Center Zhang, Minghua State University of New York at ...

  18. Long-Term Testing of Geothermal Wells in the Coso Hot Springs...

    Open Energy Info (EERE)

    Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Long-Term Testing of Geothermal...

  19. Long-Term Changes in Gas- and Particle-Phase Emissions from On...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline Vehicles Long-Term Changes in Gas- and Particle-Phase Emissions from On-Road Diesel and Gasoline ...

  20. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth Poster presentation at the 2007 Diesel ...

  1. Long-Term Flow Test No. 1, Roosevelt Hot Springs, Utah | Open...

    Open Energy Info (EERE)

    Flow Test No. 1, Roosevelt Hot Springs, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Long-Term Flow Test No. 1, Roosevelt Hot Springs,...

  2. Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term

    Broader source: Energy.gov [DOE]

    Presentation on Hydrogen Delivery Infrastructure Analysis, Options and Trade-offs, Transition and Long-term for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  3. Evalution of long-term surface-retrieved cloud-droplet number concentration

    Office of Scientific and Technical Information (OSTI)

    with in situ aircraft observations (Journal Article) | SciTech Connect Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations Citation Details In-Document Search Title: Evalution of long-term surface-retrieved cloud-droplet number concentration with in situ aircraft observations A new cloud-droplet number concentration (NDROP) value added product (VAP) has been produced at the Atmospheric Radiation Measurement (ARM) Southern Great

  4. Long Term Environment and Economic Impacts of Coal Liquefaction in China

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Long Term Environment and Economic Impacts of Coal Liquefaction in China Citation Details In-Document Search Title: Long Term Environment and Economic Impacts of Coal Liquefaction in China The project currently is composed of six specific tasks - three research tasks, two outreach and training tasks, and one project management and communications task. Task 1 addresses project management and communication. Research activities focused on Task 2 (Describe

  5. Long-Term Demonstration of Hydrogen Production from Coal at Elevated

    Office of Scientific and Technical Information (OSTI)

    Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Technical Report: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center

  6. Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for

    Office of Scientific and Technical Information (OSTI)

    Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants (Technical Report) | SciTech Connect Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and Radionuclide Contaminants Citation Details In-Document Search Title: Long-Term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal, and

  7. Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for

    Office of Scientific and Technical Information (OSTI)

    Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive (Technical Report) | SciTech Connect Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive Citation Details In-Document Search Title: Long-term Stewardship of Mixed Wastes: Passive Reactive Barriers for Simultaneous In Situ Remediation of Chlorinated Solvent, Heavy Metal and Radioactive This project report

  8. Long-Term Water Projections and Climate Change | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology (Technical Report) | SciTech Connect Technical Report: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology Citation Details In-Document Search Title: Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center

  9. The application of compressed sensing to long-term acoustic emission-based

    Office of Scientific and Technical Information (OSTI)

    structural health monitoring (Conference) | SciTech Connect Conference: The application of compressed sensing to long-term acoustic emission-based structural health monitoring Citation Details In-Document Search Title: The application of compressed sensing to long-term acoustic emission-based structural health monitoring Authors: Park, Gyuhae [1] ; Farrar, Chuck R [1] ; Mascarenas, David L [1] ; Cattaneo, Alessandro [2] + Show Author Affiliations Los Alamos National Laboratory POLITEENICO DI

  10. The relationship between interannual and long-term cloud feedbacks (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect The relationship between interannual and long-term cloud feedbacks Citation Details In-Document Search This content will become publicly available on December 11, 2016 Title: The relationship between interannual and long-term cloud feedbacks The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in

  11. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  12. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    SciTech Connect (OSTI)

    Hun, D.; Jackson, M.; Shrestha, S.

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  13. Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes

    SciTech Connect (OSTI)

    Hun, Diana E; Jackson, Mark C; Shrestha, Som S

    2014-01-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  14. Long-Term Surveillance and Maintenance at Rocky Flats: Early Experiences and Lessons Learned

    SciTech Connect (OSTI)

    Surovchak, S.; Kaiser, L.; DiSalvo, R.; Boylan, J.; Squibb, G.; Nelson, J.; Darr, B.; Hanson, M.

    2008-07-01

    The U.S. Department of Energy's (DOE's) Rocky Flats Site was established in 1951 as part of the United States' nationwide nuclear weapons complex to manufacture nuclear weapons components. In 1992 weapons production halted, and the Rocky Flats mission changed to include environmental investigations, cleanup, and site closure. In October 2005, DOE and its contractor completed an accelerated 10-year, $7 billion cleanup of chemical and radiological contamination left from nearly 50 years of production. The cleanup required the decommissioning, decontamination, demolition, and removal of more than 800 structures; removal of more than 500,000 cubic meters of low-level radioactive waste; and remediation of more than 360 potentially contaminated environmental sites. The final remedy for the site was selected in September 2006 and included institutional controls, physical controls, and continued monitoring for the former industrial portion of the site. The remainder of the site, which served as a buffer zone surrounding the former industrial area, was transferred to the U.S. Fish and Wildlife Service in July 2007 for a national wildlife refuge. DOE's Office of Legacy Management is responsible for the long-term surveillance and maintenance of Rocky Flats, which includes remedy implementation activities and general site maintenance. Several factors have complicated the transition from closure to post-closure at Rocky Flats. The early experiences associated with the two years since the physical cleanup and closure work were completed have led to several valuable lessons learned. (authors)

  15. Long-Term Surveillance and Maintenance Records: Maintaining Access to the Knowledge - 13122

    SciTech Connect (OSTI)

    Montgomery, John; Gueretta, Jeanie; McKinney, Ruth; Anglim, Cliff

    2013-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is an integral part of DOE's strategy to ensure that legacy liabilities of former nuclear weapons production sites are properly managed following the completion of environmental cleanup activities. In the area of environmental legacy management, records management is crucial to the protection of health, environmental, and legal interests of the Department and the public. LM is responsible for maintaining long-term surveillance and maintenance (LTS and M) records in performance of its mission. Maintaining access to the knowledge contained in these record collections is one of LM's primary responsibilities. To fulfill this responsibility, LM established a consolidated records management facility, the LM Business Center (LMBC), to house physical media records and electronic records. A new electronic record keeping system (ERKS) was needed to replace an obsolete system while helping to ensure LM is able to meet ongoing responsibilities to maintain access to knowledge and control the life cycle management of records. (authors)

  16. What Is the Right Rate? Loan Rates and Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is the Right Rate? Loan Rates and Demand What Is the Right Rate? Loan Rates and Demand Better Buildings Neighborhood Program Financing Peer Exchange Call: "What is the Right Rate?" call slides and discussion summary, December 1, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Structuring Rebate and Incentive Programs for Sustainable Demand Peer Exchange Call on Financing and Revenue: Bond Funding Financing Small Business Upgrades

  17. Evaluating, Migrating, and Consolidating Databases and Applications for Long-Term Surveillance and Maintenance Activities at the Rocky Flats Site

    SciTech Connect (OSTI)

    Surovchak, S.; Marutzky, S.; Thompson, B.; Miller, K.; Labonte, E.

    2006-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is assuming responsibilities for long-term surveillance and maintenance (LTS and M) activities at the Rocky Flats Environmental Technology Site (RFETS) during fiscal year 2006. During the transition, LM is consolidating databases and applications that support these various functions into a few applications which will streamline future management and retrieval of data. This paper discussed the process of evaluating, migrating, and consolidating these databases and applications for LTS and M activities and provides lessons learned that will benefit future transitions. (authors)

  18. Property:OpenEI/UtilityRate/DemandChargePeriod7FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  19. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWindow&oldid680274...

  20. Property:OpenEI/UtilityRate/DemandWeekdaySchedule | Open Energy...

    Open Energy Info (EERE)

    search This is a property of type Text. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWeekdaySchedule&oldid539760" Feedback...

  1. Property:OpenEI/UtilityRate/EnableDemandCharge | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Boolean. Name: Enable Demand Charge Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  2. Property:OpenEI/UtilityRate/DemandChargePeriod8 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  3. Property:OpenEI/UtilityRate/DemandChargePeriod3FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  4. Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  5. Property:OpenEI/UtilityRate/DemandChargePeriod4FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  6. Property:OpenEI/UtilityRate/DemandChargePeriod8FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 8 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  7. Property:OpenEI/UtilityRate/DemandChargePeriod4 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 4 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  8. Property:OpenEI/UtilityRate/DemandChargePeriod6FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  9. Property:OpenEI/UtilityRate/DemandChargePeriod7 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 7 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  10. Property:OpenEI/UtilityRate/DemandChargePeriod1FAdj | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProper...

  11. Property:OpenEI/UtilityRate/DemandChargePeriod3 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 3 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  12. Impacts of Long-term Drought on Power Systems in the U.S. Southwest ¬タモ July 2012

    Energy Savers [EERE]

    Impacts of Long-term Drought on Power Systems in the U.S. Southwest Prepared for: U.S. Department of Energy Office of Electric Delivery and Energy Reliability Infrastructure Security and Energy Restoration Division OFFICIAL USE ONLY Outline of Presentation 2 1. Background, Objectives, and Assumptions 2. Methodology and Data 3. Analysis and Results OFFICIAL USE ONLY  DOE-OE has a responsibility to promote a resilient energy infrastructure in which continuity of business and services are

  13. Long-Term Surveillance Plan for the Upper Burbank Disposal Cell, Uravan, Colorado, DOE/AL/62350-250, Revision 1, July 1999

    Office of Legacy Management (LM)

    LONG-TERM SURVEILLANCE PLAN FOR THE UPPER BURBANK DISPOSAL CELL URAUAN, COLORADO July 1999 Prepared for U.S. Department of Energy Environmental Restoration Dhrision U MTRA Project Team Albuquerque, New Mexico DOElAU62350-250 REV. 1 Prepared by Jacobs Engineering Group Inc. Albuquerque, New Mexico This page intentionally left blank LONG-TERM GURMIWNCE P U N FOR THE UPPER BURBANK DrsPosAL CEU. WYAAI. COhORAOD TABLE OF DONENTe TABLE OF CONTENTS 1.0 PURPOSEANDSCOPE

  14. Demand Response

    Energy Savers [EERE]

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE

  15. Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978)

    Broader source: Energy.gov [DOE]

    Monitoring of the Airport Calibration Pads at Walker Field, Grand Junction, Colorado, for Long-Term Radiation Variations (August 1978)

  16. Assessing the state-level consequences of global warming: Socio-economic and energy demand impacts

    SciTech Connect (OSTI)

    Rubin, B.M. Gailmard, S.; Marsh, D.; Septoff, A.

    1996-12-31

    The large body of research on climate change has begun to recognize a significant deficiency: the lack of analysis of the impact of climate change at a spatial level consistent with the anticipated occurrence of climate change. Climate change is likely to vary by region, while impact analysis has focused on much larger political units. Clearly, adaptation/mitigation strategies must be developed at a level consistent with political and policy-making processes. This paper specifically addresses this deficiency by identifying the potential socio-economic and energy demand consequences of climate change for subnational regions. This is accomplished via the development and application of a regional simultaneous equation, econometric simulation model that focuses on five states (Illinois, Indiana, Michigan, Ohio, and Wisconsin) in the Great Lakes region of the US. This paper presents a process for obtaining state-specific assessments of the consequences of climate change for the socio-economic system. As such, it provides an indication of which economic sectors are most sensitive to climate change for a specific state (Indiana), a set of initial mitigation/adaptation strategies for this state, and the results of testing these strategies in the policy analysis framework enabled by the model. In addition, the research demonstrates an effective methodology for assessing impacts and policy implications of climate change at a level consistent with policy making authority.

  17. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; R. C. O'Brien; G. Tao

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode of operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.

  18. Impact of the Demand-Side Management (DSM) Program structure on the cost-effectiveness of energy efficiency projects

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

    1994-12-01

    Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DSM programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges, (2) a demand reduction program offered in conjunction with an energy services company, and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

  19. Impact of Temperature Trends on Short-Term Energy Demand, The (Released in the STEO September 1999)

    Reports and Publications (EIA)

    1999-01-01

    The past few years have witnessed unusually warm weather, as evidenced by both mild winters and hot summers. The analysis shows that the 30-year norms--the basis of weather-related energy demand projections--do not reflect the warming trend or its regional and seasonal patterns.

  20. LOWER BOUNDS ON MAGNETIC FIELDS IN INTERGALACTIC VOIDS FROM LONG-TERM

    Office of Scientific and Technical Information (OSTI)

    GeV-TeV LIGHT CURVES OF THE BLAZAR MRK 421 (Journal Article) | SciTech Connect MAGNETIC FIELDS IN INTERGALACTIC VOIDS FROM LONG-TERM GeV-TeV LIGHT CURVES OF THE BLAZAR MRK 421 Citation Details In-Document Search Title: LOWER BOUNDS ON MAGNETIC FIELDS IN INTERGALACTIC VOIDS FROM LONG-TERM GeV-TeV LIGHT CURVES OF THE BLAZAR MRK 421 Lower bounds are derived on the amplitude B of intergalactic magnetic fields (IGMFs) in the region between Galaxy and the blazar Mrk 421, from constraints on the

  1. MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT

    Office of Scientific and Technical Information (OSTI)

    INTERFACIAL DISLOCATIONS (Conference) | SciTech Connect MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT INTERFACIAL DISLOCATIONS Citation Details In-Document Search Title: MODELING OF LONG-TERM FATE OF MOBILIZED FINES DUE TO DAM-EMBANKMENT INTERFACIAL DISLOCATIONS Authors: Ezzedine, S ; Kanarska, Y ; Lomov, I ; Antoun, T ; Glascoe, L Publication Date: 2011-07-29 OSTI Identifier: 1093897 Report Number(s): LLNL-PROC-491853 DOE Contract Number: W-7405-ENG-48 Resource Type:

  2. Glen Canyon Dam Long-Term Experimental and Management Plan DEIS

    Energy Savers [EERE]

    A-1 1 2 3 4 5 6 7 8 9 10 11 12 APPENDIX A: 13 14 ADAPTIVE MANAGEMENT WORKING GROUP 15 DESIRED FUTURE CONDITIONS 16 17 Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement A-2 1 2 3 4 5 6 7 8 9 10 11 12 This page intentionally left blank 13 14 15 Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement A-3 APPENDIX A: 1 2 ADAPTIVE MANAGEMENT WORKING GROUP 3 DESIRED FUTURE CONDITIONS 4 5 6

  3. Glen Canyon Dam Long-Term Experimental and Management Plan DEIS

    Energy Savers [EERE]

    K-1 1 2 3 4 5 6 7 8 9 10 11 12 APPENDIX K: 13 14 HYDROPOWER SYSTEMS TECHNICAL INFORMATION AND ANALYSIS 15 16 Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement K-2 1 2 3 4 5 6 7 8 9 10 11 12 This page intentionally left blank 13 14 15 Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement K-3 APPENDIX K: 1 2 HYDROPOWER SYSTEMS TECHNICAL INFORMATION AND ANALYSIS 3 4 5 This appendix

  4. Development of long-term performance models for radioactive waste forms

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  5. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    SciTech Connect (OSTI)

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

  6. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    SciTech Connect (OSTI)

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: (1) Highly integrated control rooms; (2) Highly automated plant; (3) Integrated operations; (4) Human performance improvement for field workers; and (5) Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.

  7. U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United ...

  8. Property:OpenEI/UtilityRate/DemandChargePeriod9 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  9. Property:OpenEI/UtilityRate/DemandChargePeriod9FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 9 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  10. Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  11. Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRate...

  12. Property:OpenEI/UtilityRate/DemandChargePeriod5FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 5 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  13. Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy...

    Open Energy Info (EERE)

    FAdj Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 2 Fuel Adj Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEI...

  14. High Electric Demand Days: Clean Energy Strategies for Improving Air Quality

    Broader source: Energy.gov [DOE]

    This presentation, presented in July 2008, addressed greenhouse gas reduction goals on high electric demand days. Presenter was Art Diem of the State and Local Capacity Building Branch at the U.S. Environmental Protection Agency.

  15. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  16. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  17. Development of weld closure stations for plutonium long-term storage containers

    SciTech Connect (OSTI)

    Fernandez, R.; Martinez, D.A.; Martinez, H.E.; Nelson, T.O.; Ortega, R.E.; Rofer, C.K.; Romero, W.; Stewart, J.; Trujillo, V.L.

    1998-12-31

    Weld closure stations for plutonium long-term storage containers have been designed, fabricated, and tested for the Advanced Recovery and Integrated Extraction System (ARIES) at the TA-55 Plutonium Facility of the Los Alamos National Laboratory. ARIES is a processing system used for the dismantlement of the plutonium pits from nuclear weapons. ARIES prepares the extracted-plutonium in a form which is compatible with long-term storage and disposition options and meets international inspection requirements. The processed plutonium is delivered to the canning module of the ARIES line, where it is packaged in a stainless steel container. This container is then packaged in a secondary container for long-term storage. Each of the containers is hermetically sealed with a full penetration weld closure that meets the requirements of the ASME Section IX Boiler and Pressure Vessel Code. Welding is performed with a gas tungsten arc process in an inert atmosphere of helium. The encapsulated helium in the nested containers allows for leak testing the weld closure and container. The storage package was designed to meet packaging requirements of DOE Standard 3013-96 for long-term storage of plutonium metal and oxides. Development of the process parameters, weld fixture, weld qualification, and the welding chambers is discussed in this paper.

  18. Mixer pump long term operations plan for Tank 241-SY-101 mitigation

    SciTech Connect (OSTI)

    Irwin, J.J.

    1994-09-07

    This document provides the general Operations Plan for performance of the mixer pump long term operations for Tank 241-SY-101 mitigation of gas retention and periodic release in Tank 101-SY. This operations plan will utilize a 112 kW (150 hp) mixing pump to agitate/suspend the particulates in the tank.

  19. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  20. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  1. Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

    1995-12-01

    The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

  2. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    SciTech Connect (OSTI)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.; Denham, Miles E.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the cost of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

  3. Strategy for Long-Term Stewardship and Monitoring of Amchitka Island - 12190

    SciTech Connect (OSTI)

    Kautsky, Mark; Nguyen, Jason; Darr, Paul S.; Picel, Mary

    2012-07-01

    The Long-Term Surveillance and Maintenance Plan (LTSMP) for Amchitka details how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at and around the sites on Amchitka Island. The LTSMP calls for monitoring to be performed every 5 years, at least in the initial phase of the project. The purpose of the monitoring is to develop a baseline of activity concentrations for selected radionuclides in biota, water, and soil, both on Amchitka and at the reference location on Adak Island, approximately 322 km (200 miles) northeast of Amchitka. Data compiled by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP, 2006) are being included as part of the baseline data set. The specific biological, water, and sediment samples collected during the 2011 sampling event were developed through close coordination with the primary stakeholders, including the Alaska Department of Environmental Conservation, the Aleutian Pribilof Island Association, and the U.S. Fish and Wildlife Service (USFWS). Amchitka is managed by the USFWS as part of the Alaska Maritime National Wildlife Refuge. Two plans were developed to address specific needs of the biological- and the terrestrial-monitoring programs. Results from these monitoring programs will help determine whether the environment is being impacted by radionuclide migration and uptake, and if subsistence and commercial-catch seafood is safe for human consumption. The RESRAD-BIOTA code is being used to evaluate ecological health relative to the radionuclide levels determined from this sampling event. The samples were sent to three laboratories for analysis. With the exception of the seawater samples, most of the samples were sent to the Center for Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. A smaller subset of rock-weed samples, Star reindeer lichen samples, and soil samples collected from beneath the lichen were sent to UAF for cesium-137 analysis. Marine sediment samples were also collected and sent to UAF for testing. The seawater samples were sent to the University of Miami Tritium Laboratory for enriched tritium analysis. Results from the seawater samples for tritium were received in September 2011. Results from the 2011 sampling are expected to be available on the LM web site in 2012. (authors)

  4. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    SciTech Connect (OSTI)

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  5. Long-term risk stabilization of the Rocky Flats Plant residues

    SciTech Connect (OSTI)

    Melberg, T.A.

    1994-12-31

    The liquid and solid residues continue to be a concern at Rocky Flats, primarily due to safety aspects of long-term storage and of the need for processing them into a form for ultimate disposal. Currently, Rocky Flats is processing the low-level solutions from bottles and tanks by direct cementation for storage and disposal. Plans for actinide precipitation of the high-level solutions are being finalized with an anticipated completion date of 2 to 3 yr. The solid residues present a more difficult challenge because of the numerous forms that these exist. Rocky Flats is developing several strategies to handle these materials for safe long-term storage and eventual disposal.

  6. Long-term management of AAR-affected structures - An international perspective

    SciTech Connect (OSTI)

    Charlwood, R.G.; Solymar, Z.V.

    1995-12-31

    The objective of the paper is to review international practice and comment on progress made in the long-term management of existing AAR-affected dams and hydroelectric plants. A updated detailed worldwide listing which now includes 104 AAR-affected structures constructed since 1900 will be presented. The listing gives summary data on the year of construction, the year that significant problems were noted, aggregate and cement types, measured expansion rates, test data, time to initial deterioration, duration of reaction, damage to the structures and effects on equipment, and repairs or replacement. A comprehensive bibliography will also be given. Analysis of the database and significant case histories will be used to identify issues affecting dam safety, plant operations, remedial measures and long-term performance of AAR-affected structures. The presentation will be illustrated by several case histories where remedial measures have been implemented.

  7. Test methods for determining short and long term VOC emissions from latex paint

    SciTech Connect (OSTI)

    Krebs, K.; Lao, H.C.; Fortmann, R.; Tichenor, B.

    1998-09-01

    The paper discusses an evaluation of latex paint (interior, water based) as a source of indoor pollution. A major objective of the research is the development of methods for predicting emissions of volatile organic compounds (VOCs) over time. Test specimens of painted gypsumboard are placed in dynamic flow-through test chambers. Samples of the outlet air are collected on Tenax sorbents and thermally desorbed for analysis by gas chromatography/flame ionization detection. These tests produce short- and long-term data for latex paint emissions of Texanol, 2-2(-butoxyethoxy)-ethanol, and glycols. Evaluation of the data shows that most of the Texanol emissions occur within the first few days, and emissions of the glycols occur over several months. This behavior may be described by an evaporative mass transfer process that dominates the short-term emissions, while long-term emissions are limited by diffusion processes within the dry paint-gypsumboard.

  8. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    SciTech Connect (OSTI)

    Lihachev, A; Ferulova, I; Vasiljeva, K; Spigulis, J

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  9. Glen Canyon Dam Long-Term Experimental and Management Plan DEIS

    Energy Savers [EERE]

    Executive Summary U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand Canyon National Park Glen Canyon Dam Long-Term Experimental and Management Plan December 2015

  10. Glen Canyon Dam Long-Term Experimental and Management Plan DEIS

    Energy Savers [EERE]

    Dam Long-Term Experimental and Management Plan Environmental Impact Statement PUBLIC DRAFT Volume 1-Chapters 1-8 U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand

  11. EIS-0480: Long-Term Experimental and Management Plan for the Operation of Glen Canyon Dam

    Broader source: Energy.gov [DOE]

    Two agencies of the Department of the Interior, Bureau of Reclamation and National Park Service, are jointly preparing a Long-Term Experimental and Management Plan for the Glen Canyon Dam and an EIS for adoption of the Plan. The Glen Canyon Dam, on the Colorado River in northern, Arizona, generates hydroelectric power that is marketed by DOE's Western Area Power Administration, a cooperating agency.

  12. Systems Long Term Exposure Program: Analysis of the First Year of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Engineering and Integration Systems Engineering and Integration Systems Engineering and Integration The fuel cycle in use today in the United States faces challenges in achieving the goals of sustainability. While used fuel is safely stored at reactor sites, the development of a system to manage all of the waste now and in the future has proven to be a persistently difficult task. Uncertainties about long-term resource availability make it difficult to properly value reusable material in

  13. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect (OSTI)

    Lesperance, Ann M.

    2008-06-30

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  14. Value of Demand Response: Quantities from Production Cost Modeling (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Value Study Desk Manual Value Study Desk Manual Updated September 26, 2012. PDF icon Memo from Robert Myers regarding DOE Benefit Value Desk Manual PDF icon Value Study Desk Manual More Documents & Publications Contractor Human Resources Management VALUE STUDY VALUE STUDY

    Value of Demand Response: Quantities from Production Cost Modeling Marissa Hummon PLMA Spring 2014 April 15-16, 2014 Denver, CO NREL/PR-6A20-61815 2 Background DOE-led, multiple national laboratory research project

  15. X-ray enhancement and long-term evolution of swift J1822.3–1606

    SciTech Connect (OSTI)

    Benli, Onur; Çal??kan, ?.; Ertan, Ü.; Alpar, M. A. [Sabanc? University, Orhanl?-Tuzla, ?stanbul 34956 (Turkey); Trümper, J. E. [Max-Planck-Institut für extraterrestrische Physik, Geissenbachstrasse, 85740 Garching bei München (Germany); Kylafis, N. D., E-mail: onurbenli@sabanciuniv.edu [Physics Department and Institute of Theoretical and Computational Physics, University of Crete, 71003 Heraklion, Crete (Greece)

    2013-12-01

    We investigate the X-ray enhancement and the long-term evolution of the recently discovered second 'low-B magnetar' Swift J1822.3-1606 in the frame of the fallback disk model. During a soft gamma burst episode, the inner disk matter is pushed back to larger radii, forming a density gradient at the inner disk. Subsequent relaxation of the inner disk could account for the observed X-ray enhancement light curve of Swift J1822.3-1606. We obtain model fits to the X-ray data with basic disk parameters similar to those employed to explain the X-ray outburst light curves of other anomalous X-ray pulsars and soft gamma repeaters. The long period (8.4 s) of the neutron star can be reached by the effect of the disk torques in the long-term accretion phase ((1-3) × 10{sup 5} yr). The currently ongoing X-ray enhancement could be due to a transient accretion epoch, or the source could still be in the accretion phase in quiescence. Considering these different possibilities, we determine the model curves that could represent the long-term rotational and the X-ray luminosity evolution of Swift J1822.3-1606, which constrain the strength of the magnetic dipole field to the range of (1-2) × 10{sup 12} G on the surface of the neutron star.

  16. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect (OSTI)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

  17. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect (OSTI)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.

  18. Long-term Testing Results for the 2008 Installation of LED Luminaires at the I-35 West Bridge in Minneapolis

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Davis, Robert G.

    2014-09-30

    This document reports the long-term testing results from an extended GATEWAY project that was first reported in “Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, in Minneapolis, MN,” August 2009. That original report presented the results of lighting the newly reconstructed I 35W Bridge using LEDs in place of conventional high-pressure sodium (HPS) roadway luminaires, comparing energy use and illuminance levels with a simulated baseline condition. That installation was an early stage implementation of LED lighting and remains one of the oldest installations in continued operation today. This document provides an update of the LED system’s performance since its installation in September 2008.

  19. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  20. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; et al

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmore » nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. Results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. In addition, by identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, the study makes fundamental contributions to predictive understanding of microbial biogeography.« less

  1. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity

    SciTech Connect (OSTI)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; Hirsch, Penny R.; Sun, Bo; Zhou, Jizhong

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receiving nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. Results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. In addition, by identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, the study makes fundamental contributions to predictive understanding of microbial biogeography.

  2. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    SciTech Connect (OSTI)

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-10

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. A robust suite of relatively inexpensive tools is commercially available to measure these variables. Traditional plume/contaminant variables are various measures of contaminant concentration including traditional analysis of chemicals in groundwater samples. An innovative long term monitoring strategy has been developed for acidic or caustic groundwater plumes contaminated with metals and/or radionuclides. Not only should the proposed strategy be more effective at early identification of potential risks, this strategy should be significantly more cost effective because measurement of controlling boundary conditions and master variables is relatively simple. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate significant cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.

  3. Global Insight Energy Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Outlook Mary Novak Managing Director IHS Global Insight Copyright © 2010 IHS Global Insight, Inc. Overview: Energy Sector Transformation Underway * The recession has hit energy demand hard, and aggregate energy demand is not expected to return to 2007 levels until 2018. * Oil and natural gas prices will both rise over the long-term, but the price trends will diverge with natural gas prices rising slowly due to the development of shale gas. * This forecast does not include a GHG cap-and-trade

  4. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  5. Long-Term Results from Evaluation of Advanced New Construction Packages in Test Homes: Lake Elsinore, Californi

    SciTech Connect (OSTI)

    Stecher, D.; Brozyna, K.

    2013-08-01

    This report presents the long-term evaluation results from a hot-dry climate project that examines the room-to-room temperature conditions that exist in a high performance envelope, the performance of a simplified air distribution system, and a comparison of modeled energy performance with measured energy use. The project, a prototype house built by K. Hovnanian Homes’ Ontario Group, is located in Lake Elsinore, Riverside County, California, and achieves a 50% level of whole house source energy savings with respect to the Building America (BA) Benchmark Definition 2009 (Hendron and Engebrecht 2010). Temperature measurements in three rooms indicate that the temperature difference between the measured locations and the thermostat were within recommendations 90.3% of the time in heating mode and 99.3% of the time in cooling mode. The air distribution system is operating efficiently with average delivered temperatures adequate to facilitate proper heating and cooling and only minor average temperature differences observed between the system’s plenum and farthest register. Monitored energy use results for the house indicate that it is using less energy than predicted from modeling. A breakdown of energy use according to end use determined little agreement between comparable values.

  6. Long-Term Results from Evaluation of Advanced New Construction Packages in Test Homes: Lake Elsinore, California

    SciTech Connect (OSTI)

    Stecher, D.; Brozyna, K.

    2013-08-01

    This report presents the long-term evaluation results from a hot-dry climate project that examines the room-to-room temperature conditions that exist in a high performance envelope, the performance of a simplified air distribution system, and a comparison of modeled energy performance with measured energy use. The project, a prototype house built by K. Hovnanian Homes' Ontario Group, is located in Lake Elsinore, Riverside County, California, and achieves a 50% level of whole house source energy savings with respect to the Building America (BA) Benchmark Definition 2009 (Hendron and Engebrecht 2010). Temperature measurements in three rooms indicate that the temperature difference between the measured locations and the thermostat were within recommendations 90.3% of the time in heating mode and 99.3% of the time in cooling mode. The air distribution system is operating efficiently with average delivered temperatures adequate to facilitate proper heating and cooling and only minor average temperature differences observed between the system's plenum and farthest register. Monitored energy use results for the house indicate that it is using less energy than predicted from modeling. A breakdown of energy use according to end use determined little agreement between comparable values.

  7. Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

  8. Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, Storage and Use, May 13-15, 2003

    SciTech Connect (OSTI)

    Dresselhaus, M; Crabtree, G; Buchanan, M; Mallouk, T; Mets, L; Taylor, K; Jena, P; DiSalvo, F; Zawodzinski, T; Kung, H; Anderson, I S; Britt, P; Curtiss, L; Keller, J; Kumar, R; Kwok, W; Taylor, J; Allgood, J; Campbell, B; Talamini, K

    2004-02-01

    The coupled challenges of a doubling in the world's energy needs by the year 2050 and the increasing demands for ''clean'' energy sources that do not add more carbon dioxide and other pollutants to the environment have resulted in increased attention worldwide to the possibilities of a ''hydrogen economy'' as a long-term solution for a secure energy future.

  9. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long-term management of the high-level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. The project was cancelled after the Draft Environmental Impact Statement was produced.

  10. Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technology Transfer Programs | Department of Energy In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy (EERE) Small Business and Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs, other federal agencies also provide funding through their own SBIR/STTR programs. The programs listed here may be of interest if you determine that EERE's SBIR/STTR programs cannot provide assistance at this time. National Aeronautics

  11. Fact Sheet: U.S. and China Actions Matter for Global Energy Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cultivating sufficient investment, the development and deployment of new energy ... Our cooperation spans power generation, efficient buildings, sustainable transportation, ...

  12. Growth in Biofuels Markets: Long Term Environmental and Socioeconomic Impacts (Final Report)

    SciTech Connect (OSTI)

    Seth D. Meyer; Nicholas Kalaitzandonakes

    2010-12-02

    Over the last several years increasing energy and petroleum prices have propelled biofuels and the feedstocks used to produce them, to the forefront of alternative energy production. This growth has increased the linkages between energy and agricultural markets and these changes around the world are having a significant effect on agricultural markets as biofuels begin to play a more substantial role in meeting the world's energy needs. Biofuels are alternatively seen as a means to reduce carbon emissions, increase energy independence, support rural development and to raise farm income. However, concern has arisen that the new demand for traditional commodities or alternative commodities which compete for land can lead to higher food prices and the environmental effects from expanding crop acreage may result in uncertain changes in carbon emissions as land is converted both in the US and abroad. While a number of studies examine changes in land use and consumption from changes in biofuels policies many lack effective policy representation or complete coverage of land types which may be diverted in to energy feedstock production. Many of these biofuels and renewable energy induced land use changes are likely to occur in developing countries with at-risk consumers and on environmentally sensitive lands. Our research has improved the well known FAPRI-MU modeling system which represents US agricultural markets and policies in great detail and added a new model of land use and commodity markets for major commodity producers, consumers and trade dependent and food insecure countries as well as a rest of the world aggregate. The international modules include traditional annual crop lands and include perennial crop land, pasture land, forest land and other land uses from which land may be drawn in to biofuels or renewable energy feedstock production. Changes in calorie consumption in food insecure countries from changes in renewable energy policy can also be examined with a calorie module that was developed. The econometric model development provides an important tool to examine the indirect but important and potentially substantial secondary effects of the use of agricultural land as an input into renewable energy production including changes in greenhouse gas production and calorie consumption. With the expansion of biofuels support and consumption as well as proposals for similar support of biomass electricity the research and tools developed remain at the forefront of renewable energy policy analysis.

  13. The silver bullet myth of sustainable energy savings

    SciTech Connect (OSTI)

    Pasqualetti, Martin J.; Tabbert, Michael K.; Boscamp, Robert L.

    2010-10-15

    Especially in the U.S., people like to think that solving problems just requires finding the proper ''silver bullet.'' Such fixes are not sustainable. Any utility company wanting sustainable long-term savings in personal energy demand requires a more thorough commitment that might be referred to as ''head'' (education), ''heart'' (motivation), and ''hands'' (action). (author)

  14. Kodak: Optimizing the Pumping System Saves Energy and Reduces Demand Charges at a Chemical Plant

    SciTech Connect (OSTI)

    Not Available

    2005-06-01

    This two-page performance spotlight describes how, in 2003, Kodak's facilities in Rochester, New York, significantly improved the energy efficiency of its two lake-water pumping stations to save more than $100,000 annually in energy and maintenance costs. The project reduced energy use by more than 1 million kilowatt-hours per year and allowed fewer pumps to operate at any one time, while maintaining previous pumping performance levels. A U.S. Department of Energy Qualified Pumping System Assessment Tool Specialist at Flowserve Corporation assisted in the initial system assessment that resulted in this project.

  15. Scenarios of Building Energy Demand for China with a Detailed Regional Representation

    SciTech Connect (OSTI)

    Yu, Sha; Eom, Jiyong; Zhou, Yuyu; Evans, Meredydd; Clarke, Leon E.

    2014-02-07

    Building energy consumption currently accounts for 28% of China’s total energy use and is expected to continue to grow induced by floorspace expansion, income growth, and population change. Fuel sources and building services are also evolving over time as well as across regions and building types. To understand sectoral and regional difference in building energy use and how socioeconomic, physical, and technological development influence the evolution of the Chinese building sector, this study developed a building energy use model for China downscaled into four climate regions under an integrated assessment framework. Three building types (rural residential, urban residential, and commercial) were modeled specifically in each climate region. Our study finds that the Cold and Hot Summer Cold Winter regions lead in total building energy use. The impact of climate change on heating energy use is more significant than that of cooling energy use in most climate regions. Both rural and urban households will experience fuel switch from fossil fuel to cleaner fuels. Commercial buildings will experience rapid growth in electrification and energy intensity. Improved understanding of Chinese buildings with climate change highlighted in this study will help policy makers develop targeted policies and prioritize building energy efficiency measures.

  16. Short-Term Energy Outlook Model Documentation: Coal Supply, Demand, and Prices

    Reports and Publications (EIA)

    2016-01-01

    The coal module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, imports, exports, inventories, and prices.

  17. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  18. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  19. Tritium: a model for low level long-term ionizing radiation exposure

    SciTech Connect (OSTI)

    Carsten, A.L.

    1984-01-01

    The somatic, cytogenetic and genetic effects of single and chronic tritiated water (HTO) ingestion in mice was investigated. This study serves not only as an evaluation of tritium toxicity (TRITOX) but due to its design involving long-term low concentration ingestion of HTO may serve as a model for low level long-term ionizing radiation exposure in general. Long-term studies involved animals maintained on HTO at concentrations of 0.3 ..mu..Ci/ml, 1.0 ..mu..Ci/ml, 3.0 ..mu..Ci/ml or depth dose equivalent chronic external exposures to /sup 137/Cs gamma rays. Maintenance on 3.0 ..mu..Ci/ml resulted in no effect on growth, life-time shortening or bone marrow cellularity, but did result in a reduction of bone marrow stem cells, an increase in DLM's in second generation animals maintained on this regimen and cytogenetic effects as indicated by increased sister chromatid exchanges (SCE's) in bone marrow cells, increased chromosome aberrations in the regenerating liver and an increase in micronuclei in red blood cells. Biochemical and microdosimetry studies showed that animals placed on the HTO regimen reached tritium equilibrium in the body water in approximately 17 to 21 days with a more gradual increase in bound tritium. When animals maintained for 180 days on 3.0 ..mu..Ci/ml HTO were placed on a tap water regimen, the tritium level in tissue dropped from the equilibrium value of 2.02 ..mu..Ci/ml before withdrawal to 0.001 ..mu..Ci/ml at 28 days. 18 references.

  20. SWAAM-LT: The long-term, sodium/water reaction analysis method computer code

    SciTech Connect (OSTI)

    Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.

    1993-01-01

    The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data.

  1. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  2. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  3. The long-term problems of contaminated land: Sources, impacts and countermeasures

    SciTech Connect (OSTI)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  4. Improvement of capabilities of the Distributed Electrochemistry Modeling Tool for investigating SOFC long term performance

    SciTech Connect (OSTI)

    Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.

    2012-04-30

    This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are also proposed.

  5. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect (OSTI)

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  6. Systems and methods for controlling energy use during a demand limiting period

    DOE Patents [OSTI]

    Wenzel, Michael J.; Drees, Kirk H.

    2016-04-26

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A feedback controller is used to generate a manipulated variable based on an energy use setpoint and a measured energy use. The manipulated variable may be used for adjusting the operation of an HVAC device.

  7. Quantification of key long-term risks at CO? sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    SciTech Connect (OSTI)

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; Chu, Shaoping; Dilmore, Robert; Gastelum, Jason; Oldenburg, Curt; Stauffer, Philip; Zhang, Yingqi; Guthrie, George

    2014-12-31

    Risk assessment for geologic CO? storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO? sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO? and brine leakage. The simulation results are also used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.

  8. Quantification of key long-term risks at COâ‚‚ sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; Chu, Shaoping; Dilmore, Robert; Gastelum, Jason; Oldenburg, Curt; Stauffer, Philip; Zhang, Yingqi; Guthrie, George

    2014-12-31

    Risk assessment for geologic CO₂ storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO₂ sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO₂ and brine leakage. The simulation results are alsomore » used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.« less

  9. What's New for the Department of Energy's (DOE) Long-Term Stewardship (LTS)

    Broader source: Energy.gov [DOE]

    On 11 February 2011, the Department replaced its DOE Order 5400.5 Radiation Protection of the Public and the Environment, Chg 2, dated 1-7-93 except for Chapter III (―Derived Concentration Guides...

  10. Study of Long-Term Transport Action Plan for ASEAN | Open Energy...

    Open Energy Info (EERE)

    Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background...

  11. Algal Biofuels: Long-Term Energy Benefits Drive U.S. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2015 Peer Review Presentations-Algal Feedstocks Algae Biofuels Technology Bioenergy Technologies Office Fiscal Year 2014 Annual Report

  12. Development and Update of Models for Long-Term Energy and GHG Impact Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  14. Deployment of Behind-The-Meter Energy Storage for Demand Charge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... that fall below 40 watt-hours (Wh)square foot (sq. ... time shifting of energy usage) would have to be weighed ... In Figure 14, we explicitly compare the cases with and ...

  15. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  16. Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Yuting; Wu, Liyou; Clark, Ian M.; Xue, Kai; Yang, Yunfeng; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; McGrath, Steve; Storkey, Jonathan; et al

    2015-04-07

    Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmore »nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P « less

  17. Long Term Stewardship Challenges at the St. Louis District FUSRAP Sites

    SciTech Connect (OSTI)

    Dell'Orco, L.; Chambers, D.

    2002-02-27

    Non-Federally owned radioactively contaminated sites in St. Louis, Missouri are currently being remediated by the St. Louis District Corps of Engineers under the Formerly Utilized Sites Remedial Action Program (FUSRAP). When FUSRAP remediation is complete, inaccessible soils which have levels of contamination greater than unrestricted use standards, will remain. The purpose of this paper is to document the initial challenges facing the project team during its development of the Long Term Stewardship plan for the management of these soils. These soils are located under buildings, roads, railroads and bridges. The Long Term Stewardship plan for the majority of the sites is being developed simultaneously with the remedy selection process. A living document, it will ultimately document the remedial action end state and location of inaccessible soils and implement the plan for ensuring these soils are not a threat to human health and the environment. Although these soils are protective in their current configuration, at some point in time, when activities such as maintenance, utility or property improvement occur, the soils will become accessible and need to be addressed by the federal government. Up until that point in time they will need to be effectively managed to ensure they remain protective. The St. Louis District is in the process of collaboratively developing this plan with its regulators, affected stakeholders and interested parties.

  18. Research on long term safety of nuclear waste disposal at the research center Karlsruhe, Germany

    SciTech Connect (OSTI)

    Gompper, Klaus; Bosbach, Dirk; Denecke, Melissa A.; Geckeis, Horst; Kienzler, Bernhard; Klenze, Reinhardt

    2007-07-01

    In Germany the safe disposal of radioactive waste is in the responsibility of the federal government. The R and D performed in the Institute for Nuclear Waste Disposal (INE) at the Research Center Karlsruhe contributes to the German provident research in the field of long-term safety for final disposal of high level heat producing nuclear wastes. INE's research is focused on the actinide elements and long lived fission products since these dominate the radiotoxicity over a long time. The research strategy synergistically combines fundamental science of aquatic radionuclide chemistry with applied investigations of real systems (waste form, host rock, aquifer), studied on laboratory scale and in underground laboratories. Because Germany has not yet selected a site for a high-level waste repository, all host rock formations under discussion in the international community (salt, hard rock, clay/tone) are investigated. Emphasis in long-term safety R and D at INE is on the development of actinide speciation methods and techniques in the trace concentration range. (authors)

  19. LONG-TERM CORROSION TESTING OF CANDIDATE MATERIALS FOR HIGH-LEVEL RADIOACTIVE WASTE CONTAINMENT

    SciTech Connect (OSTI)

    Estill, J. C.; Doughty, S.; Gdowski, G. E.; Gordon, S.; King, K.; McCright, R. D.; Wang, F.

    1997-10-01

    Preliminary results are presented from the long-term corrosion test program of candidate materials for the high-level radioactive waste packages that would be emplaced in the potential repository at Yucca Mountain, Nevada. The present waste package design is based on a multi-barrier concept having an inner container of a corrosion resistant material and an outer container of a corrosion allowance material. Test specimens have been exposed to simulated bounding environments that may credibly develop in the vicinity of the waste packages. Corrosion rates have been calculated for weight loss and crevice specimens, and U-bend specimens have been examined for evidence of stress corrosion cracking (SCC). Galvanic testing has been started recently and initial results are forthcoming. Pitting characterization of test specimens will be conducted in the coming year. This test program is expected to continue for a minimum of five years so that long-term corrosion data can be determined to support corrosion model development, performance assessment, and waste package design.

  20. Simulation of the long-term accumulation of radiocontaminants in crop plants

    SciTech Connect (OSTI)

    Schreckhise, R.G.

    1980-03-01

    Most radiological dose assessment models ignore the long-term buildup of radiocontaminants in the soil. When they estimate levels in crop plants from root uptake, these models account only for the annual input from the source into the soil. Almost all of the models ignore the build-up of contaminants in the soil profile due to the accumulation in the roots and the build-up from the above-ground plant material that is buried by plowing. The model described in this report simulates the entire system involved in the cycling and accumulation of radionuclides in cultivated land. The model, named CROPRE, was developed to predict both the long-term accumulation of radionuclides and the resulting concentrations of radionuclides in vegetation. This model was designed to include: (1) the chronic input of contaminated irrigation water into both the soil compartment and directly onto the surface of the vegetation; (2) the incorporation of radiocontaminants in the soil organic matter pool and their eventual release for re-uptake by subsequent crops; (3) the removal of contaminants from the system when the crops are harvested; and (4) the downward movement of radionuclides and their loss from the system by percolation. The CROPRE model more realistically simulates the cycling of radiocontaminants in crop plants over long periods of time than does the other models. It is recommended that it be incorporated into existing radiation dose commitment models.