National Library of Energy BETA

Sample records for lone star wind

  1. Lone Star I (Q2) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Q2) Wind Farm Jump to: navigation, search Name Lone Star I (Q2) Wind Farm Facility Lone Star I (Q2) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Lone Star I (Q3) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Q3) Wind Farm Jump to: navigation, search Name Lone Star I (Q3) Wind Farm Facility Lone Star I (Q3) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Lone Star Wind Alliance LSWA | Open Energy Information

    Open Energy Info (EERE)

    Wind Alliance LSWA Jump to: navigation, search Name: Lone Star Wind Alliance (LSWA) Place: Houston, Texas Sector: Wind energy Product: Texas-based research centres, focusing on...

  4. Lone Star II (1Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star II (1Q08) Wind Farm Facility Lone Star II (1Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Lone Star II (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star II (4Q07) Wind Farm Facility Lone Star II (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Lone Star I (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star I (4Q07) Wind Farm Facility Lone Star I (4Q07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Lone Star II (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Lone Star II (2Q08) Wind Farm Facility Lone Star II (2Q08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Lone Star Transmission LLC | Open Energy Information

    Open Energy Info (EERE)

    Transmission LLC Jump to: navigation, search Name: Lone Star Transmission LLC Place: Juno Beach, Florida Zip: 33408 Product: Wholly owned subsidiary of FPL Energy, developing...

  9. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  10. Silver Star Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Star Wind Farm Jump to: navigation, search Name Silver Star Wind Farm Facility Silver Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Prairie Star (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Star (07) Wind Farm Facility Prairie Star (07) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Prairie Star (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Star (08) Wind Farm Facility Prairie Star (08) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. LIMB-DARKENED RADIATION-DRIVEN WINDS FROM MASSIVE STARS

    SciTech Connect (OSTI)

    Cure, M.; Cidale, L.

    2012-10-01

    We calculated the influence of the limb-darkened finite-disk correction factor in the theory of radiation-driven winds from massive stars. We solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for all three known solutions, i.e., fast, {Omega}-slow, and {delta}-slow. We found that for the fast solution, the mass-loss rate is increased by a factor of {approx}10%, while the terminal velocity is reduced about 10%, when compared with the solution using a finite-disk correction factor from a uniformly bright star. For the other two slow solutions, the changes are almost negligible. Although we found that the limb darkening has no effects on the wind-momentum-luminosity relationship, it would affect the calculation of synthetic line profiles and the derivation of accurate wind parameters.

  15. Massive Stars in Colliding Wind Systems: the GLAST Perspective

    SciTech Connect (OSTI)

    Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-29

    Colliding winds of massive stars in binary systems are considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory. The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems.

  16. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    SciTech Connect (OSTI)

    Matt, Sean P.; Greene, Thomas P.; Pudritz, Ralph E. E-mail: thomas.p.greene@nasa.gov E-mail: pudritz@physics.mcmaster.ca

    2012-01-20

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  17. Winds of low-metallicity OB-type stars: HST-COS spectroscopy in IC 1613

    SciTech Connect (OSTI)

    Garcia, Miriam; Najarro, Francisco; Herrero, Artemio; Urbaneja, Miguel Alejandro

    2014-06-10

    We present the first quantitative ultraviolet spectroscopic analysis of resolved OB stars in IC 1613. Because of its alleged very low metallicity (?1/10 Z {sub ?}, from H II regions), studies in this Local Group dwarf galaxy could become a significant step forward from the Small Magellanic Cloud (SMC) toward the extremely metal-poor massive stars of the early universe. We present HST-COS data covering the ?1150-1800 wavelength range with resolution R ? 2500. We find that the targets do exhibit wind features, and these are similar in strength to SMC stars. Wind terminal velocities were derived from the observed P Cygni profiles with the Sobolev plus Exact Integration method. The v {sub ?}-Z relationship has been revisited. The terminal velocity of IC 1613 O stars is clearly lower than Milky Way counterparts, but there is no clear difference between IC 1613 and SMC or LMC analog stars. We find no clear segregation with host galaxy in the terminal velocities of B-supergiants, nor in the v {sub ?}/v {sub esc} ratio of the whole OB star sample in any of the studied galaxies. Finally, we present the first evidence that the Fe-abundance of IC 1613 OB stars is similar to the SMC, which is in agreement with previous results on red supergiants. With the confirmed ?1/10 solar oxygen abundances of B-supergiants, our results indicate that IC 1613's ?/Fe ratio is sub-solar.

  18. ON THE WEAK-WIND PROBLEM IN MASSIVE STARS: X-RAY SPECTRA REVEAL A MASSIVE HOT WIND IN {mu} COLUMBAE

    SciTech Connect (OSTI)

    Huenemoerder, David P.; Oskinova, Lidia M.; Todt, Helge; Ignace, Richard; Waldron, Wayne L.; Hamaguchi, Kenji

    2012-09-10

    {mu} Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the {sup w}eak-wind problem{sup -}identified from cool wind UV/optical spectra-is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are 'weak-wind' stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  19. Massive Stars in Colliding Wind Systems: the High-Energy Gamma-Ray Perspective

    SciTech Connect (OSTI)

    Reimer, Anita; Reimer, Olaf; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-23

    Colliding winds of massive stars in binary systems are viable candidates for non-thermal high-energy photon emission. Long since, coincidences between massive star systems/associations and {gamma}-ray sources have been noted. Now, with the sensitivity of the Fermi Gamma Ray Observatory and current very-high-energy (VHE) Cherenkov instruments, will it be possible to sensibly probe these systems as high-energy emitters.We will summarize the characteristics and broadband predictions of generic optically thin emission models in the observables accessible at GeV and TeV energies. The ability to constrain orbital parameters of massive star-star binaries through GeV-to-TeV observations is discussed. As an example we will present orbital parameter constraints for the nearby Wolf-Rayet binary system WR 147 based on recently published VHE flux limits. Combining our broadband emission model with the cataloged binaries systems and their individual parameters allows us to conclude on the population of massive star-star systems at high-energy {gamma}-rays.

  20. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations

    SciTech Connect (OSTI)

    Fischer, T.; Mezzacappa, Anthony; Thielemann, F.-K.; Liebendoerfer, M.; Whitehouse, S.

    2010-01-01

    Massive stars end their lives in explosions with kinetic energies on the order of 10{sup 51} erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 M{circle_dot} O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 k{sub B}/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi

  1. Analytical solutions for radiation-driven winds in massive stars. I. The fast regime

    SciTech Connect (OSTI)

    Araya, I.; Cur, M.; Cidale, L. S.

    2014-11-01

    Accurate mass-loss rate estimates are crucial keys in the study of wind properties of massive stars and for testing different evolutionary scenarios. From a theoretical point of view, this implies solving a complex set of differential equations in which the radiation field and the hydrodynamics are strongly coupled. The use of an analytical expression to represent the radiation force and the solution of the equation of motion has many advantages over numerical integrations. Therefore, in this work, we present an analytical expression as a solution of the equation of motion for radiation-driven winds in terms of the force multiplier parameters. This analytical expression is obtained by employing the line acceleration expression given by Villata and the methodology proposed by Mller and Vink. On the other hand, we find useful relationships to determine the parameters for the line acceleration given by Mller and Vink in terms of the force multiplier parameters.

  2. Shooting Star | Open Energy Information

    Open Energy Info (EERE)

    Shooting Star Jump to: navigation, search Name Shooting Star Facility Shooting Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon...

  3. STAR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STAR Basics The basics of STAR computing at PDSF. Read More » Local STAR Libraries These are the STAR libraries built locally at PDSF. Read More » STAR Test Environment The instructions describe how to set up the STAR environment independent of the production environment. Read More » Data Management STAR data transfer, HPSS usage, databases and job scheduler. Read More » File Systems STAR has space on 7 elizas... Read More » Shifter image of STAR SL13a WORK-IN PROGRESS A demonstrator STAR

  4. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    SciTech Connect (OSTI)

    St-Louis, N.

    2013-11-01

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenario in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.

  5. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    SciTech Connect (OSTI)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas.

  6. Line-driven winds revisited in the context of Be stars: ?-slow solutions with high k values

    SciTech Connect (OSTI)

    Silaj, J.; Jones, C. E.; Cur, M.

    2014-11-01

    The standard, or fast, solutions of m-CAK line-driven wind theory cannot account for slowly outflowing disks like the ones that surround Be stars. It has been previously shown that there exists another family of solutionsthe ?-slow solutionsthat is characterized by much slower terminal velocities and higher mass-loss rates. We have solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for this latter solution, starting from standard values of the line force parameters (?, k, and ?), and then systematically varying the values of ? and k. Terminal velocities and mass-loss rates that are in good agreement with those found in Be stars are obtained from the solutions with lower ? and higher k values. Furthermore, the equatorial densities of such solutions are comparable to those that are typically assumed in ad hoc models. For very high values of k, we find that the wind solutions exhibit a new kind of behavior.

  7. LARGE-SCALE PERIODIC VARIABILITY OF THE WIND OF THE WOLF-RAYET STAR WR 1 (HD 4004)

    SciTech Connect (OSTI)

    Chene, A.-N.

    2010-06-20

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9{sup +0.6}{sub -0.3} days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v{sub rot} = 6.5, 40, 70, and 275 km s{sup -1} for WR 1, WR 6, WR 134, and WR 137, respectively.

  8. MAGNETICALLY DRIVEN WINDS FROM DIFFERENTIALLY ROTATING NEUTRON STARS AND X-RAY AFTERGLOWS OF SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Siegel, Daniel M.; Ciolfi, Riccardo; Rezzolla, Luciano

    2014-04-10

    Besides being among the most promising sources of gravitational waves, merging neutron star binaries also represent a leading scenario to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations have revealed a large subclass of SGRBs with roughly constant luminosity in their X-ray afterglows, lasting 10-10{sup 4} s. These features are generally taken as evidence of a long-lived central engine powered by the magnetic spin-down of a uniformly rotating, magnetized object. We propose a different scenario in which the central engine powering the X-ray emission is a differentially rotating hypermassive neutron star (HMNS) that launches a quasi-isotropic and baryon-loaded wind driven by the magnetic field, which is built-up through differential rotation. Our model is supported by long-term, three-dimensional, general-relativistic, and ideal magnetohydrodynamic simulations, showing that this isotropic emission is a very robust feature. For a given HMNS, the presence of a collimated component depends sensitively on the initial magnetic field geometry, while the stationary electromagnetic luminosity depends only on the magnetic energy initially stored in the system. We show that our model is compatible with the observed timescales and luminosities and express the latter in terms of a simple scaling relation.

  9. LOOKING DEEP INTO THE CAT'S EYE: STRUCTURE AND ROTATION IN THE FAST WIND OF THE PN CENTRAL STAR OF NGC 6543

    SciTech Connect (OSTI)

    Prinja, R. K.; Massa, D. L.; Cantiello, M.

    2012-11-10

    We present HST/STIS time-series spectroscopy of the central star of the 'Cat's Eye' planetary nebula NGC 6543. Intensive monitoring of the UV lines over a 5.8 hr period reveals well-defined details of large-scale structure in the fast wind, which are exploited to provide new constraints on the rotation rate of the central star. We derive characteristics of the line profile variability that support a physical origin due to corotating interaction regions (CIRs) that are rooted at the stellar surface. The recurrence time of the observed spectral signatures of the CIRs is used to estimate the rotation period of the central star and, adopting a radius between 0.3 and 0.6 R{sub Sun} constrains the rotational velocity to the range 54 km s{sup -1} {<=} v{sub rot} {<=} 108 km s{sup -1}. The implications of these results for single star evolution are discussed based on models calculated here for low-mass stars. Our models predict a subsurface convective layer in NGC 6543 which we argue to be causally connected to the occurrence of structure in the fast wind.

  10. Green Star Alternative Energy | Open Energy Information

    Open Energy Info (EERE)

    Alternative Energy Jump to: navigation, search Name: Green Star Alternative Energy Place: San Diego, California Zip: 92108 Sector: Wind energy Product: A US-based wind energy...

  11. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals

  12. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print Wednesday, 28 February 2007 00:00 "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of

  13. Calloway Makes Sweet 16, Lone Oak Competes in DOE National Science Bowl |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Calloway Makes Sweet 16, Lone Oak Competes in DOE National Science Bowl Calloway Makes Sweet 16, Lone Oak Competes in DOE National Science Bowl April 29, 2014 - 2:43pm Addthis Calloway County High School's Mia Beth Morehead, coach, Landon Fike, Cody Bergman, Sam Morehead, Josh Betts, and Hudson Elliott from Murray, Kentucky, pose for a team photo during the 2014 National Science Bowl competition, Thursday, April 24, 2014, in Washington, DC. Calloway County High School's

  14. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides Print "Ferroelectricity," by analogy to ferromagnetism, is defined as the presence of spontaneous electrical polarization in a material, often arising from distortions in the material's crystal structure. In oxides of the metals lead and bismuth, such distortions were for many years attributed to the existence of "lone pair" electrons: pairs of chemically inert, nonbonding valence electrons in hybrid orbitals

  15. CONSTRAINTS ON POROSITY AND MASS LOSS IN O-STAR WINDS FROM THE MODELING OF X-RAY EMISSION LINE PROFILE SHAPES

    SciTech Connect (OSTI)

    Leutenegger, Maurice A.; Sundqvist, Jon O.; Owocki, Stanley P.

    2013-06-10

    We fit X-ray emission line profiles in high resolution XMM-Newton and Chandra grating spectra of the early O supergiant {zeta} Pup with models that include the effects of porosity in the stellar wind. We explore the effects of porosity due to both spherical and flattened clumps. We find that porosity models with flattened clumps oriented parallel to the photosphere provide poor fits to observed line shapes. However, porosity models with isotropic clumps can provide acceptable fits to observed line shapes, but only if the porosity effect is moderate. We quantify the degeneracy between porosity effects from isotropic clumps and the mass-loss rate inferred from the X-ray line shapes, and we show that only modest increases in the mass-loss rate ({approx}< 40%) are allowed if moderate porosity effects (h{sub {infinity}} {approx}< R{sub *}) are assumed to be important. Large porosity lengths, and thus strong porosity effects, are ruled out regardless of assumptions about clump shape. Thus, X-ray mass-loss rate estimates are relatively insensitive to both optically thin and optically thick clumping. This supports the use of X-ray spectroscopy as a mass-loss rate calibration for bright, nearby O stars.

  16. FORMATION OF SiC GRAINS IN PULSATION-ENHANCED DUST-DRIVEN WIND AROUND CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect (OSTI)

    Yasuda, Yuki; Kozasa, Takashi, E-mail: yuki@antares-a.sci.hokudai.ac.jp [Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2012-02-01

    We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T{sub v} is equal to the gas temperature as usual, and another is the non-LTE case in which T{sub v} is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a model with stellar parameters of mass M{sub *} = 1.0 M{sub Sun }, luminosity L{sub *} = 10{sup 4} L{sub Sun }, effective temperature T{sub eff} = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of {approx}10{sup -8} is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability {alpha}{sub s} = 0.1-1.0. The size distributions with the peak at {approx}0.2-0.3 {mu}m in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.

  17. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. WIND BRAKING OF MAGNETARS

    SciTech Connect (OSTI)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-05-10

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  19. Set and Save with Energy Star (Video) | Open Energy Information

    Open Energy Info (EERE)

    and Save with Energy Star (Video) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market...

  20. A-Power Energy | Open Energy Information

    Open Energy Info (EERE)

    Shenyang Power Group http:blogs.wsj.comenvironmentalcapital20091029lone-star-meet-red-star-chinas-15-billion-wind-power-deal-in-texas "About A-Power: A-Power Energy...

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  2. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. STAR METRICS

    Broader source: Energy.gov [DOE]

    Energy continues to define Phase II of the STAR METRICS program, a collaborative initiative to track Research and Development expenditures and their outcomes. Visit the STAR METRICS website for...

  4. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeStationary PowerEnergy Conversion EfficiencyWind EnergyOffshore Wind Offshore Wind Tara Camacho-Lopez 2016-0... March 2014, Barcelona, Spain, PO 225. Griffith, D.T., and ...

  5. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  6. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  7. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laboratory mission technologies and ... By admin| ... participating in the Wind Turbine Radar Interference ... Association AWEA WindPower 2015 event in Orlando, Florida. ...

  8. NEW X-RAY DETECTIONS OF WNL STARS

    SciTech Connect (OSTI)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  9. ENERGY STAR

    SciTech Connect (OSTI)

    2011-12-16

    ENERGY STAR is a voluntary labeling and recognition program that seeks to accelerate the adoption of clean and efficient domestic energy technologies.

  10. EVIDENCE FOR A WEAK WIND FROM THE YOUNG SUN

    SciTech Connect (OSTI)

    Wood, Brian E.; Mller, Hans-Reinhard; Redfield, Seth; Edelman, Eric

    2014-02-01

    The early history of the solar wind has remained largely a mystery due to the difficulty of detecting winds around young stars that can serve as analogs for the young Sun. Here we report on the detection of a wind from the 500Myr old solar analog ?{sup 1} UMa (G1.5V), using spectroscopic observations from the Hubble Space Telescope. We detect H I Ly? absorption from the interaction region between the stellar wind and interstellar medium, i.e., the stellar astrosphere. With the assistance of hydrodynamic models of the ?{sup 1} UMa astrosphere, we infer a wind only half as strong as the solar wind for this star. This suggests that the Sun and solar-like stars do not have particularly strong coronal winds in their youth.

  11. DB-6 Precedent Transactions.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aug-11 Wind Energy Transmission Texas CREZ Rate Recovery Debt Mitsubishi UFJ, Deutsche Bank 500,000,000 Nov-11 Lone Star CREZ Rate Recovery Debt Mitsubishi UFJ, Mizuho, Credit ...

  12. Wind Easements

    Broader source: Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  13. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  14. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  16. STARS no star on Kauai

    SciTech Connect (OSTI)

    Jones, M.

    1993-04-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem.

  17. Chameleon stars

    SciTech Connect (OSTI)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Singleton, Douglas

    2011-10-15

    We consider a gravitating spherically symmetric configuration consisting of a scalar field nonminimally coupled to ordinary matter in the form of a perfect fluid. For this system we find static, regular, asymptotically flat solutions for both relativistic and nonrelativistic cases. It is shown that the presence of the nonminimal interaction leads to substantial changes both in the radial matter distribution of the star and in the star's total mass. A simple stability test indicates that, for the choice of parameters used in the paper, the solutions are unstable.

  18. Wind Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Wind Turbine Manufacturing Transforms with Three-Dimensional Printing Wind Turbine Manufacturing Transforms with Three-Dimensional Printing May 19, 2016 - 12:57pm Addthis From medical devices to airplane components, three-dimensional (3-D) printing (also called additive manufacturing) is transforming the manufacturing industry. Now, research that supports the Energy Department's Atmosphere to Electrons (A2e) initiative is applying 3-D-printing processes to create wind

  19. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Wind Energy Wind Energy Tara Camacho-Lopez 2016-08-30T20:56:10+00:00 Increasing the viability of wind energy technology by applying research to improve wind turbine performance and reliability http://windworkshops.sandia.gov/ Rotor Innovation Advancing rotor technology such that they capture more energy, more reliably, with relatively lower system loads-all at a lower end cost. SWiFT Facility & Testing Improving the performance and reducing the

  20. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & ...

  1. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  2. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  3. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  5. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  6. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  7. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  8. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  9. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  10. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  11. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience ... Testing Applying 35 years of wind turbine testing expertise, NREL has developed ...

  12. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  13. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  14. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  15. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  16. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  18. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  19. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  20. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  1. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  2. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  3. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  4. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  5. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy The DTU SpinnerLidar installed in the nacelle of the SWiFT facility A1 turbine Permalink Gallery First Wake Data Captured During Wake Steering Experiment at the SWiFT Facility News, Renewable Energy, SWIFT, Wind Energy, Wind News First Wake Data Captured During Wake Steering Experiment at the SWiFT Facility Researchers at Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) have met a major project milestone as part of the Department of Energy Atmosphere

  8. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  9. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    SciTech Connect (OSTI)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Havel, Mathieu; Howell, Steve B.; Quintana, Elisa; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Lucas, Phillip; Fischer, Debra; Ciardi, David R.

    2014-11-10

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to ? Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ?}.

  10. WIND VARIABILITY IN BZ CAMELOPARDALIS

    SciTech Connect (OSTI)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W. E-mail: skafka@dtm.ciw.edu

    2013-02-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the H{alpha} line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted H{alpha} emission components in their BZ Cam spectra. We have attributed these emission components in H{alpha} to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I {lambda}5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind

  11. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  12. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  17. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  18. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  19. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  20. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  1. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  2. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  3. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  4. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  5. Maintaining STAR - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started Maintaining STAR VPP CampaignPosters VPP Tools VPP Presentations VPP Awareness VPP Communications VPP Conferences Maintaining STAR Email Email Page | Print Print...

  6. Energy Star Appliances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updates and News ENERGY STAR appliances have been a successful program offer for many BPA utility customers and are expected to continue. However, as ENERGY STAR specifications...

  7. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  9. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems ...

  10. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  12. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  13. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay ...

  14. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced

  15. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  16. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  17. On the diversity of magnetic interactions in close-in star-planet systems

    SciTech Connect (OSTI)

    Strugarek, A.; Brun, A. S.; Réville, V.

    2014-11-01

    Magnetic interactions between close-in planets and their host star can play an important role in the secular orbital evolution of the planets, as well as the rotational evolution of their host. As long as the planet orbits inside the Alfvén surface of the stellar wind, the magnetic interaction between the star and the planet can modify the wind properties and also lead to direct angular momentum transfers between the two. We model these star-planet interactions using compressible magnetohydrodynamic (MHD) simulations, and quantify the angular momentum transfers between the star, the planet, and the stellar wind. We study the cases of magnetized and non-magnetized planets and vary the orbital radius inside the Alfvén surface of the stellar wind. Based on a grid of numerical simulations, we propose general scaling laws for the modification of the stellar wind torque, for the torque between the star and the planet, and for the planet migration associated with the star-planet magnetic interactions. We show that when the coronal magnetic field is large enough and the star is rotating sufficiently slowly, the effect of the magnetic star-planet interaction is comparable to tidal effects and can lead to a rapid orbital decay.

  18. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  1. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  2. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  3. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  4. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  7. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  8. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  9. WINDExchange: Potential Wind Capacity

    Wind Powering America (EERE)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. For more detailed information regarding the assumptions and calculations behind the wind potential capacity maps, see the Energy Department's Enabling Wind Power Nationwide report. Enlarge image This map shows the wind

  10. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  11. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  12. GL Wind | Open Energy Information

    Open Energy Info (EERE)

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  13. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  14. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  15. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  16. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  17. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  18. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  19. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  20. STAR Test Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STAR Test Environment STAR Test Environment These instructions describe how to set up the STAR environment independent of the production environment in order to test different installations in $OPTSTAR and $GROUP_DIR. If you want to modify those installations you will need access to the starofl account. Bypass STAR envionment login Edit your ~/.pdsf_setup file changing the STAR_LINUX_SETUP to "use_none" and start a new session. You should not see all the STAR environmental variables

  1. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems June 21, 2016 1:00PM to 2:00PM EDT Hosted by ...

  2. National Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  3. Coriolis Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  4. Horn Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  5. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  6. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  7. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  8. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  9. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  10. ENERGY STAR | Open Energy Information

    Open Energy Info (EERE)

    ENERGY STAR Jump to: navigation, search Logo: ENERGY STAR Name: ENERGY STAR Year Founded: 1992 Website: www.energystar.govindex.cfm?c References: About ENERGY STAR1 Contents 1...

  11. An Exploration of Wind Energy & Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  12. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  13. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  14. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  15. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  16. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See...

  17. Solar and Wind Easements

    Broader source: Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  18. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  19. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  20. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry manufacturers,

  1. Distributed Wind Ordinances: Slides

    Wind Powering America (EERE)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  2. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  3. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind research and development projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our

  4. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  5. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Office of Environmental Management (EM)

    Competition must design a prototype wind turbine that fits inside the wind tunnel created ... The wire mesh screen prevents turbine pieces from getting sucked into the fan unit. Basic ...

  6. Cherokee Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy Program October 26, 2010 KA W PA W N EE TO NK AW A PO NC A OT OE -M IS S OU RI CH E RO KE E Acr es: 2,633 .348 CH E RO KE E Acr es: 1,641 .687 CHEROKEE NATION Kay County Chilocco Property DATA SOU RC ES: US Census Bureau (T iger Files ) D OQQ's , USGS D RG's, USGS Cherokee Nation Realty D epartment C herokee N ation GeoD ata C enter Date: 12/19/01 e:\project\land\c hilocc o N E W S Tribal Land Chilocco

  7. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  8. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that...

  9. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  10. Alaska Wind Update

    Energy Savers [EERE]

    Alaska Wind Update BIA Providers Conference Dec. 2, 2015 Unalakleet wind farm Energy Efficiency First Make homes, workplaces and communities energy efficient thru ...

  11. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  12. Sandia Energy Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  13. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  14. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  15. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  16. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative ...

  17. Winnebago Tribe - Wind Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winnebago Tribe of Nebraska Wind Energy Feasibility Project Update November 18, 2008 ... Nebraska 2008 All Rights Reserved DOE Wind Project: Purpose * To initiate a study to ...

  18. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  19. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  20. DOE Wind Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Testing of residential wind turbines * Technology deployment partnerships with industry * Educational and market outreach on the benefits of wind technology on rural development. ...

  1. Workforce Development Wind Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report covers the Wind and Water Power Technologies Office’s workforce development wind projects from fiscal years 2008 to 2014.

  2. Wind Energy Technology Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

  3. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  4. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  5. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  6. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  7. ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in...

    Office of Scientific and Technical Information (OSTI)

    915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode Title: ARM: 915-MHz Radar Wind Profiler: Wind Moments, operating in low power mode 915-MHz Radar Wind ...

  8. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect (OSTI)

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  9. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era ... Back to top Chapter 4: The Wind Vision Roadmap The Wind Vision includes a detailed roadmap ...

  10. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Wind Energy History of Wind Energy

  11. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Wind Energy History of Wind Energy

  12. Energy from the wind

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This document provides a brief description of the use of wind power. Windmills from the 18th century are described. Modern wind turbines and wind turbine arrays are discussed. Present and future applications of wind power in the US are explained. (JDH)

  13. Wind Energy Benefits: Slides

    Wind Powering America (EERE)

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  14. Your wind driven generator

    SciTech Connect (OSTI)

    Wolff, B.

    1984-01-01

    Wind energy pioneer Benjamin Lee Wolff offers practical guidance on all aspects of setting up and operating a wind machine. Potential builders will learn how to: determine if wind energy is suitable for a specific application; choose an appropriate machine; assess the financial costs and benefits of wind energy; obtain necessary permits; sell power to local utilities; and interpret a generator's specifications. Coverage includes legislation, regulations, siting, and operation. While describing wind energy characteristics, Wolff explores the relationships among wind speed, rotor diameter, and electrical power capacity. He shows how the power of wind energy can be tapped at the lowest cost.

  15. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect (OSTI)

    Naz, Yal; Petit, Vronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ?60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  16. WINDExchange: Collegiate Wind Competition

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project. The Competition provides students

  17. WINDExchange: Wind Energy Ordinances

    Wind Powering America (EERE)

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  18. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  19. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  20. Electron lone pair distortion facilitated metal-insulator transition in ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    SciTech Connect (OSTI)

    Wangoh, L.; Quackenbush, N. F.; Marley, P. M.; Banerjee, S.; Sallis, S.; Fischer, D. A.; Woicik, J. C.; Piper, L. F. J.

    2014-05-05

    The electronic structure of ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized in-gap state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the in-gap state. Moreover, we reveal that this state is a hybridized Pb 6sO 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  1. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  2. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY STAR and Green Building Rating Systems ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems October 13, 2015 2:00PM to 3:00PM EDT Online Hosted by the U.S....

  3. National Wind Assessments formerly Romuld Wind Consulting | Open...

    Open Energy Info (EERE)

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  4. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  5. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller Ground Testing Home...

  6. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    SciTech Connect (OSTI)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  7. Chaninik Wind Group Wind Heat Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chaninik Wind Group Wind Heat Smart Grid Our Presentation * William Igkurak, President Chaninik Wind Group * the harness renewables to lower energy costs, * create economic opportunities * build human capacity * Dennis Meiners * Principal Intelligent Energy Systems, Anchorage Ak. * How it all works Program Highlights ²Award Tribal Energy funding 2009, Village Smart Grid ²Received funds November 2010 ²Project to be complete June 2011 ²Theme: "communities working together we can become

  8. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  9. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    SciTech Connect (OSTI)

    Svirski, Gilad; Nakar, Ehud

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  10. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  11. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  12. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  13. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  14. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Nevada/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Iowa/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. Small Wind Guidebook | Open Energy Information

    Open Energy Info (EERE)

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Maine/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Oregon/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  5. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Springview II Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  8. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  13. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  16. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  8. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  14. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  18. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  20. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  2. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  3. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  4. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  5. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  6. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  7. Vantage Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Bayonne Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  9. Gary Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  10. Havoco Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Havoco Wind Energy LLC Jump to: navigation, search Name: Havoco Wind Energy LLC Place: Dallas, Texas Zip: 75206 Sector: Wind energy Product: Wind developer of Altamont Pass wind...

  11. Oliver Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Oliver Wind Energy Center Facility Oliver Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Don Sneve Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Condon Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Turkey Track Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  19. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  20. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  1. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Adams Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Sigel Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. Minden Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Criterion Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Golden Valley Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  12. Stetson Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  13. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Beebe Community Wind | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  15. Woodstock Municipal Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  16. Winona County Wind | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  17. Story City Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  18. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  19. AWEA Wind Energy Fall Symposium

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  20. Modular Wind | Open Energy Information

    Open Energy Info (EERE)

    Signal Hill, California Sector: Wind energy Product: California-based wind turbine blade designer in stealth mode. References: Modular Wind1 This article is a stub. You can...

  1. Wind 7 | Open Energy Information

    Open Energy Info (EERE)

    Name: Wind 7 Place: Eckernfoerde, Schleswig-Holstein, Germany Zip: 24340 Sector: Wind energy Product: Eckernfoerde-based company that develops & operates wind power projects in...

  2. SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING

    SciTech Connect (OSTI)

    Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni; De la Reza, Ramiro E-mail: thomas.p.greene@nasa.go E-mail: delareza@on.b

    2010-05-10

    We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, we neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.

  3. See the Wind

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goal of this activity is to help students see the difference in the speed and smoothness of the wind at different altitudes above the earth. This is important for wind engineers as they seek to place their wind turbines in the fastest and smoothest winds possible. It is also a major reason that wind turbines are getting larger and higher in the sky, and is why we are starting to see wind turbines in the plains and out in the ocean near the coast. Teacher background and assessment sheets are provided.

  4. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  5. Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Events Wind Events Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. Working in Offshore Wind: Webinar and Panel Discussion September 9, 2016 9:30AM to 11:30AM EDT Energy Department's Wind Industry Update: A WINDExchange Webinar September 21, 2016 3:00PM to 4:00PM EDT AWEA Wind Resource & Project Energy Assessment Conference September 27, 2016 8:00AM CDT to September 28, 2016 5:00PM CDT Energy Department's

  6. Wind Energy Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind Energy Annual Market

  7. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  8. Carbon Stars | Open Energy Information

    Open Energy Info (EERE)

    Stars Jump to: navigation, search Name: Carbon Stars Place: Netherlands Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References:...

  9. Star Biomass | Open Energy Information

    Open Energy Info (EERE)

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  10. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Final Environmental ...

  11. Ion-driven instabilities in the solar wind: Wind observations...

    Office of Scientific and Technical Information (OSTI)

    Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005 Citation Details In-Document Search Title: Ion-driven instabilities in the solar wind: Wind ...

  12. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am ...

  13. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  14. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  15. Community Wind Handbook/Conduct a Wind Resource Estimate | Open...

    Open Energy Info (EERE)

    "Windustry. Wind Resource Assessment" "AWS Scientific for the National Renewable Energy Laboratory. Wind Resource Assessment Handbook" Retrieved from "http:...

  16. Collegiate Wind Competition Wind Tunnel Specifications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of Energy Collegiate Wind Competition must design a prototype wind turbine that fits inside the wind tunnel created to test the performance of each team's project. The tunnel has a "draw down" configuration, introduced by the fan, that sucks air through the box. There are two debris filters, one at

  17. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    SciTech Connect (OSTI)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M. E-mail: rcoziol@astro.ugto.mx E-mail: daniel@astro.ugto.mx

    2012-08-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z {<=} 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  18. See the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Engineers are also concerned about wind shear and turbulence as this can cause a great deal of stress on their gearbox and bearings in their turbines. Characterizing Shear and Wind ...

  19. WINDExchange: Learn About Wind

    Wind Powering America (EERE)

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  20. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  1. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  2. Articles about Offshore Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unprecedented information on offshore wind patterns, making it possible to harness wind power in entirely new locations.

    Mon, 07 Dec 2015 18:52:00 +0000...

  3. Renaissance for wind power

    SciTech Connect (OSTI)

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  4. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  5. Distributed Wind Energy Workshop

    Broader source: Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  6. Wind Career Map

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This wind career map explores an expanding universe of wind energy occupations, describing diverse jobs across the industry, charting possible progression between them, and identifying the high-quality training necessary to do them well.

  7. NREL: Wind Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The NREL wind research program develops publications about its R&D projects, accomplishments, and goals in wind energy technologies. Here you will find links to some of our most popular and recent publications from technical papers to fact sheets. The National Wind Technology Center's (NWTC) quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL.

  8. WIND ENERGY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIND ENERGY WIND ENERGY WIND ENERGY POSTER (3.22 MB) More Documents & Publications WIND ENERGY Download LPO's Illustrated Poster Series LPO Financial Performance Report DOE-LPO_Email-Update_001_Through_11

  9. Wind Energy Markets, 2. edition

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

  10. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  11. Wind power soars

    SciTech Connect (OSTI)

    Flavin, C.

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  12. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  13. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  14. WINDExchange: Wind Maps and Data

    Wind Powering America (EERE)

    Wind Maps and Data WINDExchange provides wind maps and anemometer data to help homeowners, communities, states, and regions learn more about their available wind resources and plan wind energy projects. WINDExchange also maintains more than a decade of installed capacity maps showing how wind energy has progressed across the United States over time as advances in wind technology and materials make wind resources more available. A map illustration of the United States showing the various wind

  15. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  16. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Vision Wind Vision Wind Vision About In support of the President's strategy to diversify our nation's clean energy mix, an elite team of researchers, academics, scientists, engineers, and wind industry experts revisited the findings of the Energy Department's 2008 20% Wind by 2030 report and built upon its findings to conceptualize a new vision for wind energy through 2050. The Wind Vision Report takes America's current installed wind power capacity across all

  17. NREL: Wind Research - Winds of Change Blowing for Wind Farm Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winds of Change Blowing for Wind Farm Research with NREL's SOWFA Tool Simulation from SOWFA that shows a number of wind turbines and how the wind is flowing between them, with the ...

  18. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  19. Wind Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  20. STAR-Running on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STAR-Running on Carver STAR-Running on Carver STAR software has been copied from the usual installation on /common on PDSF to /project/projectdirs/star/common. At this point the installation is simply intended for testing and not all libraries are in place - for now SL10k, SL11b and SL11c are available with root/5.22.00 and a copy of $OPTSTAR and cernlib. An example of how to setup the STAR software on Carver is in /project/projectdirs/star/starenv. To use it simply source star_setup. This

  1. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  2. ENERGY STAR Product Rebates

    Broader source: Energy.gov [DOE]

    When mail-in rebates are active, as a general rule, all appliances must be ENERGY STAR rated; however, additional requirements may apply to different types of appliances. Rebate requests must...

  3. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  4. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  5. Kansas Wind Energy Consortium

    SciTech Connect (OSTI)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  6. Cold Hybrid Star Properties

    SciTech Connect (OSTI)

    Moshfegh, H. R.; Darehmoradi, M.; Mojarrad, M. Ghazanfari

    2011-10-28

    Properties of neutron stars with quark core are investigated. The equation of state of hadronic matter is calculated using Myers and Swiatecki two nucleon interaction within Thomas-Fermi semiclassical approximation (TF). For quark matter we employ The MIT bag model with constant and density dependent bag parameter. With use of the obtained equation of states we have calculated mass-radius relation of such hybrid stars.

  7. On the onset of secondary stellar generations in giant star-forming regions and massive star clusters

    SciTech Connect (OSTI)

    Palou, J.; Wnsch, R.; Tenorio-Tagle, G.

    2014-09-10

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ? 10{sup 4} K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ? 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  8. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  9. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  10. THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS

    SciTech Connect (OSTI)

    Matt, Sean P.; Baraffe, Isabelle; Chabrier, Gilles; Brun, A. Sacha

    2015-02-01

    To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the ''upper envelope'' of the distribution, suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape of the ''lower envelope'', corresponding to the location where stars transition between magnetically saturated and unsaturated regimes.

  11. WINDExchange: Where Is Wind Power?

    Wind Powering America (EERE)

    Where Is Wind Power? WINDExchange offers maps to help you visualize the wind resource at a local level and to show how much wind power has been installed in the United States. How much wind power is on my land? Go to the wind resource maps. Go to the wind resource maps. Go to the wind resource maps. If you want to know how much wind power is in a particular area, these wind resource maps can give you a visual indication of the average wind speeds to a local level such as a neighborhood. These

  12. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates the Department of Energy's 2008 20% Wind Energy by 2030 through analysis of scenarios of wind power supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050. With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with

  13. Passive load control for large wind turbines.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.

    2010-05-01

    Wind energy research activities at Sandia National Laboratories focus on developing large rotors that are lighter and more cost-effective than those designed with current technologies. Because gravity scales as the cube of the blade length, gravity loads become a constraining design factor for very large blades. Efforts to passively reduce turbulent loading has shown significant potential to reduce blade weight and capture more energy. Research in passive load reduction for wind turbines began at Sandia in the late 1990's and has moved from analytical studies to blade applications. This paper discusses the test results of two Sandia prototype research blades that incorporate load reduction techniques. The TX-100 is a 9-m long blade that induces bend-twist coupling with the use of off-axis carbon in the skin. The STAR blade is a 27-m long blade that induces bend-twist coupling by sweeping the blade in a geometric fashion.

  14. Wind Vision: A New Era for Wind Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Wind Vision: A New Era for Wind Power in the United States Wind Vision Objectives The U.S. Department of Energy's (DOE's) Wind and Water Power Technologies Office has conducted a comprehensive analysis to evaluate future pathways for the wind industry. Through a broad-based collaborative effort, the Wind Vision analysis includes four principal objectives: 1. Documentation of the current state of wind power in the United States and identification of key technological and societal

  15. DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - 3:26pm Addthis The U.S. Department of Energy (DOE) recently announced the first step toward issuing a $150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The project could be the first

  16. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. (1.35 MB) More Documents & Publications

  17. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind March 24-27, 2014 Wind Energy Technologies PR-5000-62152 2 Contents Distributed Wind Annual Market Report on Wind Technologies in Distributed Applications & Distributed Wind Policy Comparison Tool-Alice Orrell, Pacific Northwest National Laboratory Government, Industry, International Partnerships-Karin Sinclair, National Renewable Energy Laboratory Certifying Distributed Wind Turbines-Brent Summerville, Small Wind Certification Council Loads Analysis and Standards

  18. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  19. Small Wind Guidebook/Is Wind Energy Practical for Me | Open Energy...

    Open Energy Info (EERE)

    Wind GuidebookIs Wind Energy Practical for Me < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook...

  20. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  1. Blue Star Energy Services | Open Energy Information

    Open Energy Info (EERE)

    Blue Star Energy Services (Redirected from BlueStar) Jump to: navigation, search Name: Blue Star Energy Services Place: Illinois Phone Number: 866-258-3782 Website:...

  2. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    Star Energy Jump to: navigation, search Name: Wave Star Energy Place: Denmark Zip: DK-2920 Product: Denmark-based private wave device developer. References: Wave Star Energy1...

  3. Star Power | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Star Power Star Power The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released "Star Power," a new informational video that uses dramatic and beautiful...

  4. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. August 29, 2016 NREL Research Puts the Wind at an Industry's Back NREL collaboration with industry partners brings wind energy that is more reliable, more affordable, and better for the environment. July 22, 2016 NREL's Kurtz, Tegen Honored for Clean Energy Leadership The U.S. Clean Energy Education & Empowerment (C3E) program has honored Sarah Kurtz and Suzanne Tegen

  5. WINDExchange: Buying Wind Power

    Wind Powering America (EERE)

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  6. Wind Energy Impacts: Slides

    Wind Powering America (EERE)

    help to alleviate common misconceptions about wind energy. Wind Energy Impacts Photo from Invenergy LLC, NREL 14371 Wildlife impacts vary by location,* and new developments have helped to reduce these effects. Photo from LuRay Parker, NREL 17429 Wind Energy Impacts Pre- and post-development studies, educated siting, and curtailment during high-activity periods have decreased wildlife impacts.** Additional strategies are being researched to better understand and further decrease impacts.

  7. ARM - Measurement - Horizontal wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  8. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  9. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  10. Enabling Wind Power Nationwide

    SciTech Connect (OSTI)

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  11. Energy in the Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced

  12. Village WInd Technology Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In traveling, I have observed, that in those parts where the inhabitants can have neither ... Walls 17% Floor 32% Wind Heat for Homes Benefits: * Lower heating costs * Scale * ...

  13. AVEC's Village Wind Projects

    Energy Savers [EERE]

    by 10% - Plant costs, depreciation, ... over 100 wind projects in Alaska in the 1980s Nearly all failed Lack of maintenance and ... construction and operation of the new ...

  14. The Chaninik Wind Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Chaninik Wind Group Villages Kongiganak pop.359 Kwigillingok pop. 388 Kipnuk pop.644 Tuntutuliak pop. 370 On average, 24% of families are below the poverty line. ...

  15. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  16. Sandia Energy Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ss-voucher-pilot-opensfeed 0 Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successf...

  17. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  18. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  19. Talkin Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  20. Wind Software Downloads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal ... Natural Gas Supercritical CO2-Brayton Cycle Geothermal Safety, Security & ...

  1. Overview of wind technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  3. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  4. Commonwealth Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Program, the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, and development grants and loans for...

  5. wind-turbine composites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  6. Cherokee Chilocco Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    agreements * Contracts (leases, budgets, ownership) * Need to present again to Council * Waiting for PTC extension * Senate Bill 1440 * Blocking wind farm development East of I-35

  7. Luminous and variable stars in M31 and M33. II. Luminous blue variables, candidate LBVs, Fe II emission line stars, and other supergiants

    SciTech Connect (OSTI)

    Humphreys, Roberta M.; Davidson, Kris; Weis, Kerstin; Bomans, D. J.; Burggraf, Birgitta E-mail: kweis@astro.rub.de

    2014-07-20

    An increasing number of non-terminal eruptions are being found in the numerous surveys for optical transients. Very little is known about these giant eruptions, their progenitors and their evolutionary state. A greatly improved census of the likely progenitor class, including the most luminous evolved stars, the luminous blue variables (LBVs), and the warm and cool hypergiants is now needed for a complete picture of the final pre-supernova stages of very massive stars. We have begun a survey of the evolved and unstable luminous star populations in several nearby resolved galaxies. In this second paper on M31 and M33, we review the spectral characteristics, spectral energy distributions, circumstellar ejecta, and evidence for mass loss for 82 luminous and variable stars. We show that many of these stars have warm circumstellar dust including several of the Fe II emission line stars, but conclude that the confirmed LBVs in M31 and M33 do not. The confirmed LBVs have relatively low wind speeds even in their hot, quiescent or visual minimum state compared to the B-type supergiants and Of/WN stars which they spectroscopically resemble. The nature of the Fe II emission line stars and their relation to the LBV state remains uncertain, but some have properties in common with the warm hypergiants and the sgB[e] stars. Several individual stars are discussed in detail. We identify three possible candidate LBVs and three additional post-red supergiant candidates. We suggest that M33-013406.63 (UIT301,B416) is not an LBV/S Dor variable, but is a very luminous late O-type supergiant and one of the most luminous stars or pair of stars in M33.

  8. Inox Wind Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Ltd Jump to: navigation, search Name: Inox Wind Ltd Place: Noida, Uttar Pradesh, India Sector: Wind energy Product: Uttar Pradesh-based wind power project developer. Inox...

  9. Happy Jack Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Happy Jack Wind Farm Jump to: navigation, search Name Happy Jack Wind Farm Facility Happy Jack Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  10. Georgia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Minnesota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Delaware/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Maryland/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Maryland Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Indiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Indiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Nebraska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Nebraska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  16. Oklahoma/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. Connecticut/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Connecticut Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. Virginia/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Virginia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. Missouri/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Missouri Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Louisiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Wyoming/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Tennessee/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Tennessee Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Pennsylvania/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> Pennsylvania Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. Washington/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Washington Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Colorado/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Colorado Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Arkansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Arkansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. California/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Massachusetts/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> Massachusetts Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  9. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  10. Mississippi/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Michigan/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Michigan Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  12. Florida/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Florida Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  13. Vermont/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Vermont Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  14. Kentucky/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  16. Cleveland Bay Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Facility Status Proposed Developer Lake Erie Energy Development Corporation Great Lakes Ohio Wind Great Lakes Energy Wind LLC Freshwater Wind LLC Cavallo Great...

  17. Great Plains Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Noble Bellmont Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Noble Bellmont Wind Farm Jump to: navigation, search Name Noble Bellmont Wind Farm Facility Noble Bellmont Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  19. Ashtabula II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Ashtabula II Wind Farm Facility Ashtabula II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Marengo II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Marengo II Wind Farm Facility Marengo II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Klondike II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Klondike II Wind Farm Jump to: navigation, search Name Klondike II Wind Farm Facility Klondike II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Harvest Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Harvest Wind Farm II Facility Harvest Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  3. Kotzebue Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Kotzebue Wind Project II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Tatanka Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Tatanka Wind Project II Facility Tatanka Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Crownbutte Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Crownbutte Wind Power LLC Jump to: navigation, search Name: Crownbutte Wind Power LLC Place: Mandan, North Dakota Zip: 58554 Sector: Wind energy Product: North Dakota wind power...

  6. Northwestern Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name: Northwestern Wind Power Place: Wasco, Oregon Zip: OR 97065 Sector: Wind energy Product: US-based wind project developer. Coordinates:...

  7. Daqing Longjiang Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Longjiang Wind Power Jump to: navigation, search Name: Daqing Longjiang Wind Power Place: Daqing, Heilongjiang Province, China Zip: 163316 Sector: Wind energy Product: Local wind...

  8. Laizhou Luneng Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Laizhou Luneng Wind Power Jump to: navigation, search Name: Laizhou Luneng Wind Power Place: Laizhou, Shandong Province, China Sector: Wind energy Product: A wind project...

  9. Clear Wind Renewable Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Renewable Power Jump to: navigation, search Name: Clear Wind Renewable Power Place: Minneapolis, Minnesota Zip: 55416 Sector: Wind energy Product: Clear Wind focuses its...

  10. Padoma Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Padoma Wind Power LLC Jump to: navigation, search Name: Padoma Wind Power LLC Place: La Jolla, California Zip: 92037 Sector: Wind energy Product: A wind energy consulting and...

  11. Evergreen Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Power LLC Jump to: navigation, search Name: Evergreen Wind Power LLC Place: Bangor, Maine Zip: 4401 Sector: Wind energy Product: Formed to develop wind projects in Maine....

  12. Hardscrabble Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  13. Heilongjiang Lishu Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

  14. TS Wind Power Developers | Open Energy Information

    Open Energy Info (EERE)

    TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

  15. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  17. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  19. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles about Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. October 1,...

  1. American Wind Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: American Wind Capital Place: Essex, Connecticut Zip: 64260 Sector: Wind energy Product: Connecticut-based American Wind Capital buys wind...

  2. Conception Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital GroupJohn Deere Capital Developer Wind Capital GroupJohn Deere Capital Energy...

  3. Silver Sage Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sage Wind Farm Jump to: navigation, search Name Silver Sage Wind Farm Facility Silver Sage Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Howden Wind Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

  5. Whirlwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Whirlwind Wind Farm Jump to: navigation, search Name Whirlwind Wind Farm Facility Whirlwind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Federated Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Federated Wind Farm Jump to: navigation, search Name Federated Wind Farm Facility Federated Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  7. Hilltop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hilltop Wind Farm Jump to: navigation, search Name Hilltop Wind Farm Facility Hilltop Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Calverton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Calverton Wind Farm Jump to: navigation, search Name Calverton Wind Farm Facility Calverton Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Long...

  9. Bitworks Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Bitworks Wind Farm Jump to: navigation, search Name Bitworks Wind Farm Facility Bitworks Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bitworks...

  10. Ridgewind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ridgewind Wind Farm Jump to: navigation, search Name Ridgewind Wind Farm Facility Ridgewind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Beaulieu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Beaulieu Wind Farm Jump to: navigation, search Name Beaulieu Wind Farm Facility Beaulieu Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Private...

  12. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crofton Hills Wind Farm Jump to: navigation, search Name Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  13. Cottonwood Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cottonwood Wind Farm Jump to: navigation, search Name Cottonwood Wind Farm Facility Cottonwood Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. SMUD Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    SMUD Wind Farm Jump to: navigation, search Name SMUD Wind Farm Facility SMUD Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  15. Glenrock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Glenrock Wind Farm Jump to: navigation, search Name Glenrock Wind Farm Facility Glenrock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  16. Anacacho Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Anacacho Wind Farm Jump to: navigation, search Name Anacacho Wind Farm Facility Anacacho Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Savoonga Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Savoonga Wind Farm Jump to: navigation, search Name Savoonga Wind Farm Facility Savoonga Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Crookston Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crookston Wind Farm Jump to: navigation, search Name Crookston Wind Farm Facility Crookston Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner...

  19. Summerside Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Summerside Wind Farm Jump to: navigation, search Name Summerside Wind Farm Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Summerside...

  20. Canova Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canova Wind Farm Jump to: navigation, search Name Canova Wind Farm Facility Canova Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Howard...

  1. Agriwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Agriwind Wind Farm Jump to: navigation, search Name Agriwind Wind Farm Facility Agriwind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  2. Nome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nome Wind Farm Jump to: navigation, search Name Nome Wind Farm Facility Nome Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bering Straits...

  3. Affinity Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Affinity Wind Farm Jump to: navigation, search Name Affinity Wind Farm Facility Affinity Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction...

  4. Midwest Wind Finance LLC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Midwest Wind Finance LLC Place: Minnesota Sector: Wind energy Product: Wind project equity finance provider. References: Midwest Wind Finance...

  5. Tholen & Petersen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tholen & Petersen Wind Farm Jump to: navigation, search Name Tholen & Petersen Wind Farm Facility Tholen & Petersen Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Highland Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Highland Wind Project Facility Highland Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  7. Chamberlain Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Chamberlain Wind Project Facility Chamberlain Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Idaho Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Jump to: navigation, search Name: Idaho Wind Energy Place: Tetonia, Idaho Zip: 83452 Sector: Geothermal energy, Wind energy Product: A geothermal and wind project...

  9. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  10. Texas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    TexasWind Resources < Texas Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >> Small...

  11. Illinois Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Jump to: navigation, search Name: Illinois Wind Energy Place: Chicago, Illinois Zip: IL 60606 Sector: Wind energy Product: Developer of wind power generating facilities...

  12. Weatherford Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Weatherford Wind Energy Center Jump to: navigation, search Name Weatherford Wind Energy Center Facility Weatherford Wind Energy Center Sector Wind energy Facility Type Commercial...

  13. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  14. Han Wind Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Corporation Jump to: navigation, search Name: Han Wind Energy Corporation Place: Beijing, Beijing Municipality, China Zip: 100027 Sector: Wind energy Product: Han Wind...

  15. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Mountaineer Wind Energy Center Jump to: navigation, search Name Mountaineer Wind Energy Center Facility Mountaineer Wind Energy Center Sector Wind energy Facility Type Commercial...

  16. Highmore Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale...

  17. German Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    German Wind Energy Association Place: Osnabrck, Germany Zip: 49074 Sector: Wind energy Product: Assocation for the promotion of wind energy in Germany. References: German Wind...

  18. Stateline Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  20. CAES Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name CAES Wind Project Facility CAES Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.522243, -112.053963...

  1. Prairie Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy LLC Jump to: navigation, search Name: Prairie Wind Energy LLC Place: Lamar, Colorado Zip: 81052 Sector: Wind energy Product: Developer and owner of Prairie wind farm....

  2. Geronimo Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Geronimo Wind Energy Jump to: navigation, search Name: Geronimo Wind Energy Place: Edina, Minnesota Zip: 55436 Sector: Wind energy Product: Based in Minnesota, this wind energy...

  3. Utah/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    UtahWind Resources < Utah Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook OpenEI Home >> Wind >>...

  4. Navajo Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    Navajo Wind Energy Jump to: navigation, search Name: Navajo Wind Energy Place: Atlanta, Georgia Zip: 30318 Sector: Wind energy Product: Atalanta-based but China-focused wind...

  5. Freedom Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy LLC Jump to: navigation, search Name: Freedom Wind Energy LLC Place: Tampa, Florida Zip: 33623 Sector: Wind energy Product: Develops and manages wind farms in north...

  6. Sherbino I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative EnergyPadoma Wind Power Developer BP Alternative EnergyPadoma Wind Power...

  7. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Pioneer Asia Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Asia Wind Turbines Jump to: navigation, search Name: Pioneer Asia Wind Turbines Place: Madurai, Tamil Nadu, India Zip: 625 002 Sector: Wind energy Product: Madurai-based wind...

  9. Enron Wind Corporation | Open Energy Information

    Open Energy Info (EERE)

    Enron Wind Corporation Jump to: navigation, search Name: Enron Wind Corporation Place: Houston, Texas Zip: 77251-1188 Sector: Wind energy Product: Former Enron Wind, which still...

  10. Murray Various Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Various Wind Farm Jump to: navigation, search Name Murray Various Wind Farm Facility Murray Various Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Kotzebue Wind Project III | Open Energy Information

    Open Energy Info (EERE)

    Kotzebue Wind Project III Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue...

  12. Juhl Wind Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Juhl Wind Inc. Place: Woodstock, Minnesota Zip: 57186 Sector: Wind energy Product: Juhl Wind is a company that develops community wind projects and was formed via...

  13. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  14. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  15. Bluewater Wind Rhode Island | Open Energy Information

    Open Energy Info (EERE)

    Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates...

  16. Bull Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market...

  17. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. NorthWinds Renewables | Open Energy Information

    Open Energy Info (EERE)

    NorthWinds Renewables Jump to: navigation, search Name: NorthWinds Renewables Place: Harrison, New York Zip: 10528 Sector: Renewable Energy, Wind energy Product: NorthWinds...

  19. Sweetwater 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name Sweetwater 5 Wind Farm Facility Sweetwater 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...