National Library of Energy BETA

Sample records for lone star gas

  1. Audit of Lone Star Gas Invoices and Billing Procedures, Task #3 

    E-Print Network [OSTI]

    Turner, W. D.; Liu, M.

    1997-01-01

    At the request of the TAMU Power Plant, the ESL staff audited the 1995 Lone Star Gas Company invoices. Gas consumption is measured and the measured volume is converted to standard volume (at T=60 °F, P= 14.65 psia) to determine the energy content...

  2. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  3. Lone Star Healthy Streams Final Report 

    E-Print Network [OSTI]

    Wagner, Kevin; Redmon, Larry

    2011-01-01

    2010. The Lone Star Healthy Streams Bibliography was then converted into an online searchable database accessible from http://lshs.tamu.edu. As information was collected, it was incorporated into the LSHS Power Point presentation and guidance manual... bacteria from grazing lands has been identified as a significant source of bacterial contamination in need of reductions to improve water quality. Development of best management practices to address these bacterial issues is critical to the success...

  4. Lone Star Transmission LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I4Q07)

  5. Lone Star Healthy Streams: Teaching best management practices statewide 

    E-Print Network [OSTI]

    Lee, Leslie

    2010-01-01

    ) using Clean Water Act Nonpoint Source Grant funding from the U.S. Environmental Protection Agency. Since its inception, LSHS has involved numerous collabo- rators, including TSSWCB, U.S. The Lone Star Healthy Streams Program teaches owners...

  6. Lone Star Healthy Streams: Teaching best managment practices statewide 

    E-Print Network [OSTI]

    Lee, Leslie

    2011-01-01

    ) using Clean Water Act Nonpoint Source Grant funding from the U.S. Environmental Protection Agency. Since its inception, LSHS has involved numerous collabo- rators, including TSSWCB, U.S. The Lone Star Healthy Streams Program teaches owners...

  7. Lone Star I (Q2) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I (4Q07)

  8. Lone Star I (Q3) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I (4Q07)Q3)

  9. Lone Star Wind Alliance LSWA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I4Q07)Wind

  10. Lone Star Reds: the Socialist Party and cotton tenancy in Texas, 1901-1917 

    E-Print Network [OSTI]

    Mellard, Jason Dean

    2000-01-01

    ideal, the party of Eugene Debs seized on the strong Texas tradition of agrarian revolt to build a formidable, if short-lived, Socialist movement in the Lone Star State. There were Socialist newspapers, unions, rural encampments, and a Socialist...

  11. Development of a Synergistic, Comprehensive Statewide Lone Star Healthy Streams Program 

    E-Print Network [OSTI]

    Wagner, K.; Redmon, L.; Peterson, J.

    2013-01-01

    • October 19, 2010 • March 9, 2011 • June 23, 2011 • October 24, 2011 • February 15, 2012 Subtask 1.4: Development of Final Report The final report was compiled by TWRI staff and submitted on April 30, 2013. Task 2: LSHS Program Coordination... Technical Report 446 September 2013 Development of a Synergistic, Comprehensive Statewide Lone Star Healthy Streams Program 2 Executive Summary According to the 2008 Texas Water Quality Inventory and 303(d) List, 295 waterbodies...

  12. Lone Star I (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I (4Q07) Wind

  13. Lone Star II (1Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I (4Q07)Q3)II

  14. Lone Star II (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I

  15. Lone Star II (4Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLone Star I4Q07) Wind

  16. LoneSTAR Program: Maximizing Energy Efficiency while Protecting the Envrionment 

    E-Print Network [OSTI]

    Trevino, E.

    2014-01-01

    iency whi le Protect ing the Envi ronment LoanSTAR PROGRAM ESL-KT-14-11-31 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 ? Executed 240 loans totaling $407,923,762.32 ? 93 loans to publ ic schools distr icts ? 80 loans...-11-31 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 BASICS ? I t ’s al l about the ut i l i ty dollar savings ? Loan must have a composite simple payback of 10 years or less ? The simple payback is the loan term ? Each loan...

  17. Money earmarked for cervid research at Texas Tech -Texas Hunting & Fishing | Lone Star Outdoor News http://www.lsonews.com/money-earmarked-cervid-research-texas-tech/[8/11/2014 8:25:26 AM

    E-Print Network [OSTI]

    Rock, Chris

    Money earmarked for cervid research at Texas Tech - Texas Hunting & Fishing | Lone Star Outdoor News http://www.lsonews.com/money-earmarked-cervid-research-texas-tech/[8/11/2014 8:25:26 AM] Money earmarked for cervid research at Texas Tech By Conor Harrison on August 8, 2014 in Texas Hunting 0 Texas

  18. Gas & Stars Aging low-mass stars eject their outer layers.

    E-Print Network [OSTI]

    Barnes, Joshua Edward

    Recycling Gas & Stars #12;Aging low-mass stars eject their outer layers. M57:The Ring Nebula #12;Thor's Emerald Helmet Winds from high-mass stars blow bubbles of hot gas. #12;Supernova blast waves in stars are mixed back into the gas. NGC 6992: Filaments of theVeil Nebula #12;Bubbles blown by high

  19. Gas Powered Air Conditioning Absorption vs. Engine-Drive 

    E-Print Network [OSTI]

    Phillips, J. N.

    1996-01-01

    not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered...

  20. Gas flows, star formation and galaxy evolution

    E-Print Network [OSTI]

    John E. Beckman; Emilio Casuso; Almudena Zurita; Monica Relaño

    2004-05-31

    In the first part of this article we show how observations of the chemical evolution of the Galaxy: G- and K-dwarf numbers as functions of metallicity, and abundances of the light elements, D, Li, Be and B, in both stars and the interstellar medium (ISM), lead to the conclusion that metal poor HI gas has been accreting to the Galactic disc during the whole of its lifetime, and is accreting today at a measurable rate, ~2 Msun per year across the full disc. Estimates of the local star formation rate (SFR) using methods based on stellar activity, support this picture. The best fits to all these data are for models where the accretion rate is constant, or slowly rising with epoch. We explain here how this conclusion, for a galaxy in a small bound group, is not in conflict with graphs such as the Madau plot, which show that the universal SFR has declined steadily from z=1 to the present day. We also show that a model in which disc galaxies in general evolve by accreting major clouds of low metallicity gas from their surroundings can explain many observations, notably that the SFR for whole galaxies tends to show obvious variability, and fractionally more for early than for late types, and yields lower dark to baryonic matter ratios for large disc galaxies than for dwarfs. In the second part of the article we use NGC 1530 as a template object, showing from Fabry-Perot observations of its Halpha emission how strong shear in this strongly barred galaxy acts to inhibit star formation, while compression acts to stimulate it.

  1. Merger Signatures in the Dynamics of Star-forming Gas

    E-Print Network [OSTI]

    Hung, Chao-Ling; Smith, Howard A; Ashby, Matthew L N; Lanz, Lauranne; Martínez-Galarza, Juan R; Sanders, D B; Zezas, Andreas

    2015-01-01

    Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ~0.2-0.4 Gyr with kinematic merger indicators but can...

  2. Rapid Formation of Gas Giant Planets around M Dwarf Stars

    E-Print Network [OSTI]

    Alan P. Boss

    2006-01-20

    Extrasolar planet surveys have begun to detect gas giant planets in orbit around M dwarf stars. While the frequency of gas giant planets around M dwarfs so far appears to be lower than that around G dwarfs, it is clearly not zero. Previous work has shown that the core accretion mechanism does not seem to be able to form gas giant planets around M dwarfs, because the time required for core formation scales with the orbital period, which lengthens for lower mass stars, resulting in failed (gas-poor) cores unless the gaseous protoplanetary disk survives for > 10 Myr. Disk instability, on the other hand, is rapid enough (~ 1000 yrs) that it should be able to form gas giant protoplanets around even low mass stars well before the gaseous disk disappears. A new suite of three dimensional radiative, gravitational hydrodynamical models is presented that calculates the evolution of initially marginally gravitationally unstable disks with masses of 0.021 to 0.065 solar masses orbiting around stars with masses of 0.1 and 0.5 solar masses, respectively. The models show that gas giant planets are indeed likely to form by the disk instability mechanism in orbit around M dwarf stars, the opposite of the prediction for formation by the core accretion mechanism. This difference offers another observational test for discriminating between these two theoretical end members for giant planet formation. Ongoing and future extrasolar planet searches around M dwarfs by spectroscopy, microlensing, photometry, and astrometry offer the opportunity to help decide between the dominance of the two mechanisms.

  3. Gas Inflow and Metallicity Drops in Star-forming Galaxies

    E-Print Network [OSTI]

    Ceverino, Daniel; Muñoz-Tuñon, Casiana; Dekel, Avishai; Elmegreen, Bruce G; Elmegreen, Debra M; Primack, Joel

    2015-01-01

    Gas inflow feeds galaxies with low metallicity gas from the cosmic web, sustaining star formation across the Hubble time. We make a connection between these inflows and metallicity inhomogeneities in star-forming galaxies, by using synthetic narrow-band images of the Halpha emission line from zoom-in AMR cosmological simulations of galaxies with stellar masses of $M \\simeq 10^9 $Msun at redshifts z=2-7. In $\\sim$50\\% of the cases at redshifts lower than 4, the gas inflow gives rise to star-forming, Halpha-bright, off-centre clumps. Most of these clumps have gas metallicities, weighted by Halpha luminosity, lower than the metallicity in the surrounding interstellar medium by $\\sim$0.3 dex, consistent with observations of chemical inhomogeneities at high and low redshifts. Due to metal mixing by shear and turbulence, these metallicity drops are dissolved in a few disc dynamical times. Therefore, they can be considered as evidence for rapid gas accretion coming from cosmological inflow of pristine gas.

  4. Gas and Star Formation in the Circinus Galaxy

    E-Print Network [OSTI]

    For, Bi-Qing; Jarrett, Tom

    2012-01-01

    We present a detailed study of the Circinus Galaxy, investigating its star formation, dust and gas properties both in the inner and outer disk. To achieve this, we obtained high-resolution Spitzer mid-infrared images with the IRAC (3.6, 5.8, 4.5, 8.0 micron) and MIPS (24 and 70 micron) instruments and sensitive HI data from the Australia Telescope Compact Array (ATCA) and the 64-m Parkes telescope. These were supplemented by CO maps from the Swedish-ESO Submillimetre Telescope (SEST). Because Circinus is hidden behind the Galactic Plane, we demonstrate the careful removal of foreground stars as well as large- and small-scale Galactic emission from the Spitzer images. We derive a visual extinction of Av = 2.1 mag from the Spectral Energy Distribution of the Circinus Galaxy and total stellar and gas masses of 9.5 x 10^{10} Msun and 9 x 10^9 Msun, respectively. Using various wavelength calibrations, we find obscured global star formation rates between 3 and 8 Msun yr^{-1}. Star forming regions in the inner spira...

  5. Stars, Gas, and Dark Matter in the Solar Neighborhood

    E-Print Network [OSTI]

    McKee, Christopher F; Hollenbach, David J

    2015-01-01

    The surface density and vertical distribution of stars, stellar remnants, and gas in the solar vicinity form important ingredients for understanding the star formation history of the Galaxy as well as for inferring the local density of dark matter by using stellar kinematics to probe the gravitational potential. In this paper we review the literature for these baryonic components, reanalyze data, and provide tables of the surface densities and exponential scale heights of main sequence stars, giants, brown dwarfs, and stellar remnants. We also review three components of gas (H2, HI, and HII), give their surface densities at the solar circle, and discuss their vertical distribution. We find a local total surface density of M dwarfs of 17.3 pm 2.3 Mo/pc^2. Our result for the total local surface density of visible stars, 27.0 pm 2.7 Mo/pc^2, is close to previous estimates due to a cancellation of opposing effects: more mass in M dwarfs, less mass in the others. The total local surface density in white dwarfs is ...

  6. Ionized gas kinematics and massive star formation in NGC 1530

    E-Print Network [OSTI]

    A. Zurita; M. Relano; J. E. Beckman; J. H. Knapen

    2003-07-11

    We present emission line mapping of the strongly barred galaxy NGC 1530 obtained from Fabry-Perot interferometry in Halpha, at significantly enhanced angular resolution compared with published studies. The main point of the work is to examine in detail the non-circular components of the velocity field of the gas, presumably induced by the strongly non-axisymmetric gravitational potential of the bar. These reveal quasi-elliptical motions with speeds of order 100 km/s aligned with the bar. It also shows how these flows swing in towards and around the nucleus as they cross a circumnuclear resonance, from the dominant "x1 orbits" outside the resonance to "x2 orbits" within it. Comparing cross-sections of the residual velocity map along and across the bar with the Halpha intensity map indicates a systematic offset between regions of high non-circular velocity and massive star formation. To investigate further we produce velocity gradient maps along and across the bar. These illustrate very nicely the shear compression of the gas, revealed by the location of the dust lanes along loci of maximum velocity gradient perpendicular to the bar. They also show clearly how shear acts to inhibit massive star formation, whereas shocks act to enhance it. Although the inhibiting effect of gas shear flow on star formation has long been predicted, this is the clearest observational illustration so far of the effect. It is also the clearest evidence that dust picks out shock-induced inflow along bars. These observations should be of considerable interest to those modelling massive star formation in general.

  7. Lone Star Healthy Streams: Keeping Texas streams clean 

    E-Print Network [OSTI]

    Boutwell, Kathryn S.

    2013-01-01

    ,? said Jennifer Peterson, LSHS statewide coordinator. ?For each bacterial contributor, we created a manual and a presentation outlining BMPs that are operation- speci?c.? ?e program published manuals for poultry, beef ca?le, feral hogs, horses.... Dairy Cattle: Construct a waste treatment lagoon by building an embankment and/or excavating a pit or dugout to biologically treat waste. Feral Hogs: Although they require more effort to install and maintain, using corral traps is extremely...

  8. OY Car During Normal Outburst: Balmer Emission From The Red Star And The Gas Stream

    E-Print Network [OSTI]

    E. T. Harlaftis; T. R. Marsh

    1995-03-07

    We present observations of OY Car, obtained with the Anglo-Australian Telescope, during a normal outburst in August 1991. Two sinusoidal components are resolved in the H$\\beta$ trailed spectra and we determine the location of the narrow component to be on the secondary star with a maximum contributed flux of ~2.5 per cent to the total flux. Imaging of the line distribution reveals that the other emission component is associated with the gas stream. This follows a velocity close to the ballistic one from the red star to a distance of ~0.5 R$_{L_{1}}$ from the white dwarf. This emission penetrates the accretion disc (from 0.5--0.1 R$_{L_{1}}$), with a velocity now closer (but lower) to the keplerian velocities along the path of the gas stream. We finally discuss the implications of having observed simultaneously line emission from the gas stream and the red star during outburst.

  9. OY Car in Outburst: Balmer emission from the red star and the gas stream

    E-Print Network [OSTI]

    E. T. Harlaftis; T. R. Marsh

    1995-10-04

    We present observations of OY Car, obtained with the Anglo-Australian telescope, during a normal outburst in 1991. Two sinusoidal components are resolved in the Hbeta trailed spectra and we determine the location of the narrow component to be on the secondary star with a maximum contributed flux of ~2.5 per cent to the total flux. Imaging of the line distribution reveals that the other emission component is associated with the gas stream. This follows a velocity close to the ballistic one from the red star to a distance of ~0.5 R_L1 from the white dwarf. Then. its kinematics changes from 0.5-0.2 R_L1 (accretion disc) following velocities now closer to (but lower than) the keplerian velocities along the path of the gas stream. We finally dicsuss the implications of having observed simultaneously line emission from the gas stream and the red star during outburst.

  10. THE EGNoG SURVEY: MOLECULAR GAS IN INTERMEDIATE-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect (OSTI)

    Bauermeister, A.; Blitz, L.; Wright, M.; Bolatto, A.; Teuben, P.; Bureau, M.; Leroy, A.; Ostriker, E.; Wong, T.

    2013-05-10

    We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z = 0.05 to z = 0.5, with stellar masses of (4-30) Multiplication-Sign 10{sup 10} M{sub Sun} and star formation rates of 4-100 M{sub Sun} yr{sup -1}. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(J = 1 {yields} 0) and CO(J = 3 {yields} 2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 {+-} 0.54 Gyr for normal galaxies and 0.06 {+-} 0.04 Gyr for starburst galaxies. We calculate an average molecular gas fraction of 7%-20% at the intermediate redshifts probed by the EGNoG survey. By expressing the molecular gas fraction in terms of the specific star formation rate and molecular gas depletion time (using typical values), we also calculate the expected evolution of the molecular gas fraction with redshift. The predicted behavior agrees well with the significant evolution observed from z {approx} 2.5 to today.

  11. From gas to stars in energetic environments: dense gas clumps in the 30 Doradus region within the Large Magellanic Cloud

    SciTech Connect (OSTI)

    Anderson, Crystal N.; Meier, David S.; Ott, Jürgen; Hughes, Annie; Wong, Tony; Looney, Leslie; Henkel, Christian; Chen, Rosie; Indebetouw, Remy; Muller, Erik; Pineda, Jorge L.; Seale, Jonathan

    2014-09-20

    We present parsec-scale interferometric maps of HCN(1-0) and HCO{sup +}(1-0) emission from dense gas in the star-forming region 30 Doradus, obtained using the Australia Telescope Compact Array. This extreme star-forming region, located in the Large Magellanic Cloud (LMC), is characterized by a very intense ultraviolet ionizing radiation field and sub-solar metallicity, both of which are expected to impact molecular cloud structure. We detect 13 bright, dense clumps within the 30 Doradus-10 giant molecular cloud. Some of the clumps are aligned along a filamentary structure with a characteristic spacing that is consistent with formation via varicose fluid instability. Our analysis shows that the filament is gravitationally unstable and collapsing to form stars. There is a good correlation between HCO{sup +} emission in the filament and signatures of recent star formation activity including H{sub 2}O masers and young stellar objects (YSOs). YSOs seem to continue along the same direction of the filament toward the massive compact star cluster R136 in the southwest. We present detailed comparisons of clump properties (masses, linewidths, and sizes) in 30Dor-10 to those in other star forming regions of the LMC (N159, N113, N105, and N44). Our analysis shows that the 30Dor-10 clumps have similar masses but wider linewidths and similar HCN/HCO{sup +} (1-0) line ratios as clumps detected in other LMC star-forming regions. Our results suggest that the dense molecular gas clumps in the interior of 30Dor-10 are well shielded against the intense ionizing field that is present in the 30 Doradus region.

  12. Warm Gas in the Inner Disks around Young Intermediate Mass Stars

    E-Print Network [OSTI]

    Sean Brittain; Theodore Simon; Joan Najita; Terrence Rettig

    2006-12-08

    The characterization of gas in the inner disks around young stars is of particular interest because of its connection to planet formation. In order to study the gas in inner disks, we have obtained high-resolution K-band and M-band spectroscopy of 14 intermediate mass young stars. In sources that have optically thick inner disks, i.e. E(K-L)>1, our detection rate of the ro-vibrational CO transitions is 100% and the gas is thermally excited. Of the five sources that do not have optically thick inner disks, we only detect the ro-vibrational CO transitions from HD 141569. In this case, we show that the gas is excited by UV fluorescence and that the inner disk is devoid of gas and dust. We discuss the plausibility of the various scenarios for forming this inner hole. Our modeling of the UV fluoresced gas suggests an additional method by which to search for and/or place stringent limits on gas in dust depleted regions in disks around Herbig Ae/Be stars.

  13. Nearby Clumpy, Gas Rich, Star Forming Galaxies: Local Analogs of High Redshift Clumpy Galaxies

    E-Print Network [OSTI]

    Garland, C A; Mac Low, M -M; Kreckel, K; Rabidoux, K; Guzmán, R

    2015-01-01

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates and compact morphologies. We combine Sloan Digital Sky Survey data with HI data of 29 LCBGs at redshift z~0 to understand their nature. We find that local LCBGs have high atomic gas fractions (~50%) and star formation rates per stellar mass consistent with some high redshift star forming galaxies. Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy star forming galaxies commonly observed at z~1-3. Local LCBGs separate into three groups: 1. Interacting galaxies (~20%); 2. Clumpy spirals (~40%); 3. Non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (~40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and sugges...

  14. Molecular Gas and Star Formation in the Cartwheel

    E-Print Network [OSTI]

    Higdon, James L; Ruiz, Sergio Martin; Rand, Richard J

    2015-01-01

    Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(J=1-0) observations are used to study the cold molecular ISM of the Cartwheel ring galaxy and its relation to HI and massive star formation (SF). CO moment maps find $(2.69\\pm0.05)\\times10^{9}$ M$_{\\odot}$ of H$_2$ associated with the inner ring (72%) and nucleus (28%) for a Galactic I(CO)-to-N(H2) conversion factor ($\\alpha_{\\rm CO}$). The spokes and disk are not detected. Analysis of the inner ring's CO kinematics show it to be expanding ($V_{\\rm exp}=68.9\\pm4.9$ km s$^{-1}$) implying an $\\approx70$ Myr age. Stack averaging reveals CO emission in the starburst outer ring for the first time, but only where HI surface density ($\\Sigma_{\\rm HI}$) is high, representing $M_{\\rm H_2}=(7.5\\pm0.8)\\times10^{8}$ M$_{\\odot}$ for a metallicity appropriate $\\alpha_{\\rm CO}$, giving small $\\Sigma_{\\rm H_2}$ ($3.7$ M$_{\\odot}$ pc$^{-2}$), molecular fraction ($f_{\\rm mol}=0.10$), and H$_2$ depletion timescales ($\\tau_{\\rm mol} \\approx50-600$ Myr). Elsewhere in the ou...

  15. Missouri Gas Energy (MGE) - Home Performance with ENERGY STAR | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE SafetyofDepartment.Efficiency Rebate ProgramTheof Energy

  16. THE GAS INFLOW AND OUTFLOW RATE IN STAR-FORMING GALAXIES AT z ? 1.4

    SciTech Connect (OSTI)

    Yabe, Kiyoto; Ohta, Kouji; Iwamuro, Fumihide; Akiyama, Masayuki; Tamura, Naoyuki; Yuma, Suraphong; Dalton, Gavin; Lewis, Ian

    2015-01-01

    We try to constrain the gas inflow and outflow rate of star-forming galaxies at z ? 1.4 by employing a simple analytic model for the chemical evolution of galaxies. The sample is constructed based on a large near-infrared spectroscopic sample observed with Subaru/FMOS. The gas-phase metallicity is measured from the [N II] ?6584/H? emission line ratio and the gas mass is derived from the extinction corrected H? luminosity by assuming the Kennicutt-Schmidt law. We constrain the inflow and outflow rate from the least-?{sup 2} fittings of the observed gas-mass fraction, stellar mass, and metallicity with the analytic model. The joint ?{sup 2} fitting shows that the best-fit inflow rate is ?1.8 and the outflow rate is ?0.6 in units of star-formation rate. By applying the same analysis to the previous studies at z ? 0 and z ? 2.2, it is shown that both the inflow and outflow rates decrease with decreasing redshift, which implies the higher activity of gas flow process at higher redshift. The decreasing trend of the inflow rate from z ? 2.2 to z ? 0 agrees with that seen in previous observational works with different methods, though the absolute value is generally larger than in previous works. The outflow rate and its evolution from z ? 2.2 to z ? 0 obtained in this work agree well with the independent estimations in previous observational works.

  17. Molecular Gas and Star Formation in the SAURON Early-type Galaxies

    E-Print Network [OSTI]

    F. Combes; L. M. Young; M. Bureau

    2007-03-21

    We present the results of a survey of CO emission in 43 of the 48 representative E/S0 galaxies observed in the optical with the SAURON integral-field spectrograph. The CO detection rate is 12/43 or 28%. This is lower than previous studies of early-types but can probably be attributed to different sample selection criteria. As expected, earlier type, more luminous and massive galaxies have a relatively lower molecular gas content. We find that CO-rich galaxies tend to have higher H\\beta but lower Fe5015 and Mgb absorption indices than CO-poor galaxies. Those trends appear primarily driven by the age of the stars, an hypothesis supported by the fact that the galaxies with the strongest evidence of star formation are also the most CO-rich. In fact, the early-type galaxies from the current sample appear to extend the well-known correlations between FIR luminosity, dust mass and molecular mass of other galaxy types. The star formation interpretation is also consistent with the SAURON galaxies' radio continuum and FIR flux ratios, and their inferred star formation efficiencies are similar to those in spiral galaxies. It thus appears that we have identified the material fueling (residual) star formation in early-type galaxies, and have demonstrated that it is actively being transformed. Nevertheless, the lack of strong correlations between the CO content and most stellar parameters is compatible with the idea that, in a significant number of sample galaxies, the molecular gas has been accreted from the outside and has properties rather independent from the old, pre-existing stellar component.

  18. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    SciTech Connect (OSTI)

    Kepley, Amanda A.; Frayer, David [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944-0002 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Usero, Antonio [Observatorio Astronómico Nacional, C/Alfonso XII, 3, E-28014 Madrid (Spain); Marvil, Josh [Department of Physics, New Mexico Tech., 801 Leroy Place, Socorro, NM 87801 (United States); Walter, Fabian, E-mail: akepley@nrao.edu [Max Planck Institute fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  19. Spatially-Resolved Dense Molecular Gas and Star Formation Rate in M51

    E-Print Network [OSTI]

    Chen, Hao; Braine, Jonathan; Gu, Qiusheng

    2015-01-01

    We present the spatially-resolved observations of HCN J = 1 -- 0 emission in the nearby spiral galaxy M51 using the IRAM 30 m telescope. The HCN map covers an extent of $4\\arcmin\\times5\\arcmin$ with spatial resolution of $28\\arcsec$, which is, so far, the largest in M51. There is a correlation between infrared emission (star formation rate indicator) and HCN (1--0) emission (dense gas tracer) at kpc scale in M51, a natural extension of the proportionality between the star formation rate (SFR) and the dense gas mass established globally in galaxies. Within M51, the relation appears to be sub-linear (with a slope of 0.74$\\pm$0.16) as $L_{\\rm IR}$ rises less quickly than $L_{\\rm HCN}$. We attribute this to a difference between center and outer disk such that the central regions have stronger HCN (1--0) emission per unit star formation. The IR-HCN correlation in M51 is further compared with global one from Milky Way to high-z galaxies and bridges the gap between giant molecular clouds (GMCs) and galaxies. Like th...

  20. The gas metallicity gradient and the star formation activity of disc galaxies

    E-Print Network [OSTI]

    Tissera, Patricia B; Sillero, Emanuel; Vilchez, Jose M

    2015-01-01

    We study oxygen abundance profiles of the gaseous disc components in simulated galaxies in a hierarchical universe. We analyse the disc metallicity gradients in relation to the stellar masses and star formation rates of the simulated galaxies. We find a trend for galaxies with low stellar masses to have steeper metallicity gradients than galaxies with high stellar masses at z ~0. We also detect that the gas-phase metallicity slopes and the specific star formation rate (sSFR) of our simulated disc galaxies are consistent with recently reported observations at z ~0. Simulated galaxies with high stellar masses reproduce the observed relationship at all analysed redshifts and have an increasing contribution of discs with positive metallicity slopes with increasing redshift. Simulated galaxies with low stellar masses a have larger fraction of negative metallicity gradients with increasing redshift. Simulated galaxies with positive or very negative metallicity slopes exhibit disturbed morphologies and/or have a clo...

  1. Molecular gas observations and enhanced massive star formation efficiencies in M100

    E-Print Network [OSTI]

    J. H. Knapen; J. E. Beckman; J. Cepa; N. Nakai

    1995-09-14

    We present new J=1-0 12-CO observations along the northern spiral arm of the grand-design spiral galaxy M100 (NGC 4321), and study the distribution of molecular hydrogen as derived from these observations, comparing the new data with a set of data points on the southern arm published previously. We compare these measurements on both spiral arms and on the interarm regions with observations of the atomic and ionized hydrogen components. We determine massive star formation efficiency parameters, defined as the ratio of H alpha luminosity to total gas mass, along the arms and compare the values to those in the interarm regions adjacent to the arms. We find that these parameters in the spiral arms are on average a factor of 3 higher than outside the arms, a clear indication of triggering of the star formation in the spiral arms. We discuss possible mechanisms for this triggering, and conclude that a density wave system is probably responsible for it. We discuss several possible systematical effects in some detail, and infer that the conclusions on triggering are sound. We specifically discuss the possible effects of extinction in H alpha, or a non-standard CO to H_2 conversion factor (X), and find that our conclusions on the enhancement of the efficiencies in the arms are reinforced rather than weakened by these considerations. A simple star forming scheme involving threshold densities for gravitational collapse is discussed for NGC 4321, and comparison is made with M51. We find that the gas between the arms is generally stable against gravitational collapse whereas the gas in the arms is not, possibly leading to the observed arm-interarm differences in efficiency, but also note that these results, unlike the others obtained in this paper, do depend critically on the assumed value for the conversion factor.

  2. Star Formation Suppression Due to Jet Feedback in Radio Galaxies with Shocked Warm Molecular Gas

    E-Print Network [OSTI]

    Lanz, Lauranne; Alatalo, Katherine; Appleton, Philip N

    2015-01-01

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions (SEDs) in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and IR colors. We find that the star formation rate (SFR) is suppressed by a factor of ~3-6, depending on how molecular gas mass is estimated. We suggest this suppression is due to the shocks driven by the radio jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H2 line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H2 emission, suggesting that whi...

  3. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    SciTech Connect (OSTI)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique; Rosolowsky, Erik; Arce, Héctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Shirley, Yancy L.; Kwon, Woojin; Kauffmann, Jens; Tobin, John J.; Volgenau, N. H.; Tassis, Konstantinos; and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 ? 0), HCO{sup +} (J = 1 ? 0), and HCN (J = 1 ? 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ?7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ?0.2 pc and widths of ?0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  4. The Relationship Between Molecular Gas, HI, and Star Formation in the Low-Mass, Low-Metallicity Magellanic Clouds

    E-Print Network [OSTI]

    Jameson, Katherine E; Leroy, Adam K; Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl; Hughes, Annie; Israel, Frank P; Rubio, Monica; Indebetouw, Remy; Madden, Suzanne C; Bot, Caroline; Hony, Sacha; Cormier, Diane; Pellegrini, Eric W; Galametz, Maud; Sonneborn, George

    2015-01-01

    The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H2. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metal...

  5. Development of an industrial l-star pulsed gas combustor. Final report, April 1986-December 1989

    SciTech Connect (OSTI)

    Kotidis, P.A.

    1990-08-01

    A pulsed gas combustor has been developed based on the L-Star pulsed combustion principle. This concept is quite different from that of the more conventional acoustic pulsed combustor. In the L-Star system, there is no resonator, and the combustor volume and exhaust orifice area are chosen such that the time for pressure decay is greater than or equal to the time for combustion, in order to achieve high combustion pressures. A bench scale unit was constructed and tested. Maximum average peak pressure and combustion efficiency were realized for stoichiometric fuel/air ratio at 11.7 Hz, combustor volume of 0.2 cu ft, and air flow (steady) of 200 CFM. The combustor at these conditions produced 10 to the 6th power BTU/hr. Two backflow prevention configurations were tested: fluidic-aerodynamic valve and flapper valve. Peak pressures of 25 and 39 psig, respectively, were achieved. CO and combustibles emissions were high for both schemes (1000-3000 ppm); however, NOx emissions were as low as 10 ppm.

  6. The Gas Phase Mass Metallicity Relation for Dwarf Galaxies: Dependence on Star Formation Rate and HI Gas Mass

    E-Print Network [OSTI]

    Jimmy,; Saintonge, Amélie; Accurso, Gioacchino; Brough, Sarah; Oliva-Altamirano, Paola

    2015-01-01

    Using a sample of dwarf galaxies observed using the VIMOS IFU on the VLT, we investigate the mass-metallicity relation (MZR) as a function of star formation rate (FMR$_{\\text{SFR}}$) as well as HI-gas mass (FMR$_{\\text{HI}}$). We combine our IFU data with a subsample of galaxies from the ALFALFA HI survey crossmatched to the Sloan Digital Sky Survey to study the FMR$_{\\text{SFR}}$ and FMR$_{\\text{HI}}$ across the stellar mass range 10$^{6.6}$ to 10$^{8.8}$ M$_\\odot$, with metallicities as low as 12+log(O/H) = 7.67. We find the 1$\\sigma$ mean scatter in the MZR to be 0.05 dex. The 1$\\sigma$ mean scatter in the FMR$_{\\text{SFR}}$ (0.02 dex) is significantly lower than that of the MZR. The FMR$_{\\text{SFR}}$ is not consistent between the IFU observed galaxies and the ALFALFA/SDSS galaxies for SFRs lower than 10$^{-2.4}$ M$_\\odot$ yr$^{-1}$, however this could be the result of limitations of our measurements in that regime. The lowest mean scatter (0.01 dex) is found in the FMR$_{\\text{HI}}$. We also find that th...

  7. Mild hydrocracking of virgin vacuum gas oil, cycle oils and coker gas oil with the T-STAR{reg_sign} process

    SciTech Connect (OSTI)

    Nongbri, G.; Rodarte, A.I. [Texaco Fuels and Lubricants Research Dept., Port Arthur, TX (United States); Falsetti, J.S. [Texaco Inc., White Plains, NY (United States). Alternate Energy Resources Dept.

    1996-12-01

    Texaco Fuels and Lubricants Research recently completed a successful pilot plant program demonstrating the use of the T-STAR{reg_sign} process for mild hydrocracking of blends of low value feedstocks (cycle oils, coker gas oils), virgin distillates and vacuum gas oils to generate high quality diesel and improved quality FCC feed. The T-STAR{reg_sign} Process runs at constant temperature. Catalytic activity is maintained by daily catalyst addition and withdrawal while the unit is on stream. No unit shutdown is needed to replace the catalyst. The possibility of bed plugging or blockage from accumulation of fine solids in the feed is virtually eliminated in this ebullated bed system and the reactor operates with a low and constant pressure drop. The process handles a variety of feedstocks including light and heavy coker gas oils and deasphalted oils. Yields and product properties from a blend of virgin vacuum gas oil, light cycle gas oil and heavy coker gas oil are discussed. A scheme for integrating this process in an existing refinery is also presented.

  8. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    SciTech Connect (OSTI)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measured{Sigma} that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  9. Physiological Ageing as it is Related to Gene Function in the Lone Star Tick, Amblyomma americanum 

    E-Print Network [OSTI]

    Catena, Amanda M.

    2010-07-14

    and appeared to remain at those low levels for the duration of the study. The female experimental group differed from the other three groups by gradually upregulating tick actin during the study. 19 Fig. 7. Four graphs plotting electrophoresis gel band...

  10. "Climate Wise" in the Lone Star State: A Successful Partnership for Energy Efficiency in Austin, Texas 

    E-Print Network [OSTI]

    Allen, S. J.; Schare, S.

    1997-01-01

    The City of Austin, Texas is forming partnerships with local companies to lower energy consumption and improve environmental performance within the industrial sector. As a local government participant in the federal Climate Wise program, Austin...

  11. Policy Recommendations for Establishing the LoneSTAR Monitoring and Analysis Program 

    E-Print Network [OSTI]

    Claridge, D. E.; O'Neal, D. L.; Turner, W. D.

    1989-01-01

    The major objectives of the Monitoring and Analysis Program (MAP) should be to: Verify energy and dollar savings of the retrofits; Reduce energy costs by identifying operational and maintenance improvements at facilities receiving retrofits; Improve...

  12. Gas Inflow and Outflow Histories in Disk Galaxies as Revealed from Observations of Distant Star-Forming Galaxies

    E-Print Network [OSTI]

    Toyouchi, Daisuke

    2015-01-01

    We investigate gas inflow and outflow histories in Milky Way-like disk galaxies, to get new insights into the baryonic processes in galaxy formation and evolution. For this purpose, we solve the equations for the evolutions of the surface mass densities of gas and metals at each radius in a galactic disk, based on the observed structural properties of distant star-forming galaxies, including the redshift evolution of their stellar mass distribution, their scaling relation between the mass of baryonic components, star formation rate (SFR) and chemical abundance, as well as the supposed evolution of their radial metallicity gradients (RMGs). We find that the efficiency of gas inflow for a given SFR decreases with time and that the inflow rate is always nearly proportional to the SFR. For gas outflow, although its efficiency for a given SFR is a decreasing function of time, similarly to gas inflow, the outflow rate is not necessarily proportional to the SFR and the relation between the outflow rate and SFR stron...

  13. The gas inflow and outflow rate in star-forming galaxies at $z\\sim1.4$

    E-Print Network [OSTI]

    Yabe, Kiyoto; Akiyama, Masayuki; Iwamuro, Fumihide; Tamura, Naoyuki; Yuma, Suraphong; Dalton, Gavin; Lewis, Ian

    2014-01-01

    We try to constrain the gas inflow and outflow rate of star-forming galaxies at $z\\sim1.4$ by employing a simple analytic model for the chemical evolution of galaxies. The sample is constructed based on a large near-infrared (NIR) spectroscopic sample observed with Subaru/FMOS. The gas-phase metallicity is measured from the [\\ion{N}{2}]$\\lambda$6584/H$\\alpha$ emission line ratio and the gas mass is derived from the extinction corrected H$\\alpha$ luminosity by assuming the Kennicutt-Schmidt law. We constrain the inflow and outflow rate from the least-$\\chi^{2}$ fittings of the observed gas mass fraction, stellar mass, and metallicity with the analytic model. The joint $\\chi^{2}$ fitting shows the best-fit inflow rate is $\\sim1.8$ and the outflow rate is $\\sim0.6$ in unit of star-formation rate (SFR). By applying the same analysis to the previous studies at $z\\sim0$ and $z\\sim2.2$, it is shown that the both inflow rate and outflow rate decrease with decreasing redshift, which implies the higher activity of gas ...

  14. MOLECULAR GAS, CO, AND STAR FORMATION IN GALAXIES: EMERGENT EMPIRICAL RELATIONS, FEEDBACK, AND THE EVOLUTION OF VERY GAS-RICH SYSTEMS

    SciTech Connect (OSTI)

    Pelupessy, Federico I. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Papadopoulos, Padelis P. [Argelander Institut fuer Astronomie, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2009-12-20

    We use time-varying models of the coupled evolution of the H I, H{sub 2} gas phases and stars in galaxy-sized numerical simulations to (1) test for the emergence of the Kennicutt-Schmidt (K-S) and the H{sub 2}-pressure relation, (2) explore a realistic H{sub 2}-regulated star formation recipe which brings forth a neglected and potentially significant SF-regulating factor, and (3) go beyond typical galactic environments (for which these galactic empirical relations are deduced) to explore the early evolution of very gas-rich galaxies. In this work, we model low-mass galaxies (M{sub baryon} <= 10{sup 9} M{sub sun}), while incorporating an independent treatment of CO formation and destruction, the most important tracer molecule of H{sub 2} in galaxies, along with that for the H{sub 2} gas itself. We find that both the K-S and the H{sub 2}-pressure empirical relations can robustly emerge in galaxies after a dynamic equilibrium sets in between the various interstellar medium (ISM) states, the stellar component and its feedback (T approx> 1 Gyr). The only significant dependence of these relations seems to be for the CO-derived (and thus directly observable) ones, which show a strong dependence on the ISM metallicity. The H{sub 2}-regulated star formation recipe successfully reproduces the morphological and quantitative aspects of previous numerical models while doing away with the star formation efficiency parameter. Most of the H I -> H{sub 2} mass exchange is found taking place under highly non-equilibrium conditions necessitating a time-dependent treatment even in typical ISM environments. Our dynamic models indicate that the CO molecule can be a poor, nonlinear, H{sub 2} gas tracer. Finally, for early evolutionary stages (T approx< 0.4 Gyr), we find significant and systematic deviations of the true star formation from that expected from the K-S relation, which are especially pronounced and prolonged for metal-poor systems. The largest such deviations occur for the very gas-rich galaxies, where deviations of a factor approx3-4 in global star formation rate (SFR) can take place with respect to those expected from the CO-derived K-S relation. This is particularly important since gas-rich systems at high redshifts could appear as having unusually high SFRs with respect to their CO-bright H{sub 2} gas reservoirs. This points to a possibly serious deficiency of K-S relations as elements of the sub-grid physics of star formation in simulations of structure formation in the early universe.

  15. HST-COS SPECTROSCOPY OF THE COOLING FLOW IN A1795—EVIDENCE FOR INEFFICIENT STAR FORMATION IN CONDENSING INTRACLUSTER GAS

    SciTech Connect (OSTI)

    McDonald, Michael; Ehlert, Steven; Roediger, Joel; Veilleux, Sylvain

    2014-08-20

    We present far-UV spectroscopy from the Cosmic Origins Spectrograph on the Hubble Space Telescope of a cool, star-forming filament in the core of A1795. These data, which span 1025 Å < ?{sub rest} < 1700 Å, allow for the simultaneous modeling of the young stellar populations and the intermediate-temperature (10{sup 5.5} K) gas in this filament, which is far removed (?30 kpc) from the direct influence of the central active galactic nucleus. Using a combination of UV absorption line indices and stellar population synthesis modeling, we find evidence for ongoing star formation, with the youngest stars having ages of 7.5{sub ?2.0}{sup +2.5} Myr and metallicities of 0.4{sub ?0.1}{sup +0.2} Z {sub ?}. The latter is consistent with the local metallicity of the intracluster medium. We detect the O VI ?1038 line, measuring a flux of f {sub O} {sub VI,} {sub 1038} = 4.0 ± 0.9 × 10{sup –17} erg s{sup –1} cm{sup –2}. The O VI ?1032 line is redshifted such that it is coincident with a strong Galactic H{sub 2} absorption feature, and is not detected. The measured O VI ?1038 flux corresponds to a cooling rate of 0.85 ± 0.2 (stat) ± 0.15 (sys) M {sub ?} yr{sup –1} at ?10{sup 5.5} K, assuming that the cooling proceeds isochorically, which is consistent with the classical X-ray luminosity-derived cooling rate in the same region. We measure a star formation rate of 0.11 ± 0.02 M {sub ?} yr{sup –1} from the UV continuum, suggesting that star formation is proceeding at 13{sub ?2}{sup +3}% efficiency in this filament. We propose that this inefficient star formation represents a significant contribution to the larger-scale cooling flow problem.

  16. Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model

    E-Print Network [OSTI]

    Robin T. Garrod; Susanna L. Widicus Weaver; Eric Herbst

    2008-03-08

    Gas-phase processes were long thought to be the key formation mechanisms for complex organic molecules in star-forming regions. However, recent experimental and theoretical evidence has cast doubt on the efficiency of such processes. Grain-surface chemistry is frequently invoked as a solution, but until now there have been no quantitative models taking into account both the high degree of chemical complexity and the evolving physical conditions of star-forming regions. Here, we introduce a new gas-grain chemical network, wherein a wide array of complex species may be formed by reactions involving radicals. The radicals we consider (H, OH, CO, HCO, CH3, CH3O, CH2OH, NH and NH2) are produced primarily by cosmic ray-induced photodissociation of the granular ices formed during the colder, earlier stages of evolution. The gradual warm-up of the hot core is crucial to the formation of complex molecules, allowing the more strongly-bound radicals to become mobile on grain surfaces. This type of chemistry is capable of reproducing the high degree of complexity seen in Sgr B2(N), and can explain the observed abundances and temperatures of a variety of previously detected complex organic molecules, including structural isomers. Many other complex species are predicted by this model, and several of these species may be detectable in hot cores. Differences in the chemistry of high- and low-mass star-formation are also addressed; greater chemical complexity is expected where evolution timescales are longer.

  17. GHRS Observations of Molecular Hydrogen in the Gas Disks of PreMain Sequence Stars

    E-Print Network [OSTI]

    Walter, Frederick M.

    ). When this happens, what happens to the gas disk? The gas disk survival time TGS is not known because cold gas is very difficult to detect. The early history of the proto­solar nebula may constrain TGS.g., Podolak et al. 1993). At radial distances of ¸5­10 AU in our protoplanetary nebula, it seems that TGS

  18. Beyond the Lone-Pair Model for Structurally Distorted Metal Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium and ChronicBestBeyond the Lone-Pair Model

  19. Cold Neutral Gas in a z=4.2 Damped Lyman-alpha System: The Fuel for Star Formation

    E-Print Network [OSTI]

    J. Christopher Howk; Arthur M. Wolfe; Jason X. Prochaska

    2005-02-21

    We discuss interstellar temperature determinations using the excitation equilibrium of the ^2P levels of Si II and C II. We show how observations of the ^2P_3/2 fine structure levels of Si II and C II (which have significantly different excitation energies, corresponding to ~413 and 92 K, respectively) can be used to limit gas kinetic temperatures. We apply this method to the z=4.224 damped Lyman-alpha system toward the quasar PSS1443+27. The lack of significant absorption out of the SiII ^2P_3/2 level and the presence of very strong C II ^2P_3/2 provides an upper limit to the temperature of the C II*-bearing gas in this system. Assuming a solar Si/C ratio, the observations imply a 2-sigma limit Tfuel for star formation in this young galaxy.

  20. The gas emission spectrum in a star-forming region in the BCD galaxy VII Zw 403 (UGC 6456)

    E-Print Network [OSTI]

    V. P. Arkhipova; T. A. Lozinskaya; A. V. Moiseev; O. V. Egorov

    2007-11-14

    Observations with the 6-m telescope of the Special Astrophysical Observatory obtained with the MPFS integral-field spectrograph and a longslit spectrograph with the SCORPIO focal reducer are used to analyze the emission spectrum of the ionized gas in a star-forming region in the BCD galaxy VII Zw 403. We present images of the galactic central region in the H-alpha, H-beta, [SII], and [OIII] emission lines, together with maps of the relative [OIII]/H-beta and [SII]/H-alpha intensities. We have determined the parameters of the gas in bright ionized supershells, and estimated the relative abundances of oxygen, nitrogen, and sulfur; a low relative N/O abundance was detected.

  1. The supergiant shell with triggered star formation in Irr galaxy IC 2574: neutral and ionized gas kinematics

    E-Print Network [OSTI]

    Egorov, O V; Moiseev, A V; Smirnov-Pinchukov, G V

    2014-01-01

    We analyse the ionized gas kinematics in the star formation regions of the supergiant shell (SGS) of the IC 2574 galaxy using observations with the Fabry-Perot interferometer at the 6-m telescope of SAO RAS; the data of the THINGS survey are used to analyze the neutral gas kinematics in the area. We perform the 'derotation' of the H-alpha and HI data cubes and show its efficiency in kinematics analysis. We confirm the SGS expansion velocity 25 km/s obtained by Walter & Brinks (1999) and conclude that the SGS is located at the far side of the galactic disc plane. We determine the expansion velocities, kinematic ages, and the required mechanical energy input rates for four star formation complexes in the walls of the SGS; for the remaining ones we give the limiting values of the above parameters. A comparison with the age and energy input of the complexes' stellar population shows that sufficient energy is fed to all HII regions except one. We discuss in detail the possible nature of this region and that of...

  2. Gas and dust in the star-forming region rho Oph A: The dust opacity exponent beta and the gas-to-dust mass ratio g2d

    E-Print Network [OSTI]

    Liseau, R; Lunttila, T; Olberg, M; Rydbeck, G; Bergman, P; Justtanont, K; Olofsson, G; de Vries, B L

    2015-01-01

    We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent beta for spatial and/or temporal variations. Using mapping observations of the very dense rho Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimeter (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+(J=3-2) and (J=6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution ...

  3. EXTENDED SCHMIDT LAW: ROLE OF EXISTING STARS IN CURRENT STAR...

    Office of Scientific and Technical Information (OSTI)

    We propose an 'extended Schmidt law' with explicit dependence of the star formation efficiency (SFE SFRMsub gas) on the stellar mass surface density (Sigmasub star). This...

  4. Neutral hydrogen gas, past and future star-formation in galaxies in and around the 'Sausage' merging galaxy cluster

    E-Print Network [OSTI]

    Stroe, Andra; Rottgering, Huub J A; Sobral, David; van Weeren, Reinout; Dawson, William

    2015-01-01

    CIZA J2242.8+5301 ($z = 0.188$, nicknamed 'Sausage') is an extremely massive ($M_{200}\\sim 2.0 \\times 10^{15}M_\\odot$ ), merging cluster with shock waves towards its outskirts, which was found to host numerous emission-line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope HI observations of the 'Sausage' cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission-line galaxies in the 'Sausage' cluster have, on average, as much HI gas as field galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large HI reservoirs are expected to be consumed within $\\sim0.75-1.0$ Gyr by the vigorous SF and AGN activity and/or driven out by t...

  5. Molecular gas and star formation towards the IR dust bubble S24 and its environs

    E-Print Network [OSTI]

    Cappa, C E; Firpo, V; Vasquez, J; López-Caraballo, C H; Rubio, M; Vazzano, M M

    2015-01-01

    We present a multi-wavelength analysis of the infrared dust bubble S24, and its environs, with the aim of investigating the characteristics of the molecular gas and the interstellar dust linked to them, and analyzing the evolutionary status of the young stellar objects (YSOs) identified there. Using APEX data, we mapped the molecular emission in the CO(2-1), $^{13}$CO(2-1), C$^{18}$O(2-1), and $^{13}$CO(3-2) lines in a region of about 5'x 5' in size around the bubble. The cold dust distribution was analyzed using ATLASGAL and Herschel images. Complementary IR and radio data were also used.The molecular gas linked to the S24 bubble, G341.220-0.213, and G341.217-0.237 has velocities between -48.0 km sec$^{-1}$ and -40.0 km sec$^{-1}$. The gas distribution reveals a shell-like molecular structure of $\\sim$0.8 pc in radius bordering the bubble. A cold dust counterpart of the shell is detected in the LABOCA and Herschel images.The presence of extended emission at 24 $\\mu$m and radio continuum emission inside the b...

  6. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    SciTech Connect (OSTI)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao; Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M.; Rosolowsky, Erik; Arce, Héctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Volgenau, Nikolaus H.; Shirley, Yancy L.; Tobin, John J.; Kwon, Woojin; Isella, Andrea; and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 ? 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ?150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ?0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  7. Star-forming regions at the periphery of the supershell surrounding the Cyg OB1 association. I. The star cluster vdB 130 and its ambient gas and dust medium

    E-Print Network [OSTI]

    Sitnik, T G; Lozinskaya, T A; Moiseev, A V; Rastorguev, A S; Tatarnikov, A M; Tatarnikova, A A; Wiebe, D S; Zabolotskikh, M V

    2015-01-01

    Stellar population and the interstellar gas-dust medium in the vicinity of the open star cluster vdB 130 are analysed using optical observations taken with the 6-m telescope of the SAO RAS and the 125-cm telescope of the SAI MSU along with the data of Spitzer and Herschel. Based on proper motions and BV and JHKs 2MASS photometric data, we select additional 36 stars as probable cluster members. Some stars in vdB 130 are classified as B stars. Our estimates of minimum colour excess, apparent distance modulus and the distance are consistent with young age (from 5 to 10 Myrs) of the cluster vdB 130. We suppose the large deviations from the conventional extinction law in the cluster direction, with $R_V$ ~ 4 - 5. The cluster vdB 130 appears to be physically related to the supershell around Cyg OB1, a cometary CO cloud, ionized gas, and regions of infrared emission. There are a few regions of bright mid-infrared emission in the vicinity of vdB 130. The largest of them is also visible on H-alpha and [SII] emission m...

  8. Xcel Energy (Electric and Gas) - Home Performance with ENERGY STAR Rebates

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed how savingDepartment ofFinalCapitan AsWes KelleyX-701B|

  9. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR 

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01

    to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today...

  10. Gas Giants in Hot Water: Inhibiting Giant Planet Formation and Planet Habitability in Dense Star Clusters Through Cosmic Time

    E-Print Network [OSTI]

    Thompson, Todd A

    2012-01-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies, and some globular clusters of the Galaxy likely exceeded the ice line temperature (T_Ice ~ 150-170 K) during formation for a time comparable to the planet formation timescale. The protoplanetary disks within these systems will thus not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive disks. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441, and 6388 should be devoid of giant planets. The characteris...

  11. Kinematics of Arp 270: gas flows, nuclear activity, and two regimes of star formation

    E-Print Network [OSTI]

    Zaragoza-Cardiel, J; Beckman, J E; Blasco-Herrera, J; García-Lorenzo, B; Camps, A; Gonzalez-Martin, O; Almeida, C Ramos; Loiseau, N; Gutiérrez, L

    2013-01-01

    We have observed the Arp 270 system (NGC 3395 & NGC 3396) in H{\\alpha} emission using the GH{\\alpha}FaS Fabry-Perot spectrometer on the 4.2m William Herschel Telescope (La Palma). In NGC 3396, which is edge-on to us, we detect gas inflow towards the centre, and also axially confined opposed outflows, characteristic of galactic superwinds, and we go on to examine the possibility that there is a shrouded AGN in the nucleus. The combination of surface brightness, velocity and velocity dispersion information enabled us to measure the radii, FWHM, and the masses of 108 HII regions in both galaxies. We find two distinct modes of physical behaviour, for high and lower luminosity regions. We note that the most luminous regions show especially high values for their velocity dispersions and hypothesize that these occur because the higher luminosity regions form from higher mass, gravitationally bound clouds while those at lower luminosity HII regions form within molecular clouds of lower mass, which are pressure co...

  12. Evaluation and Demonstration of BMPs for Cattle on Grazing Lands for the Lone Star Healthy Streams Program 

    E-Print Network [OSTI]

    Wagner, K.; Redmon, L.; Gentry, T.; Clary, C.

    2013-01-01

    Committee .......................................................... 9 Subtask 1.8 Development of the final project report ........................................................................... 9 Task 2: Quality Assurance... Report ? November 15, 2010 TWRI Submitted Quarter 2 Progress Report ? March 14, 2011 TWRI Submitted Quarter 3 Progress Report ? June 14, 2011 TWRI Submitted Quarter 4 Progress Report ? September 15, 2011 TWRI Submitted Quarter 5 Progress Report...

  13. A Study of Interstellar Gas and Stars in the Gravitationally Lensed Galaxy `The Cosmic Eye' from Rest-Frame Ultraviolet Spectroscopy

    E-Print Network [OSTI]

    Quider, Anna M; Pettini, Max; Steidel, Charles C; Stark, Daniel P

    2009-01-01

    We report the results of a study of the rest-frame UV spectrum of the Cosmic Eye, a luminous Lyman break galaxy at z=3.07331 gravitationally lensed by a factor of 25. The spectrum, recorded with the ESI spectrograph on the Keck II telescope, is rich in absorption features from the gas and massive stars in this galaxy. The interstellar absorption lines are resolved into two components of approximately equal strength and each spanning several hundred km/s in velocity. One component has a net blueshift of -70 km/s relative to the stars and H II regions and presumably arises in a galaxy-scale outflow similar to those seen in most star-forming galaxies at z = 2-3. The other is more unusual in showing a mean redshift of +350 km/s relative to the systemic redshift; possible interpretations include a merging clump, or material ejected by a previous star formation episode and now falling back onto the galaxy, or more simply a chance alignment with a foreground galaxy. In the metal absorption lines, both components onl...

  14. Global morphology and physical relations between the stars, gas and dust in the disc and arms of M100

    E-Print Network [OSTI]

    J. H. Knapen; J. E. Beckman

    1996-07-04

    We study star formation processes in the disc of the weakly barred grand design spiral galaxy M100 (NGC 4321) from a variety of images tracing recent massive star formation, old and young stars, dust, and neutral hydrogen. Differences between arm and interarm regions are specifically studied by decomposing the images into arm and non-arm zones. We find from a comparison of the morphology in H$\\alpha$, HI and dust that while the first two are coincident over most of the disc, they are offset from the dust lanes especially along the inner parts of the spiral arms: a picture which is indicative of a density wave shock moving through the arms. HI is formed near the young massive stars as a result of photo-dissociation. From radial profiles we find that in the region of the star-forming spiral arms the exponential scale lengths for H$\\alpha$, blue and near-infrared light, and 21 cm radio continuum are equal within the fitting errors. The scale lengths for the interarm region are also equal for all these tracers, but the arm scale lengths are significantly longer. This points to a common origin of the profiles in star formation, with little or no influence from radial population gradients or dust in the disc of this galaxy. The longer arm scale lengths are equivalent to an outwardly increasing arm-interarm contrast. We argue that the radial profiles of radio continuum and HI, as well as CO, are also directly regulated by star formation, and discuss the possible implications of this result for the interpretation of observed CO intensities in and outside spiral arms. We discuss the radial atomic hydrogen profile in some detail. Its almost perfectly flat shape in the region of the star-forming spiral arms may be explained by photodissociation and recombination processes in the presence of a limited

  15. Sgr A* and its Environment: Low Mass Star Formation, the Origin of X-ray Gas and Collimated Outflow

    E-Print Network [OSTI]

    Yusef-Zadeh, F; Schödel, R; Roberts, D A; Cotton, W; Bushouse, H; Arendt, R; Royster, M

    2016-01-01

    We present high-resolution multiwavelength radio continuum images of the region within 150$"$ of Sgr A*, revealing a number of new extended features and stellar sources in this region. First, we detect a continuous 2" east-west ridge of radio emission, linking Sgr A* and a cluster of stars associated with IRS 13N and IRS 13E. The ridge suggests that an outflow of east-west blob-like structures is emerging from Sgr A*. We also find arc-like features within the ridge with morphologies suggestive of photoevaporative protoplanetary disks. We use near-IR fluxes to show that the emission has similar characteristics to those of a protoplanetary disk irradiated by the intense radiation field at the Galactic center. This suggests that star formation has taken place within the S cluster 2$"$ from Sgr A*. We suggest that the diffuse X-ray emission associated with Sgr A* is due to an expanding hot wind produced by the mass loss from B-type main sequence stars, and/or the disks of photoevaporation of low mass YSOs at a ra...

  16. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    E-Print Network [OSTI]

    Funk, Barbara; Eggl, Siegfried

    2015-01-01

    Locating planets in HabitableZones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, gamma Cephei, HD 41004 and HD 196885. In the case of gamma Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target ...

  17. Large-scale shock-ionized and photo-ionized gas in M83: the impact of star formation

    E-Print Network [OSTI]

    Hong, Sungryong; Dopita, Michael A; Blair, William P; Whitmore, Bradley C; Balick, Bruce; Bond, Howard E; Carollo, Marcella; Disney, Michael J; Frogel, Jay A; Hall, Donald; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Paresce, Francesco; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Windhorst, Rogier A; Young, Erick T; Mutchler, Max

    2011-01-01

    We investigate the ionization structure of the nebular gas in M83 using the line diagnostic diagram, [O III](5007 \\degA)/H{\\beta} vs. [S II](6716 \\deg A+6731 \\deg A)/H{\\alpha} with the newly available narrowband images from the Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We produce the diagnostic diagram on a pixel-by-pixel (0.2" x 0.2") basis and compare it with several photo- and shock-ionization models. For the photo-ionized gas, we observe a gradual increase of the log([O III]/H{\\beta}) ratios from the center to the spiral arm, consistent with the metallicity gradient, as the H II regions go from super solar abundance to roughly solar abundance from the center out. Using the diagnostic diagram, we separate the photo-ionized from the shock-ionized component of the gas. We find that the shock-ionized H{\\alpha} emission ranges from ~2% to about 15-33% of the total, depending on the separation criteria used. An interesting feature in the diagnostic diagram is an horizontal distribution aro...

  18. Calloway Makes Sweet 16, Lone Oak Competes in DOE National Science Bowl |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministrationAward | Department

  19. Calloway Middle School Honored at DOE National Science Bowl, Lone Oak

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministrationAward | DepartmentCompetes

  20. Kepler-424 b: A 'lonely' hot Jupiter that found A companion

    SciTech Connect (OSTI)

    Endl, Michael; Caldwell, Douglas A.; Barclay, Thomas; Huber, Daniel; Havel, Mathieu; Howell, Steve B.; Quintana, Elisa; Isaacson, Howard; Buchhave, Lars A.; Brugamyer, Erik; Robertson, Paul; Cochran, William D.; MacQueen, Phillip J.; Lucas, Phillip; Fischer, Debra; Ciardi, David R.

    2014-11-10

    Hot Jupiter systems provide unique observational constraints for migration models in multiple systems and binaries. We report on the discovery of the Kepler-424 (KOI-214) two-planet system, which consists of a transiting hot Jupiter (Kepler-424b) in a 3.31 day orbit accompanied by a more massive outer companion in an eccentric (e = 0.3) 223 day orbit. The outer giant planet, Kepler-424c, is not detected transiting the host star. The masses of both planets and the orbital parameters for the second planet were determined using precise radial velocity (RV) measurements from the Hobby-Eberly Telescope (HET) and its High Resolution Spectrograph (HRS). In stark contrast to smaller planets, hot Jupiters are predominantly found to be lacking any nearby additional planets; they appear to be {sup l}onely{sup .} This might be a consequence of these systems having a highly dynamical past. The Kepler-424 planetary system has a hot Jupiter in a multiple system, similar to ? Andromedae. We also present our results for Kepler-422 (KOI-22), Kepler-77 (KOI-127), Kepler-43 (KOI-135), and Kepler-423 (KOI-183). These results are based on spectroscopic data collected with the Nordic Optical Telescope (NOT), the Keck 1 telescope, and HET. For all systems, we rule out false positives based on various follow-up observations, confirming the planetary nature of these companions. We performed a comparison with planetary evolutionary models which indicate that these five hot Jupiters have heavy element contents between 20 and 120 M {sub ?}.

  1. Bondi-Hoyle Accretion in Dense Star Clusters: Implications for Stars, Disks, and Planets

    E-Print Network [OSTI]

    Throop, Henry

    may take XX years to collapse, accrete mass, and begin fusion. Star formation in the cluster continuesBondi-Hoyle Accretion in Dense Star Clusters: Implications for Stars, Disks, and Planets Draft the Bondi-Hoyle accretion of gas from a GMC onto young star- disk systems in a cluster. This post

  2. Stellar Evolution: from star birth to star death and back again

    E-Print Network [OSTI]

    Cohen, David

    through the fusion of light elements into heavy ones #12;As stars age, they produce energy by fusionStellar Evolution: from star birth to star death and back again Prof. David Cohen Dept. of Physics old stars, as well as the interstellar gas that connects them. Some of this material is taken from one

  3. Excavation of the first stars

    E-Print Network [OSTI]

    Toshikazu Shigeyama; Takuji Tsujimoto; Yuzuru Yoshii

    2003-02-17

    The external pollution of the first stars in the Galaxy is investigated. The first stars were born in clouds composed of the pristine gas without heavy elements. These stars accreted gas polluted with heavy elements while they still remained in the cloud. As a result, it is found that they exhibit a distribution with respect to the surface metallicity. We have derived the actual form of this distribution function. This metallicity distribution function strongly suggests that the recently discovered most metal-deficient star HE0107-5240 with [Fe/H]=-5.3 was born as a metal-free star and accreted gas polluted with heavy elements. Thus the heavy elements such as Fe in HE0107-5240 must have been supplied from supernovae of later generations exploding inside the cloud in which the star had been formed. The elemental abundance pattern on the surface of stars suffering from such an external pollution should not be diverse but exhibit the average pattern of numerous supernovae. Future observations for a number of metal-deficient stars with [Fe/H]<-5 will be able to prove or disprove this external pollution scenario. Other possibilities to produce a star with this metallicity are also discussed.

  4. Electron lone pair distortion facilitated metal-insulator transition in ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires

    SciTech Connect (OSTI)

    Wangoh, L.; Quackenbush, N. F.; Marley, P. M.; Banerjee, S.; Sallis, S.; Fischer, D. A.; Woicik, J. C.; Piper, L. F. J.

    2014-05-05

    The electronic structure of ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires has been studied with x-ray photoelectron spectroscopy techniques. The recent synthesis of defect-free ?-Pb{sub 0.33}V{sub 2}O{sub 5} nanowires resulted in the discovery of an abrupt voltage-induced metal insulator transition. First principle calculations predicted an additional V-O-Pb hybridized “in-gap” state unique to this vanadium bronze playing a significant role in facilitating the transition. We confirm the existence, energetic position, and orbital character of the “in-gap” state. Moreover, we reveal that this state is a hybridized Pb 6s–O 2p antibonding lone pair state resulting from the asymmetric coordination of the Pb{sup 2+} ions.

  5. Searching for gas giant planets on Solar System scales - A NACO/APP L'-band survey of A- and F-type Main Sequence stars

    E-Print Network [OSTI]

    Meshkat, T; Reggiani, M; Quanz, S P; Mamajek, E E; Meyer, M R

    2015-01-01

    We report the results of a direct imaging survey of A- and F-type main sequence stars searching for giant planets. A/F stars are often the targets of surveys, as they are thought to have more massive giant planets relative to solar-type stars. However, most imaging is only sensitive to orbital separations $>$30 AU, where it has been demonstrated that giant planets are rare. In this survey, we take advantage of the high-contrast capabilities of the Apodizing Phase Plate coronagraph on NACO at the Very Large Telescope. Combined with optimized principal component analysis post-processing, we are sensitive to planetary-mass companions (2 to 12 $M_{\\rm Jup}$) at Solar System scales ($\\leq$30 AU). We obtained data on 13 stars in L'-band and detected one new companion as part of this survey: an M$6.0\\pm0.5$ dwarf companion around HD 984. We re-detect low-mass companions around HD 12894 and HD 20385, both reported shortly after the completion of this survey. We use Monte Carlo simulations to determine new constraints...

  6. ENERGY STAR Certified Homes, Version 3 (Rev. 07) National Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with electric backup or ENERGY STAR certified dual-fuel backup heating, OR; Ground-source heat pump, any product type, ENERGY STAR certified 18 90 AFUE gas furnace,...

  7. Star Formation in the Local Milky Way

    E-Print Network [OSTI]

    Lada, Charles J

    2015-01-01

    Studies of molecular clouds and young stars near the sun have provided invaluable insights into the process of star formation. Indeed, much of our physical understanding of this topic has been derived from such studies. Perhaps the two most fundamental problems confronting star formation research today are: 1) determining the origin of stellar mass and 2) deciphering the nature of the physical processes that control the star formation rate in molecular gas. As I will briefly outline here, observations and studies of local star forming regions are making particularly significant contributions toward the solution of both these important problems.

  8. STARS no star on Kauai

    SciTech Connect (OSTI)

    Jones, M.

    1993-04-01

    The island of Kuai, home to the Pacific Missile Range Facility, is preparing for the first of a series of Star Wars rocket launches expected to begin early this year. The Strategic Defense Initiative plans 40 launches of the Stategic Target System (STARS) over a 10-year period. The focus of the tests appears to be weapons and sensors designed to combat multiple-warhead ICBMs, which will be banned under the START II Treaty that was signed in January. The focus of this article is to express the dubious value of testing the STARS at a time when their application will not be an anticipated problem.

  9. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  10. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  11. PECO Energy (Gas)- Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The PECO Smart Natural Gas Efficiency Upgrade Program offers rebates and incentives to commercial or residential customers that install an ENERGY STAR qualified high-efficiency natural gas furna...

  12. Water in Low-Mass Star-Forming Regions with Herschel: The Link Between Water Gas and Ice in Protostellar Envelopes

    E-Print Network [OSTI]

    Schmalzl, M; Walsh, C; Albertsson, T; van Dishoeck, E F; Kristensen, L E; Mottram, J C

    2014-01-01

    Aims: Our aim is to determine the critical parameters in water chemistry and the contribution of water to the oxygen budget by observing and modelling water gas and ice for a sample of eleven low-mass protostars, for which both forms of water have been observed. Methods: A simplified chemistry network, which is benchmarked against more sophisticated chemical networks, is developed that includes the necessary ingredients to determine the water vapour and ice abundance profiles in the cold, outer envelope in which the temperature increases towards the protostar. Comparing the results from this chemical network to observations of water emission lines and previously published water ice column densities, allows us to probe the influence of various agents (e.g., FUV field, initial abundances, timescales, and kinematics). Results: The observed water ice abundances with respect to hydrogen nuclei in our sample are 30-80ppm, and therefore contain only 10-30% of the volatile oxygen budget of 320ppm. The keys to reprodu...

  13. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  14. Engineering Physics - 4 

    E-Print Network [OSTI]

    Unknown

    2005-06-29

    not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered...

  15. Social networks for lonely objects

    E-Print Network [OSTI]

    Kestner, John Anthony

    2010-01-01

    Visions of ubiquitous computing describe a network of devices that quietly supports human goals, but this may also add complexity to an already frustrating relationship between humans and their electronic objects. As we ...

  16. Nucleosynthesis in barium stars

    E-Print Network [OSTI]

    Trimble, V; Trimble, V

    1984-01-01

    problem of apparent nucleosynthesis in barium stars, thoughSE24 9JF. Astronomy Nucleosynthesis in barium stars fromopportunity to see that nucleosynthesis really is taking

  17. Gas & Galaxy Evolution ASP Conference Series, Vol. **VOLUME**, 2000

    E-Print Network [OSTI]

    Mihos, Chris

    Gas & Galaxy Evolution ASP Conference Series, Vol. **VOLUME**, 2000 J. E. Hibbard, M. P. Rupen and J. H. van Gorkom, eds. Gas/Star O#11;sets in Tidal Tails J. C. Mihos Case Western Reserve University, Cleveland, OH 44106 Abstract. We use numerical simulations to study the development of gas/star o#11;sets

  18. When Stars Blow Up What Stars Explode?

    E-Print Network [OSTI]

    Walter, Frederick M.

    When Stars Blow Up #12;What Stars Explode? ·Cataclysmic variables ·Novae ·Supernovae #12;Cataclysmic Variables ·Binary star systems incorporating a white dwarf ·Outbursts due to disk instabilities the temperature reaches a few MK, fusion begins ·Degenerate fusion is a runaway. ·All the H fuses to He

  19. Preserving chemical signatures of primordial star formation in the first low-mass stars

    E-Print Network [OSTI]

    Ji, Alexander P; Bromm, Volker

    2015-01-01

    We model early star forming regions and their chemical enrichment by Population III (Pop III) supernovae with nucleosynthetic yields featuring high [C/Fe] ratios and pair-instability supernova (PISN) signatures. We aim to test how well these chemical abundance signatures are preserved in the gas prior to forming the first long-lived low-mass stars (or second-generation stars). Our results show that second-generation stars can retain the nucleosynthetic signature of their Pop III progenitors, even in the presence of nucleosynthetically normal Pop III core-collapse supernovae. We find that carbon-enhanced metal-poor stars are likely second-generation stars that form in minihaloes. Furthermore, it is likely that the majority of Pop III supernovae produce high [C/Fe] yields. In contrast, metals ejected by a PISN are not concentrated in the first star forming haloes, which may explain the absence of observed PISN signatures in metal-poor stars. We also find that unique Pop III abundance signatures in the gas are q...

  20. Molecular Gas in Elliptical Galaxies

    E-Print Network [OSTI]

    L. M. Young

    2000-09-05

    The distribution and kinematics of the molecular gas in elliptical galaxies give information on the origin and history of the gas and the rate of star formation activity in ellipticals. I describe some preliminary results of a survey which will more than double the number of elliptical galaxies with resolved molecular distributions.

  1. STAR FORMATION IN TWO LUMINOUS SPIRAL GALAXIES

    SciTech Connect (OSTI)

    Hunter, Deidre A.; Ashburn, Allison; Wright, Teresa; Elmegreen, Bruce G.; Rubin, Vera C.; Józsa, Gyula I. G.; Struve, Christian

    2013-10-01

    We examined star formation in two very luminous (M{sub V} = –22 to –23) Sc-type spiral galaxies, NGC 801 and UGC 2885, using ultra-deep H? images. We combine these H? images with UBV and Two-Micron All-Sky Survey JHK images and H I maps to explore the star formation characteristics of disk galaxies at high luminosity. H? traces star formation in these galaxies to 4-6 disk scale lengths, but the lack of detection of H? further out is likely due to the loss of Lyman continuum photons. Considering gravitational instabilities alone, we find that the gas and stars in the outer regions are marginally stable in an average sense, but considering dissipative gas and radial and azimuthal forcing, the outer regions are marginally unstable to forming spiral arms. Star formation is taking place in spiral arms, which are regions of locally higher gas densities. Furthermore, we have traced smooth exponential stellar disks over four magnitudes in V-band surface brightness and 4-6 disk scale lengths, in spite of a highly variable gravitational instability parameter. Thus, gravitational instability thresholds do not seem relevant to the stellar disk. One possibility for creating an exponential disk is that the molecular cloud densities and star formation rates have exponential profiles and this fact forces the stellar disk to build up such a profile. Another possibility is that the stellar disk is continuously adjusted to an exponential shape regardless of the star formation profile, for example, through global dynamical processes that scatter stars. However, such scattering processes are only known to operate in spiral systems, in which case they cannot explain the same dilemma of smooth exponential disks observed in dwarf irregular galaxies.

  2. SUPPRESSION OF STAR FORMATION IN NGC 1266

    SciTech Connect (OSTI)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M.; Lacy, Mark; Lonsdale, Carol J.; Nyland, Kristina; Meier, David S.; Cales, Sabrina L.; Chang, Philip; Davis, Timothy A.; De Zeeuw, P. T.; Martín, Sergio

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}?110 M{sub ?} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ?} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (? 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (?{sub SFR}) to the gas surface density (?{sub H{sub 2}}) indicates that SF is suppressed by a factor of ?50 compared to normal star-forming galaxies if all gas is forming stars, and ?150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-? relation.

  3. National Program Requirements ENERGY STAR Certified Homes, Version...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80 AFUE boiler, 8.2 HSPF 14.5 SEER 12 EER air-source heat pump with electric or dual-fuel backup 90 AFUE gas furnace, 85 AFUE ENERGY STAR oil furnace, 85 AFUE...

  4. Selecting Thermal Storage Systems for Schools 

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01

    per meter + KWH charge. On peak monthly average (June 89 thru September 89) $.0676/KWH. Off peak monthly average (October 89 thru May 90) $.0481/KWH. Natural Gas - Lone Star Gas Company - September 88 thru August 89 monthly average $4.41 MCF...

  5. The Number of Planets Around Stars

    E-Print Network [OSTI]

    Noam Soker

    1997-06-24

    Based on the large number of elliptical planetary nebulae I argue that about 55 per cent of all progenitors of planetary nebulae have planets around them. The planets spin up the stars when the later evolve along the red giant branch or along the asymptotic giant branch. The arguments, which were presented in several of my earlier works, and are summarized in the paper, suggest that the presence of four gas-giant planets in the solar system is the generality rather than the exception. I here continue and: (1) examine the possibility of detecting signatures of surviving Saturn-like planets inside planetary nebulae, and, (2) propose a model by which the second parameter of the horizontal branch, which determines the distribution of horizontal branch stars in the HR diagram, is the presence of planets. A red giant branch star that interacts with a planet will lose a large fraction of its envelope and will become a blue horizontal branch star.

  6. Star-ND (Multi-Dimensional Star-Identification) 

    E-Print Network [OSTI]

    Spratling, Benjamin

    2012-07-16

    of iterations of the run-time algorithm. The associated algorithms, star pattern parameters, and database preparation are collectively referred to as Multi-dimensional Star-Identification (Star-ND). The star pattern parameters developed may also be extended...

  7. Planetary Nebula Planetary Nebula Planetary Nebula The bright glowing outer layers of gas

    E-Print Network [OSTI]

    Bechtold, Jill

    produced by fusion and in the heat of the explosion are scattered into space. Mass: 3 - 60 SM Star from a red giant star. The explosion occurs when the hydrogen fuel in the core is depleted. Mass: 0.5 - 1.0 SM StarPower Points: 5 The bright glowing outer layers of gas ejected from a red giant star

  8. Could the Ultra Metal-poor Stars be Chemically Peculiar and Not Related to the First Stars?

    E-Print Network [OSTI]

    K. A. Venn; D. L. Lambert

    2008-01-04

    Chemically peculiar stars define a class of stars that show unusual elemental abundances due to stellar photospheric effects and not due to natal variations. In this paper, we compare the elemental abundance patterns of the ultra metal-poor stars with metallicities [Fe/H] $\\sim -5 $ to those of a subclass of chemically peculiar stars. These include post-AGB stars, RV Tauri variable stars, and the Lambda Bootis stars, which range in mass, age, binarity, and evolutionary status, yet can have iron abundance determinations as low as [Fe/H] $\\sim -5$. These chemical peculiarities are interpreted as due to the separation of gas and dust beyond the stellar surface, followed by the accretion of dust depleted-gas. Contrary to this, the elemental abundances in the ultra metal-poor stars are thought to represent yields of the most metal-poor supernova and, therefore, observationally constrain the earliest stages of chemical evolution in the Universe. The abundance of the elements in the photospheres of the ultra metal-poor stars appear to be related to the condensation temperature of that element; if so, then their CNO abundances suggest true metallicities of [X/H]~ -2 to -4, rather than their present metallicities of [Fe/H] < -5.

  9. STAR FORMATION AROUND SUPERGIANT SHELLS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Book, Laura G.; Chu Youhua; Gruendl, Robert A.; Fukui, Yasuo

    2009-03-15

    We examine the recent star formation associated with four supergiant shells in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects reveal the current ongoing star formation. Distributions of ionized H I and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.

  10. The Biological and Molecular Analysis of a Tick-Encoded Serine Protease Inhibitor (S6) and its Role in the Feeding Cycle of the Lone Star Tick, Amblyomma americanum (L) (Acari: ixodidae) 

    E-Print Network [OSTI]

    Chalaire, Katelyn Cox

    2011-10-21

    silencing of S6 and S6/S17 mRNA was achieved, post-transcriptional gene knockdown had no effect on tick feeding efficiency or fecundity. These findings have been discussed in regards to the development of a vaccine against A. americanum and necessary future...

  11. The Quarkyonic Star

    E-Print Network [OSTI]

    Kenji Fukushima; Toru Kojo

    2015-11-10

    We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid-gas (or liquid-vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC-BCS scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass-radius relation of the neutron star and constraints on parameters in the proposed scheme.

  12. The Quarkyonic Star

    E-Print Network [OSTI]

    Fukushima, Kenji

    2015-01-01

    We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid-gas (or liquid-vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC-BCS scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass-radius relation of the neutron star and constraints on parameters in the proposed sc...

  13. The Quarkyonic Star

    E-Print Network [OSTI]

    Kenji Fukushima; Toru Kojo

    2015-09-01

    We discuss theoretical scenarios on crossover between nuclear matter (NM) and quark matter (QM). We classify various possibilities into three major scenarios according to the onset of diquark degrees of freedom that characterizes color-superconducting (CSC) states. In the conventional scenario NM occurs at the liquid-gas (or liquid-vacuum at zero temperature) phase transition and QM occurs next, after which CSC eventually appears. With the effect of strong correlation, the BEC-BCS scenario implies that CSC occurs next to NM and QM comes last in the BCS regime. We adopt the quarkyonic scenario in which NM, QM, and CSC are theoretically indistinguishable and thus these names refer to not distinct states but relevant descriptions of the same physical system. Based on this idea we propose a natural scheme to interpolate NM near normal nuclear density and CSC with vector coupling at high baryon density. We finally discuss the mass-radius relation of the neutron star and constraints on parameters in the proposed scheme.

  14. Metal-Poor Stars

    E-Print Network [OSTI]

    Anna Frebel

    2008-02-13

    The abundance patterns of metal-poor stars provide us a wealth of chemical information about various stages of the chemical evolution of the Galaxy. In particular, these stars allow us to study the formation and evolution of the elements and the involved nucleosynthesis processes. This knowledge is invaluable for our understanding of the cosmic chemical evolution and the onset of star- and galaxy formation. Metal-poor stars are the local equivalent of the high-redshift Universe, and offer crucial observational constraints on the nature of the first stars. This review presents the history of the first discoveries of metal-poor stars that laid the foundation to this field. Observed abundance trends at the lowest metallicities are described, as well as particular classes of metal-poor stars such as r-process and C-rich stars. Scenarios on the origins of the abundances of metal-poor stars and the application of large samples of metal-poor stars to cosmological questions are discussed.

  15. Implications of modes of star formation for the overall dynamics of galactic disks

    E-Print Network [OSTI]

    B. Fuchs

    2001-03-22

    One of the present concepts for the onset of massive star formation is the Kennicutt criterion. This relates the onset of massive star formation to a general gravitational instability of the gas disks of spiral galaxies. It is often overlooked, however that such gravitational instabilities of the gas disks have severe implications for the overall stability of the gas and star disks of spiral galaxies. I show by numerical simulations of the evolution of a combined gas and star disk that the violation of the stability condition induces violent dynamical evolution of the combined system. In particular the star disk heats up on time scales less than a Gyr to unrealistic high values of the Toomre stability parameter Q. The morphologies of both the star and gas disk resemble then no longer observed morphologies of spiral galaxies. Star formation of stars on low velocity dispersion orbits would lead to dynamical cooling of the disks to more realistic states. However, the required star formation rate is extremely high.

  16. Chemical Evolution of the Galactic Halo through Supernova-Induced Star Formation and Its Implication for Population III Stars

    E-Print Network [OSTI]

    Takuji Tsujimoto; Toshikazu Shigeyama; Yuzuru Yoshii

    1999-05-06

    A model for Galactic chemical evolution, driven by supernova-induced star formation, is formulated and used to examine the nature of the Galactic halo at early epochs. In this model, new stars are formed following each supernova event, thus their abundance pattern is determined by the combination of heavy elements ejected from the supernova itself and those elements which are already present in the interstellar gas swept up by the supernova remnant. The end result is a prediction of large scatter in the abundance ratios among low-metallicity stars, reflecting a different nucleosynthesis yield for each Type II supernova with a different progenitor mass. Formation of new stars is terminated when supernova remnants sweep up too little gas to form shells. We show from calculations based on the above scenario that (i) the observed [Fe/H] distribution for the Galactic halo field stars can be reproduced without effectively decreasing the heavy-element yields from Type II supernovae by some manipulation required by previous models (e.g., via mass loss from the early Galaxy, or later mixing with ``pristine'' hydrogen clouds), (ii) the large observed scatter in the abundance ratio [Eu/Fe] for the most metal-poor stars can also be reproduced, and (iii) the frequency distribution of stars in the [Eu/Fe]-[Fe/H] plane can be predicted. Our model suggests that the probability of identifying essentially metal-free stars (Population III) in the local halo is around one in 10^{3-4}, provided that star formation in the halo is confined to individual gas clouds with mass of 10^{6-7} Msun and that the initial mass function of metal-free stars is not significantly different from the Salpeter mass function.

  17. Massive stars and the energy balance of the ISM. I. The impact of an isolated 60 Msun star

    E-Print Network [OSTI]

    Tim Freyer; Gerhard Hensler; Harold W. Yorke

    2003-06-25

    We present results of numerical simulations carried out with a 2D radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 Msun star. The interaction of the photoionized HII region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in HII regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the HII region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star's lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%. Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  18. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36?670839.3

    E-Print Network [OSTI]

    Keller, S. C.

    The element abundance ratios of four low-mass stars with extremely low metallicities (abundances of elements heavier than helium) indicate that the gas out of which the stars formed was enriched in each case by at most a ...

  19. Compressed Gas EHS-2200-WEB

    E-Print Network [OSTI]

    Compressed Gas Safety EHS-2200-WEB Register and launch through http://axess.stanford.edu Course title and STARS number: General Safety & Emergency Preparedness EHS-4200-WEB Chemical Safety for Laboratories EHS-1900-WEB Biosafety EHS-1500-WEB Radiation Safety Training EHS-5250 Laser Safety EHS-4820-WEB

  20. arXiv:astro-ph/010224014Feb2001 A dusty torus around the luminous young star LkH 101

    E-Print Network [OSTI]

    Tuthill, Peter

    , thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star[3arXiv:astro-ph/010224014Feb2001 A dusty torus around the luminous young star LkH 101 Peter G. A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first

  1. Star Formation in Mergers and Interacting Galaxies: Gathering the Fuel

    E-Print Network [OSTI]

    Curtis Struck

    2006-10-06

    Selected results from recent studies of star formation in galaxies at different stages of interaction are reviewed. Recent results from the Spitzer Space Telescope are highlighted. Ideas on how large-scale driving of star formation in interacting galaxies might mesh with our understanding of star formation in isolated galaxies and small scale mechanisms within galaxies are considered. In particular, there is evidence that on small scales star formation is determined by the same thermal and turbulent processes in cool compressed clouds as in isolated galaxies. If so, this affirms the notion that the primary role of large-scale dynamics is to gather and compress the gas fuel. In gas-rich interactions this is generally done with increasing efficiency through the merger process.

  2. The neutron star mass distribution

    E-Print Network [OSTI]

    Kiziltan, B; Kottas, A; De Yoreo, M; Thorsett, SE

    2013-01-01

    Science Library, Vol. 326, Neutron Stars 1 : Equation ofBlack holes, white dwarfs, and neutron stars: The physics ofPhys. Rev. , 55, 364 The Neutron Star Mass Distribution van

  3. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  4. Dark Stars: A Review

    E-Print Network [OSTI]

    Katherine Freese; Tanja Rindler-Daller; Douglas Spolyar; Monica Valluri

    2015-01-10

    Dark Stars (DS) are stellar objects made (almost entirely) of ordinary atomic material but powered by the heat from Dark Matter (DM) annihilation (rather than by fusion). Weakly Interacting Massive Particles (WIMPs), among the best candidates for DM, can be their own antimatter and can accumulate inside the star, with their annihilation products thermalizing with and heating the DS. The resulting DSs are in hydrostatic and thermal equilibrium. The first phase of stellar evolution in the history of the Universe may have been dark stars. Though DM constituted only $star, this amount was sufficient to power the star for millions to billions of years. Depending on their DM environment, early DSs can become very massive ($>10^6 M_\\odot$), very bright ($>10^9 L_\\odot$), and potentially detectable with the James Webb Space Telescope (JWST). Once the DM runs out and the dark star dies, it may collapse to a black hole; thus DSs can provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses DSs existing today but focuses on the early generation of dark stars.

  5. Bare Quark Stars or Naked Neutron Stars ? The Case of RX J1856.5-3754

    E-Print Network [OSTI]

    Roberto Turolla; Silvia Zane; Jeremy J. Drake

    2003-11-21

    In a cool neutron star (T 1.e13 G), a phase transition may occur in the outermost layers. As a consequence the neutron star becomes `bare', i.e. no gaseous atmosphere sits on the top of the crust. The surface of a cooling, bare neutron star does not necessarily emit a blackbody spectrum because the emissivity is strongly suppressed at energies below the electron plasma frequency, omega_p. Since omega_p ~ 1 keV under the conditions typical of the denseelectron gas in the condensate, the emission from a T ~ 100 eV bare neutron star will be substantially depressed with respect to that of a perfect Planckian radiator at most energies. Here we present a detailed analysis of the emission properties of a bare neutron star. In particular, we derive the surface emissivity for a Fe composition in a range of magnetic fields and temperatures representative of cooling isolated neutron stars, like RX J1856.5-3754. We find that the emitted spectrum is strongly dependent on the electron conductivity in the solid surface layers. In the cold electron gas approximation (no electron-lattice interactions), the spectrum turns out to be a featureless depressed blackbody in the 0.1-2 keV band with a steeper low-energy distribution. When damping effects due to collisions between electrons and the ion lattice (mainly due to electron-phonon interactions) are accounted for, the spectrum is more depressed depending on the magnetic field strength. Details of the emitted spectrum are found, however, to be strongly dependent of the assumed treatment of the transition from the external vacuum to the metallic surface. The implications of out results to RX J1856.5-3754 and other isolated neutron stars are discussed.

  6. Precipitation-Regulated Star Formation in Galaxies

    E-Print Network [OSTI]

    Voit, G Mark; O'Shea, Brian W; Donahue, Megan

    2015-01-01

    Galaxy growth depends critically on the interplay between radiative cooling of cosmic gas and the resulting energetic feedback that cooling triggers. This interplay has proven exceedingly difficult to model, even with large supercomputer simulations, because of its complexity. Nevertheless, real galaxies are observed to obey simple scaling relations among their primary observable characteristics. Here we show that a generic emergent property of the interplay between cooling and feedback can explain the observed scaling relationships between a galaxy's stellar mass, its total mass, and its chemical enrichment level, as well as the relationship between the average orbital velocity of its stars and the mass of its central black hole. These relationships naturally result from any feedback mechanism that strongly heats a galaxy's circumgalactic gas in response to precipitation of colder clouds out of that gas, because feedback then suspends the gas in a marginally precipitating state.

  7. Home Performance with ENERGY STAR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that support expanded participation in the Home Performance with ENERGY STAR Program. Our Vision Home Performance with ENERGY STAR is accessible to all American households....

  8. Neutron Stars and Fractal Dimensionality

    E-Print Network [OSTI]

    Burra G. Sidharth

    2008-05-06

    We argue that the material inside Neutron stars behaves anomalously with fractal statistics and that in principle, we could induce mini Neutron stars, with the release of energy.

  9. Young star clusters in the circumnuclear region of NGC 2110

    SciTech Connect (OSTI)

    Durré, Mark; Mould, Jeremy, E-mail: mdurre@swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia)

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ?} yr{sup –1}. The photoionized gas (He I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ?}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.

  10. Analysis of Star Formation in Galaxy-like Objects

    E-Print Network [OSTI]

    Patricia B. Tissera

    1999-12-20

    Using cosmological hydrodynamical simulations, we investigate the effects of hierarchical aggregation on the triggering of star formation in galactic-like objects. We include a simple star formation model to transform the cold gas in dense regions into stars. Simulations with different parameters have been performed in order to quantify the dependence of the results on the parameters. We then resort to stellar population synthesis models to trace the color evolution of each object with red-shift and in relation to their merger histories. We find that, in a hierarchical clustering scenario, the process of assembling of the structure is one natural mechanism that may trigger star formation. The resulting star formation rate history for each individual galactic object is composed of a continuous one ($\\leq 3 \\rm{M_{\\odot}/yr}$) and a series of star bursts. We find that even the accretion of a small satellite can be correlated with a stellar burst. Massive mergers are found to be more efficient at transforming gas into stars

  11. Rising Stars 2015 3 Rising Stars

    E-Print Network [OSTI]

    Kastner, Marc A.

    such an esteemed group of women in computer science and electrical engineering. The Rising Stars program gives you part!" --Cynthia Barnhart Chancellor Ford Professor of Engineering Massachusetts Institute women in computer science and electrical engineering globally.You will help lead research, education

  12. Relics of metal-free low mass stars exploding as thermonuclear supernovae

    E-Print Network [OSTI]

    Takuji Tsujimoto; Toshikazu Shigeyama

    2006-01-16

    Renewed interest in the first stars that were formed in the universe has led to the discovery of extremely iron-poor stars. Since several competing scenarios exist, our understanding of the mass range that determines the observed elemental abundances remains unclear. In this study, we consider three well-studied metal-poor stars in terms of the theoretical supernovae (SNe) model. Our results suggest that the observed abundance patterns in the metal-poor star BD +80 245 and the pair of stars HD 134439/40 agree strongly with the theoretical possibility that these stars inherited their heavy element abundance patterns from SNe initiated by thermonuclear runaways in the degenerate carbon-oxygen cores of primordial asymptotic giant branch stars with \\~3.5-5 solar masses. Recent theoretical calculations have predicted that such SNe could be originated from metal-free stars in the intermediate mass range. On the other hand, intermediate mass stars containing some metals would end their lives as white dwarfs after expelling their envelopes in the wind due to intense momentum transport from outgoing photons to heavy elements. This new pathway for the formation of SNe requires that stars are formed from the primordial gas. Thus, we suggest that stars of a few solar masses were formed from the primordial gas and that some of them caused thermonuclear explosions when the mass of their degenerate carbon-oxygen cores increased to the Chandrasekhar limit without experiencing efficient mass loss.

  13. Linking the Metallicity Distribution of Galactic Halo Stars to the Enrichment History of the Universe

    E-Print Network [OSTI]

    Evan Scannapieco; Tom Broadhurst

    2001-02-06

    We compare the metallicity distribution of Galactic Halo stars with 3D realizations of hierarchical galaxy formation. Outflows from dwarf galaxies enrich the intergalactic medium inhomogeneously, at a rate depending on the local galaxy density. Consequently, the first stars created in small early-forming galaxies are less metal-rich that the first stars formed in more massive galaxies which typically form later. As most halo stars are likely to originate in accreted dwarfs, while disk stars formed out of outflow-enriched gas, this scenario naturally generates a ``metallicity floor'' for old disk stars, which we find to be roughly coincident with the higher end of our predicted metallicity distribution of halo stars, in agreement with observations. The broad and centrally peaked distribution of halo star metallicities is well reproduced in our models, with a natural dispersion depending on the exact accretion history. Our modeling includes the important ``baryonic stripping'' effect of early outflows, which brush away the tenuously held gas in neighboring pre-virialized density perturbations. This stripping process does not significantly modify the predicted shape of the halo star metal distribution but inhibits star-formation and hence the number of accreted stars, helping to reproduce the observed total Galactic halo luminosity and also the lack of low-luminosity local dwarf galaxies relative to N-body predictions.

  14. Planets around active stars

    E-Print Network [OSTI]

    J. Setiawan; P. Weise; Th. Henning; A. P. Hatzes; L. Pasquini; L. da Silva; L. Girardi; O. von der Luhe; M. P. Dollinger; A. Weiss; K. Biazzo

    2007-04-17

    We present the results of radial velocity measurements of two samples of active stars. The first sample contains field G and K giants across the Red Giant Branch, whereas the second sample consists of nearby young stars (d 1999 - 2002) and continued since 2003 at 2.2 m MPG/ESO telescope. We observed stellar radial velocity variations which originate either from the stellar activity or the presence of stellar/substellar companions. By means of a bisector technique we are able to distinguish the sources of the radial velocity variation. Among them we found few candidates of planetary companions, both of young stars and G-K giants sample.

  15. One hundred first stars: Protostellar evolution and the final masses

    SciTech Connect (OSTI)

    Hirano, Shingo; Umeda, Hideyuki [Department of Astronomy, School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Hosokawa, Takashi [Department of Physics and Research Center for the Early Universe, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Yoshida, Naoki; Chiaki, Gen [Department of Physics, School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Omukai, Kazuyuki [Astronomical Institute, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Yorke, Harold W., E-mail: hirano@astron.s.u-tokyo.ac.jp [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-02-01

    We perform a large set of radiation hydrodynamic simulations of primordial star formation in a fully cosmological context. Our statistical sample of 100 First Stars shows that the first generation of stars has a wide mass distribution M {sub popIII} = 10 ? 1000 M {sub ?}. We first run cosmological simulations to generate a set of primordial star-forming gas clouds. We then follow protostar formation in each gas cloud and the subsequent protostellar evolution until the gas mass accretion onto the protostar is halted by stellar radiative feedback. The accretion rates differ significantly among the primordial gas clouds that largely determine the final stellar masses. For low accretion rates, the growth of a protostar is self-regulated by radiative feedback effects, and the final mass is limited to several tens of solar masses. At high accretion rates the protostar's outer envelope continues to expand, and the effective surface temperature remains low; such protostars do not exert strong radiative feedback and can grow in excess of 100 solar masses. The obtained wide mass range suggests that the first stars play a variety of roles in the early universe, by triggering both core-collapse supernovae and pair-instability supernovae as well as by leaving stellar mass black holes. We find certain correlations between the final stellar mass and the physical properties of the star-forming cloud. These correlations can be used to estimate the mass of the first star from the properties of the parent cloud or of the host halo without following the detailed protostellar evolution.

  16. Hypernuclear Physics for Neutron Stars

    E-Print Network [OSTI]

    Jurgen Schaffner-Bielich

    2008-01-24

    The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

  17. Masers and star formation

    E-Print Network [OSTI]

    Vincent L. Fish

    2007-04-02

    Recent observational and theoretical advances concerning astronomical masers in star forming regions are reviewed. Major masing species are considered individually and in combination. Key results are summarized with emphasis on present science and future prospects.

  18. Notes on Star Formation

    E-Print Network [OSTI]

    Krumholz, Mark R

    2015-01-01

    This book provides an introduction to the field of star formation at a level suitable for graduate students or advanced undergraduates in astronomy or physics. The structure of the book is as follows. The first two chapters begin with a discussion of observational techniques, and the basic phenomenology they reveal. The goal is to familiarize students with the basic techniques that will be used throughout, and to provide a common vocabulary for the rest of the book. The next five chapters provide a similar review of the basic physical processes that are important for star formation. Again, the goal is to provide a basis for what follows. The remaining chapters discuss star formation over a variety of scales, starting with the galactic scale and working down to the scales of individual stars and their disks. The book concludes with a brief discussion of the clearing of disks and the transition to planet formation. The book includes five problem sets, complete with solutions.

  19. ENERGY STAR Product Rebates

    Broader source: Energy.gov [DOE]

    When mail-in rebates are active, as a general rule, all appliances must be ENERGY STAR rated; however, additional requirements may apply to different types of appliances. Rebate requests must...

  20. Accretion of dust grains as a possible origin of metal-poor stars with low alpha/Fe ratios

    E-Print Network [OSTI]

    Toshikazu Shigeyama; Takuji Tsujimoto

    2003-10-10

    The origin of low alpha/Fe ratios in some metal-poor stars, so called low-alpha stars, is discussed. It is found that most of low-alpha stars in the Galaxy are on the main-sequence. This strongly suggests that these stars suffered from external pollution. It is also found that the abundance ratios Zn/Fe of low-alpha stars both in the Galaxy and in dwarf spheroidal galaxies are lower than the average value of Galactic halo stars whereas damped Ly alpha absorbers have higher ratios. This implies that some low-alpha stars accreted matter depleted from gas onto dust grains. To explain the features in these low-alpha stars, we have proposed that metal-poor stars harboring planetary systems are the origin of these low-alpha stars. Stars engulfing a small fraction of planetesimals enhance the surface content of Fe to exhibit low alpha/Fe ratios on their surfaces while they are on the main-sequence, because dwarfs have shallow surface convection zones where the engulfed matter is mixed. After the stars leave the main-sequence, the surface convection zones become deeper to reduce the enhancement of Fe. Eventually, when the stars ascend to the tip of the red giant branch, they engulf giant planets to become low-alpha stars again as observed in dwarf spheroidal galaxies. We predict that low-alpha stars with low Mn/Fe ratios harbor planetary systems.

  1. Star Formation History of Omega Centauri Imprinted in Elemental Abundance Patterns

    E-Print Network [OSTI]

    Takuji Tsujimoto; Toshikazu Shigeyama

    2003-02-15

    The star formation history of the globular cluster Omega Centauri is investigated in the context of an inhomogeneous chemical evolution model in which supernovae induce star formation. The proposed model explains recent observations for Omega Cen stars, and divides star formation into three epochs. At the end of the first epoch, ~ 70% of the gas was expelled by supernovae. AGB stars then supplied s-process elements to the remaining gas during the first interval of ~300 Myr. This explains the observed sudden increase in Ba/Fe ratios in Omega Cen stars at [Fe/H] ~ -1.6. Supernovae at the end of the second epoch were unable to expel the gas. Eventually, Type Ia supernovae initiated supernova-induced star formation, and remaining gas was stripped when the cluster passed through the newly formed disk of the Milky Way. The formation of Omega Cen is also discussed in the framework of globular cluster formation triggered by cloud-cloud collisions. In this scenario, the relative velocity of clouds in the collision determines the later chemical evolution in the clusters. A head-on collision of proto-cluster clouds with a low relative velocity would have converted less than 1% of gas into stars and promoted the subsequent chemical evolution by supernova-driven star formation. This is consistent with present observed form of Omega Cen. In contrast, the other Galactic globular clusters are expected to have formed from more intense head-on collisions, and the resultant clouds would have been too thin for supernovae to accumulate enough gas to form the next generation of stars. This explains the absence of chemical evolution in these other globular clusters.

  2. Holographic Neutron Stars

    E-Print Network [OSTI]

    Jan de Boer; Kyriakos Papadodimas; Erik Verlinde

    2009-07-23

    We construct in the context of the AdS/CFT correspondence degenerate composite operators in the conformal field theory that are holographically dual to degenerate stars in anti de Sitter space. We calculate the effect of the gravitational back-reaction using the Tolman-Oppenheimer-Volkoff equations, and determine the "Chandrasekhar limit" beyond which the star undergoes gravitational collapse towards a black hole.

  3. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  4. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  5. Helium enhancements in globular cluster stars from Asymptotic Giant Branch star pollution

    E-Print Network [OSTI]

    Amanda Karakas; Yeshe Fenner; Alison Sills; Simon Campbell; John Lattanzio

    2006-05-21

    Using a chemical evolution model we investigate the intriguing suggestion that there are populations of stars in some globular clusters (e.g. NGC 2808, omega Centauri) with enhanced levels of helium (Y from about 0.28 to 0.40) compared to the majority of the population that presumably have a primordial helium abundance. We assume that a previous generation of massive low-metallicity Asymptotic Giant Branch (AGB) stars has polluted the cluster gas via a slow stellar wind. We use two independent sets of AGB yields computed from detailed models to follow the evolution of helium, carbon, nitrogen and oxygen in the cluster gas using a Salpeter initial mass function (IMF) and a number of top-heavy IMFs. In no case were we able to fit the observational constraints, Y > 0.30 and C+N+O approximately constant. Depending on the shape of the IMF and the yields, we either obtained Y approximately greater than 0.30 and large increases in C+N+O or Y < 0.30 and C+N+O approximately constant. These results suggest that either AGB stars alone are not responsible for the large helium enrichment or that any dredge-up from this generation of stars was less than predicted by standard models.

  6. COALESCING NEUTRON STARS AS GAMMA RAY BURSTERS ?

    E-Print Network [OSTI]

    M. Ruffert; H. -Th. Janka; W. Keil; G. Schaefer

    1995-03-06

    We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the `Piecewise Parabolic Method' However, we do include the effects of the emission of gravitational waves on the hydrodynamics. The properties of neutron star matter are described by the equation of state of Lattimer & Swesty. In addition to the fundamental hydrodynamic quantities, density, momentum, and energy, we follow the time evolution of the electron density in the stellar gas. Energy losses and changes of the electron abundance due to the emission of neutrinos are taken into account by an elaborate ``neutrino leakage scheme'', which employs a careful calculation of the lepton number and energy source terms of all neutrino types. The grid is Cartesian and equidistant with a resolution of 64**3 or 128**3, which allows us to calculate the self-gravity via fast Fourier transforms.

  7. Massive stars formed in atomic hydrogen reservoirs: HI observations of gamma-ray burst host galaxies

    E-Print Network [OSTI]

    Micha?owski, Micha? J; Hjorth, J; Krumholz, M R; Tanvir, N R; Kamphuis, P; Burlon, D; Baes, M; Basa, S; Berta, S; Ceron, J M Castro; Crosby, D; D'Elia, V; Elliott, J; Greiner, J; Hunt, L K; Klose, S; Koprowski, M P; Floc'h, E Le; Malesani, D; Murphy, T; Guelbenzu, A Nicuesa; Palazzi, E; Rasmussen, J; Rossi, A; Savaglio, S; Schady, P; Sollerman, J; Postigo, A de Ugarte; Watson, D; van der Werf, P; Vergani, S D; Xu, D

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line-of-sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought, with star formation being potentially directly fuelled by atomic gas (or with very efficient HI-to-H2 conversion and rapid exhaustion of molecular gas), as has been theoretically shown to be possible. This can happen in low metallicity gas near the onset of star forma...

  8. Segue 1 - A Compressed Star Formation History Before Reionization

    E-Print Network [OSTI]

    Webster, David; Bland-Hawthorn, Joss

    2015-01-01

    Segue 1 is the current best candidate for a "first galaxy", a system which experienced only a single short burst of star formation and has since remained unchanged. Here we present possible star formation scenarios which can explain its unique metallicity distribution. While the majority of stars in all other ultra-faint dwarfs (UFDs) are within 0.5 dex of the mean [Fe/H] for the galaxy, 5 of the 7 stars in Segue 1 have a spread of $\\Delta$[Fe/H] $>0.8$ dex. We show that this distribution of metallicities canot be explained by a gradual build-up of stars, but instead requires clustered star formation. Chemical tagging allows the separate unresolved delta functions in abundance space to be associated with discrete events in space and time. This provides an opportunity to put the enrichment events into a time sequence and unravel the history of the system. We investigate two possible scenarios for the star formation history of Segue 1 using Fyris Alpha simulations of gas in a $10^7$ M$_\\odot$ dark matter halo. ...

  9. I-Love relation for incompressible stars and realistic stars

    E-Print Network [OSTI]

    T. K. Chan; Atma P. O. Chan; P. T. Leung

    2014-11-26

    In spite of the diversity in the equations of state of nuclear matter, the recently discovered I-Love-Q relations [Yagi and Yunes, Science {\\bf 341}, 365 (2013)], which relate the moment of inertia, tidal Love number (deformability) and the spin-induced quadrupole moment of compact stars, hold for various kinds of realistic neutron stars and quark stars. While the physical origin of such universality is still a current issue, the observation that the I-Love-Q relations of incompressible stars can well approximate those of realistic compact stars hints at a new direction to approach the problem. In this paper, by establishing recursive post-Minkowskian expansion for the moment of inertia and the tidal deformability of incompressible stars, we analytically derive the I-Love relation for incompressible stars and show that the so obtained formula can be used to accurately predict the behavior of realistic compact stars from the Newtonian limit to the maximum mass limit.

  10. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see...

  11. Extent of pollution in planet-bearing stars

    E-Print Network [OSTI]

    S. -L. Li; D. N. C. Lin; X. -W. Liu

    2008-02-17

    (abridged) Search for planets around main-sequence (MS) stars more massive than the Sun is hindered by their hot and rapidly spinning atmospheres. This obstacle has been sidestepped by radial-velocity surveys of those stars on their post-MS evolutionary track (G sub-giant and giant stars). Preliminary observational findings suggest a deficiency of short-period hot Jupiters around the observed post MS stars, although the total fraction of them with known planets appears to increase with their mass. Here we consider the possibility that some very close- in gas giants or a population of rocky planets may have either undergone orbital decay or been engulfed by the expanding envelope of their intermediate-mass host stars. If such events occur during or shortly after those stars' main sequence evolution when their convection zone remains relatively shallow, their surface metallicity can be significantly enhanced by the consumption of one or more gas giants. We show that stars with enriched veneer and lower-metallicity interior follow slightly modified evolution tracks as those with the same high surface and interior metallicity. As an example, we consider HD149026, a marginal post MS 1.3 Msun star. We suggest that its observed high (nearly twice solar) metallicity may be confined to the surface layer as a consequence of pollution by the accretion of either a planet similar to its known 2.7-day-period Saturn-mass planet, which has a 70 Mearth compact core, or a population of smaller mass planets with a comparable total amount of heavy elements. It is shown that an enhancement in surface metallicity leads to a reduction in effective temperature, in increase in radius and a net decrease in luminosity. The effects of such an enhancement are not negligible in the determinations of the planet's radius based on the transit light curves.

  12. Pre-main sequence stars, emission stars and recent star formation in the Cygnus Region

    E-Print Network [OSTI]

    Bhavya B; Blesson Mathew; Annapurni Subramaniam

    2008-04-09

    The recent star formation history in the Cygnus region is studied using 5 clusters (IC 4996, NGC 6910, Berkeley 87, Biurakan 2 and Berkeley 86). The optical data from the literature are combined with the 2MASS data to identify the pre-main sequence (pre-MS) stars as stars with near IR excess. We identified 93 pre-MS stars and 9 stars with H$_\\alpha$ emission spectra. The identified pre-MS stars are used to estimate the turn-on age of the clusters. The duration of star formation was estimated as the difference between the turn-on and the turn-off age. We find that, NGC 6910 and IC 4996 have been forming stars continuously for the last 6 -- 7 Myr, Berkeley 86 and Biurakan 2 for 5 Myr and Berkeley 87 for the last 2 Myr. This indicates that the Cygnus region has been actively forming stars for the last 7 Myr, depending on the location. 9 emission line stars were identified in 4 clusters, using slit-less spectra (Be 87 - 4 stars; Be 86 - 2 stars, NGC 6910 - 2 stars and IC 4996 - 1 star). The individual spectra were obtained and analysed to estimate stellar as well as disk properties. All the emission stars are in the MS, well below the turn-off, in the core hydrogen burning phase. These stars are likely to be Classical Be (CBe) stars. Thus CBe phenomenon can be found in very young MS stars which are just a few (2 -- 7) Myrs old. This is an indication that CBe phenomenon need not be an evolutionary effect.

  13. Cool Stars in Hot Places

    E-Print Network [OSTI]

    S. T. Megeath; E. Gaidos; J. J. Hester; F. C. Adams; J. Bally; J. -E. Lee; S. Wolk

    2007-04-08

    During the last three decades, evidence has mounted that star and planet formation is not an isolated process, but is influenced by current and previous generations of stars. Although cool stars form in a range of environments, from isolated globules to rich embedded clusters, the influences of other stars on cool star and planet formation may be most significant in embedded clusters, where hundreds to thousands of cool stars form in close proximity to OB stars. At the cool stars 14 meeting, a splinter session was convened to discuss the role of environment in the formation of cool stars and planetary systems; with an emphasis on the ``hot'' environment found in rich clusters. We review here the basic results, ideas and questions presented at the session. We have organized this contribution into five basic questions: what is the typical environment of cool star formation, what role do hot star play in cool star formation, what role does environment play in planet formation, what is the role of hot star winds and supernovae, and what was the formation environment of the Sun? The intention is to review progress made in addressing each question, and to underscore areas of agreement and contention.

  14. The interstellar medium and star formation in local galaxies: Variations of the star formation law in simulations

    SciTech Connect (OSTI)

    Becerra, Fernando; Escala, Andrés, E-mail: fbecerra@cfa.harvard.edu [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2014-05-01

    We use the adaptive mesh refinement code Enzo to model the interstellar medium (ISM) in isolated local disk galaxies. The simulation includes a treatment for star formation and stellar feedback. We get a highly supersonic turbulent disk, which is fragmented at multiple scales and characterized by a multi-phase ISM. We show that a Kennicutt-Schmidt relation only holds when averaging over large scales. However, values of star formation rates and gas surface densities lie close in the plot for any averaging size. This suggests an intrinsic relation between stars and gas at cell-size scales, which dominates over the global dynamical evolution. To investigate this effect, we develop a method to simulate the creation of stars based on the density field from the snapshots, without running the code again. We also investigate how the star formation law is affected by the characteristic star formation timescale, the density threshold, and the efficiency considered in the recipe. We find that the slope of the law varies from ?1.4 for a free-fall timescale, to ?1.0 for a constant depletion timescale. We further demonstrate that a power law is recovered just by assuming that the mass of the new stars is a fraction of the mass of the cell m {sub *} = ??{sub gas}?x {sup 3}, with no other physical criteria required. We show that both efficiency and density threshold do not affect the slope, but the right combination of them can adjust the normalization of the relation, which in turn could explain a possible bi-modality in the law.

  15. Gas Mask 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas...

  16. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA) [Castro Valley, CA; Page, Ralph H. (Castro Valley, CA) [Castro Valley, CA; Ebbers, Christopher A. (Livermore, CA) [Livermore, CA; Beach, Raymond J. (Livermore, CA) [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  17. A Star on Earth

    ScienceCinema (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-06-06

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  18. A Star on Earth

    SciTech Connect (OSTI)

    Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed

    2014-03-05

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.

  19. Synthetic guide star generation

    SciTech Connect (OSTI)

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  20. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. Star Formation in Isolated Disk Galaxies. II. Schmidt Laws and Efficiency of Gravitational Collapse

    E-Print Network [OSTI]

    Yuexing Li; Mordecai-Mark Mac Low; Ralf S. Klessen

    2006-02-21

    (Abridged). We model gravitational instability in a wide range of isolated disk galaxies, using GADGET, a three-dimensional, smoothed particle hydrodynamics code. The model galaxies include a dark matter halo and a disk of stars and isothermal gas. The global Schmidt law observed in disk galaxies is quantitatively reproduced by our models. We find that the surface density of star formation rate directly correlates with the strength of local gravitational instability. The local Schmidt laws of individual galaxies in our models show clear evidence of star formation thresholds. Our results suggest that the non-linear development of gravitational instability determines the local and global Schmidt laws, and the star formation thresholds.

  3. The Abundance Distribution in the Extrasolar-Planet Host Star HD19994

    E-Print Network [OSTI]

    Verne V. Smith; Katia Cunha; Daniela Lazzaro

    2001-03-04

    Abundances of 22 elements have been determined from a high-resolution, high signal-to-noise spectrum of HD19994, a star recently announced as harboring an extrasolar planet. A detailed spectroscopic analysis of this stars finds it to have a mass of 1.2+/-0.1Msun. HD19994 is found to be slightly enriched in "metals" relative to the Sun 9[Fe/H]=+0.09+/-0.05 and an average of all metals of [m/H]=+0.13), as are most stars known with extrasolar planets. In a search for possible signatures of accretion of metal-rich gas onto the parent stars (using HD19994 and published abundances for other stars), it is found that a small subset of stars with planets exhibit a trend of increasing [X/H] with increasing condensation temperature for a given element X. This trend may point to the accretion of chemically fractionated solid material into the outer (thin) convection zones of these solar-type stars. It is also found that this small group of stars exhibiting an accretion signature all have large planets orbiting much closer than is found, in general, for stars with planets not showing this peculiar abundance trend, suggesting a physical link between accretion and orbital separation. In addition, the stars showing evidence of fractionated accretion are, on average, of larger mass (1.2Msun) than stars not showing measurable evidence of accretion (1.0Msun).

  4. The Austin Energy Star Program 

    E-Print Network [OSTI]

    Seiter, D. L.

    1988-01-01

    The Austin Energy Star Program is an Austin-specific energy rating system implemented in July, 1985. Since the first builders joined the program, Energy Star has gone through significant improvements vithout changing the fundamental marketing theme...

  5. Neutron stars - cooling and transport

    E-Print Network [OSTI]

    Potekhin, A Y; Page, Dany

    2015-01-01

    Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.

  6. Radial stability in stratified stars

    E-Print Network [OSTI]

    Pereira, Jonas P

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting two any phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case.

  7. Radial stability in stratified stars

    E-Print Network [OSTI]

    Jonas P. Pereira; Jorge A. Rueda

    2015-01-12

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting two any phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case.

  8. High-gravity central stars

    E-Print Network [OSTI]

    Thomas Rauch

    2006-07-11

    NLTE spectral analyses of high-gravity central stars by means of state-of-the-art model atmosphere techniques provide information about the precursor AGB stars. The hydrogen-deficient post-AGB stars allow investigations on the intershell matter which is apparently exhibited at the stellar surface. We summarize recent results from imaging, spectroscopy, and spectropolarimetry.

  9. Spectral Modeling Hot Star Winds

    E-Print Network [OSTI]

    Cohen, David

    Spectral Modeling of X-Rays from Hot Star Winds Emma Wollman Advisor: David Cohen #12;Hot Stars ·· Short-livedShort-lived (~ 1-10 million yrs)(~ 1-10 million yrs) #12;Stellar Winds · Net momentum · More luminosity !"stronger wind · Mass-loss rate determines the fate of the star #12;X-ray Production

  10. Massive Hybrid Stars with Strangeness

    E-Print Network [OSTI]

    Tatsuyuki Takatsuka; Tetsuo Hatsuda; Kota Masuda

    2014-02-19

    How massive the hybrid stars could be is discussed by a "3-window model" proposed from a new strategy to construct the equation of state with hadron-quark transition. It is found that hybrid stars have a strong potentiality to generate a large mass compatible with two-solar-mass neutron star observations.

  11. Energy generation in stars

    E-Print Network [OSTI]

    B. V. Vasiliev

    2001-10-29

    It is a current opinion that thermonuclear fusion is the main source of the star activity. It is shown below that this source is not unique. There is another electrostatic mechanism of the energy generation which accompanies thermonuclear fusion. Probably, this approach can solve the solar neutrino problem.

  12. Isolating Triggered Star Formation

    E-Print Network [OSTI]

    Elizabeth J. Barton; Jacob A. Arnold; Andrew R. Zentner; James S. Bullock; Risa H. Wechsler

    2007-08-21

    Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majority of galaxies in close pairs reside within cluster or group-size halos and therefore represent a biased population, poorly suited for direct comparison to ``field'' galaxies. Thus, the frequent observation that some types of galaxies in pairs have redder colors than ``field'' galaxies is primarily a selection effect. We select galaxy pairs that are isolated in their dark matter halos with respect to other massive subhalos (N=2 halos) and a control sample of isolated galaxies (N=1 halos) for comparison. We then apply these selection criteria to a volume-limited subset of the 2dF Galaxy Redshift Survey with M_Bj ~ 5 above their average past value, while only 10% of isolated galaxies in the control sample show this level of enhancement. Thus, 14% (20 %) of the galaxies in these close pairs show clear triggered star formation. The isolation criteria we develop provide a means to constrain star formation and feedback prescriptions in hydrodynamic simulations and a very general method of understanding the importance of triggered star formation in a cosmological context. (Abridged.)

  13. Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view

    E-Print Network [OSTI]

    Hu, Chia-Yu; Walch, Stefanie; Glover, Simon C O; Clark, Paul C

    2015-01-01

    We study the connection of star formation to atomic (HI) and molecular hydrogen (H$_2$) in isolated, low metallicity dwarf galaxies with high-resolution ($m_{\\rm gas}$ = 4 M$_\\odot$, $N_{\\rm ngb}$ = 100) SPH simulations. The model includes self-gravity, non-equilibrium cooling, shielding from an interstellar radiation field, the chemistry of H$_2$ formation, H$_2$-independent star formation, supernova feedback and metal enrichment. We find that the H$_2$ mass fraction is sensitive to the adopted dust-to-gas ratio and the strength of the interstellar radiation field, while the star formation rate is not. Star formation is regulated by stellar feedback, keeping the gas out of thermal equilibrium for densities $n HI, not H$_2...

  14. Stellar signatures of AGN-jet-triggered star formation

    SciTech Connect (OSTI)

    Dugan, Zachary; Silk, Joseph; Bryan, Sarah; Gaibler, Volker; Haas, Marcel

    2014-12-01

    To investigate feedback between relativistic jets emanating from active galactic nuclei and the stellar population of the host galaxy, we analyze the long-term evolution of the orbits of the stars formed in the galaxy-scale simulations by Gaibler et al. of jets in massive, gas-rich galaxies at z ? 2-3. We find strong, jet-induced differences in the resulting stellar populations of galaxies that host relativistic jets and galaxies that do not, including correlations in stellar locations, velocities, and ages. Jets are found to generate distributions of increased radial and vertical velocities that persist long enough to effectively augment the stellar structure of the host. The jets cause the formation of bow shocks that move out through the disk, generating rings of star formation within the disk. The bow shock often accelerates pockets of gas in which stars form, yielding populations of stars with significant radial and vertical velocities, some of which have large enough velocities to escape the galaxy. These stellar population signatures can serve to identify past jet activity as well as jet-induced star formation.

  15. Revealing the nature of star forming blue early-type galaxies at low redshift

    E-Print Network [OSTI]

    George, Koshy

    2015-01-01

    Context: Star forming early-type galaxies with blue optical colours at low redshift can be used to test our current understanding of galaxy formation and evolution. Aims: We want to reveal the fuel and triggering mechanism for star formation in these otherwise passively evolving red and dead stellar systems. Methods: We undertook an optical and ultraviolet study of 55 star forming blue early-type galaxies, searching for signatures of recent interactions that could be driving the molecular gas into the galaxy and potentially triggering the star formation. Results: We report here our results on star forming blue early-type galaxies with tidal trails and in close proximity to neighbouring galaxies that are evidence of ongoing or recent interactions between galaxies. There are 12 galaxies with close companions with similar redshifts, among which two galaxies are having ongoing interactions that potentially trigger the star formation. Two galaxies show a jet feature that could be due to the complete tidal disrupti...

  16. The small and the beautiful: How the star formation law affects galactic disk structure

    E-Print Network [OSTI]

    Braun, Harald

    2015-01-01

    We investigate the influence of different analytical parameterizations and fit functions for the local star formation rate in AMR simulations of an isolated disk galaxy with the Nyx code. Such parameterizations express the star formation efficiency as function of the local turbulent Mach number and viral parameter. By employing the method of adaptively refined large eddy simulations, we are able to evaluate these physical parameters from the numerically unresolved turbulent energy associated with the grid scale. We consider both single and multi free-fall variants of star formation laws proposed by Padoan & Nordlund, Hennebelle & Chabrier, and Krumholz & McKee. We find that the global star formation rate and the relation between the local star formation rate and the gas column density is reproduced in agreement with observational constraints by all multi free-fall models of star formation. Some models with obsolete calibration or a single free-fall time scale, however, result in an overly clumpy d...

  17. On star formation in primordial protoglobular clouds

    E-Print Network [OSTI]

    Paolo Padoan; Raul Jimenez; Bernard Jones

    1996-04-11

    Using a new physical model for star formation (Padoan 1995) we have tested the possibility that globular clusters (GCs) are formed from primordial mass fluctuations, whose mass scale ($10^8$ - $10^9$ M$_{\\odot}$) is selected out of a CDM spectrum by the mechanism of non-equilibrium formation of $H_2$. We show that such clouds are able to convert about 0.003 of their total mass into a bound system (GC) and about 0.02 into halo stars. The metal enriched gas is dispersed away from the GC by supernova explosions and forms the galactic disk. These mass ratios between GCs, halo and disk depend on the predicted IMF which is a consequence of the universal statistics of fluid turbulence. They also depend on the ratio of baryonic over non-baryonic mass ,$X_b$, and are comparable with the values observed in typical spiral galaxies for $X_b \\approx 0.1-0.2$. The computed mass and radius for a GC ( $5\\times 10^5$ M$_{\\odot}$ and 30 pc) are in good agreement with the average values in the Galaxy. The model predicts an exponential cut off in the stellar IMF below 0.1 M$_{\\odot}$ in GCs and 0.6 M$_{\\odot}$ in the halo. The quite massive star formation in primordial clouds leads to a large number of supernovae and to a high blue luminosity during the first two Gyr of the life of every galaxy.

  18. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  19. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect (OSTI)

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  2. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  3. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    SciTech Connect (OSTI)

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  4. Accretion of dust grains as a possible origin of metal-poor stars with low alpha/Fe ratios

    E-Print Network [OSTI]

    Shigeyama, T; Shigeyama, Toshikazu; Tsujimoto, Takuji

    2003-01-01

    The origin of low alpha/Fe ratios in some metal-poor stars, so called low-alpha stars, is discussed. It is found that most of low-alpha stars in the Galaxy are on the main-sequence. This strongly suggests that these stars suffered from external pollution. It is also found that the abundance ratios Zn/Fe of low-alpha stars both in the Galaxy and in dwarf spheroidal galaxies are lower than the average value of Galactic halo stars whereas damped Ly alpha absorbers have higher ratios. This implies that some low-alpha stars accreted matter depleted from gas onto dust grains. To explain the features in these low-alpha stars, we have proposed that metal-poor stars harboring planetary systems are the origin of these low-alpha stars. Stars engulfing a small fraction of planetesimals enhance the surface content of Fe to exhibit low alpha/Fe ratios on their surfaces while they are on the main-sequence, because dwarfs have shallow surface convection zones where the engulfed matter is mixed. After the stars leave the main...

  5. Carbon-enhanced metal-poor stars: relics from the dark ages

    SciTech Connect (OSTI)

    Cooke, Ryan J.; Madau, Piero, E-mail: rcooke@ucolick.org [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2014-08-20

    We use detailed nucleosynthesis calculations and a realistic prescription for the environment of the first stars to explore the first episodes of chemical enrichment that occurred during the dark ages. Based on these calculations, we propose a novel explanation for the increased prevalence of carbon-enhanced metal-poor (CEMP) stars with decreasing Fe abundance: the observed chemistry for the most metal-poor Galactic halo stars is the result of an intimate link between the explosions of the first stars and their host minihalo's ability to retain its gas. Specifically, high-energy supernovae produce a near solar ratio of C/Fe, but are effective in evacuating the gas from their host minihalo, thereby suppressing the formation of a second generation of stars. On the other hand, minihalos that host low-energy supernovae are able to retain their gas and form a second stellar generation, but, as a result, the second stars are born with a supersolar ratio of C/Fe. Our models are able to accurately reproduce the observed distributions of [C/Fe] and [Fe/H], as well as the fraction of CEMP stars relative to non-CEMP stars as a function of [Fe/H] without any free parameters. We propose that the present lack of chemical evidence for very massive stars (? 140 M {sub ?}) that ended their lives as a highly energetic pair-instability supernova does not imply that such stars were rare or did not exist; the chemical products of these very massive first stars may have been evacuated from their host minihalos and were never incorporated into subsequent generations of stars. Finally, our models suggest that the most Fe-poor stars currently known may have seen the enrichment from a small multiple of metal-free stars, and need not have been exclusively enriched by a solitary first star. These calculations also add further support to the possibility that some of the surviving dwarf satellite galaxies of the Milky Way are the relics of the first galaxies.

  6. NIHAO III: The constant disc gas mass conspiracy

    E-Print Network [OSTI]

    Stinson, G S; Wang, L; Macciò, A V; Herpich, J; Bradford, J D; Quinn, T R; Wadsley, J; Keller, B

    2015-01-01

    We show that the cool gas masses of galactic discs reach a steady state that lasts many Gyr after their last major merger in cosmological hydrodynamic simulations. The mass of disc gas, M$_{\\rm gas}$, depends upon a galaxy halo's spin and virial mass, but not upon stellar feedback. Halos with low spin have high star formation efficiency and lower disc gas mass. Similarly, lower stellar feedback leads to more star formation so the gas mass ends up nearly the same irregardless of stellar feedback strength. Even considering spin, the M$_{\\rm gas}$ relation with halo mass, M$_{200}$ only shows a factor of 3 scatter. The M$_{\\rm gas}$--M$_{200}$ relation show a break at M$_{200}$=$2\\times10^{11}$ M$_\\odot$ that corresponds to an observed break in the M$_{\\rm gas}$--M$_\\star$ relation. The constant disc mass stems from a shared halo gas density profile in all the simulated galaxies. In their outer regions, the profiles are isothermal. Where the profile rises above $n=10^{-3}$ cm$^{-3}$, the gas readily cools and th...

  7. DETAILED ABUNDANCES OF TWO VERY METAL-POOR STARS IN DWARF GALAXIES

    SciTech Connect (OSTI)

    Kirby, Evan N.; Cohen, Judith G.

    2012-12-01

    The most metal-poor stars in dwarf spheroidal galaxies (dSphs) can show the nucleosynthetic patterns of one or a few supernovae (SNe). These SNe could have zero metallicity, making metal-poor dSph stars the closest surviving links to Population III stars. Metal-poor dSph stars also help to reveal the formation mechanism of the Milky Way (MW) halo. We present the detailed abundances from Keck/HIRES spectroscopy for two very metal-poor stars in two MW dSphs. One star, in the Sculptor dSph, has [Fe I/H] = -2.40. The other star, in the Ursa Minor dSph, has [Fe I/H] = -3.16. Both stars fall in the previously discovered low-metallicity, high-[{alpha}/Fe] plateau. Most abundance ratios of very metal-poor stars in these two dSphs are largely consistent with very metal-poor halo stars. However, the abundances of Na and some r-process elements lie at the lower end of the envelope defined by inner halo stars of similar metallicity. We propose that the metallicity dependence of SN yields is the cause. The earliest SNe in low-mass dSphs have less gas to pollute than the earliest SNe in massive halo progenitors. As a result, dSph stars at -3 < [Fe/H] < -2 sample SNe with [Fe/H] << -3, whereas halo stars in the same metallicity range sample SNe with [Fe/H] {approx} -3. Consequently, enhancements in [Na/Fe] and [r/Fe] were deferred to higher metallicity in dSphs than in the progenitors of the inner halo.

  8. Magnetic fields in massive stars

    E-Print Network [OSTI]

    S. Hubrig; M. Schoeller; M. Briquet; M. A. Pogodin; R. V. Yudin; J. F. Gonzalez; T. Morel; P. De Cat; R. Ignace; P. North; G. Mathys; G. J. Peters

    2007-12-02

    We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

  9. Magnetic fields in massive stars

    E-Print Network [OSTI]

    Hubrig, S; Briquet, M; Pogodin, M A; Yudin, R V; González, J F; Morel, T; De Cat, P; Ignace, R; North, P; Mathys, G; Peters, G J

    2007-01-01

    We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.

  10. Creating a Star on Earth

    Office of Energy Efficiency and Renewable Energy (EERE)

    At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: creating a star on Earth.

  11. The H II Region of a Primordial Star

    SciTech Connect (OSTI)

    Abel, Tom; Wise, John H.; /KIPAC, Menlo Park; Bryan, Greg L.; /Columbia U., Astron. Astrophys.

    2006-06-07

    The concordance model of cosmology and structure formation predicts the formation of isolated very massive stars at high redshifts in dark matter dominated halos of 10{sup 5} to 10{sup 6} Msun. These stars photo-ionize their host primordial molecular clouds, expelling all the baryons from their halos. When the stars die, a relic H II region is formed within which large amounts of molecular hydrogen form which will allow the gas to cool efficiently when gravity assembles it into larger dark matter halos. The filaments surrounding the first star hosting halo are largely shielded and provide the pathway for gas to stream into the halo when the star has died. We present the first fully three dimensional cosmological radiation hydrodynamical simulations that follow all these effects. A novel adaptive ray casting technique incorporates the time dependent radiative transfer around point sources. This approach is fast enough so that radiation transport, kinetic rate equations, and hydrodynamics are solved self-consistently. It retains the time derivative of the transfer equation and is explicitly photon conserving. This method is integrated with the cosmological adaptive mesh refinement code enzo, and runs on distributed and shared memory parallel architectures. Where applicable the three dimensional calculation not only confirm expectations from earlier one dimensional results but also illustrate the multi-fold hydrodynamic complexities of H II regions. In the absence of stellar winds the circumstellar environments of the first supernovae and putative early gamma-ray bursts will be of low density {approx}1 cm{sup -3}. Albeit marginally resolved, ionization front instabilities lead to cometary and elephant trunk like small scale structures reminiscent of nearby star forming regions.

  12. Texaco T-STAR Process for ebullated bed hydrotreating/hydrocracking

    SciTech Connect (OSTI)

    Johns, W.F.; Kaufman, H. (Texaco Development Corp., Bellaire, TX (United States)); Clausen, G.; Nongbri, G. (Texaco Research and Development, Port Arthur, TX (United States))

    1993-01-01

    Texaco has developed an ebullated bed hydrotreater/hydrocracker process called the T-STAR Process. This process is based upon the well known residuum H-Oil[reg sign] Process and Texaco's fixed bed hydrotreating/hydrocracking technology experience. T-STAR is ideally suited for hard to process feedstocks and for difficult processing requirements for the 90's such as FCCU feed pretreating, gas oil hydrocracking, and diesel aromatics reduction. The T-STAR reactors can be used in-line as hydrotreaters/hydrocrackers within an H-Oil[reg sign] unit. Pilot plant data are presented for several reactor/process configurations as well as commercial data and yields for a heavy gas oil operation. Texaco and HRI are offering the T-STAR Process to refiners for license and use.

  13. Environmental regulation of cloud and star formation in galactic bars

    E-Print Network [OSTI]

    Renaud, F; Emsellem, E; Agertz, O; Athanassoula, E; Combes, F; Elmegreen, B; Kraljic, K; Motte, F; Teyssier, R

    2015-01-01

    The strong time-dependence of the dynamics of galactic bars yields a complex and rapidly evolving distribution of dense gas and star forming regions. Although bars mainly host regions void of any star formation activity, their extremities can gather the physical conditions for the formation of molecular complexes and mini-starbursts. Using a sub-parsec resolution hydrodynamical simulation of a Milky Way-like galaxy, we probe these conditions to explore how and where bar (hydro-)dynamics favours the formation or destruction of molecular clouds and stars. The interplay between the kpc-scale dynamics (gas flows, shear) and the parsec-scale (turbulence) is key to this problem. We find a strong dichotomy between the leading and trailing sides of the bar, in term of cloud fragmentation and in the age distribution of the young stars. After orbiting along the bar edge, these young structures slow down at the extremities of the bar, where orbital crowding increases the probability of cloud-cloud collision. We find tha...

  14. Cavitation from bulk viscosity in neutron stars and quark stars

    E-Print Network [OSTI]

    Jes Madsen

    2009-09-30

    The bulk viscosity in quark matter is sufficiently high to reduce the effective pressure below the corresponding vapor pressure during density perturbations in neutron stars and strange stars. This leads to mechanical instability where the quark matter breaks apart into fragments comparable to cavitation scenarios discussed for ultra-relativistic heavy-ion collisions. Similar phenomena may take place in kaon-condensed stellar cores. Possible applications to compact star phenomenology include a new mechanism for damping oscillations and instabilities, triggering of phase transitions, changes in gravitational wave signatures of binary star inspiral, and astrophysical formation of strangelets. At a more fundamental level it points to the possible inadequacy of a hydrodynamical treatment of these processes in compact stars.

  15. Cavitation from bulk viscosity in neutron stars and strange stars

    E-Print Network [OSTI]

    Madsen, Jes

    2009-01-01

    The bulk viscosity in quark matter is sufficiently high to reduce the effective pressure below the corresponding vapor pressure during density perturbations in neutron stars and strange stars. This leads to mechanical instability where the quark matter breaks apart into fragments comparable to cavitation scenarios discussed for ultra-relativistic heavy-ion collisions. Similar phenomena may take place in kaon-condensed stellar cores. Possible applications to compact star phenomenology include a new mechanism for damping oscillations and instabilities, triggering of phase transitions, changes in gravitational wave signatures of binary star inspiral, and astrophysical formation of strangelets. At a more fundamental level it points to the possible inadequacy of a hydrodynamical treatment of these processes in compact stars.

  16. Star Products for Relativistic Quantum Mechanics

    E-Print Network [OSTI]

    P. Henselder

    2007-05-24

    The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.

  17. EXTENT OF POLLUTION IN PLANET-BEARING STARS S.-L. Li,1,2

    E-Print Network [OSTI]

    Liu, Xiaowei

    EXTENT OF POLLUTION IN PLANET-BEARING STARS S.-L. Li,1,2 D. N. C. Lin,2,3 and X.-W. Liu1,3 Received light curve. Whether a star is polluted is then determined by the comparison between the inferred to its surface layer as a consequence of pollution by the accretion of a gas giant or a population

  18. Physics of Neutron Star Crusts

    E-Print Network [OSTI]

    N. Chamel; P. Haensel

    2008-12-20

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  19. Thermal Evolution of Strange Stars

    E-Print Network [OSTI]

    Zhou Xia; Wang Lingzhi; Zhou Aizhi

    2007-09-03

    We investigated the thermal evolution of rotating strange stars with the deconfinement heating due to magnetic braking. We consider the stars consisting of either normal quark matter or color-flavor-locked phase. Combining deconfinement heating with magnetic field decay, we find that the thermal evolution curves are identical to pulsar data.

  20. Gas Feedback on Stellar Bar Evolution

    E-Print Network [OSTI]

    Ingo Berentzen; Isaac Shlosman; Inma Martinez-Valpuesta; Clayton Heller

    2007-05-27

    We analyze evolution of live disk-halo systems in the presence of various gas fractions, f_gas less than 8% in the disk. We addressed the issue of angular momentum (J) transfer from the gas to the bar and its effect on the bar evolution. We find that the weakening of the bar, reported in the literature, is not related to the J-exchange with the gas, but is caused by the vertical buckling instability in the gas-poor disks and by a steep heating of a stellar velocity dispersion by the central mass concentration (CMC) in the gas-rich disks. The gas has a profound effect on the onset of the buckling -- larger f_gas brings it forth due to the more massive CMCs. The former process leads to the well-known formation of the peanut-shaped bulges, while the latter results in the formation of progressively more elliptical bulges, for larger f_gas. The subsequent (secular) evolution of the bar differs -- the gas-poor models exhibit a growing bar while gas-rich models show a declining bar whose vertical swelling is driven by a secular resonance heating. The border line between the gas-poor and -rich models lies at f_gas ~ 3% in our models, but is model-dependent and will be affected by additional processes, like star formation and feedback from stellar evolution. The overall effect of the gas on the evolution of the bar is not in a direct J transfer to the stars, but in the loss of J by the gas and its influx to the center that increases the CMC. The more massive CMC damps the vertical buckling instability and depopulates orbits responsible for the appearance of peanut-shaped bulges. The action of resonant and non-resonant processes in gas-poor and gas-rich disks leads to a converging evolution in the vertical extent of the bar and its stellar dispersion velocities, and to a diverging evolution in the bulge properties.

  1. Gas hydrates

    SciTech Connect (OSTI)

    Not Available

    1985-04-01

    There is a definite need for the US government to provide leadership for research in gas hydrates and to coordinate its activities with academia, industry, private groups, federal agencies, and their foreign counterparts. In response to this need, the DOE Morgantown Energy Technology Center implemented a gas hydrates R and D program. Understanding the resource will be achieved through: assessment of current technology; characterization of gas hydrate geology and reservoir engineering; and development of diagnostic tools and methods. Research to date has focused on geology. As work progressed, areas where gas hydrates are likely to occur were identified, and specific high potential areas were targeted for future detailed investigation. Initial research activities involved the development of the Geologic Analysis System (GAS); which will provide, through approximately 30 software packages, the capability to manipulate and correlate several types of geologic and petroleum data into maps, graphics, and reports. Preliminary mapping of hydrate prospects for the Alaskan North Slope is underway. Geological research includes physical system characterization which focuses on creating synthetic methane hydrates and developing synthetic hydrate cores using tetrahydrofuran, consolidated rock cores, frost base mixtures, water/ice base mixtures, and water base mixtures. Laboratory work produced measurements of the sonic velocity and electrical resistivity of these synthetic hydrates. During 1983, a sample from a natural hydrate core recovered from the Pacific coast of Guatemala was tested for these properties by METC. More recently, a natural hydrate sample from the Gulf of Mexico was also acquired and testing of this sample is currently underway. In addition to the development of GAS, modeling and systems analysis work focused on the development of conceptual gas hydrate production models. 16 figs., 6 tabs.

  2. Misaligned And Alien Planets From Explosive Death Of Stars

    E-Print Network [OSTI]

    Dado, Shlomo; Ribak, Erez

    2011-01-01

    Exoplanets whose orbit is misaligned with the spin of their host star could have originated from high-speed gas blobs, which are observed in multitudes in nearby supernova remnants and planetary nebulae. These blobs grow in mass and slow down in the interstellar medium (ISM) by mass accretion and cool by radiation. If their mass exceeds the Jeans mass, they collapse into hot giant gas planets. Most of the 'missing baryons' in galaxies could have been swept into such free-floating objects, which could perturb stellar planetary systems, kick bound planets into misaligned orbits or be captured themselves into misaligned orbits. The uncollapsed ones can then collapse or be tidally disrupted into a tilted gas disk where formation of misaligned planets can take place. Giant gas planets free floating in the Galactic ISM may be detected by their microlensing effects or by deep photometry if they are hot.

  3. Verifying the ENERGY STAR® Certification Application

    Broader source: Energy.gov [DOE]

    Do you verify commercial building applications for ENERGY STAR certification? This webinar, based on the ENERGY STAR Guide for Licensed Professionals, covers the role of the licensed professional,...

  4. On the onset of secondary stellar generations in giant star-forming regions and massive star clusters

    SciTech Connect (OSTI)

    Palouš, J.; Wünsch, R.; Tenorio-Tagle, G.

    2014-09-10

    Here we consider the strong evolution experienced by the matter reinserted by massive stars, both in giant star-forming regions driven by a constant star formation rate and in massive and coeval superstar clusters. In both cases we take into consideration the changes induced by stellar evolution on the number of massive stars, the number of ionizing photons, and the integrated mechanical luminosity of the star-forming regions. The latter is at all times compared with the critical luminosity that defines, for a given size, the lower mechanical luminosity limit above which the matter reinserted via strong winds and supernova explosions suffers frequent and recurrent thermal instabilities that reduce its temperature and pressure and inhibit its exit as part of a global wind. Instead, the unstable reinserted matter is compressed by the pervasive hot gas, and photoionization maintains its temperature at T ? 10{sup 4} K. As the evolution proceeds, more unstable matter accumulates and the unstable clumps grow in size. Here we evaluate the possible self-shielding of thermally unstable clumps against the UV radiation field. Self-shielding allows for a further compression of the reinserted matter, which rapidly develops a high-density neutral core able to absorb in its outer skin the incoming UV radiation. Under such conditions the cold (T ? 10 K) neutral cores soon surpass the Jeans limit and become gravitationally unstable, creating a new stellar generation with the matter reinserted by former massive stars. We present the results of several calculations of this positive star formation feedback scenario promoted by strong radiative cooling and mass loading.

  5. Braking the Gas in the beta Pictoris Disk

    E-Print Network [OSTI]

    Fern'andez, R; Wu, Y; Brandeker, Alexis; Fern\\'andez, Rodrigo

    2006-01-01

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in t...

  6. Gas Drill 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    .C. Wang, B.T. Lovell, Program, Summary Report TE4258-5-84, J. McCrank, "Topping of a Combined Gas DOE/ET/11292, Oct. 1984. and Steam Turbine Powerplant using a TAM Combustor," Thermo Electron [4J Final Report: "Thermionic Energy Report No. 4258... for each Btu fired in the burners has been cal culated with the process gas temperature as a variable. It was shown [2 ] that the maximum thermionic power produced is 18 kW per million Btu fired per hour. All com bustors are similar but progressively...

  7. Beryllium abundances in metal-poor stars

    E-Print Network [OSTI]

    K. F. Tan; J. R. Shi; G. Zhao

    2008-10-15

    We have determined beryllium abundances for 25 metal-poor stars based on the high resolution and high signal-to-noise ratio spectra from the VLT/UVES database. Our results confirm that Be abundances increase with Fe, supporting the global enrichment of Be in the Galaxy. Oxygen abundances based on [O I] forbidden line implies a linear relation with a slope close to one for the Be vs. O trend, which indicates that Be is probably produced in a primary process. Some strong evidences are found for the intrinsic dispersion of Be abundances at a given metallicity. The deviation of HD132475 and HD126681 from the general Be vs. Fe and Be vs. O trend favours the predictions of the superbubble model, though the possibility that such dispersion originates from the inhomogeneous enrichment in Fe and O of the protogalactic gas cannot be excluded.

  8. Methods for alleviating the photoelastic material situation 

    E-Print Network [OSTI]

    Travis, Darol Duane

    1956-01-01

    and G. D. Hallmark, Committee members, for their support and encouragement. The writer is also indebted to Drs. J. G. Potter and J. Q. Hays, Representatives of the Graduate Council, for their many constructive criticisms; to Pro fessors J. G. H.... , who, through Mr. M. E. Adams, D istrict Manager, Lone Star Gas Co., Bryan, Texas, contributed the heat resistant glass used in the construction of the stress freezing oven; and to the many industrial establishments for their ready aid...

  9. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  10. EPA ENERGY STAR Webcast: Value of ENERGY STAR Certification

    Broader source: Energy.gov [DOE]

    For thousands of organizations, ENERGY STAR is the simple choice for saving money and demonstrating environmental leadership to the public. Lower energy costs aren't the only financial benefit of...

  11. EPA ENERGY STAR Webinar: ENERGY STAR Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time; using...

  12. Stable Magnetic Fields in Static Stars

    E-Print Network [OSTI]

    A. Gruzinov

    2008-01-28

    We prove that static fluid stars can stably support magnetic fields (within the ideal MHD approximation).

  13. A Heavy Flavor Tracker for STAR

    SciTech Connect (OSTI)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  14. Nucleosynthesis in AGB Stars John Lattanzio

    E-Print Network [OSTI]

    Lattanzio, John

    Nucleosynthesis in AGB Stars John Lattanzio Dept of Mathematics and Statistics, Monash University of the nucleosynthesis occurring in AGB stars. We the summarise some new calculations of intermediate mass stars which include all thermal pulses until the star is about to leave the AGB, as well as a detailed nucleosynthesis

  15. The H alpha Galaxy Survey V. The star formation history of late-type galaxies

    E-Print Network [OSTI]

    P. A. James; M. Prescott; I. K. Baldry

    2008-04-14

    This study of 117 low-redshift Im and Sm galaxies investigates the star formation rates of late-type galaxies, to determine whether they are quasi-continuous or dominated by bursts with quiescent interludes. We analyse the distribution of star formation timescales (stellar masses/star formation rates) for the entire sample, and of gas depletion timescales for those galaxies with gas mass measurements. We find that, on average, the late-type galaxies studied could have produced their total stellar masses by an extrapolation of their current star formation activity over a period of just under a Hubble time. This is not the case for a comparison sample of earlier-type galaxies, even those with disk-dominated morphologies and similar total stellar masses to the late-type galaxies. The earlier-type galaxies are on average forming their stars more slowly at present than the average rate over their past histories. No totally quiescent Im or Sm galaxies are found, and although some evidence of intrinsic variation in the star formation rate with time is found, this is typically less than a factor of 2 increase or decrease relative to the mean level. The Im and Sm galaxies have extensive gas reservoirs and can maintain star formation at the current rate for more than another Hubble time. The average spatial distribution of star formation in the Im galaxies, and to a lesser extent the Sm galaxies, is very similar to that of the older stellar population traced by the red light.

  16. 11/12/12 Take action on climate change OR THE PANDA GETS IT The Register 1/3www.theregister.co.uk/2012/11/12/climate_change_pandas/

    E-Print Network [OSTI]

    Earth' Mysterious galactic glow caused by Hitchhikers' Krikkit style stars Lone darknesswrapped suns food and shelter for other wildlife in the forest, including endangered species like the ploughshare

  17. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    SciTech Connect (OSTI)

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wise, John H. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Turk, Matthew J. [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); Abel, Tom, E-mail: me@jihoonkim.org [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States)

    2013-12-10

    We investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as H? emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 10{sup 11} M {sub ?}, we find that the correlation between SFR density (estimated from mock H? emission) and H{sub 2} density shows large scatter, especially at high resolutions of ?75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because H? traces hot gas around star-forming regions and is displaced from the H{sub 2} peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  18. The origin of the most iron-poor star

    SciTech Connect (OSTI)

    Marassi, S.; Schneider, R.; Limongi, M. [INAF/Osservatorio Astronomico di Roma, Via di Frascati 33, I-00040 Monteporzio (Italy); Chiaki, G.; Yoshida, N. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Omukai, K. [Astronomical Institute, Tohoku University, Sendai 980-8578 (Japan); Nozawa, T. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Chieffi, A., E-mail: stefania.marassi@oa-roma.inaf.it [INAF/IASF, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2014-10-20

    We investigate the origin of carbon-enhanced metal-poor (CEMP) stars starting from the recently discovered [Fe/H] < -7.1 star SMSS J031300. We show that the elemental abundances observed on the surface of SMSS J031300 can be well fit by the yields of faint, metal-free, supernovae (SNe). Using properly calibrated faint SN explosion models, we study, for the first time, the formation of dust grains in such carbon-rich, iron-poor SN ejecta. Calculations are performed assuming both unmixed and uniformly mixed ejecta and taking into account the partial destruction by the SN reverse shock. We find that, due to the paucity of refractory elements beside carbon, amorphous carbon is the only grain species to form, with carbon condensation efficiencies that range between (0.15 and 0.84), resulting in dust yields in the range (0.025-2.25) M {sub ?}. We follow the collapse and fragmentation of a star-forming cloud enriched by the products of these faint SN explosions and we explore the role played by fine structure line cooling and dust cooling. We show that even if grain growth during the collapse has a minor effect of the dust-to-gas ratio, due to C depletion into CO molecules at an early stage of the collapse, the formation of CEMP low-mass stars, such as SMSS J031300, could be triggered by dust cooling and fragmentation. A comparison between model predictions and observations of a sample of C-normal and C-rich metal-poor stars supports the idea that a single common pathway may be responsible for the formation of the first low-mass stars.

  19. Quantum Collapse in Quark Stars?

    SciTech Connect (OSTI)

    Perez Martinez, A.; Perez Rojas, H. [ICIMAF, Calle E esq 15 No. 309 Vedado (Cuba); Mosquera Cuesta, H. J. [Centro Brasileiro de Pesquisas Fisicas, Laboratorio de Cosmologia e Fisica Experimental de Altas Energias, Rua Dr. Xavier Sigaud 150, Urca, CEP 22290-180, Rio de Janeiro (Brazil)

    2006-06-19

    Quark matter is expected to exist in the interior of compact stellar objects as neutron stars or even the more exotic strange stars. Bare strange quark stars and (normal) strange quark-matter stars, those possessing a baryon (electron-supported) crust, are hypothesized as good candidates to explain the properties of a set of peculiar stellar sources. In this presentation, we modify the MIT Bag Model by including the electromagnetic interaction. We also show that this version of the MIT model implies the anisotropy of the Bag pressure due to the presence of the magnetic field. The equations of state of degenerate quarks gases are studied in the presence of ultra strong magnetic fields. The behavior of a system made-up of quarks having (or not) anomalous magnetic moment is reviewed. A structural instability is found, which is related to the anisotropic nature of the pressures in this highly magnetized matter.

  20. Neutron Stars : A Comparative Study

    E-Print Network [OSTI]

    Mehedi Kalam; Sk. Monowar Hossein; Sajahan Molla

    2015-10-23

    The inner structure of neutron star is considered from theoretical point of view and is compared with the observed data. We have proposed a form of an equation of state relating pressure with matter density which indicates the stiff equation of state of neutron stars. From our study we have calculated mass(M), compactness(u) and surface red-shift(Zs ) for the neutron stars namely PSR J1614-2230, PSR J1903+327, Cen X-3, SMC X-1, Vela X-1, Her X-1 and compared with the recent observational data. We have also indicated the possible radii of the different stars which needs further study. Finally we have examined the stability for such type of theoretical structure.

  1. ENERGY STAR Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

  2. ENERGY STAR Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate Portfolio Manager; add a property and enter details...

  3. The Role of Gas In Maintaining Quasi-Steady Spiral Structure In Stellar Disks

    E-Print Network [OSTI]

    Sukanya Chakrabarti

    2008-12-03

    We study the dynamical evolution of spiral structure in the stellar disks of isolated galaxies using high resolution Smoothed Particle Hydrodynamics (SPH) simulations that treat the evolution of gas, stars, and dark matter self-consistently. We focus this study on the question of self-excited spiral structure in the stellar disk and investigate the dynamical coupling between the cold, dissipative gaseous component and the stellar component. We find that angular momentum transport from the gas to the stars inside of corotation leads to a roughly time-steady spiral structure in the stellar disk. To make this point clear, we contrast these results with otherwise identical simulations that do not include a cold gaseous component that is able to cool radiatively and dissipate energy, and find that spiral structure, when it is incipient, dies out more rapidly in simulations that do not include gas. We also employ a standard star formation prescription to convert gas into stars and find that our results hold for typical gas consumption time scales that are in accord with the Kennicutt-Schmidt relation. We therefore attribute the long-lived roughly time steady spiral structure in the stellar disk to the dynamical coupling between the gas and the stars and the resultant torques that the self-gravitating gaseous disk is able to exert on the stars due to an azimuthal phase shift between the collisionless and dissipative components.

  4. Studying Young Stars with Large Spectroscopic Surveys

    E-Print Network [OSTI]

    Martell, Sarah L

    2015-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  5. Properties and Stability of Hybrid Stars

    E-Print Network [OSTI]

    S. Schramm; R. Negreiros; J. Steinheimer; T. Schürhoff; V. Dexheimer

    2011-12-09

    We discuss the properties of neutron stars and their modifications due to the occurrence of hyperons and quarks in the core of the star. More specifically, we consider the general problem of exotic particles inside compact stars in light of the observed two-solar mass pulsar. In addition, we investigate neutron star cooling and a possible explanation of the recently measured cooling curve of the neutron star in the supernova remnant Cas A.

  6. Upsilon Productions at STAR

    E-Print Network [OSTI]

    A. M. Hamed

    2010-05-22

    The $\\Upsilon(1S+2S+3S)\\to e^{+}e^{-}$ cross section is measured at mid-rapidity ($y$) in $p+p$ collisions and in d$+Au$ collisions at center-of-mass energy $\\sqrt{s}$ = 200 GeV with the STAR detector at RHIC. In $p+p$, the measured cross section is found to be consistent with the world data trend as a function of $\\sqrt{s}$, in agreement with the Color Evaportaion Model (CEM), and underestimated by the Color Singlet Model (CSM) up to the Next-to-Leading-Order Quantum Chromodynamics (NLO QCD) calculations. In d+$Au$, the measured cross section is in agreement with the CEM prediction with anti-shadowing effects, and the nuclear modification factor indicates that $\\Upsilon(1S+2S+3S)$ production follows binary scaling within the current uncertainties. These measurements provide a benchmark for the future measurements of $\\Upsilon$ production in $Au+Au$ collisions.

  7. Kepler rapidly rotating giant stars

    E-Print Network [OSTI]

    Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R

    2015-01-01

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  8. Joint spectral and polarimetric analysis of hot star wind transients This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Bertero, Mario

    Joint spectral and polarimetric analysis of hot star wind transients This article has been Problems 11 (1995) 79-96. Primed in the UK Joint spectral and polarimetricanalysisof hot star wind. Some of these stellar winds are very weak. That of the sun, for example, is driven by the gas pressure

  9. MNRAS 449, 9871003 (2015) doi:10.1093/mnras/stv336 Neutral hydrogen in galaxy haloes at the peak of the cosmic star

    E-Print Network [OSTI]

    Greer, Julia R.

    2015-01-01

    (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas are ubiquitous around star-forming galaxies at all redshifts (e.g. Shapley et al. 2003; Martin 2005; Weiner et al

  10. Arp 65 interaction debris: massive HI displacement and star formation

    E-Print Network [OSTI]

    Sengupta, Chandreyee; Paudel, Sanjaya; Saikia, D J; Dwarakanath, K S; Sohn, B W

    2015-01-01

    Context: Pre-merger interactions between galaxies can induce significant changes in the morphologies and kinematics of the stellar and ISM components. Large amounts of gas and stars are often found to be disturbed or displaced as tidal debris. This debris then evolves, sometimes forming stars and occasionally tidal dwarf galaxies. Here we present results from our HI study of Arp 65, an interacting pair hosting extended HI tidal debris. Aims: In an effort to understand the evolution of tidal debris produced by interacting pairs of galaxies, including in situ star and tidal dwarf galaxy formation, we are mapping HI in a sample of interacting galaxy pairs. The Arp 65 pair is one of them. Methods: Our resolved HI 21 cm line survey is being carried out using the Giant Metrewave Radio Telescope (GMRT). We used our HI survey data as well as available SDSS optical, Spitzer infra-red and GALEX UV data to study the evolution of the tidal debris and the correlation of HI with the star-forming regions within it. Results:...

  11. Fossil Imprints of Outflow from the Galactic Bulge in Elemental Abundances of Metal-Rich Disk Stars

    E-Print Network [OSTI]

    Takuji Tsujimoto

    2007-07-09

    We explore the elemental abundance features of metal-rich disk stars, highlighting the comparisons made with those of the recently revealed Galactic bulge stars. A similarity between two of the comparisons leads to a new theoretical picture of the bulge-disk connection in the Galaxy, where a supermassive black hole resides at the center. We postulate that a metal-rich outflow, triggered by feedback from a black hole, was generated and quenched the star formation, which had lasted several billion years in the bulge. The expelled gas cooled down in the Galactic halo without escaping from the gravitational potential of the Galaxy. The gas gradually started to accrete to the disk around five billion years ago, corresponding to the time of sun's birth, and replaced a low-metallicity halo gas that had been accreting over nearly ten billion years. The metal-rich infalling gas, whose elemental abundance reflects that of metal-rich bulge stars, mixed with the interstellar gas already present in the disk. Stars formed from the mixture compose the metal-rich stellar disk. This scheme is incorporated into models for chemical evolution of the disk. The resultant elemental features are compatible with the observed abundance trends of metal-rich disk stars, including the upturning feature exhibited in some [X/Fe] ratios, whose interpretation was theoretically puzzling. Furthermore, the predicted abundance distribution function of disk stars covers all observational facts to be considered: (i) the deficiency of metal-poor stars, (ii) the location of peak, and (iii) the extended metal-rich tail up to [Fe/H] ~ +0.4.

  12. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  13. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  14. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  15. Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb MarNGPL Production,Energy Office

  16. Fossil Imprints of Outflow from the Galactic Bulge in Elemental Abundances of Metal-Rich Disk Stars

    E-Print Network [OSTI]

    Tsujimoto, Takuji

    2007-01-01

    We explore the elemental abundance features of metal-rich disk stars, highlighting the comparisons made with those of the recently revealed Galactic bulge stars. A similarity between two of the comparisons leads to a new theoretical picture of the bulge-disk connection in the Galaxy, where a supermassive black hole resides at the center. We postulate that a metal-rich outflow, triggered by feedback from a black hole, was generated and quenched the star formation, which had lasted several billion years in the bulge. The expelled gas cooled down in the Galactic halo without escaping from the gravitational potential of the Galaxy. The gas gradually started to accrete to the disk around five billion years ago, corresponding to the time of sun's birth, and replaced a low-metallicity halo gas that had been accreting over nearly ten billion years. The metal-rich infalling gas, whose elemental abundance reflects that of metal-rich bulge stars, mixed with the interstellar gas already present in the disk. Stars formed ...

  17. Radio Continuum and Star Formation in CO-rich Early Type Galaxies

    E-Print Network [OSTI]

    D. M. Lucero; L. M. Young

    2007-08-29

    In this paper we present new high resolution VLA 1.4 GHz radio continuum observations of five FIR bright CO-rich early-type galaxies and two dwarf early-type galaxies. The position on the radio-FIR correlation combined with striking agreements in morphology between high resolution CO and radio maps show that the radio continuum is associated with star formation in at least four of the eight galaxies. The average star formation rate for the sample galaxies detected in radio is approximately 2 solar masses per year. There is no evidence of a luminous AGN in any of our sample galaxies. We estimate Toomre Q values and find that the gas disks may well be gravitationally unstable, consistent with the above evidence for star formation activity. The radio continuum emission thus corroborates other recent suggestions that star formation in early type galaxies may not be uncommon.

  18. A SINFONI view of Galaxy Centers: Morphology and Kinematics of five Nuclear Star Formation Rings

    E-Print Network [OSTI]

    Böker, T; Schinnerer, E; Knapen, J H; Ryder, S

    2007-01-01

    We present near-infrared (H- and K-band) integral-field observations of the circumnuclear star formation rings in five nearby spiral galaxies. The data, obtained at the Very Large Telescope with the SINFONI spectrograph, are used to construct maps of various emission lines that reveal the individual star forming regions ("hot spots") delineating the rings. We derive the morphological parameters of the rings, and construct velocity fields of the stars and the emission line gas. We propose a qualitative, but robust, diagnostic for relative hot spot ages based on the intensity ratios of the emission lines Brackett gamma, HeI, and [FeII]. Application of this diagnostic to the data presented here provides tentative support for a scenario in which star formation in the rings is triggered predominantly at two well-defined regions close to, and downstream from, the intersection of dust lanes along the bar with the inner Lindblad resonance.

  19. Numerical Simulations of Turbulent Molecular Clouds Regulated by Reprocessed Radiation Feedback from Nascent Super Star Clusters

    E-Print Network [OSTI]

    Skinner, M Aaron

    2015-01-01

    Radiation feedback from young star clusters embedded in giant molecular clouds (GMCs) is believed to be important to the control of star formation. For the most massive and dense clouds, including those in which super star clusters (SSCs) are born, pressure from reprocessed radiation exerted on dust grains may disperse a significant portion of the cloud mass back into the interstellar medium (ISM). Using our radiaton hydrodynamics (RHD) code, Hyperion, we conduct a series of numerical simulations to test this idea. Our models follow the evolution of self-gravitating, strongly turbulent clouds in which collapsing regions are replaced by radiating sink particles representing stellar clusters. We evaluate the dependence of the star formation efficiency (SFE) on the size and mass of the cloud and $\\kappa$, the opacity of the gas to infrared (IR) radiation. We find that the single most important parameter determining the evolutionary outcome is $\\kappa$, with $\\kappa \\gtrsim 15 \\text{ cm}^2 \\text{ g}^{-1}$ needed ...

  20. Viewing the Evolution of Massive Star Formation through FIR/Sub-mm/mm Eyes

    E-Print Network [OSTI]

    Lihong Yao; E. R. Seaquist

    2006-05-25

    In this paper, we present an overview of our method of constructing a family of models for the far-infrared, sub-millimeter, and millimeter (FIR/sub-mm/mm) line emission of molecular and atomic gas surrounding massive star formation in starburst galaxies. We show the results of a case study, an expanding supershell centered around a massive star cluster with a particular set of input parameters and its application to nearby starburst galaxy M 82. This set of models can be used not only to interpret the observations of FIR/sub-mm/mm line emission from molecular and atomic gas, but also to investigate the physical environment and the initial cloud conditions in massive star forming regions as well as the ages of the starbursts through simulations for a wide range of input parameters. Finally, we discuss limitations of our models, and outline future work.

  1. Panchromatic star formation rate indicators and their uncertainties

    E-Print Network [OSTI]

    da Cunha, Elisabete

    2015-01-01

    The star formation rate (SFR) is a fundamental property of galaxies and it is crucial to understand the build-up of their stellar content, their chemical evolution, and energetic feedback. The SFR of galaxies is typically obtained by observing the emission by young stellar populations directly in the ultraviolet, the optical nebular line emission from gas ionized by newly-formed massive stars, the reprocessed emission by dust in the infrared range, or by combining observations at different wavelengths and fitting the full spectral energy distributions of galaxies. In this brief review we describe the assumptions, advantages and limitations of different SFR indicators, and we discuss the most promising SFR indicators for high-redshift studies.

  2. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Li, Mo

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  3. Galaxy Formation and Evolution. II. Energy Balance, Star Formation and Feed-back

    E-Print Network [OSTI]

    Fulvio Buonomo; Giovanni Carraro; Cesare Chiosi; Cesario Lia

    1999-09-13

    In this paper we present a critical discussion of the algorithms commonly used in N-body simulations of Galaxy Formation to deal with the energy equation governing heating and cooling, to model star formation and the star formation rate, and to account for energy feed-back from stars. First, we propose our technique for solving the energy equation in presence of heating and cooling, which includes some difference with respect to the standard semi-implicit technique. Second, we examine the current criteria for the onset of the star formation activity. We suggest a new approach, in which star formaiton is let depend on the total mass density - baryonic (gas and stars) and dark matter - of the system and on the metal-dependent cooling efficiency. Third, we check and discuss the separate effects of energy (and mass) feed-back from several sources - namely supernovae, stellar winds from massive stars, and UV flux from the same objects. All the simulations are performed in the framework of the formation and evolution of a disk galaxy. We show that the inclusion of these physical phenomena has a signigicant impact on the evolution of the galaxy model.

  4. The Surprisingly Dynamic LastYears in the Lives of Massive Stars

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Powered by Interaction with Ambient Gas (Type IIn SNe) · Interacting SNe: SN shock runs into dense wind closer to the star with stellar wind not ISM #12;diff R2 `mfpc exp R vsh R Mvsh 4c 1/2 100 AU · Interacting SNe: SN shock runs into dense wind at ~ 102-3 AU and KE thermal energy, radiation Supernovae

  5. EUROGRAPHICS 2000 / D. R. Nadeau et al Short Presentations Visualizing Stars and Emission Nebulae

    E-Print Network [OSTI]

    Nadeau, David R.

    of Natural History New York City, New York, USA Abstract We describe the star and nebula visualization In 1999, the Hayden Planetarium at the American Museum of Natural History, and the San Diego Supercomputer results. 1.1. The Orion Nebula Enormous clouds of dust and gas are found throughout the galaxy1,2,3 . One

  6. Natural Gas Basics

    SciTech Connect (OSTI)

    NREL Clean Cities

    2010-04-01

    Fact sheet answers questions about natural gas production and use in transportation. Natural gas vehicles are also described.

  7. Testing Gravity Using Dwarf Stars

    E-Print Network [OSTI]

    Sakstein, Jeremy

    2015-01-01

    Generic scalar-tensor theories of gravity predict deviations from Newtonian physics inside astrophysical bodies. In this paper, we point out that low mass stellar objects, red and brown dwarf stars, are excellent probes of these theories. We calculate two important and potentially observable quantities: the radius of brown dwarfs and the minimum mass for hydrogen burning in red dwarfs. The brown dwarf radius can differ significantly from the GR prediction and upcoming surveys that probe the mass-radius relation for stars with masses $hydrogen burning can be larger than several presently observed Red Dwarf stars. This places a new and extremely stringent constraint on the parameters that appear in the effective field theory of dark energy and rules out several well-studied dark energy models.

  8. Testing Gravity Using Dwarf Stars

    E-Print Network [OSTI]

    Jeremy Sakstein

    2015-11-05

    Generic scalar-tensor theories of gravity predict deviations from Newtonian physics inside astrophysical bodies. In this paper, we point out that low mass stellar objects, red and brown dwarf stars, are excellent probes of these theories. We calculate two important and potentially observable quantities: the radius of brown dwarfs and the minimum mass for hydrogen burning in red dwarfs. The brown dwarf radius can differ significantly from the GR prediction and upcoming surveys that probe the mass-radius relation for stars with masses $hydrogen burning can be larger than several presently observed Red Dwarf stars. This places a new and extremely stringent constraint on the parameters that appear in the effective field theory of dark energy and rules out several well-studied dark energy models.

  9. Testing Gravity Theories Using Stars

    E-Print Network [OSTI]

    Jeremy Sakstein; Bhuvnesh Jain; Vinu Vikram

    2014-09-12

    Modified theories of gravity have received a renewed interest due to their ability to account for the cosmic acceleration. In order to satisfy the solar system tests of gravity, these theories need to include a screening mechanism that hides the modifications on small scales. One popular and well-studied theory is chameleon gravity. Our own galaxy is necessarily screened, but less dense dwarf galaxies may be unscreened and their constituent stars can exhibit novel features. In particular, unscreened stars are brighter, hotter and more ephemeral than screened stars in our own galaxy. They also pulsate with a shorter period. In this essay, we exploit these new features to constrain chameleon gravity to levels three orders of magnitude lower the previous measurements. These constraints are currently the strongest in the literature.

  10. Photon Bubbles in the Circumstellar Envelopes of Young Massive Stars

    E-Print Network [OSTI]

    N. J. Turner; E. Quataert; H. W. Yorke

    2007-01-28

    We show that the optically-thick dusty envelopes surrounding young high-mass stars are subject to the photon bubble instability. The infrared radiation passing through the envelope amplifies magnetosonic disturbances, with growth rates in our local numerical radiation MHD calculations that are consistent with a linear analysis. Modes with wavelengths comparable to the gas pressure scale height grow by more than two orders of magnitude in a thousand years, reaching non-linear amplitudes within the envelope lifetime. If the magnetic pressure in the envelope exceeds the gas pressure, the instability develops into trains of propagating shocks. Radiation escapes readily through the low-density material between the shocks, enabling accretion to continue despite the Eddington limit imposed by the dust opacity. The supersonic motions arising from the photon bubble instability can help explain the large velocity dispersions of hot molecular cores, while conditions in the shocked gas are suitable for maser emission. We conclude that the photon bubble instability may play a key role in the formation of massive stars.

  11. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  12. Bose-Einstein Condensate general relativistic stars

    E-Print Network [OSTI]

    P. H. Chavanis; T. Harko

    2011-08-19

    We analyze the possibility that due to their superfluid properties some compact astrophysical objects may contain a significant part of their matter in the form of a Bose-Einstein condensate. To study the condensate we use the Gross-Pitaevskii equation, with arbitrary non-linearity. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. The non-relativistic and Newtonian Bose-Einstein gravitational condensate can be described as a gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index one. In the framework of the Thomas-Fermi approximation the structure of the Newtonian gravitational condensate is described by the Lane-Emden equation, which can be exactly solved. The case of the rotating condensate is also discussed. General relativistic configurations with quartic non-linearity are studied numerically with both non-relativistic and relativistic equations of state, and the maximum mass of the stable configuration is determined. Condensates with particle masses of the order of two neutron masses (Cooper pair) and scattering length of the order of 10-20 fm have maximum masses of the order of 2 M_sun, maximum central density of the order of 0.1-0.3 10^16 g/cm^3 and minimum radii in the range of 10-20 km. In this way we obtain a large class of stable astrophysical objects, whose basic astrophysical parameters (mass and radius) sensitively depend on the mass of the condensed particle, and on the scattering length. We also propose that the recently observed neutron stars with masses in the range of 2-2.4 M_sun are Bose-Einstein Condensate stars.

  13. Bipolar Outflows and the Evolution of Stars

    E-Print Network [OSTI]

    Adam Frank

    1998-05-20

    Hypersonic bipolar outflows are a ubiquitous phenomena associated with both young and highly evolved stars. Observations of Planetary Nebulae, the nebulae surrounding Luminous Blue Variables such as $\\eta$ Carinae, Wolf Rayet bubbles, the circumstellar environment of SN 1987A and Young Stellar Objects all revealed high velocity outflows with a wide range of shapes. In this paper I review the current state of our theoretical understanding of these outflows. Beginning with Planetary Nebulae considerable progress has been made in understanding bipolar outflows as the result of stellar winds interacting with the circumstellar environment. In what has been called the "Generalized Wind Blown Bubble" (GWBB) scenario, a fast tenuous wind from the central star expands into a ambient medium with an aspherical (toroidal) density distribution. Inertial gradients due to the gaseous torus quickly lead to an expanding prolate or bipolar shell of swept-up gas bounded by strong shock waves. Numerical simulations of the GWBB scenario show a surprisingly rich variety of gasdynamical behavior, allowing models to recover many of the observed properties of stellar bipolar outflows including the development of collimated supersonic jets. In this paper we review the physics behind the GWBB scenario in detail and consider its strengths and weakness. Alternative models involving MHD processes are also examined. Applications of these models to each of the principle classes of stellar bipolar outflow (YSO, PNe, LBV, SN87A) are then reviewed. Outstanding issues in the study of bipolar outflows are considered as are those questions which arise when the outflows are viewed as a single class of phenomena occuring across the HR diagram.

  14. First Stars III Conference Summary

    E-Print Network [OSTI]

    Brian W. O'Shea; Christopher F. McKee; Alexander Heger; Tom Abel

    2008-01-14

    The understanding of the formation, life, and death of Population III stars, as well as the impact that these objects had on later generations of structure formation, is one of the foremost issues in modern cosmological research and has been an active area of research during the past several years. We summarize the results presented at "First Stars III," a conference sponsored by Los Alamos National Laboratory, the Kavli Institute for Particle Astrophysics and Cosmology, and the Joint Institute for Nuclear Astrophysics. This conference, the third in a series, took place in July 2007 at the La Fonda Hotel in Santa Fe, New Mexico, U.S.A.

  15. Nuclear Physics of Neutron Stars

    E-Print Network [OSTI]

    J. Piekarewicz

    2009-01-28

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

  16. Termination of star formation by BH feedback in equal- and unequal-mass mergers of disk and elliptical galaxies

    E-Print Network [OSTI]

    Peter H. Johansson; Thorsten Naab; Andreas Burkert

    2008-09-19

    We present binary galaxy merger simulations of gas-rich disks (Sp-Sp), of early-type galaxies and disks (E-Sp, mixed mergers), and mergers of early-type galaxies (E-E, dry mergers) with varying mass ratios and different progenitor morphologies. The simulations include radiative cooling, star formation and black hole (BH) accretion and the associated feedback processes. We find for Sp-Sp mergers, that the peak star formation rate and BH accretion rate decrease and the growth timescales of the central black holes and newly formed stars increase with higher progenitor mass ratios. The termination of star formation by BH feedback in disk mergers is significantly less important for higher progenitor mass ratios (e.g. 3:1 and higher). In addition, the inclusion of BH feedback suppresses efficiently star formation in dry E-E mergers and mixed E-Sp mergers.

  17. Probing the Faintest Stars in a Globular Star Cluster

    E-Print Network [OSTI]

    Harvey B. Richer; Jay Anderson; James Brewer; Saul Davis; Gregory G. Fahlman; Brad M. S. Hansen; Jarrod Hurley; Jasonjot S. Kalirai; Ivan R. King; David Reitzel; R. Michael Rich; Michael M. Shara; Peter B. Stetson

    2007-02-07

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed the deepest ever color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen-burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn towards bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H2 causes their atmospheres to become largely opaque to infrared radiation due to collision-induced absorption.

  18. Probing the Faintest Stars in a Globular Star Cluster

    E-Print Network [OSTI]

    Richer, H B; Brewer, J; Davis, S; Fahlman, G G; Hansen, B M S; Hurley, J; Singh-Kalirai, J; King, I R; Reitzel, David B; Rich, R M; Shara, M M; Stetson, P B; Richer, Harvey B.; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G.; Hansen, Brad M.S.; Hurley, Jarrod; Kalirai, Jasonjot S.; King, Ivan R.; Reitzel, David; Shara, Michael M.; Stetson, Peter B.

    2006-01-01

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed the deepest ever color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen-burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn towards bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H2 causes their atmospheres to become largely opaque to infrared radiation due to collision-induced absorption.

  19. Exploring the origin of lithium, carbon, strontium, and barium with four new ultra metal-poor stars

    SciTech Connect (OSTI)

    Hansen, T.; Hansen, C. J.; Christlieb, N., E-mail: thansen@lsw.uni-heidelberg.de, E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: nchristlieb@lsw.uni-heidelberg.de [Landessternwarte, ZAH, Königstuhl 12, D-69117 Heidelberg (Germany); and others

    2014-06-01

    We present an elemental abundance analysis for four newly discovered ultra metal-poor stars from the Hamburg/ESO survey, with [Fe/H] ? –4. Based on high-resolution, high signal-to-noise spectra, we derive abundances for 17 elements in the range from Li to Ba. Three of the four stars exhibit moderate to large overabundances of carbon, but have no enhancements in their neutron-capture elements. The most metal-poor star in the sample, HE 0233–0343 ([Fe/H] = –4.68), is a subgiant with a carbon enhancement of [C/Fe] = +3.5, slightly above the carbon-enhancement plateau suggested by Spite et al. No carbon is detected in the spectrum of the fourth star, but the quality of its spectrum only allows for the determination of an upper limit on the carbon abundance ratio of [C/Fe] < +1.7. We detect lithium in the spectra of two of the carbon-enhanced stars, including HE 0233–0343. Both stars with Li detections are Li-depleted, with respect to the Li plateau for metal-poor dwarfs found by Spite and Spite. This suggests that whatever site(s) produced C either do not completely destroy lithium, or that Li has been astrated by early-generation stars and mixed with primordial Li in the gas that formed the stars observed at present. The derived abundances for the ? elements and iron-peak elements of the four stars are similar to those found in previous large samples of extremely and ultra metal-poor stars. Finally, a large spread is found in the abundances of Sr and Ba for these stars, possibly influenced by enrichment from fast rotating stars in the early universe.

  20. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    cushion gas for natural gas storage, Energy and Fuels, 17(RECOVERY AND NATURAL GAS STORAGE Curtis M. Oldenburg Eartheffective cushion gas for gas storage reservoirs. Thus at

  1. Cold quark matter in compact stars

    SciTech Connect (OSTI)

    Franzon, B.; Fogaca, D. A.; Navarra, F. S.; Horvath, J. E.

    2013-03-25

    We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

  2. Equator Appliance: ENERGY STAR Referral (EZ 3720)

    Broader source: Energy.gov [DOE]

    DOE referred Equator Appliance clothes washer EZ 3720 to EPA, brand manager of the ENERGY STAR program, for appropriate action after DOE testing revealed that the model does not meet ENERGY STAR requirements.

  3. Quark stars: their influence on Astroparticle Physics

    E-Print Network [OSTI]

    Sanjay K. Ghosh

    2008-08-12

    We discuss some of the recent developments in the quark star physics along with the consequences of possible hadron to quark phase transition at high density scenario of neutron stars and their implications on the Astroparticle Physics.

  4. ENERGY STAR Webinar: Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR, this webinar will introduce and demonstrate the EPA's ENERGY STAR Portfolio Manager tool. Attendees will learn how to...

  5. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    SciTech Connect (OSTI)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas.

  6. Ralf Klessen: Acireale, May 19, 2005 Massive Stars fromMassive Stars from

    E-Print Network [OSTI]

    Klessen,Ralf

    and wherewhere stars form? What regulatesregulates the process and determines its efficiencyefficiency? How do

  7. Abundance Signatures in Halo Stars: Clues to Nucleosynthesis in the First Stars

    E-Print Network [OSTI]

    Cowan, John

    Abundance Signatures in Halo Stars: Clues to Nucleosynthesis in the First Stars John J. Cowan-based telescopes to make extensive studies of Galactic halo stars. These stars contain the nucleosynthesis products the earliest Galactic r-process nucleosynthesis. These in turn will help to identify the characteristics

  8. NuSTAR: Nuclear Spectroscopic Telescope Array

    SciTech Connect (OSTI)

    Craig, Bill

    2012-06-13

    Bill Craig, an astrophysicist at Lawrence Livermore National Laboratory, describes the NASA NuSTAR mission, launched June 13, 2012.

  9. NuSTAR: Nuclear Spectroscopic Telescope Array

    ScienceCinema (OSTI)

    Craig, Bill

    2014-06-24

    Bill Craig, an astrophysicist at Lawrence Livermore National Laboratory, describes the NASA NuSTAR mission, launched June 13, 2012.

  10. Black Stars and Gamma Ray Bursts

    E-Print Network [OSTI]

    Tanmay Vachaspati

    2007-06-08

    Stars that are collapsing toward forming a black hole but are frozen near the Schwarzschild horizon are termed ``black stars''. Collisions of black stars, in contrast to black hole collisions, may be sources of gamma ray bursts, whose basic parameters are estimated quite simply and are found to be consistent with observed gamma ray bursts. Black star gamma ray bursts should be preceded by gravitational wave emission similar to that from the coalescence of black holes.

  11. Multi-wavelength studies of spectacular ram-pressure stripping of a galaxy. II. Star formation in the tail

    SciTech Connect (OSTI)

    Yagi, Masafumi; Gu, Liyi; Nakazawa, Kazuhiro; Makishima, Kazuo; Fujita, Yutaka; Akahori, Takuya; Hattori, Takashi; Yoshida, Michitoshi

    2013-12-01

    With multiband photometric data in public archives, we detected four intracluster star-forming regions in the Virgo Cluster. Two of them were at a projected distance of 35 kpc from NGC 4388 and the other two were 66 kpc away. Our new spectroscopic observations revealed that their recessional velocities were comparable to the ram-pressure-stripped tail of NGC 4388 and confirmed the association. The stellar mass of the star-forming regions ranged from 10{sup 4} to 10{sup 4.5} M {sub ?} except for that of the faintest one, which was <10{sup 3} M {sub ?}. The metallicity was comparable to a solar abundance and the age of the stars was ?10{sup 6.8} yr. Their young stellar age meant that the star formation should have started after the gas was stripped from NGC 4388. This implied in situ condensation of the stripped gas. We also found that two star-forming regions were located near the leading edge of a filamentary dark cloud. The extinction of the filament was smaller than that derived from the Balmer decrement of the star-forming regions, implying that the dust in the filament would be locally dense around the star-forming regions.

  12. S M Stoller Star Center-B100

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring,7=cr5rnPandAlba4227STAR Center-B100

  13. S M Stoller Star Center-B100

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring,7=cr5rnPandAlba4227STAR

  14. STAR Highlights on Heavy Ion Physics

    E-Print Network [OSTI]

    Shusu Shi

    2014-09-30

    RHIC-STAR is a mid-rapidity collider experiment for studying high energy nuclear collisions. The main physics goals of STAR experiment are 1) studying the properties of the strongly coupled Quark Gluon Plasma, 2) explore the QCD phase diagram structure. In these proceedings, we will review the recent results of heavy ion physics at STAR.

  15. Motivation Examples Star Avoiding Ramsey Numbers

    E-Print Network [OSTI]

    Isaak, Garth

    Motivation Examples Star Avoiding Ramsey Numbers Jonelle Hook, Garth Isaak Department and Cryptography Jonelle Hook, Garth Isaak Star Avoiding Ramsey Numbers #12;Motivation Examples Graph Ramsey-coloring of K13 has a red C5 or a blue K4. Jonelle Hook, Garth Isaak Star Avoiding Ramsey Numbers #12

  16. Russian Conference on Physics of Neutron Stars

    E-Print Network [OSTI]

    Russian Conference on Physics of Neutron Stars ABSTRACTS June 24­27, 2008 Ioffe Physical-Technical Institute Saint-Petersburg #12;#12;Russian Conference on PHYSICS OF NEUTRON STARS ABSTRACTS June 24­27, 2008 2008 #12;Preface The conference on Physics of Neutron Stars at the Ioffe Physical-Technical Institute

  17. Bright Star Astrometry with URAT

    E-Print Network [OSTI]

    Zacharias, Norbert

    2015-01-01

    The U.S. Naval Observatory Robotic Astrometric Telescope (URAT) is observing the northern sky since April 2012 for an astrometric survey. Multiple overlaps per year are performed in a single bandpass (680$-$750 nm) using the "redlens" 20 cm aperture astrograph and a mosaic of large CCDs. Besides the regular, deep survey to magnitude 18.5, short exposures with an objective grating are taken to access stars as bright as 3rd magnitude. A brief overview of the program, observing and reductions is given. Positions on the 8 to 20 mas level are obtained of 66,202 Hipparcos stars at current epochs. These are compared to the Hipparcos Catalog to investigate its accuracy. About 20\\% of the observed Hipparcos stars are found to have inconsitent positions with the Hipparcos Catalog prediction on the 3 sigma level or over (about 75 mas or more discrepant position offsets). Some stars are now seen at an arcsec (or 25 sigma) off their Hipparcos Catalog predicted position.

  18. Maximally incompressible neutron star matter

    E-Print Network [OSTI]

    Timothy S. Olson

    2000-12-07

    Relativistic kinetic theory, based on the Grad method of moments as developed by Israel and Stewart, is used to model viscous and thermal dissipation in neutron star matter and determine an upper limit on the maximum mass of neutron stars. In the context of kinetic theory, the equation of state must satisfy a set of constraints in order for the equilibrium states of the fluid to be thermodynamically stable and for perturbations from equilibrium to propagate causally via hyperbolic equations. Application of these constraints to neutron star matter restricts the stiffness of the most incompressible equation of state compatible with causality to be softer than the maximally incompressible equation of state that results from requiring the adiabatic sound speed to not exceed the speed of light. Using three equations of state based on experimental nucleon-nucleon scattering data and properties of light nuclei up to twice normal nuclear energy density, and the kinetic theory maximally incompressible equation of state at higher density, an upper limit on the maximum mass of neutron stars averaging 2.64 solar masses is derived.

  19. BPS Skyrmions as neutron stars

    E-Print Network [OSTI]

    C. Adam; C. Naya; J. Sanchez-Guillen; R. Vazquez; A. Wereszczynski

    2015-02-26

    The BPS Skyrme model has been demonstrated already to provide a physically intriguing and quantitatively reliable description of nuclear matter. Indeed, the model has both the symmetries and the energy-momentum tensor of a perfect fluid, and thus represents a field theoretic realization of the "liquid droplet" model of nuclear matter. In addition, the classical soliton solutions together with some obvious corrections (spin-isospin quantization, Coulomb energy, proton-neutron mass difference) provide an accurate modeling of nuclear binding energies for heavier nuclei. These results lead to the rather natural proposal to try to describe also neutron stars by the BPS Skyrme model coupled to gravity. We find that the resulting self-gravitating BPS Skyrmions provide excellent results as well as some new perspectives for the description of bulk properties of neutron stars when the parameter values of the model are extracted from nuclear physics. Specifically, the maximum possible mass of a neutron star before black-hole formation sets in is a few solar masses, the precise value depending on the precise values of the model parameters, and the resulting neutron star radius is of the order of 10 km.

  20. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  1. Braking the Gas in the beta Pictoris Disk

    E-Print Network [OSTI]

    Rodrigo Fernández; Alexis Brandeker; Yanqin Wu

    2006-01-11

    (Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. We find that all species affected by radiation force are heavily ionized and dynamically coupled into a single fluid by Coulomb collisions, reducing the radiation force on species feeling the strongest acceleration. For a gas of solar composition, the resulting total radiation force still exceeds gravity, while a gas of enhanced carbon abundance could be self-braking. We also explore two other braking agents: collisions with dust grains and neutral gas. Grains surrounding beta Pic are photoelectrically charged to a positive electrostatic potential. If a significant fraction of the grains are carbonaceous (10% in the midplane and larger at higher altitudes), ions can be slowed down to satisfy the observed velocity constraints. For neutral gas to brake the coupled ion fluid, we find the minimum required mass to be $\\approx$ 0.03 $M_\\earth$, consistent with observed upper limits of the hydrogen column density, and substantially reduced relative to previous estimates. Our results favor a scenario in which metallic gas is generated by grain evaporation in the disk, perhaps during grain-grain collisions. We exclude a primordial origin for the gas, but cannot rule out the possibility of its production by falling evaporating bodies near the star. We discuss the implications of this work for observations of gas in other debris disks.

  2. Effects of spiral arms on star formation in nuclear rings of barred-spiral galaxies

    SciTech Connect (OSTI)

    Seo, Woo-Young; Kim, Woong-Tae, E-mail: seowy@astro.snu.ac.kr, E-mail: wkim@astro.snu.ac.kr [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-09-01

    We use hydrodynamic simulations to study the effect of spiral arms on the star formation rate (SFR) in nuclear rings of barred-spiral galaxies. We find that spiral arms can be an efficient means of gas transport from the outskirts to the central parts, provided that the arms are rotating slower than the bar. While the ring star formation in models with no arms or corotating arms is active only during around the bar growth phase, arm-driven gas accretion both significantly enhances and prolongs the ring star formation in models with slow-rotating arms. The arm-enhanced SFR is larger by a factor of ?3-20 than in the no-arm model, with larger values corresponding to stronger and slower arms. Arm-induced mass inflows also make dust lanes stronger. Nuclear rings in slow-arm models are ?45% larger than in the no-arm counterparts. Star clusters that form in a nuclear ring exhibit an age gradient in the azimuthal direction only when the SFR is small, whereas no notable age gradient is found in the radial direction for models with arm-induced star formation.

  3. Recovery from population III supernova explosions and the onset of second generation star formation

    E-Print Network [OSTI]

    Jeon, Myoungwon; Bromm, Volker; Milosavljevic, Milos

    2014-01-01

    We use cosmological simulations to assess how the explosion of the first stars in supernovae (SNe) influences early cosmic history. Specifically, we investigate the impact by SNe on the host systems for Population III (Pop III) star formation and explore its dependence on halo environment and Pop III progenitor mass. We then trace the evolution of the enriched gas until conditions are met to trigger second-generation star formation. To this extent, we quantify the recovery timescale, which measures the time delay between a Pop III SN explosion and the appearance of cold, dense gas, out of which second-generation stars can form. We find that this timescale is highly sensitive to the Pop III progenitor mass, and less so to the halo environment. For Pop III progenitor masses M recovery is prompt, ~ 10 Myr. For more massive progenitors, including those exploding in pair instability SNe, second-generation star formation is delayed significantly, for up to a Hubble time. The dependence of the re...

  4. Beryllium in turnoff stars of NGC6397: early Galaxy spallation, cosmochronology and cluster formation

    E-Print Network [OSTI]

    L. Pasquini; P. Bonifacio; S. Randich; D. Galli; R. G. Gratton

    2004-07-26

    We present the first detection of beryllium in two turnoff stars of the old, metal-poor globular cluster NGC 6397. The beryllium lines are clearly detected and we determine a mean beryllium abundance of log(Be/H)=-12.35 +/- 0.2. The beryllium abundance is very similar to that of field stars of similar Fe content. We interpret the beryllium abundance observed as the result of primary spallation of cosmic rays acting on a Galactic scale, showing that beryllium can be used as a powerful cosmochronometer for the first stellar generations. With this method, we estimate that the cluster formed 0.2-0.3 Gyr after the onset of star formation in the Galaxy, in excellent agreement with the age derived from main sequence fitting. From the same spectra we also find low O (noticeably different for the two stars) and high N abundances, suggesting that the original gas was enriched in CNO processed material. Our beryllium results, together with the N, O, and Li abundances, provide insights on the formation of this globular cluster, showing that any CNO processing of the gas must have occurred in the protocluster cloud before the formation of the stars we observe now. We encounter, however, difficulties in giving a fully consistent picture of the cluster formation, able to explain the complex overall abundance pattern.

  5. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

  6. The Detection Rate of Molecular Gas in Elliptical Galaxies: Constraints on Galaxy Formation Theories

    E-Print Network [OSTI]

    Yutaka Fujita; Masahiro Nagashima; Naoteru Gouda

    2000-05-15

    In order to constrain parameters in galaxy formation theories, especially those for a star formation process, we investigate cold gas in elliptical galaxies. We calculate the detection rate of cold gas in them using a semi-analytic model of galaxy formation and compare it with observations. We show that the model with a long star formation time-scale (~20 Gyr) is inconsistent with observations. Thus, some mechanisms of reducing the mass of interstellar medium, such as the consumption of molecular gas by star formation and/or reheating from supernovae, are certainly effective in galaxies. Our model predicts that star formation induced when galaxies in a halo collide each other reduces the cold gas left until the present. However, we find that the reduction through random collisions of satellite (non-central) galaxies in mean free time-scale in a halo is not required to explain the observations. This may imply that the collisions and mergers between satellite galaxies do not occur so often in clusters or that they do not stimulate the star formation activity as much as the simple collision model we adopted. For cD galaxies, the predicted detection rate of cold gas is consistent with observations as long as the transformation of hot gas into cold gas is prevented in halos whose circular velocities are larger than 500 km s^-1. Moreover, we find that the cold gas brought into cDs through captures of gas-rich galaxies is little. We also show that the fraction of galaxies with observable cold gas should be small for cluster ellipticals in comparison with that for field ellipticals.

  7. Propagation of light in low pressure gas

    E-Print Network [OSTI]

    Jacques Moret-Bailly

    2012-04-13

    The criticism by W. E. Lamb, W. Schleich, M. Scully, C. Townes of a simplified quantum electrodynamics which represents the photon as a true particle is illustrated. Collisions being absent in low-pressure gas, exchanges of energy are radiative and coherent. Thin shells of plasma containing atoms in a model introduced by Str\\"omgren are superradiant, seen as circles possibly dotted. Spectral radiance of novae has magnitude of laser radiance, and column densities are large in nebulae: Superradiance, multiphoton effects, etc., work in astrophysics. The superradiant beams induce multiphotonic scatterings of light emitted by the stars, brightening the limbs of plasma bubbles and darkening the stars. In excited atomic hydrogen, impulsive Raman scatterings shift frequencies of light. Microwaves exchanged with the Pioneer probes are blueshifted, simulating anomalous accelerations. Substituting coherence for wrong calculations in astrophysical papers, improves results, avoids "new physics".

  8. Phases and Structures of Interstellar Gas

    E-Print Network [OSTI]

    B. Elmegreen

    1999-06-12

    The thermal and chemical phases of the cool component of interstellar gas are discussed. Variations with galactocentric radius and from galaxy to galaxy are mostly the result of changes in the ambient interstellar pressure and radiation field. Interstellar structure that is hierarchical or fractal in the cloudy parts and has large and connected empty regions between these clouds is probably the result of turbulence. Such structure opens up the disk to the transmission of OB star light into the halo, and it provides for a diffuse ionized component that tapers away gradually from each dense HII region. Fractal cloud structure may also produce the cloud and clump mass functions, and perhaps even the star cluster mass function.

  9. Star Formation and Metallicity History of the SDSS galaxy survey: unlocking the fossil record

    E-Print Network [OSTI]

    Benjamin Panter; Alan F. Heavens; Raul Jimenez

    2003-08-12

    Using MOPED we determine non-parametrically the star-formation and metallicity history of over 37,000 high-quality galaxy spectra from the Sloan Digital Sky Survey (SDSS) early data release. We use the entire spectral range, rather than concentrating on specific features, and we estimate the complete star formation history without prior assumptions about its form (by constructing so-called `population boxes'). The main results of this initial study are that the star formation rate in SDSS galaxies has been in decline for ~6 Gyr; a metallicity distribution for star-forming gas which is peaked ~3 Gyr ago at about solar metallicity, inconsistent with closed-box models, but consistent with infall models. We also determine the infall rate of gas in SDSS and show that it has been significant for the last 3 Gyr. We investigate errors using a Monte-Carlo Markov Chain algorithm. Further, we demonstrate that recovering star formation and metallicity histories for such a large sample becomes intractable without data compression methods, particularly the exploration of the likelihood surface. By exploring the whole likelihood surface we show that age-metallicity degeneracies are not as severe as by using only a few spectral features. We find that 65% of galaxies contain a significant old population (with an age of at least 8 Gyr), including recent starburst galaxies, and that over 97% have some stars older than 2 Gyr. It is the first time that the past star formation history has been determined from the fossil record of the present-day spectra of galaxies.

  10. POSSIBLE ORIGIN OF THE G2 CLOUD FROM THE TIDAL DISRUPTION OF A KNOWN GIANT STAR BY SGR A*

    SciTech Connect (OSTI)

    Guillochon, James; Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States); MacLeod, Morgan; Ramirez-Ruiz, Enrico, E-mail: jguillochon@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2014-05-10

    The discovery of the gas cloud G2 on a near-radial orbit about Sgr A* has prompted much speculation on its origin. In this Letter, we propose that G2 formed out of the debris stream produced by the removal of mass from the outer envelope of a nearby giant star. We perform hydrodynamical simulations of the returning tidal debris stream with cooling and find that the stream condenses into clumps that fall periodically onto Sgr A*. We propose that one of these clumps is the observed G2 cloud, with the rest of the stream being detectable at lower Br? emissivity along a trajectory that would trace from G2 to the star that was partially disrupted. By simultaneously fitting the orbits of S2, G2, and ?2000 candidate stars, and by fixing the orbital plane of each candidate star to G2 (as is expected for a tidal disruption), we find that several stars have orbits that are compatible with the notion that one of them was tidally disrupted to produce G2. If one of these stars were indeed disrupted, it last encountered Sgr A* hundreds of years ago and has likely encountered Sgr A* repeatedly. However, while these stars are compatible with the giant disruption scenario given their measured positions and proper motions, their radial velocities are currently unknown. If one of these stars' radial velocity is measured to be compatible with a disruptive orbit, it would strongly suggest that its disruption produced G2.

  11. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    SciTech Connect (OSTI)

    Li, Shuo; Li, Chengyuan [Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Anders, Peter, E-mail: grijs@pku.edu.cn [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China)

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr{sup –1}) ? 7.5, intermediate-age, log (t yr{sup –1}) in [7.5, 8.5], and old samples, log (t yr{sup –1}) ? 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region.

  12. Star Formation triggered by cloud-cloud collisions

    E-Print Network [OSTI]

    Balfour, S K; Hubber, D A; Jaffa, S E

    2015-01-01

    We present the results of SPH simulations in which two clouds, each having mass $M_{_{\\rm{o}}}\\!=\\!500\\,{\\rm M}_{_\\odot}$ and radius $R_{_{\\rm{o}}}\\!=\\!2\\,{\\rm pc}$, collide head-on at relative velocities of $\\Delta v_{_{\\rm{o}}} =2.4,\\;2.8,\\;3.2,\\;3.6\\;{\\rm and}\\;4.0\\,{\\rm km}\\,{\\rm s}^{-1}$. There is a clear trend with increasing $\\Delta v_{_{\\rm{o}}}$. At low $\\Delta v_{_{\\rm{o}}}$, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-$N$ cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high $\\Delta v_{_{\\rm{o}}}$, star formation occurs sooner and the shock-compressed layer breaks up into a network of f...

  13. Polymer quantum effects on compact stars models

    E-Print Network [OSTI]

    Guillermo Chacon-Acosta; Hector Hernandez-Hernandez

    2014-08-05

    In this work we study a completely degenerated fermion gas at zero temperature within a semiclassical approximation for the Hamiltonian arising in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity that allow the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum $p_F$. We also obtain the corresponding expansion of thermodynamical variables for small values of the polymer length scale $\\lambda$. With this results we study a simple model of a compact object where the gravitational collapse is supported by electron degeneracy pressure. We find polymer corrections to the mass of the star. When compared with typical measurements of the mass of white dwarfs we obtain a bound on the polymer length of $\\lambda^2\\lesssim 10^{-26}m^2$.

  14. A dusty torus around the luminous young star LkHa 101

    E-Print Network [OSTI]

    Peter G. Tuthill; John D. Monnier; William C. Danchi

    2001-02-14

    A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the center of the disk. When the temperature and density at the center of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. Unfortunately this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present resolved images of a young star, LkHa 101 in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk reprocessing or the viscous heating processes as usually assumed.

  15. REVISITING THE FIRST GALAXIES: THE EFFECTS OF POPULATION III STARS ON THEIR HOST GALAXIES

    SciTech Connect (OSTI)

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Gnedin, Nickolay Y., E-mail: muratov@umich.edu [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2013-08-01

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H{sub 2} formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 10{sup 8} years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 Multiplication-Sign 10{sup 6} M{sub Sun} re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  16. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    SciTech Connect (OSTI)

    Ness, M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Debattista, Victor P.; Cole, D. R. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bensby, T.; Feltzing, S. [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-221 00 Lund (Sweden); Roškar, R. [Institute for Theoretical Physics, University of Zürich, Wintherthurerstrasse 190, Zürich CH-8057 (Switzerland); Johnson, J. A. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Freeman, K., E-mail: ness@mpia.de [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-06-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look.

  17. The diskmass survey. VIII. On the relationship between disk stability and star formation

    SciTech Connect (OSTI)

    Westfall, Kyle B.; Verheijen, Marc A. W.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of ?{sub z}/?{sub R}=0.51{sub ?0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( ?-dot {sub e,?}) is correlated with the disk-averaged gas and stellar mass surface densities (? {sub e,} {sub g} and ? {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between ?-dot {sub e,?} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, ?-dot {sub e,?} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts ?-dot {sub e,?}/?{sub e,g}??{sub e,?}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  18. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  19. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  20. Future of Natural Gas

    Energy Savers [EERE]

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  1. Gas Kick Mechanistic Model 

    E-Print Network [OSTI]

    Zubairy, Raheel

    2014-04-18

    Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial ...

  2. ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING

    SciTech Connect (OSTI)

    Dopcke, Gustavo [Member of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, IMPRS-HD, Germany. (Germany)] [Member of the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg, IMPRS-HD, Germany. (Germany); Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S., E-mail: gustavo@uni-hd.de [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2013-04-01

    The first stars to form in the universe are believed to have distribution of masses biased toward massive stars. This contrasts with the present-day initial mass function, which has a predominance of stars with masses lower than 1 M{sub Sun }. Therefore, the mode of star formation must have changed as the universe evolved. Such a transition is attributed to a more efficient cooling provided by increasing metallicity. Especially dust cooling can overcome the compressional heating, which lowers the gas temperature thus increasing its instability to fragmentation. The purpose of this paper is to verify if dust cooling can efficiently cool the gas, and enhance the fragmentation of gas clouds at the early stages of the universe. To confirm that, we calculate a set of hydrodynamic simulations that include sink particles, which represent contracting protostars. The thermal evolution of the gas during the collapse is followed by making use of a primordial chemical network and also a recipe for dust cooling. We model four clouds with different amounts of metals (10{sup -4}, 10{sup -5}, 10-6 Z{sub Sun }, and 0), and analyze how this property affect the fragmentation of star-forming clouds. We find evidence for fragmentation in all four cases, and hence conclude that there is no critical metallicity below which fragmentation is impossible. Nevertheless, there is a clear change in the behavior of the clouds at Z {approx}< 10{sup -5} Z{sub Sun }, caused by the fact that at this metallicity, fragmentation takes longer to occur than accretion, leading to a flat mass function at lower metallicities.

  3. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  5. Star formation in 30 Doradus

    E-Print Network [OSTI]

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten; Mutchler, Max; Balick, Bruce; Dopita, Michael A; Frogel, Jay A; Whitmore, Bradley C; Bond, Howard; Clazetti, Daniela; Carollo, C Marcella; Disney, Michael J; Hall, Donald N B; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Windhorst, Rogier A; Young, Erick T

    2011-01-01

    Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. Th...

  6. Evolution of Nuclear Star Clusters

    E-Print Network [OSTI]

    David Merritt

    2009-01-05

    Two-body relaxation times of nuclear star clusters are short enough that gravitational encounters should substantially affect their structure in 10 Gyr or less. In nuclear star clusters without massive black holes, dynamical evolution is a competition between core collapse, which causes densities to increase, and heat input from the surrounding galaxy, which causes densities to decrease. The maximum extent of a nucleus that can resist expansion is derived numerically for a wide range of initial conditions; observed nuclei are shown to be compact enough to resist expansion, although there may have been an earlier generation of low-density nuclei that were dissolved. An evolutionary model for NGC 205 is presented which suggests that the nucleus of this galaxy has already undergone core collapse. Adding a massive black hole to a nucleus inhibits core collapse, and nuclear star clusters with black holes always expand, due primarily to heat input from the galaxy and secondarily to heating from stellar disruptions. The expansion rate is smaller for larger black holes due to the smaller temperature difference between galaxy and nucleus when the black hole is large. The rate of stellar tidal disruptions and its variation with time are computed for a variety of initial models. The disruption rate generally decreases with time due to the evolving nuclear density, particularly in the faintest galaxies, assuming that scaling relations derived for luminous galaxies can be extended to low luminosities.

  7. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  8. Thermodynamics of Ideal Gas in Cosmology

    E-Print Network [OSTI]

    Ying-Qiu Gu

    2009-10-04

    The equation of state and the state functions for the gravitational source are necessary conditions for solving cosmological model and stellar structure. The usual treatments are directly based on the laws of thermodynamics, and the physical meanings of some concepts are obscure. This letter show that, we can actually derive all explicit fundamental state functions for the ideal gas in the context of cosmology via rigorous dynamical and statistical calculation. These relations have clear physical meanings, and are valid in both non-relativistic and ultra-relativistic cases. Some features of the equation of state are important for a stable structure of a star with huge mass.

  9. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    Hydrogen production from natural gas, sequestration ofunderground storage of natural gas, Jour. Petrol. Tech. 943,dioxide as cushion gas for natural gas storage, Energy and

  10. X-ray emission from O stars

    E-Print Network [OSTI]

    David H. Cohen

    2008-02-01

    Young O stars are strong, hard, and variable X-ray sources, properties which strongly affect their circumstellar and galactic environments. After ~1 Myr, these stars settle down to become steady sources of soft X-rays. I use high-resolution X-ray spectroscopy and MHD modeling to show that young O stars like theta-1 Ori C are well explained by the magnetically channeled wind shock scenario. After their magnetic fields dissipate, older O stars produce X-rays via shock heating in their unstable stellar winds. Here too I use X-ray spectroscopy and numerical modeling to confirm this scenario. In addition to elucidating the nature and cause of the O star X-ray emission, modeling of the high-resolution X-ray spectra of O supergiants provides strong evidence that mass-loss rates of these O stars have been overestimated.

  11. Sequentially Triggered Star Formation in OB Associations

    E-Print Network [OSTI]

    Thomas Preibisch; Hans Zinnecker

    2006-10-27

    We discuss observational evidence for sequential and triggered star formation in OB associations. We first review the star formation process in the Scorpius-Centaurus OB association, the nearest OB association to the Sun, where several recent extensive studies have allowed us to reconstruct the star formation history in a rather detailed way. We then compare the observational results with those obtained for other OB associations and with recent models of rapid cloud and star formation in the turbulent interstellar medium. We conclude that the formation of whole OB subgroups (each consisting of several thousand stars) requires large-scale triggering mechanisms such as shocks from expanding wind and supernova driven superbubbles surrounding older subgroups. Other triggering mechanisms, like radiatively driven implosion of globules, also operate, but seem to be secondary processes, forming only small stellar groups rather than whole OB subgroups with thousands of stars.

  12. Dynamical evolution of fermion-boson stars

    E-Print Network [OSTI]

    Susana Valdez-Alvarado; Carlos Palenzuela; Daniela Alic; L. Arturo Ureña-López

    2015-11-01

    Compact objects, like neutron stars and white dwarfs, may accrete dark matter, and then be sensitive probes of its presence. These compact stars with a dark matter component can be modeled by a perfect fluid minimally coupled to a complex scalar field (representing a bosonic dark matter component), resulting in objects known as fermion-boson stars. We have performed the dynamical evolution of these stars in order to analyze their stability, and to study their spectrum of normal modes, which may reveal the amount of dark matter in the system. Their stability analysis shows a structure similar to that of an isolated (fermion or boson) star, with equilibrium configurations either laying on the stable or on the unstable branch. The analysis of the spectrum of normal modes indicates the presence of new oscillation modes in the fermionic part of the star, which result from the coupling to the bosonic component through the gravity.

  13. Radio Triggered Star Formation in Cooling Flows

    E-Print Network [OSTI]

    B. R. McNamara

    1999-11-08

    The giant galaxies located at the centers of cluster cooling flows are frequently sites of vigorous star formation. In some instances, star formation appears to have been triggered by the galaxy's radio source. The colors and spectral indices of the young populations are generally consistent with short duration bursts or continuous star formation for durations much less than 1 Gyr, which is less than the presumed ages of cooling flows. The star formation properties are inconsistent with fueling by a continuously accreting cooling flow, although the prevalence of star formation is consistent with repeated bursts and periodic refueling. Star formation may be fueled, in some cases, by cold material stripped from neighboring cluster galaxies.

  14. Storage and Assay of Tritium in STAR

    SciTech Connect (OSTI)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-07-15

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility.

  15. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  16. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  17. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Strathclyde, University of

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  18. EPA ENERGY STAR Webinar: How to Apply for the ENERGY STAR Certification

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  19. EPA ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  20. From nuclear matter to Neutron Stars

    E-Print Network [OSTI]

    T. K. Jha

    2009-02-02

    Neutron stars are the most dense objects in the observable Universe and conventionally one uses nuclear theory to obtain the equation of state (EOS) of dense hadronic matter and the global properties of these stars. In this work, we review various aspects of nuclear matter within an effective Chiral model and interlink fundamental quantities both from nuclear saturation as well as vacuum properties and correlate it with the star properties.

  1. Massive stars: their contribution to energy and element budget in chemo-dynamical galaxy evolution

    E-Print Network [OSTI]

    Gerhard Hensler

    2007-09-05

    Here results of numerical radiation hydrodynamical simulations are presented which explore the energetic impact of massive stars on the interstellar medium. We study the evolution of the ambient gas around isolated massive stars in the mass range between 15 and 85 Msun in order to analyze the formation of structures and further the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the stars explode as a supernovae. The derived energy transfer efficiencies are much smaller than analytically estimated and should be inserted into chemo-dynamical evolutionary models of galaxies as appropriate parameter values. As an additional issue the element release in the Wolf-Rayet phases and its detectability have been investigated for comparison with observations.

  2. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  3. Molecular Gas in Elliptical Galaxies: Distribution and Kinematics

    E-Print Network [OSTI]

    L. M. Young

    2002-05-10

    I present interferometric images (approx. 7" resolution) of CO emission in five elliptical galaxies and nondetections in two others. These data double the number of elliptical galaxies whose CO emission has been fully mapped. The sample galaxies have 10^8 to 5x10^9 solar masses of molecular gas distributed in mostly symmetric rotating disks with diameters of 2 to 12 kpc. Four out of the five molecular disks show remarkable alignment with the optical major axes of their host galaxies. The molecular masses are a few percent of the total dynamical masses which are implied if the gas is on circular orbits. If the molecular gas forms stars, it will make rotationally supported stellar disks which will be very similar in character to the stellar disks now known to be present in many ellipticals. Comparison of stellar kinematics to gas kinematics in NGC 4476 implies that the molecular gas did not come from internal stellar mass loss because the specific angular momentum of the gas is about three times larger than that of the stars.

  4. The evolution of naked helium stars with a neutron-star companion in close binary systems

    E-Print Network [OSTI]

    J. D. M. Dewi; O. R. Pols; G. J. Savonije; E. P. J. van den Heuvel

    2002-01-15

    The evolution of helium stars with masses of 1.5 - 6.7 M_sun in binary systems with a 1.4 M_sun neutron-star companion is presented. Such systems are assumed to be the remnants of Be/X-ray binaries with B-star masses in the range of 8 - 20 M_sun which underwent a case B or case C mass transfer and survived the common-envelope and spiral-in process. The orbital period is chosen such that the helium star fills its Roche lobe before the ignition of carbon in the centre. We distinguish case BA (in which mass transfer is initiated during helium core burning) from case BB (onset of Roche-lobe overflow occurs after helium core burning is terminated, but before the ignition of carbon). We found that the remnants of case BA mass transfer from 1.5 - 2.9 M_sun helium stars are heavy CO white dwarfs. This implies that a star initially as massive as 12 M_sun is able to become a white dwarf. CO white dwarfs are also produced from case BB mass transfer from 1.5 - 1.8 M_sun helium stars, while ONe white dwarfs are formed from 2.1 - 2.5 M_sun helium stars. Case BB mass transfer from more-massive helium stars with a neutron-star companion will produce a double neutron-star binary. We are able to distinguish the progenitors of type Ib supernovae (as the high-mass helium stars or systems in wide orbits) from those of type Ic supernovae (as the lower-mass helium stars or systems in close orbits). Finally, we derive a "zone of avoidance" in the helium star mass vs. initial orbital period diagram for producing neutron stars from helium stars.

  5. Abundances of massive stars: some recent developments

    E-Print Network [OSTI]

    T. Morel

    2008-11-25

    Thanks to their usefulness in various fields of astrophysics (e.g. mixing processes in stars, chemical evolution of galaxies), the last few years have witnessed a large increase in the amount of abundance data for early-type stars. Two intriguing results emerging since the last reviews on this topic will be discussed: (a) nearby OB stars exhibit metal abundances generally lower than the solar/meteoritic estimates; (b) evolutionary models of single objects including rotation are largely unsuccessful in explaining the CNO properties of stars in the Galaxy and in the Magellanic clouds.

  6. Rapid cooling and structure of neutron stars

    SciTech Connect (OSTI)

    Van Riper, K.A.; Lattimer, J.M.

    1992-07-01

    This report discusses the following topics on neutron stars: direct URCA neutrino emission; thermal evolution models; analytic model for diffusion through the crust; and core superfluidity. (LSP).

  7. Rapid cooling and structure of neutron stars

    SciTech Connect (OSTI)

    Van Riper, K.A. ); Lattimer, J.M. . Dept. of Earth and Space Sciences)

    1992-01-01

    This report discusses the following topics on neutron stars: direct URCA neutrino emission; thermal evolution models; analytic model for diffusion through the crust; and core superfluidity. (LSP).

  8. A Galactic O-Star Catalog

    E-Print Network [OSTI]

    J. Maíz-Apellániz; N. R. Walborn; H. Á. Galué; L. H. Wei

    2003-11-09

    We have produced a catalog of 378 Galactic O stars with accurate spectral classifications which is complete for Vweb-based version with links to online services.

  9. Star Formation in the Gulf of Mexico

    E-Print Network [OSTI]

    Armond, Tina; Bally, John; Aspin, Colin

    2011-01-01

    We present an optical/infrared study of the dense molecular cloud, L935, dubbed "The Gulf of Mexico", which separates the North America and the Pelican nebulae, and we demonstrate that this area is a very active star forming region. A wide-field imaging study with interference filters has revealed 35 new Herbig-Haro objects in the Gulf of Mexico. A grism survey has identified 41 Halpha emission-line stars, 30 of them new. A small cluster of partly embedded pre-main sequence stars is located around the known LkHalpha 185-189 group of stars, which includes the recently erupting FUor HBC 722.

  10. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    SciTech Connect (OSTI)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); O'Leary, Ryan M., E-mail: jfg@ucolick.org [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2013-07-10

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that {approx} 10{sup 5} stars, {approx} 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  11. STARS Training Needs Assessment Learner Instructions 07/2009 1 STARS Training Needs Assessment

    E-Print Network [OSTI]

    Ford, James

    STARS Training Needs Assessment Learner Instructions 07/2009 1 STARS Training Needs Assessment. · Click the STARS (Training) tab. · Click My Training Needs in the left menu. · Click the secure link to continue to My Training Needs. On the Training Needs Assessment page, click the box to the left of every

  12. Ralf Klessen: Basel: 29. 11, 2006 Star FormationStar Formation

    E-Print Network [OSTI]

    Klessen,Ralf

    (Hubble Ultra-Deep Field, from HST Web site) #12;Ralf Klessen: Basel: 29. 11, 2006 Antennae Stars in the Milky WayStars in the Milky Way On the night sky, you see stars and dark clouds Disks in Orion (data: Mark McCaughrean)protostellar disks: dark shades in front

  13. Star graphs and Seba billiards

    E-Print Network [OSTI]

    G. Berkolaiko; E. B. Bogomolny; J. P. Keating

    2000-10-26

    We derive an exact expression for the two-point correlation function for quantum star graphs in the limit as the number of bonds tends to infinity. This turns out to be identical to the corresponding result for certain Seba billiards in the semiclassical limit. Reasons for this are discussed. The formula we derive is also shown to be equivalent to a series expansion for the form factor - the Fourier transform of the two-point correlation function - previously calculated using periodic orbit theory.

  14. Energy Star | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtd EILEnergy DatadataCentreCo LtdEnergy Star Jump

  15. ENERGY STAR | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek Europe GmbHEDENERGY STAR Jump to:

  16. Shooting Star | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation, searchIndiaIIIIShooting Star

  17. Carbon Stars | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund for Spanish Firms FC2EPower &Stars Jump

  18. Nuclei embedded in an electron gas

    E-Print Network [OSTI]

    Thomas J. Buervenich; Igor N. Mishustin; Walter Greiner

    2007-06-11

    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to alpha and beta decay. Furthermore, the influence of the electronic background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of the electrons leads to stabilizing effects for both $\\alpha$ decay and spontaneous fission for high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to beta decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.

  19. 2 Star formation and outflows: an overview 2.1 The current picture of lowmass star formation

    E-Print Network [OSTI]

    Stanke, Thomas

    #24; star is not yet high enough for hydrogen fusion at the time when accretion dies out temperature is high enough for hydrogen fusion, the star #12; 12 2 STAR FORMATION AND OUTFLOWS: AN OVERVIEW11 2 Star formation and outflows: an overview 2.1 The current picture of low­mass star formation

  20. A general hybrid radiation transport scheme for star formation simulations on an adaptive grid

    SciTech Connect (OSTI)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany); Peters, Thomas [Institut für Computergestützte Wissenschaften, Universität Zürich Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Banerjee, Robi; Buntemeyer, Lars, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2014-12-10

    Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.

  1. Evidence of the evolved nature of the B[e] star MWC 137

    SciTech Connect (OSTI)

    Muratore, M. F.; Arias, M. L.; Cidale, L. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and Instituto de Astrofísica de La Plata, CCT La Plata, CONICET-UNLP, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Kraus, M.; Oksala, M. E. [Astronomický ústav, Akademie v?d ?eské Republiky, Fri?ova 298, 251 65 Ond?ejov (Czech Republic); Fernandes, M. Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil); Liermann, A., E-mail: fmuratore@carina.fcaglp.unlp.edu.ar [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-01-01

    The evolutionary phase of B[e] stars is difficult to establish due to the uncertainties in their fundamental parameters. For instance, possible classifications for the Galactic B[e] star MWC 137 include pre-main-sequence and post-main-sequence phases, with a large range in luminosity. Our goal is to clarify the evolutionary stage of this peculiar object, and to study the CO molecular component of its circumstellar medium. To this purpose, we modeled the CO molecular bands using high-resolution K-band spectra. We find that MWC 137 is surrounded by a detached cool (T=1900±100 K) and dense (N=(3±1)×10{sup 21} cm{sup ?2}) ring of CO gas orbiting the star with a rotational velocity, projected to the line of sight, of 84 ± 2 km s{sup ?1}. We also find that the molecular gas is enriched in the isotope {sup 13}C, excluding the classification of the star as a Herbig Be. The observed isotopic abundance ratio ({sup 12}C/{sup 13}C = 25 ± 2) derived from our modeling is compatible with a proto-planetary nebula, main-sequence, or supergiant evolutionary phase. However, based on some observable characteristics of MWC 137, we propose that the supergiant scenario seems to be the most plausible. Hence, we suggest that MWC 137 could be in an extremely short-lived phase, evolving from a B[e] supergiant to a blue supergiant with a bipolar ring nebula.

  2. STAR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12 Page 1NEWSSupport Request To use this

  3. COMPOSITION OF LOW-REDSHIFT HALO GAS

    SciTech Connect (OSTI)

    Cen Renyue

    2013-06-20

    Halo gas in low-z (z < 0.5) {>=}0.1 L{sub *} galaxies in high-resolution, large-scale cosmological hydrodynamic simulations is examined with respect to three components: cold, warm, and hot with temperatures of <10{sup 5}, 10{sup 5-6}, and >10{sup 6} K, respectively. Utilizing O VI {lambda}{lambda}1032, 1038 absorption lines, the warm component is compared to observations, and agreement is found with respect to the galaxy-O VI line correlation, the ratio of the O VI line incidence rate in blue to red galaxies, and the amount of O VI mass in star-forming galaxies. A detailed account of the sources of warm halo gas (stellar feedback heating, gravitational shock heating, and accretion from the intergalactic medium), inflowing and outflowing warm halo gas metallicity disparities, and their dependencies on galaxy types and environment is also presented. With the warm component securely anchored, our simulations make the following additional predictions. First, cold gas is the primary component in inner regions with its mass comprising 50% of all gas within galactocentric radius r = (30, 150) kpc in (red, blue) galaxies. Second, at r > (30, 200) kpc in (red, blue) galaxies the hot component becomes the majority. Third, the warm component is a perpetual minority, with its contribution peaking at {approx}30% at r = 100-300 kpc in blue galaxies and never exceeding 5% in red galaxies. The significant amount of cold gas in low-z early-type galaxies, which was found in simulations and in agreement with recent observations (Thom et al.), is intriguing, as is the dominance of hot gas at large radii in blue galaxies.

  4. HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). III. THE STAR FORMATION LAW IN M31

    SciTech Connect (OSTI)

    Ford, George P.; Gear, Walter K.; Smith, Matthew W. L.; Eales, Steve A.; Gomez, Haley L.; Kirk, Jason [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, Maarten; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Gordon, Karl D.; Verstappen, Joris [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bendo, George J. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Boquien, Mederic; Boselli, Alessandro [Aix Marseille Universite, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Cooray, Asantha R. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Lebouteiller, Vianney [Service d'Astrophysique, l'Orme des Merisiers, CEA, Saclay, F-91191 Gif-sur-Yvette (France); O'Halloran, Brian [Astrophysics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Spinoglio, Luigi [INAF, Istituto di Fisica dello Spazio Interplanetario, Via Fosso del Cavaliere 100, Tor Vergata, I-00133 Roma (Italy); Wilson, Christine D. [Department of Physics and Astronomy, ABB-241, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)

    2013-05-20

    We present a detailed study of how the star formation rate (SFR) relates to the interstellar medium (ISM) of M31 at {approx}140 pc scales. The SFR is calculated using the far-ultraviolet and 24 {mu}m emission, corrected for the old stellar population in M31. We find a global value for the SFR of 0.25{sup +0.06}{sub -0.04} M{sub sun} yr{sup -1} and compare this with the SFR found using the total far-infrared luminosity. There is general agreement in regions where young stars dominate the dust heating. Atomic hydrogen (H I) and molecular gas (traced by carbon monoxide, CO) or the dust mass is used to trace the total gas in the ISM. We show that the global surface densities of SFR and gas mass place M31 among a set of low-SFR galaxies in the plot of Kennicutt. The relationship between SFR and gas surface density is tested in six radial annuli across M31, assuming a power law relationship with index, N. The star formation (SF) law using total gas traced by H I and CO gives a global index of N = 2.03 {+-} 0.04, with a significant variation with radius; the highest values are observed in the 10 kpc ring. We suggest that this slope is due to H I turning molecular at {Sigma}{sub Gas} {approx} 10 M{sub Sun} pc{sup -2}. When looking at H{sub 2} regions, we measure a higher mean SFR suggesting a better spatial correlation between H{sub 2} and SF. We find N {approx} 0.6 with consistent results throughout the disk-this is at the low end of values found in previous work and argues against a superlinear SF law on small scales.

  5. Galactosynthesis: Halo Histories, Star Formation, and Disks

    E-Print Network [OSTI]

    Ari Buchalter; Raul Jimenez; Marc Kamionkowski

    2000-06-01

    We investigate the effects of a variety of ingredients that must enter into a realistic model for disk-galaxy formation, focusing primarily on the Tully-Fisher (TF) relation and its scatter in several wavebands. Our main findings are: (a) the slope, normalization, and scatter of the TF relation across various wavebands is determined {\\em both} by halo properties and star formation in the disk; (b) TF scatter owes primarily to the spread in formation redshifts. The scatter can be measurably reduced by chemical evolution, and also in some cases by the weak anti-correlation between peak height and spin; (c) multi-wavelength constraints can be important in distinguishing between models which appear to fit the TF relation in I or K; (d) successful models seem to require that the bulk of disk formation cannot occur too early (z>2) or too late (z<0.5), and are inconsistent with high values of $\\Omega_0$; (e) a realistic model with the above ingredients can reasonably reproduce the observed z=0 TF relation in {\\em all} bands (B, R, I, and K). It can also account for the z=1 B-band TF relation and yield rough agreement with the local B and K luminosity functions and B-band surface-brightness--magnitude relation. The remarkable agreement with observations suggests that the amount of gas that is expelled or poured into a disk galaxy must be small, and that the specific angular momentum of the baryons must roughly equal that of the halo; there is little room for angular momentum transfer. In an appendix we present analytic fits to stellar-population synthesis models.

  6. SDSS spectroscopic survey of stars

    E-Print Network [OSTI]

    Z. Ivezic; D. Schlegel; A. Uomoto; N. Bond; T. Beers; C. Allende Prieto; R. Wilhelm; Y. Sun Lee; T. Sivarani; M. Juric; R. Lupton; C. Rockosi; G. Knapp; J. Gunn; B. Yanny; S. Jester; S. Kent; J. Pier; J. Munn; G. Richards; H. Newberg; M. Blanton; D. Eisenstein; S. Hawley; S. Anderson; H. Harris; F. Kiuchi; A. Chen; J. Bushong; H. Sohi; D. Haggard; A. Kimball; J. Barentine; H. Brewington; M. Harvanek; S. Kleinman; J. Krzesinski; D. Long; A. Nitta; S. Snedden; for the SDSS Collaboration

    2007-01-17

    In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. We discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. We show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, we find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Zo]~ -1.3. The median metallicity for the low-metallicity [Z/Zo] -1.3 sample. We also find that the low-metallicity sample has ~2.5 times larger velocity dispersion and that it does not rotate (at the ~10 km/s level), while the rotational velocity of the high-metallicity sample decreases smoothly with the height above the galactic plane.

  7. The super star cluster driven feedback in ESO338-IG04 and Haro 11

    E-Print Network [OSTI]

    Bik, Arjan; Menacho, Veronica; Adamo, Angela; Hayes, Matthew; Melinder, Jens; Amram, Philippe

    2015-01-01

    The stellar content of young massive star clusters emit large amounts of Lyman continuum photons and inject momentum into the inter stellar medium (ISM) by the strong stellar winds of the most massive stars in the cluster. When the most massive stars explode as supernovae, large amounts of mechanical energy are injected in the ISM. A detailed study of the ISM around these massive cluster provides insights on the effect of cluster feedback. We present high quality integral field spectroscopy taken with VLT/MUSE of two starburst galaxies: ESO 338-IG04 and Haro 11. Both galaxies contain a significant number of super star clusters. The MUSE data provide us with an unprecedented view of the state and kinematics of the ionized gas in the galaxy allowing us to study the effect of stellar feedback on small and large spatial scales. We present our recent results on studying the ISM state of these two galaxies. The data of both galaxies show that the mechanical and ionization feedback of the super star clusters in the ...

  8. A major star formation region in the receding tip of the stellar Galactic bar

    E-Print Network [OSTI]

    F. Garzon; M. Lopez-Corredoira; P. Hammersley; T. J. Mahoney; X. Calbet; J. E. Beckman

    1997-10-08

    We present an analysis of the optical spectroscopy of 58 stars in the Galactic plane at $l=27$\\arcdeg, where a prominent excess in the flux distribution and star counts have been observed in several spectral regions, in particular in the Two Micron Galactic Survey (TMGS) catalog. The sources were selected from the TMGS, to have a $K$ magnitude brighter than +5 mag and be within 2 degrees of the Galactic plane. More than 60% of the spectra correspond to stars of luminosity class I, and a significant proportion of the remainder are very late giants which would also be fast evolving. This very high concentration of young sources points to the existence of a major star formation region in the Galactic plane, located just inside the assumed origin of the Scutum spiral arm. Such regions can form due to the concentrations of shocked gas where a galactic bar meets a spiral arm, as is observed at the ends of the bars of face-on external galaxies. Thus, the presence of a massive star formation region is very strong supporting evidence for the presence of a bar in our Galaxy.

  9. Co-evolution of nuclear star clusters, massive black holes and their host galaxies

    E-Print Network [OSTI]

    Fabio Antonini; Enrico Barausse; Joseph Silk

    2015-11-03

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in-situ star formation contributes a significant fraction (up to ~80%) of the total mass of NSCs in our model. Both NSC growth through in-situ star formation and through star cluster migration are found to generate NSC -- host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs, and show that observational data on NSC -- host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  10. IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?

    SciTech Connect (OSTI)

    Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra [Indian Institute of Astrophysics, Bengaluru-560034 (India); Lambert, David L., E-mail: sumangala@iiap.res.in, E-mail: pandey@iiap.res.in, E-mail: giridhar@iiap.res.in, E-mail: dll@astro.as.utexas.edu [W. J. McDonald Observatory, University of Texas, Austin, TX 78712 (United States)

    2011-08-10

    We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric and not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.

  11. Cooling of Color Superconducting Compact Stars

    E-Print Network [OSTI]

    David Blaschke

    2006-03-26

    We review the status of research on the cooling of compact stars, with emphasis on the influence of color superconducting quark matter phases. Although a consistent microscopic approach is not yet available, severe constraints on the phase structure of matter at high densities come from recent mass and cooling observations of compact stars.

  12. Search for Variable Stars in the WTS

    E-Print Network [OSTI]

    Pinfield, David J.

    Search for Variable Stars in the WTS Database Hristo Stoev Laboratory of Stellar Astrophysics of January 2010 at LAEX in Madrid, Spain #12;WTS Survey Release 0.1 Search for variable stars in the FOV Narrow down my selection only to one of the detectors ­ 15000 light curves #12;WTS Survey Release 0

  13. Long Baseline Interferometry of Be Stars

    E-Print Network [OSTI]

    Olivier Chesneau; Thomas Rivinius

    2005-10-24

    We give an introduction to interferometrical concepts and their applicability to Be stars. The first part of the paper concentrates on a short historic overview and basic principles of two-beam interferometric observations. In the second part, the VLTI/MIDI instrument is introduced and its first results on Be stars, obtained on alpha Ara and delta Cen, are outlined.

  14. FAINT RADIO SOURCES AND STAR FORMATION HISTORY

    E-Print Network [OSTI]

    Waddington, Ian

    FAINT RADIO SOURCES AND STAR FORMATION HISTORY Deborah B. Haarsma 1 , R. Bruce Partridge 1 , Ian 85287­1504 USA Abstract. Faint extragalactic radio sources provide important information about the global history of star formation. Sensitive radio observations of the Hubble Deep Field and other fields

  15. Fusion cycles in stars and stellar neutrinos

    E-Print Network [OSTI]

    G. Wolschin

    2002-10-01

    Starting from the early works by Weizsaecker and Bethe about fusion cycles and energy conversion in stars, a brief survey of thermonuclear processes in stars leading to contemporary research problems in this field is given. Special emphasis is put on the physics of stellar and, in particular, solar neutrinos which is at the frontline of current investigations.

  16. Fusion cycles in stars and stellar neutrinos

    E-Print Network [OSTI]

    Wolschin, G

    2003-01-01

    Starting from the early works by Weizsaecker and Bethe about fusion cycles and energy conversion in stars, a brief survey of thermonuclear processes in stars leading to contemporary research problems in this field is given. Special emphasis is put on the physics of stellar and, in particular, solar neutrinos which is at the frontline of current investigations.

  17. First Structure Formation and the First Stars

    E-Print Network [OSTI]

    Michael L. Norman; Tom Abel; Greg Bryan

    2000-05-11

    We discuss the results of recent 3D simulations of first structure formation in relationship to the formation of the first stars. On the basis of a new, high-resolution AMR simulation (spatial dynamic range = 30,000,000), we conclude that the first stars are likely to be massive.

  18. Nuclear and gravitational energies in stars

    SciTech Connect (OSTI)

    Meynet, Georges; Ekström, Sylvia [Astronomical Observatory of Geneva University (Switzerland); Courvoisier, Thierry [ISDC, Astronomical Observatory of Geneva University (Switzerland)

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ?}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ?}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  19. The Isotopic Abundances of Magnesium in Stars

    E-Print Network [OSTI]

    Pamela Gay; David L. Lambert

    1999-11-11

    Isotopic abundance ratios 24^Mg:25^Mg:26^Mg are derived for 20 stars from high- resolution spectra of the MgH A-X 0-0 band at 5140AA. With the exception of the weak g-band giant HR 1299, the stars are dwarfs that sample the metallicity range -1.8 < [Fe/H] <0.0. The abundance of 25^Mg amd 26^Mg relative to the dominant isotope 24^Mg decreases with decreasing [Fe/H] in fair accord with predictions from a recent model of galactic chemical evolution in which the Mg isotopes are synthesised by massive stars. Several stars appear especially enriched in the heavier Mg isotopes suggesting contamination by material from the envelopes of intermediate-mass AGB stars.

  20. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  1. ENERGY STAR Certified Homes, Version 3 (Rev. 07) National Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Program Requirements ENERGY STAR Certified Homes, Version 3 (Rev. 07) National Program Requirements ENERGY STAR Certified Homes, Version 3 (Rev. 07) National Program...

  2. Building Performance with ENERGY STAR Pilot Program Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance with ENERGY STAR Pilot Program Portfolio Manager Fact Sheet Building Performance with ENERGY STAR Pilot Program Portfolio Manager Fact Sheet Building Performance with...

  3. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Citation Details In-Document Search Title: The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission You are...

  4. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Citation Details In-Document Search Title: The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Authors: Harrison,...

  5. The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission (Journal...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Citation Details In-Document Search Title: The Nuclear Spectroscopic Telescope Array (NuSTAR) Mission Authors: Harrison,...

  6. An Origin for Multi-Phase Gas in Galactic Winds and Halos

    E-Print Network [OSTI]

    Thompson, Todd A; Zhang, Dong; Weinberg, David

    2015-01-01

    The origin of high velocity cool gas seen in galactic winds remains unknown. Following Wang (1995), we argue that rapid radiative cooling in initially hot (10^7-10^8 K) thermally-driven outflows can produce fast neutral atomic and photoionized cool gas. Outflows with hot gas mass-loading factor relative to star formation rate of beta > 0.5 cool on scales ranging from the size of the host to tens of kpc. We provide scalings for the cooling radius r_cool, density, column density, emission measure, radiative efficiency, and cool gas velocity. At r_cool, the gas produces X-ray and then UV/optical line emission at velocities of hundreds to thousands of km/s with a total power bounded from above by the energy injection rate 0.01 L_star if the flow is powered by steady-state star formation with luminosity L_star. The wind is thermally and convectively unstable at and beyond r_cool. Thermal instability can amplify density fluctuations by a factor of ~100, potentially leading to a multi-phase medium. Cooled winds can ...

  7. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the H-R diagram

    E-Print Network [OSTI]

    M. Briquet; S. Hubrig; P. De Cat; C. Aerts; P. North; M. Scholler

    2007-02-05

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods. We carry out a comparative study between samples of confirmed and well-studied SPB stars and a sample of well-studied Bp stars with known periods and magnetic field strengths. We determine their evolutionary state using accurate HIPPARCOS parallaxes and Geneva photometry. We discuss the occurrence and strengths of magnetic fields as well as the occurrence of stellar pulsation among both groups. Further, we make a comparison of Geneva photometric variability for both kinds of stars. Results. The group of Bp stars is significantly younger than the group of SPB stars. Longitudinal magnetic fields in SPB stars are weaker than those of Bp stars, suggesting that the magnetic field strength is an important factor for B type stars to become chemically peculiar. The strongest magnetic fields appear in young Bp stars, indicating a magnetic field decay in stars at advanced ages. Rotation periods of Bp and pulsation periods of SPB stars are of the same order and the behaviour of Geneva photometric variability of some Bp stars cannot be distinguished from the variability of SPB stars, illustrating the difficulty to interpret the observed variability of the order of days for B-type stars. We consider the possibility that pulsation could be responsible for the variability among chemically peculiar stars. In particular, we show that a non-linear pulsation model is not excluded by photometry for the Bp star HD175362.

  8. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State, 1980-1998 PDF 12 Supplemental Gas Supplies by State, 1980-1998 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1998 PDF 14 Consumption of...

  9. Historical Natural Gas Annual

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State, 1980-1997 PDF 12 Supplemental Gas Supplies by State, 1980-1997 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1997 PDF 14 Consumption of...

  10. Historical Natural Gas Annual

    Gasoline and Diesel Fuel Update (EIA)

    State, 1980-1996 PDF 12 Supplemental Gas Supplies by State, 1980-1996 PDF 13 Natural Gas Production, Transmission, and Consumption by State, 1967-1996 PDF 14 Consumption of...

  11. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  12. EIA - Natural Gas Publications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    these data from 2005 to 2009 are presented for each State. (12282010) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves: 2009 National and State...

  13. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

    1992-01-01

    A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

  14. Recirculating rotary gas compressor

    DOE Patents [OSTI]

    Weinbrecht, J.F.

    1992-02-25

    A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

  15. Natural gas annual 1996

    SciTech Connect (OSTI)

    1997-09-01

    This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

  16. Ultraviolet Spectrophotometry of Variable Early-Type Be and B stars Derived from High-Resolution IUE Data

    E-Print Network [OSTI]

    Myron A. Smith

    2001-07-10

    High-dispersion IUE data encode significant information about aggregate line absorptions that cannot be conveniently extracted from individual spectra. We apply a new technique in which fluxes from each echelle order of a short wavelength IUE spectrum are binned together to construct low-resolution spectra of a rapidly varying B or Be star. The ratio of binned spectra obtained bright- star and faint-star phases contains information about the mechanism responsible for a star's variability, such as from pulsations or occultations of the star by ejected matter. We model the variations caused by these mechanism by means of model atmosphere and absorbing-slab codes. Line absorptions strength changes are sensitive to conditions in circumstellar clouds with T = 8,000--13,000K. To demonstrate proofs of concept, we construct spectral ratios for circumstellar structures associated with flux variability in various Be stars: (1) Vela X1 has bow-shock wind trailing its neutron star companion and shows signatures of gas at 13,000K or 26,000K medium in different sectors, (2) 88 Her undergoes episodic outbursts as its UV flux fades, followed a year later by a dimming in visible wavelengths, a result of a gray opacity that dominates as the shell expands and cools, and (3) zeta Tau and 60 Cyg exhibit periodic spectrum and flux changes, which match model absorptions for occulting clouds. Also, ratioed UV spectra of strongly pulsating stars show unique spectrophotometric signatures which can be simulated with models. An analysis of ratioed spectra obtained for a typical sample of 18 classical Be stars known to have rapid periodic flux variations indicates that 13 of them have ratioed spectra which are relatively featureless or have signatures of pulsation. Ratioed spectra of 3 others in the sample are consistent with the presence of co-rotating clouds.

  17. Natural gas annual 1995

    SciTech Connect (OSTI)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  18. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  19. Natural gas annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  20. Gravitational waves from perturbed stars

    E-Print Network [OSTI]

    Valeria Ferrari

    2011-05-09

    Non radial oscillations of neutron stars are associated with the emission of gravitational waves. The characteristic frequencies of these oscillations can be computed using the theory of stellar perturbations, and they are shown to carry detailed information on the internal structure of the emitting source. Moreover, they appear to be encoded in various radiative processes, as for instance in the tail of the giant flares of Soft Gamma Repeaters. Thus, their determination is central to the theory of stellar perturbation. A viable approach to the problem consists in formulating this theory as a problem of resonant scattering of gravitational waves incident on the potential barrier generated by the spacetime curvature. This approach discloses some unexpected correspondences between the theory of stellar perturbations and the theory of quantum mechanics, and allows us to predict new relativistic effects.

  1. Adaptive Optics in Star Formation

    E-Print Network [OSTI]

    Wolfgang Brandner

    2003-09-29

    Over the past ten years, the concept of adaptive optics has evolved from early experimental stages to a standard observing tool now available at almost all major optical and near-infrared telescope facilities. Adaptive optics will also be essential in exploiting the full potential of the large optical/infrared interferometers currently under construction. Both observations with high-angular resolution and at high contrast, and with a high point source sensitivity are facilitated by adaptive optics. Among the areas which benefit most from the use of adaptive optics are studies of the circumstellar environment (envelopes, disks, outflows), substellar companions and multiple systems, and dense young stellar populations. This contribution highlights some of the recent advances in star formation studies facilitated by adaptive optics, and gives a brief tutorial on optimized observing and data reduction strategies.

  2. A SUPER-EARTH TRANSITING A NAKED-EYE STAR

    SciTech Connect (OSTI)

    Winn, Joshua N.; Matthews, Jaymie M.; Kallinger, Thomas; Dragomir, Diana; Dawson, Rebekah I.; Holman, Matthew J.; Sasselov, Dimitar; Fabrycky, Daniel; Guenther, David B.; Moffat, Anthony F. J.; Rowe, Jason F.; Rucinski, Slavek

    2011-08-10

    We have detected transits of the innermost planet 'e' orbiting 55 Cnc (V = 6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 days) and phase that had been predicted by Dawson and Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the star's mass and radius to be 0.963{sup +0.051}{sub -0.029} M{sub sun} and 0.943 {+-} 0.010 R{sub sun}, the planet's mass, radius, and mean density are 8.63 {+-} 0.35 M{sub +}, 2.00 {+-} 0.14 R{sub +}, and 5.9{sup +1.5}{sub -1.1} g cm{sup -3}, respectively. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 {+-} 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations.

  3. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  4. Gas Chromatography -Mass Spectrometry

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

  5. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, C.A.; Rurbage, C.H.

    1982-03-17

    The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  6. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  7. Renewable Natural Gas (Biomethane)

    E-Print Network [OSTI]

    California at Davis, University of

    to Landfill Owner $6.18 Total Cost Per MMBtu #12;Index Price of Natural Gas NYMEX Natural Gas Futures PricesRenewable Natural Gas (Biomethane) #12;Critical Barriers Impeding RNG as a Transportation Fuel-developer of largest RNG production project in U.S. at McCommas Bluff Landfill in Dallas, Texas · Chairman and co

  8. Magnetic fields in beta Cep, SPB, and Be stars

    E-Print Network [OSTI]

    Schoeller, M; Briquet, M; Ilyin, I

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic field geometry and strength, from fields below the detection limit of a few Gauss up to tens of kG. Our collaboration was the first to systematically study the magnetic fields in representative samples of different types of main-sequence B stars. In this article, we give an overview about what we have learned during the last years about magnetic fields in beta Cep, SPB, and Be stars.

  9. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    E-Print Network [OSTI]

    Tacik, Nick; Pfeiffer, Harald P; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D; Kidder, Lawrence E; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  10. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    E-Print Network [OSTI]

    Nick Tacik; Francois Foucart; Harald P. Pfeiffer; Roland Haas; Serguei Ossokine; Jeff Kaplan; Curran Muhlberger; Matt D. Duez; Lawrence E. Kidder; Mark A. Scheel; Béla Szilágyi

    2015-08-27

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasi-local angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of $\\sim 2\\times 10^{-4}$. Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin- and orbit-precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to $\\sim 0.1\\%$. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  11. Methanol Masers and Star Formation

    E-Print Network [OSTI]

    A. M. Sobolev; A. B. Ostrovskii; M. S. Kirsanova; O. V. Shelemei; M. A. Voronkov; A. V. Malyshev

    2006-01-12

    Methanol masers which are traditionally divided into two classes provide possibility to study important parts of the star forming regions: Class~II masers trace vicinities of the massive YSOs while class~I masers are likely to trace more distant parts of the outflows where newer stars can form. There are many methanol transitions which produce observed masers. This allows to use pumping analysis for estimation of the physical parameters in the maser formation regions and its environment, for the study of their evolution. Extensive surveys in different masing transitions allow to conclude on the values of the temperatures, densities, dust properties, etc. in the bulk of masing regions. Variability of the brightest masers is monitored during several years. In some cases it is probably caused by the changes of the dust temperature which follow variations in the brightness of the central YSO reflecting the character of the accretion process. A unified catalogue of the class II methanol masers consisting of more than 500 objects is compiled. Analysis of the data shows that: physical conditions within the usual maser source vary considerably; maser brightness is determined by parameters of some distinguished part of the object - maser formation region; class II methanol masers are formed not within the outflows but in the regions affected by their propagation. It is shown that the "near" solutions for the kinematic distances to the sources can be used for statistical analysis. The luminosity function of the 6.7 GHz methanol masers is constructed. It is shown that improvement of the sensitivity of surveys can increase number of detected maser sources considerably.

  12. AGB stars and presolar grains

    SciTech Connect (OSTI)

    Busso, M.; Trippella, O. [INFN and University of Perugia, Perugia (Italy); Maiorca, E. [INAF - Arcetri Astrophysical Observatory, Firenze, Italy and INFN - Section of Perugia, Perugia (Italy); Palmerini, S. [Departamento de Fìsica Teòrica y del Cosmsos, Universidad de Granada, Granada (Spain)

    2014-05-09

    Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ? 30. Other classes of grains, instead, display low carbon isotopic ratios (? 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.

  13. Bad prospects for the detection of giant stars' tidal disruption: effect of the ambient medium on bound debris

    E-Print Network [OSTI]

    Bonnerot, Clément; Lodato, Giuseppe

    2015-01-01

    Most massive galaxies are thought to contain a supermassive black holes in their centre surrounded by a tenuous gas environment, leading to no significant emission. In these quiescent galaxies, tidal disruption events represent a powerful detection method for the central black hole. Following the disruption, the stellar debris evolve into an elongated gas stream, which partly falls back towards the disruption site and accrete onto the black hole producing a luminous flare. Using an analytical treatment, we investigate the interaction between the debris stream and the gas environment of quiescent galaxies. Although we find dynamical effects to be negligible, we demonstrate that Kelvin-Helmholtz instability can lead to the dissolution of the stream into the ambient medium before it reaches the black hole, likely dimming the associated flare. Furthermore, we find this effect to be enhanced for disruptions involving more massive black holes and/or giant stars. Consequently, although disruptions of evolved stars h...

  14. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofMAC) refrigerant replacement. Greenhouse gas budgets for

  15. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  16. The WISE View of RV Tauri Stars

    E-Print Network [OSTI]

    Gezer, I; Bozkurt, Z; De Smedt, K; Kamath, D; Hillen, M; Manick, R

    2015-01-01

    We present a detailed study based on infrared photometry of all Galactic RV Tauri stars from the General Catalogue of Variable Stars (GCVS). RV Tauri stars are the brightest among the population II Cepheids. They are thought to evolve away from the asymptotic giant branch (AGB) towards the white dwarf domain. IRAS detected several RV Tauri stars because of their large IR excesses and it was found that they occupy a specific region in the [12] - [25], [25] - [60] IRAS two-colour diagram. We used the all sky survey of WISE to extend these studies and compare the infrared properties of all RV Tauri stars in the GCVS with a selected sample of post-AGB objects with the goal to place the RV Tauri pulsators in the context of post-AGB evolution. Moreover, we correlated the IR properties of both the RV Tauri stars and the comparison sample with other observables like binarity and the presence of a photospheric chemical anomaly called depletion. We find that Galactic RV Tauri stars display a range of infrared propertie...

  17. Magnetic fields of HgMn stars

    E-Print Network [OSTI]

    Hubrig, S; Ilyin, I; Korhonen, H; Schoeller, M; Savanov, I; Arlt, R; Castelli, F; Curto, G Lo; Briquet, M; Dall, T H

    2012-01-01

    The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. We re-analyse available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD65949 and the hotter analog of HgMn stars, the PGa star HD19400, using FORS2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. We downloaded from the ESO archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudina...

  18. The Evolution of Compact Binary Star Systems

    E-Print Network [OSTI]

    Konstantin Postnov; Lev Yungelson

    2014-03-21

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact binary stars are expected to be the most important sources for the forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binary stars with NS and/or black components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically important thermonuclear SN Ia. We also consider AM CVn-stars which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  19. Static exteriors for nonstatic braneworld stars

    E-Print Network [OSTI]

    J. Ponce de Leon

    2008-03-04

    We study possible static non-Schwarzschild exteriors for nonstatic spherically symmetric stars in a Randall $&$ Sundrum type II braneworld scenario. Thus, the vacuum region outside the surface of a star is assumed to be a static solution to the equation $^{(4)}R = 0$, where $^{(4)}R $ is the scalar curvature of the 4-dimensional Ricci tensor with spherical symmetry. Firstly, we show that for nonstatic spheres the standard matching conditions are much more restrictive than for static ones; they lead to a specific requirement on the vacuum region outside of a nonstatic star, that is absent in the case of static stars. Secondly, without making any assumption about the bulk, or the material medium inside the star, we prove the following theorem on the brane: for {\\it any} nonstatic spherical star, without rotation, there are only two possible static exteriors; these are the Schwarzschild and the "Reissner-Nordstr{\\"o}m-like" exteriors. This is quite distinct from the case of stars in hydrostatic equilibrium which admit a much larger family of non-Schwarzschild static exteriors.

  20. Anisotropic pressure and hyperons in neutron stars

    E-Print Network [OSTI]

    A. Sulaksono

    2014-12-23

    We study the effects of anisotropic pressure on properties of the neutron stars with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of anisotropic pressure on neutron star matter is to increase the stiffness of the equation of state, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of anisotropic pressure model $h \\le 0.8$[1] and $\\Lambda \\le -1.15$ [2]. The radius of the corresponding neutron star at $M$=1.4 $M_\\odot$ is more than 13 km, while the effect of anisotropic pressure on the minimum mass of neutron star is insignificant. Furthermore, due to the anisotropic pressure in the neutron star, the maximum mass limit of higher than 2.1 $M_\\odot$ cannot rule out the presence of hyperons in the neutron star core.

  1. SUPERMASSIVE DARK STARS: DETECTABLE IN JWST

    SciTech Connect (OSTI)

    Freese, Katherine; Ilie, Cosmin; Spolyar, Douglas; Valluri, Monica; Bodenheimer, Peter

    2010-06-20

    The first phase of stellar evolution in the history of the universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles (WIMPs), which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars for millions to billions of years. In this paper, we show that these objects can grow to be supermassive dark stars (SMDSs) with masses {approx_gt}(10{sup 5}-10{sup 7}) M{sub sun}. The growth continues as long as DM heating persists, since DSs are large and cool (surface temperature {approx_lt}5 x 10{sup 4} K) and do not emit enough ionizing photons to prevent further accretion of baryons onto the star. The DM may be provided by two mechanisms: (1) gravitational attraction of DM particles on a variety of orbits not previously considered and (2) capture of WIMPs due to elastic scattering. Once the DM fuel is exhausted, the SMDS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes (BHs) that may provide seeds for supermassive BHs in the universe. SMDSs are very bright, with luminosities exceeding (10{sup 9}-10{sup 11}) L{sub sun}. We demonstrate that for several reasonable parameters, these objects will be detectable with the James Webb Space Telescope. Such an observational discovery would confirm the existence of a new phase of stellar evolution powered by DM.

  2. Beryllium abundances in stars hosting giant planets

    E-Print Network [OSTI]

    N. C. Santos; R. J. Garcia Lopez; G. Israelian; M. Mayor; R. Rebolo; A. Garcia-Gil; M. R. Perez de Taoro; S. Randich

    2002-02-25

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be depletion mechanisms.

  3. Perceptions of and by lonely people in initial social interaction 

    E-Print Network [OSTI]

    Christensen, Peter Niels

    1996-01-01

    rated themselves and others on eleven personal characteristics, such as physical attractiveness, social skills, and anxiety. Each member also judged how he or she thought each other group member saw him or her on the eleven variables (meta...

  4. Lone Tree, Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, New York:Lodi,NorthLomita,Londonderry,Tree,

  5. Discovery of magnetic fields in the beta Cephei star xi^1 CMa and in several Slowly Pulsating B stars

    E-Print Network [OSTI]

    S. Hubrig; M. Briquet; M. Schoeller; P. De Cat; G. Mathys; C. Aerts

    2006-04-12

    We present the results of a magnetic survey of a sample of eight beta Cephei stars and 26 Slowly Pulsating B stars with FORS1 at the VLT. A weak mean longitudinal magnetic field of the order of a few hundred Gauss is detected in the beta Cephei star xi^1 CMa and in 13 SPB stars. The star xi^1 CMa becomes the third magnetic star among the beta Cephei stars. Before our study, the star zeta Cas was the only known magnetic SPB star. All magnetic SPB stars for which we gathered several magnetic field measurements show a field that varies in time. We do not find a relation between the evolution of the magnetic field with stellar age in our small sample. Our observations imply that beta Cephei stars and SPBs can no longer be considered as classes of non-magnetic pulsators, but the effect of the fields on the oscillation properties remains to be studied.

  6. Comment on "Three-dimensional hydrodynamic simulations of the combustion of a neutron star into a quark star"

    E-Print Network [OSTI]

    M. I. Krivoruchenko; B. V. Martemyanov

    2015-03-04

    If strange matter is absolutely stable, the ordinary nuclei decay to strangelets, while neutron stars convert into strange stars. Lifetimes of the ordinary nuclei are constrained experimentally to be above $\\sim 10^{33}$ years, while lifetimes of the metastable neutron stars depend on the neutron star masses and can exceed the age of the Universe. As a consequence, the neutron stars and the strange stars can coexist in the Universe. We point out that numerical simulations of the conversion of neutron stars to strange stars, performed by M. Herzog and F. K. Roepke in Phys. Rev. D 84, 083002 (2011) [arXiv:1109.0539], are focused on a region in the parameter space of strange matter, in which low-mass neutron stars and strange stars are coexistent, whereas massive neutron stars are unstable and short lived on an astronomical timescale.

  7. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  8. Gravitational Waves from Neutron Stars: A Review

    E-Print Network [OSTI]

    Paul D. Lasky

    2015-08-26

    Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

  9. Hypervelocity Stars and the Galactic Center

    E-Print Network [OSTI]

    Warren R. Brown

    2008-11-04

    A summary of the current knowledge on hypervelocity stars (HVSs). HVSs are fascinating because their properties are linked to Sgr A* and the stellar environment of the Galactic Center. Observing the distribution of HVSs can address: 1) the nature of the black hole ejection mechanism, 2) the in-fall history of stars onto Sgr A*, 3) the types of stars orbiting Sgr A*, and 4) a unique measurement the shape of the Galaxy's dark matter potential. The challenge to observers is to find new HVSs and strengthen the connection between HVSs and the Galactic Center.

  10. The evolution of very massive stars

    E-Print Network [OSTI]

    H. Belkus; J. Van Bever; D. Vanbeveren

    2007-01-11

    Core collapse of dense massive star clusters is unavoidable and this leads to the formation of massive objects, with a mass up to 1000 $\\msun$ and even larger. When these objects become stars, stellar wind mass loss determines their evolution and final fate, and decides upon whether they form black holes (with normal mass or with intermediate mass) or explode as a pair instability supernova. In the present paper, we discuss the evolution of very massive stars and we present a convenient evolution recipe that can be implemented in a gravitational N-body code to study the dynamics of dense massive clusters.

  11. Gravitational Waves from Neutron Stars: A Review

    E-Print Network [OSTI]

    Lasky, Paul D

    2015-01-01

    Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.

  12. Lithium abundances in exoplanet-hosts stars

    E-Print Network [OSTI]

    M. Castro; S. Vauclair; O. Richard; N. C. Santos

    2008-03-20

    Exoplanet-host stars (EHS) are known to present surface chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for cool stars, lithium is more depleted in EHS than in NEHS. The overmetallicity of EHS may be studied in the framework of two different scenarii. We have computed main sequence stellar models with various masses, metallicities and accretion rates. The results show different profiles for the lithium destruction according to the scenario. We compare these results to the spectroscopic observations of lithium.

  13. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect (OSTI)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [Institut d'Astrophysique de Paris, 98 bis, Boulevard Arago, Paris 75014 (France); Kemper, F.; Woods, Paul M. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Speck, A. K. [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); Matsuura, M. [Institute of Origins, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Bernard, J.-Ph. [Centre d'Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4 (France); Hony, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot DAPNIA/Service d'Astrophysique Bat. 709, CEA-Saclay F-91191 Gif-sur-Yvette Cedex (France); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Marengo, M. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Sloan, G. C., E-mail: sargent@stsci.ed [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and {approx}52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 {mu}m through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 x 10{sup -9} M{sub sun} yr{sup -1} and 2.3 x 10{sup -9} M{sub sun} yr{sup -1}, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 x 10{sup -6} M{sub sun} yr{sup -1} and 1.2 x 10{sup -6} M{sub sun} yr{sup -1}, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

  14. KNOW THE STAR, KNOW THE PLANET. I. ADAPTIVE OPTICS OF EXOPLANET HOST STARS

    SciTech Connect (OSTI)

    Roberts, Lewis C.; Turner, Nils H.; Ten Brummelaar, Theo A.; Mason, Brian D.; Hartkopf, William I. E-mail: nils@chara-array.org E-mail: bdm@usno.navy.mil

    2011-11-15

    The results of an adaptive optics survey of exoplanet host stars for stellar companions are presented. We used the Advanced Electro-Optical System telescope and its adaptive optics system to collect deep images of the stars in the I band. Sixty-two exoplanet host stars were observed and fifteen multiple star systems were resolved. Of these eight are known multiples, while seven are new candidate binaries. For all binaries, we measured the relative astrometry of the pair and the differential magnitude in the I band. We improved the orbits of HD 19994 and {tau} Boo. These observations will provide improved statistics on the duplicity of exoplanet host stars and provide an increased understanding of the dynamics of known binary star exoplanet hosts.

  15. Combustion of a neutron star into a strange quark star: The neutrino signal

    E-Print Network [OSTI]

    G. Pagliara; M. Herzog; F. K. Roepke

    2013-05-02

    There are strong indications that the process of conversion of a neutron star into a strange quark star proceeds as a strong deflagration implying that in a few milliseconds almost the whole star is converted. Starting from the three-dimensional hydrodynamic simulations of the combustion process which provide the temperature profiles inside the newly born strange star, we calculate for the first time the neutrino signal that is to be expected if such a conversion process takes place. The neutrino emission is characterized by a luminosity and a duration that is typical for the signal expected from protoneutron stars and represents therefore a powerful source of neutrinos which could be possibly directly detected in case of events occurring close to our Galaxy. We discuss moreover possible connections between the birth of strange stars and explosive phenomena such as supernovae and gamma-ray-bursts.

  16. Combustion of a neutron star into a strange quark star: the neutrino signal

    E-Print Network [OSTI]

    Pagliara, G; Ropke, F K

    2013-01-01

    There are strong indications that the process of conversion of a neutron star into a strange quark star proceeds as a strong deflagration implying that in a few milliseconds almost the whole star is converted. Starting from the three-dimensional hydrodynamic simulations of the combustion process which provide the temperature profiles inside the newly born strange star, we calculate for the first time the neutrino signal that is to be expected if such a conversion process takes place. The neutrino emission is characterized by a luminosity and a duration that is typical for the signal expected from protoneutron stars and represents therefore a powerful source of neutrinos which could be possibly directly detected in case of events occurring close to our galaxy. We discuss moreover possible connections between the birth of strange stars and explosive phenomena such as Supernovae and Gamma-Ray-Bursts.

  17. The Carbon-Rich Gas in the Beta Pictoris Circumstellar Disk

    E-Print Network [OSTI]

    Aki Roberge; Paul D. Feldman; Alycia J. Weinberger; Magali Deleuil; Jean-Claude Bouret

    2006-04-20

    The edge-on disk surrounding the nearby young star Beta Pictoris is the archetype of the "debris disks", which are composed of dust and gas produced by collisions and evaporation of planetesimals, analogues of Solar System comets and asteroids. These disks provide a window on the formation and early evolution of terrestrial planets. Previous observations of Beta Pic concluded that the disk gas has roughly solar abundances of elements [1], but this poses a problem because such gas should be rapidly blown away from the star, contrary to observations of a stable gas disk in Keplerian rotation [1, 2]. Here we report the detection of singly and doubly ionized carbon (CII, CIII) and neutral atomic oxygen (OI) gas in the Beta Pic disk; measurement of these abundant volatile species permits a much more complete gas inventory. Carbon is extremely overabundant relative to every other measured element. This appears to solve the problem of the stable gas disk, since the carbon overabundance should keep the gas disk in Keplerian rotation [3]. New questions arise, however, since the overabundance may indicate the gas is produced from material more carbon-rich than the expected Solar System analogues.

  18. Magnetic Channeling of Radiatively Driven Hot-Star Winds

    E-Print Network [OSTI]

    Owocki, Stanley P.

    in magnetic Bp stars like sigma Ori C. We conclude with an outlook for the general role of magnetic fields that of the solar wind. Their high surface temperatures mean that such stars lack the hydrogen recombination convection zone that induces the magnetic dynamo cycle of cooler, solar type stars [e.g., 3]. Such stars have

  19. Ralf Klessen: Lecture 2: 27.12.2006 Star Formation

    E-Print Network [OSTI]

    Klessen,Ralf

    efficiencyefficiency? How do globalglobal properties of the galaxy influence star formation (a locallocal process

  20. X-ray Emission from the Winds of Massive Stars

    E-Print Network [OSTI]

    Cohen, David

    X-ray Emission from the Winds of Massive Stars David Cohen Department of Physics & Astronomy-driven stellar winds are a characteristic of massive stars NGC 6888 Crescent Nebula - Tony Hallas #12;NGC 6888 Crescent Nebula - Tony Hallas O star - source of wind bubble: ~1 arc second instrumental resolution; star

  1. An Observational Study of Post-Asymptotic Giant Branch Stars

    E-Print Network [OSTI]

    helium-normal or helium-rich photospheres. 2. the detection and measurement of s-process element-AGB stars. We detected helium enrichment in the post-AGB stars Hen3-1428 and LSS4331. We did not detect any such as that seen in the extreme helium stars (EHes). High-resolution ´echelle spectra of several post-AGB stars

  2. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLCConfidentiality Agreement3,RiverTree

  3. ENERGY STAR Webinar: ENERGY STAR and Green Building Rating Systems |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLCConfidentiality Agreement3,RiverTreeDepartment of

  4. Dynamic Star Formation in the Massive DR21 Filament

    SciTech Connect (OSTI)

    Schneider, N.; Csengeri, T.; Bontemps, S.; Motte, F.; Simon, R.; Hennebelle, P.; Federrath, C.; Klessen, R.; /ZAH, Heidelberg /KIPAC, Menlo Park

    2010-08-25

    The formation of massive stars is a highly complex process in which it is unclear whether the star-forming gas is in global gravitational collapse or an equilibrium state supported by turbulence and/or magnetic fields. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, i.e. the filament containing the well-known sources DR21 and DR21(OH), we attempt to obtain observational evidence to help us to discriminate between these two views. We use molecular line data from our {sup 13}CO 1 {yields} 0, CS 2 {yields} 1, and N{sub 2}H{sup +} 1 {yields} 0 survey of the Cygnus X region obtained with the FCRAO and CO, CS, HCO{sup +}, N{sub 2}H{sup +}, and H{sub 2}CO data obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of the highest column-density, i.e., dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO{sup +} and {sup 12}CO are observed along and across the whole DR21 filament. By modelling the observed spectra, we obtain a typical infall speed of {approx}0.6 km s{sup -1} and mass accretion rates of the order of a few 10{sup -3} M{sub {circle_dot}} yr{sup -1} for the two main clumps constituting the filament. These massive clumps (4900 and 3300 M{sub {circle_dot}} at densities of around 10{sup 5} cm{sup -3} within 1 pc diameter) are both gravitationally contracting. The more massive of the clumps, DR21(OH), is connected to a sub-filament, apparently 'falling' onto the clump. This filament runs parallel to the magnetic field. Conclusions. All observed kinematic features in the DR21 filament (velocity field, velocity dispersion, and infall), its filamentary morphology, and the existence of (a) sub-filament(s) can be explained if the DR21 filament was formed by the convergence of flows on large scales and is now in a state of global gravitational collapse. Whether this convergence of flows originated from self-gravity on larger scales or from other processes cannot be determined by the present study. The observed velocity field and velocity dispersion are consistent with results from (magneto)-hydrodynamic simulations where the cores lie at the stagnation points of convergent turbulent flows.

  5. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  6. MN Lup: X-RAYS FROM A WEAKLY ACCRETING T TAURI STAR

    SciTech Connect (OSTI)

    Guenther, H. M.; Wolk, S. J.; Wolter, U.; Robrade, J.

    2013-07-01

    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  7. FAINT POPULATION III SUPERNOVAE AS THE ORIGIN OF THE MOST IRON-POOR STARS

    SciTech Connect (OSTI)

    Ishigaki, Miho N.; Tominaga, Nozomu; Kobayashi, Chiaki; Nomoto, Ken'ichi, E-mail: miho.ishigaki@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan)

    2014-09-10

    The most iron-poor stars in the Milky Way provide important observational clues to the astrophysical objects that enriched the primordial gas with heavy elements. Among them, the recently discovered iron-deficient star SMSS J031300.36–670839.3 shows a remarkable chemical composition with a non-detection of iron ([Fe/H] <–7.1) and large enhancement of carbon and magnesium relative to calcium. We investigate supernova yields of metal-free (Population III) stars to interpret the abundance pattern observed in this star. We report that the high [C/Ca] and [C/Mg] ratios and upper limits of other elemental abundances are well reproduced with the yields of core-collapse supernovae (which have normal kinetic energies of explosion E of E {sub 51} = E/10{sup 51} erg =1) and hypernovae (E {sub 51} ? 10) of Population III 25 M {sub ?} or 40 M {sub ?} stars. The best-fit models assume that the explosions undergo extensive matter mixing and fallback, leaving behind a black hole remnant. In these models, Ca is produced by static/explosive O burning and incomplete Si burning in the Population III supernova/hypernova, in contrast to the suggestion that Ca is originated from the hot-CNO cycle during pre-supernova evolution. Chemical abundances of four carbon-rich iron-poor stars with [Fe/H] <–4.5, including SMSS J031300.36–670839.3, are consistently explained by faint supernova models with ejected masses of {sup 56}Ni less than 10{sup –3} M {sub ?}.

  8. Blue Straggler Stars in Galactic Open Clusters and the effect of field star contamination

    E-Print Network [OSTI]

    G. Carraro; R. A. Vazquez; A. Moitinho

    2008-02-25

    We investigate the distribution of Blue Straggler stars in the field of three open star clusters. The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the Color Magnitude Diagram as Blue Straggler stars. We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in Blue Straggler stars, and which are projected in the direction of the Perseus arm, and study their spatial distribution and the Color Magnitude Diagram. As expected, we find that a large portion of the Blue Straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of Blue Straggler stars in different population environments: open clusters, globular clusters or dwarf galaxies. As previously emphasized by many authors, a detailed membership analysis is mandatory before comparing the Blue Straggler population in star clusters against theoretical models. Moreover, these sequences of young field stars (blue plumes) are potentially powerful tracers of Galactic structure which require further consideration.

  9. Double Neutron Stars: Evidence For Two Different Neutron-Star Formation Mechanisms

    E-Print Network [OSTI]

    E. P. J. van den Heuvel

    2007-04-26

    Six of the eight double neutron stars known in the Galactic disk have low orbital eccentricities (neutron stars received only very small velocity kicks at birth. This is similar to the case of the B-emission X-ray binaries, where a sizable fraction of the neutron stars received hardly any velocity kick at birth (Pfahl et al. 2002). The masses of the second-born neutron stars in five of the six low-eccentricity double neutron stars are remarkably low (between 1.18 and 1.30 Msun). It is argued that these low-mass, low-kick neutron stars were formed by the electron-capture collapse of the degenerate O-Ne-Mg cores of helium stars less massive than about 3.5 Msun, whereas the higher-mass, higher kick-velocity neutron stars were formed by the collapses of the iron cores of higher initial mass. The absence of low-velocity single young radio pulsars (Hobbs et al. 2005) is consistent with the model proposed by Podsiadlowski et al. (2004), in which the electron-capture collapse of degenerate O-Ne-Mg cores can only occur in binary systems, and not in single stars.

  10. Relativistic harmonic oscillator model for quark stars

    E-Print Network [OSTI]

    Vishnu M. Bannur

    2008-10-06

    The relativistic harmonic oscillator (RHO) model of hadrons is used to study quark stars. The mass-radius relationship is obtained and compared with bag model of quark star, using Tolman-Oppenheimer-Volkoff equation. In this model, the outward degenerate pressure due to discrete Landau levels and Landau degeneracy balances the inward gravitational pressure. Where as in bag model the degenerate pressure is due to the standard continuum levels which balances the combined inward pressure due to gravitation and bag pressure. So in RHO model, the confinement effect is included in the degenerate pressure. We found a qualitative similarity, but quantitative differences in mass-radius relationship of quark stars in these two models. Masses and radii are relatively larger and the central energy densities, required for stable quark stars, are lower in RHO model than that of bag model.

  11. Midea: ENERGY STAR Referral (MWF-08CR)

    Broader source: Energy.gov [DOE]

    DOE referred the matter of Westpointe-brand room air conditioner model MWF-08CR to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification.

  12. ENERGY STAR® Solid-State Lighting Workshop

    Broader source: Energy.gov [DOE]

    Workshop Purpose: To prepare manufacturers for the launch of the ENERGY STAR SSL program in late September by sharing information on the state of the SSL market, status of relevant test procedures,...

  13. Axion Stars and Fast Radio Bursts

    E-Print Network [OSTI]

    A. Iwazaki

    2014-10-23

    We show that fast radio bursts arise from collisions between axion stars and neutron stars. The bursts are emitted in the atmosphere of the neutron stars. The observed frequencies of the bursts are given by the axion mass $m_a$ such as $m_a/2\\pi\\simeq 1.4\\,\\mbox{GHz}\\,\\big(m_a/(6\\times 10^{-6}\\mbox{eV})\\big)$. From the event rate $\\sim 10^{-3}$ per year in a galaxy, we can determine the mass $\\sim 10^{-11}M_{\\odot}$ of the axion stars. Using these values we can explain short durations ( $\\sim $ms ) and amount of radiation energies ( $\\sim 10^{43}$GeV ) of the bursts.

  14. ASKO: ENERGY STAR Referral (D5122XXLB)

    Broader source: Energy.gov [DOE]

    DOE referred the matter of ASKO dishwasher model D5122XXLB to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification.

  15. Whirlpool: ENERGY STAR Referral (ASD2524VE)

    Broader source: Energy.gov [DOE]

    DOE referred the matter of Whirlpool's Amana-brand dishwasher model ASD2524VE to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification.

  16. Hybrid Pulsators -- Pulsating Stars with Multiple Identities

    E-Print Network [OSTI]

    Zhou, A -Y

    2015-01-01

    We have carried out a statistic survey on the pulsating variable stars with multiple identities. These stars were identified to exhibit two types of pulsation or multiple light variability types in the literature, and are usually called hybrid pulsators. We extracted the hybrid information based on the Simbad database. Actually, all the variables with multiple identities are retrieved. The survey covers various pulsating stars across the Hertzsprung-Russell diagram. We aim at giving a clue in selecting interesting targets for further observation. Hybrid pulsators are excellent targets for asteroseismology. An important implication of such stars is their potential in advancing the theories of both stellar evolution and pulsation. By presenting the statistics, we address the open questions and prospects regarding current status of hybrid pulsation studies.

  17. Samsung: ENERGY STAR Referral (RF26VAB)

    Broader source: Energy.gov [DOE]

    DOE referred the matter of Samsung refrigerator-freezer model RF26VAB to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification.

  18. The Maximum Mass of a Neutron Star

    E-Print Network [OSTI]

    Vassiliki Kalogera; Gordon Baym

    1996-08-11

    Observational identification of black holes as members of binary systems requires the knowledge of the upper limit on the gravitational mass of a neutron star. We use modern equations of state for neutron star matter, fitted to experimental nucleon-nucleon scattering data and the properties of light nuclei, to calculate, within the framework of Rhoades & Ruffini (1974), the minimum upper limit on a neutron star mass. Regarding the equation of state as valid up to twice nuclear matter saturation density, rho_{nm}, we obtain a secure upper bound on the neutron star mass equal to 2.9 solar masses. We also find that in order to reach the lowest possible upper bound of 2.2 solar masses, we need understand the physical properties of neutron matter up to a density of about 4 times rho_{nm}.

  19. Neutron rich nuclei and neutron stars

    E-Print Network [OSTI]

    C. J. Horowitz

    2013-03-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These constrain the equation of state (pressure versus density) of neutron rich matter. We present a new energy functional that is simultaneously fit to both nuclear and neutron star properties. In this approach, neutron star masses and radii constrain the energy of neutron matter. This avoids having to rely on model dependent microscopic calculations of neutron matter. The functional is then used to predict the location of the drip lines and the properties of very neutron rich heavy nuclei.

  20. Neutron stars in Einstein-aether theory

    E-Print Network [OSTI]

    Christopher Eling; Ted Jacobson; M. Coleman Miller

    2009-12-06

    As current and future experiments probe strong gravitational regimes around neutron stars and black holes, it is desirable to have theoretically sound alternatives to general relativity against which to test observations. Here we study the consequences of one such generalization, Einstein-aether theory, for the properties of non-rotating neutron stars. This theory has a parameter range that satisfies all current weak-field tests. We find that within this range it leads to lower maximum neutron star masses, as well as larger surface redshifts at a particular mass, for a given nuclear equation of state. For non-rotating black holes and neutron stars, the innermost stable circular orbit is only slightly modified in this theory.

  1. Michael Liebreich (Energy All Stars Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Michael Liebreich, CEO of Bloomberg New Energy Finance, delivered this presentation on the energy economy at the Energy All Stars event on January 19, 2013, at the US Department of Energy in...

  2. William Fowler and Elements in the Stars

    Office of Scientific and Technical Information (OSTI)

    the chemical elements inside stars; the Big Bang origin of the universe; and the current Dark Matter debate over what most of the universe is made of. "It is a remarkable fact...

  3. ENERGY STAR Webinar: Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s new ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate the new Portfolio Manager; add a property and...

  4. EPA ENERGY STAR Webcast: Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s new ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate the new Portfolio Manager; add a property and...

  5. ENERGY STAR Webinar: Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar continues on the U.S. Environmental Protection Agency's (EPA's) new ENERGY STAR Portfolio Manager tool. Attendees will learn the more advanced functionalities, such as managing and...

  6. EPA ENERGY STAR Webcast- Portfolio Manager 101

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us as we introduce and demonstrate the core functionality of EPA’s new ENERGY STAR Portfolio Manager tool. Attendees will learn how to: navigate the new Portfolio Manager; add a property and...

  7. ENERGY STAR Webinar: Portfolio Manager 301

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hosted by the U.S. Environmental Protection Agency (EPA) ENERGY STAR, this webinar will show attendees how to upload templates to update property data, setting goals and targets to plan energy...

  8. EPA ENERGY STAR Webcast- Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

  9. EPA ENERGY STAR Webcast: Portfolio Manager 201

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continue to learn about EPA’s new ENERGY STAR Portfolio Manager tool, with a deeper dive into more advanced functionalities such as: managing and tracking changes to your property uses over time;...

  10. Nucleosynthesis in asymptotic giant branch stars

    SciTech Connect (OSTI)

    El Eid, Mounib F., E-mail: meid@aub.edu.lb [American University of Beirut, Department of Physics, P.O. Box 11-0236, Riad El-Solh, Beirut (Lebanon)

    2014-05-09

    The nucleosynthesis in asymptotic giant branch stars (briefly: AGB)is a challenging and fascinating subject in the theory of stellar evolution and important for observations as well. This is because about of half the heavy elements beyond iron are synthesized during thermal pulsation phases of these stars. Furthermore, the understanding of the production of the heavy elements and some light elements like carbon and fluorine represent a powerful tool to get more insight into the internal structure of these stars. The diversity of nuclear processing during the AGB phases may also motivate experimental activities in measuring important nuclear reactions. In this contribution, we emphasize several interesting feature of the nucleosynthesis in AGB stars which still needs further elaboration especially from theoretical point of view.

  11. Sue Tierney (Energy All Stars Presentation)

    Broader source: Energy.gov [DOE]

    Sue Tierney delivered this presentation" The Future of Energy: Toward the 21st Century Energy System We Need (With an Eye on the Rear View Mirror)" at the Energy All Stars event on January 19, 2013...

  12. Top 10 Problems on Massive Stars

    E-Print Network [OSTI]

    Cassio Barbosa; Donald Figer

    2005-10-18

    We have asked a number of researchers to compile their lists of the top 10 problems in the field of massive stars. This paper is a compilation of these lists. We attempted to survey observers and theorists and those studying all evolutionary stages in the lives of massive stars. Each list reflects the proposer's personal point of view, but hopefully, this compilation will motivate new young astronomers and begin a new series of discussion.

  13. Isotopic Anomalies in CP Stars: Helium, Mercury, Platinum, and Calcium

    E-Print Network [OSTI]

    C. R. Cowley; S. Hubrig; F. Castelli

    2007-11-15

    We review the classical observational results for isotopic abundance variations for several elements in CP stars. We concentrate on the "newest" anomaly, in calcium. The cosmically very rare isotope, Ca-48 can rival and even dominate the more common, alpha nuclide, Ca-40. Relevant examples are found in the hot, non-magnetic HgMn stars, and the field horizontal-branch star, Feige 86. The calcium anomaly is also present in cool, magnetic stars, including the notorious HD 101065, Przybylski's star.

  14. The baryon cycle of dwarf galaxies: dark, bursty, gas-rich polluters

    SciTech Connect (OSTI)

    Shen, Sijing; Madau, Piero; Conroy, Charlie [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Governato, Fabio [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Mayer, Lucio [Institute of Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-9057 Zurich (Switzerland)

    2014-09-10

    We present results from a fully cosmological, very high-resolution, ?CDM simulation of a group of seven field dwarf galaxies with present-day virial masses in the range M {sub vir} = 4.4 × 10{sup 8}-3.6 × 10{sup 10} M {sub ?}. The simulation includes a blastwave scheme for supernova feedback, a star-formation recipe based on a high gas density threshold, metal-dependent radiative cooling, a scheme for the turbulent diffusion of metals and thermal energy, and a uniform UV background. The properties of the simulated dwarfs are strongly modulated by the depth of the gravitational potential well. All three halos with M {sub vir} < 10{sup 9} M {sub ?} are devoid of stars, as they never reach the density threshold for star formation of 100 atoms cm{sup –3}. The other four, M {sub vir} > 10{sup 9} M {sub ?} dwarfs have blue colors, low star-formation efficiencies, high cold gas-to-stellar mass ratios, and low stellar metallicities. Their bursty star-formation histories are characterized by peak specific star-formation rates in excess of 50-100 Gyr{sup –1}, far outside the realm of normal, more massive galaxies. The median stellar age of the simulated galaxies decreases with decreasing halo mass, with the two M {sub vir} ? 2-3 × 10{sup 9} M {sub ?} dwarfs being predominantly young, and the two more massive systems hosting intermediate and older populations. The cosmologically young dwarfs are lit up by tidal interactions, have compact morphologies, and have metallicities and cold gas fractions similar to the relatively quiescent, extremely metal-deficient dwarf population. Metal-enriched galactic outflows produce sub-solar effective yields and pollute with heavy elements a megaparsec-size region of the intergalactic medium, but are not sufficient to completely quench star-formation activity and are absent in the faintest dwarfs.

  15. Neutron stars as laboratories for gravity physics

    SciTech Connect (OSTI)

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+?R² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |?|~10? cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether ? is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of ? of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ?}. The associated length scale ?(?)~10? cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of ? is most likely much smaller than 10? cm².

  16. Massive Stars in the Arches Cluster

    E-Print Network [OSTI]

    Figer, D F; Gilmore, D; Morris, M; Kim, S S; Serabyn, E; McLean, I S; Gilbert, A M; Graham, J R; Larkin, J E; Levenson, N A; Teplitz, H I; Figer, Donald F.; Najarro, Francisco; Gilmore, Diane; Morris, Mark; Kim, Sungsoo S.; Serabyn, Eugene; Lean, Ian S. Mc; Gilbert, Andrea M.; Graham, James R.; Larkin, James E.; Teplitz, Harry I.

    2002-01-01

    We present and use new spectra and narrow-band images, along with previously published broad-band images, of stars in the Arches cluster to extract photometry, astrometry, equivalent width, and velocity information. The data are interpreted with a wind/atmosphere code to determine stellar temperatures, luminosities, mass-loss rates, and abundances. We have doubled the number of known emission-line stars, and we have also made the first spectroscopic identification of the main sequence for any population in the Galactic Center. We conclude that the most massive stars are bona-fide Wolf-Rayet (WR) stars and are some of the most massive stars known, having M_{initial} > 100 Msun, and prodigious winds, Mdot > 10^{-5} Msun yr^{-1}, that are enriched with helium and nitrogen; with these identifications, the Arches cluster contains about 5% of all known WR stars in the Galaxy. We find an upper limit to the velocity dispersion of 22 kms^{-1}, implying an upper limit to the cluster mass of 7(10^4) Msun within a radius...

  17. r-Process Enhanced Halo Stars

    E-Print Network [OSTI]

    J. J. Cowan; C. Sneden; J. E. Lawler; E. A. Den Hartog

    2006-10-13

    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities -- which diminishes with increasing metallicity or [Fe/H] -- suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.

  18. Storage and Assay of Tritium in STAR

    SciTech Connect (OSTI)

    Glen R. Longhurst; Robert A. Anderl; Robert J. Pawelko

    2004-09-01

    The Safety and Tritium Applied Research (STAR) facility has recently been commissioned to investigate tritium-related safety questions for fusion and other technologies. The authorized inventory of tritium is 1.6 grams, the threshold quantity for nuclear facility classification. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS). The SAS has four major functions: (1) receiving and holding tritium from shipping containers brought into the STAR facility, (2) assaying the amount of tritium in the SAS, (3) dispensing tritium to secondary beds or containers used for transferring it to the experimental systems in the STAR facility, and (4) purifying hydrogen isotopes from non-hydrogen species. To that may be added a fifth, optional function, isotopic separation of hydrogen isotopes using bed-to-bed transfer techniques. This paper documents the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility.

  19. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  20. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  1. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  2. Gas shielding apparatus

    DOE Patents [OSTI]

    Brandt, Daniel (Los Alamos, NM)

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  3. The cooling of shock-compressed primordial gas

    E-Print Network [OSTI]

    Jarrett L. Johnson; Volker Bromm

    2005-11-10

    We find that at redshifts z > 10, HD line cooling allows strongly-shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of ~ 10^{-8}, the CMB temperature floor is reached in a time which is short compared to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the mergers of dark matter haloes during hierarchical structure formation to be ~ 10 M_{solar}. In addition, we show that cooling by HD enables the primordial gas in relic H II regions to cool to temperatures considerably lower than those reached via H_2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in z ~ 20 minihaloes of mass ~ 10^{6} M_{solar}.

  4. Thermodynamics of Chaplygin gas

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-05-11

    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

  5. Pulsed gas laser

    DOE Patents [OSTI]

    Anderson, Louis W. (Madison, WI); Fitzsimmons, William A. (Madison, WI)

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  6. Valve for gas centrifuges

    DOE Patents [OSTI]

    Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  7. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  8. Radial Velocity of the Phoenix Dwarf Galaxy: Linking Gas and Hi Gas

    E-Print Network [OSTI]

    C. Gallart; D. Martinez-Delgado; M. A. Gomez-Flechoso; Mario Mateo

    2001-02-14

    We present the first radial velocity measurement of the stellar component of the Local Group dwarf galaxy Phoenix, using FORS1 at the VLT UT1 (ANTU) telescope. From the spectra of 31 RGB stars, we derive an heliocentric optical radial velocity of Phoenix Vo=-52 +/- 6 \\kms. On the basis of this velocity, and taking into account the results of a series of semi-analytical and numerical simulations, we discuss the possible association of the HI clouds observed in the Phoenix vicinity. We conclude that the characteristics of the HI cloud with heliocentric velocity --23 \\kms are consistent with this gas having been associated with Phoenix in the past, and lost by the galaxy after the last event of star formation in the galaxy, about 100 Myr ago. Two possible scenarios are discussed: the ejection of the gas by the energy released by the SNe produced in that last event of star formation, and a ram-pressure stripping scenario. Both in the SNe ejection case and in the ram-pressure sweeping scenario, the distances and relative velocities imply that the HI cloud is not gravitationally bound to Phoenix, since this would require a Phoenix total mass about an order of magnitude larger than its total estimated mass. Finally, we discuss the possibility that Phoenix may be a bound Milky Way satellite. The minimum required mass of the Milky Way for Phoenix to be bound is $M_{MW}(<450 {\\rm kpc}) \\ge 1.2 \\times 10^{12}$ M$_{\\odot}$ which comfortably fits within most current estimates.

  9. Compressed Gas Cylinder Policy

    E-Print Network [OSTI]

    of pressure from a compressed gas cylinder and pose a serious threat to life and property. To minimize risk cylinders to and from a designated work are

  10. Gas venting system

    DOE Patents [OSTI]

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  11. String Gas Baryogenesis

    E-Print Network [OSTI]

    G. L. Alberghi

    2010-02-19

    We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

  12. Natural gas annual 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  13. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  14. Home Safety: Radon Gas 

    E-Print Network [OSTI]

    Shaw, Bryan W.; Denny, Monica L.

    1999-11-12

    Every home should be tested for radon, an invisible, odorless, radioactive gas that occurs naturally. This publication explains the health risks, testing methods, and mitigation and reduction techniques....

  15. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  16. ISM Masses and Star Formation at z = 1 to 6 ALMA Observations of Dust Continuum in 180 Galaxies in COSMOS

    E-Print Network [OSTI]

    Scoville, N; Aussel, H; Bout, P Vanden; Capak, P; Bongiorno, A; Casey, C M; Murchikova, L; Koda, J; Pope, A; Toft, S; Ivison, R; Sanders, D; Manohar, S; Lee, N

    2015-01-01

    ALMA Cycle 2 observations of the long wavelength dust emission in 180 star-forming (SF) galaxies are used to investigate the evolution of ISM masses at z = 1 to 6.4. The ISM masses exhibit strong increases from z = 0 to $\\rm $ = 1.15 and further to $\\rm $ = 2.2 and 4.8, particularly amongst galaxies above the SF galaxy main sequence (MS). The galaxies with highest SFRs at $\\rm $ = 2.2 and 4.8 have gas masses 100 times that of the Milky Way and gas mass fractions reaching 50 to 80\\%, i.e. gas masses 1 - 4$\\times$ their stellar masses. For the full sample of galaxies, we find a single, very simple SF law: $\\rm SFR \\propto M_{\\rm ISM}^{0.9}$, i.e. a `linear' dependence on the ISM mass -- on and above the MS. Thus, the galaxies above the MS are converting their larger ISM masses into stars on a timescale similar to those on the MS. At z $> 1$, the entire population of star-forming galaxies has $\\sim$5 - 10$\\times$ shorter gas depletion times ($\\sim0.2$ Gyr) than galaxies at low redshift. These {\\bf shorter deplet...

  17. Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview

    E-Print Network [OSTI]

    Bancelin, D; Eggl, S; Maindl, T I; Schäfer, C; Speith, R; Dvorak, R

    2015-01-01

    So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings ...

  18. The Distribution of Star Formation and Metals in the Low Surface Brightness Galaxy UGC 628

    E-Print Network [OSTI]

    Young, J E; Wang, Sharon X

    2015-01-01

    We introduce the MUSCEL Program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially-resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with mo...

  19. Low virial parameters in molecular clouds: Implications for high-mass star formation and magnetic fields

    SciTech Connect (OSTI)

    Kauffmann, Jens; Pillai, Thushara [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Goldsmith, Paul F., E-mail: jens.kauffmann@astro.caltech.edu, E-mail: tpillai@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Boulevard, Pasadena, CA 91109 (United States)

    2013-12-20

    Whether or not molecular clouds and embedded cloud fragments are stable against collapse is of utmost importance for the study of the star formation process. Only 'supercritical' cloud fragments are able to collapse and form stars. The virial parameter ? = M {sub vir}/M, which compares the virial mass to the actual mass, provides one way to gauge stability against collapse. Supercritical cloud fragments are characterized by ? ? 2, as indicated by a comprehensive stability analysis considering perturbations in pressure and density gradients. Past research has suggested that virial parameters ? ? 2 prevail in clouds. This would suggest that collapse toward star formation is a gradual and relatively slow process and that magnetic fields are not needed to explain the observed cloud structure. Here, we review a range of very recent observational studies that derive virial parameters <<2 and compile a catalog of 1325 virial parameter estimates. Low values of ? are in particular observed for regions of high-mass star formation (HMSF). These observations may argue for a more rapid and violent evolution during collapse. This would enable 'competitive accretion' in HMSF, constrain some models of 'monolithic collapse', and might explain the absence of high-mass starless cores. Alternatively, the data could point at the presence of significant magnetic fields ?1 mG at high gas densities. We examine to what extent the derived observational properties might be biased by observational or theoretical uncertainties. For a wide range of reasonable parameters, our conclusions appear to be robust with respect to such biases.

  20. Herbig stars' near-infrared excess: An origin in the protostellar disk's magnetically supported atmosphere

    SciTech Connect (OSTI)

    Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Benisty, M.; Dullemond, C. P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Hirose, S., E-mail: neal.turner@jpl.nasa.gov [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan)

    2014-01-01

    Young stars with masses 2-8 times solar, the Herbig Ae and Be stars, often show a near-infrared excess too large to explain with a hydrostatically supported circumstellar disk of gas and dust. At the same time, the accretion flow carrying the circumstellar gas to the star is thought to be driven by magnetorotational turbulence, which, according to numerical MHD modeling, yields an extended low-density atmosphere supported by the magnetic fields. We demonstrate that the base of the atmosphere can be optically thick to the starlight and that the parts lying near 1 AU are tall enough to double the fraction of the stellar luminosity reprocessed into the near-infrared. We generate synthetic spectral energy distributions (SEDs) using Monte Carlo radiative transfer calculations with opacities for submicron silicate and carbonaceous grains. The synthetic SEDs closely follow the median Herbig SED constructed recently by Mulders and Dominik and, in particular, match the large near-infrared flux, provided the grains have a mass fraction close to interstellar near the disk's inner rim.

  1. Turn-off of Deuterium Astration in the Recent Star Formation of the Galaxy Disk

    E-Print Network [OSTI]

    Tsujimoto, T

    2010-01-01

    Chemical features of the local stellar disk have firmly established that long-term, continuous star formation has been accompanied by a steady rate of accretion of low-metallicity gas from the halo. We now argue that the recent discovery of an enhanced deuterium (D) fraction in the Galaxy is consistent with this picture. We consider two processes: the destruction of D in the interior of stars (astration) and the supply of nearly primordial D associated with the gas infall. Conventional Galactic chemical evolution models predict a monotonic decrease in D/H with time with a present-day D/H abundance which is much lower than the local value recently revealed. This predicted feature is the result of high levels of deuterium astration involved in the formation of the local metal-enhanced disk. Here we propose a new channel to explain the observed enhancement in D/H. Our model, which invokes ongoing gaseous infall and a star formation rate that declines over the past several Gyr, predicts that the D astration is su...

  2. High-resolution spectroscopy of the R Coronae Borealis Star V Coronae Australis

    E-Print Network [OSTI]

    N. Kameswara Rao; David L. Lambert

    2007-10-26

    Optical high-resolution spectra of the R Coronae Borealis star V CrA at light maximum and during minimum light arediscussed. Abundance analysis confirms previous results showing that V CrA has the composition of the small subclass of R Coronae Borealis (RCB) stars know as `minority' RCBs, i.e., the Si/Fe and S/Fe ratios are 100 times their solar values. A notable novel result for RCBs is the detection of the 1-0 Swan system $^{12}$C$^{13}$C bandhead indicating that $^{13}$C is abundant: spectrum synthesis shows that $^{12}$C/$^{13}$C is about 3 to 4. Absorption line profiles are variable at maximum light with some lines showing evidence of splitting by about 10 km s$^{-1}$. A spectrum obtained as the star was recovering from a deep minimum shows the presence of cool C$_2$ molecules with a rotational temperature of about 1200K, a temperature suggestive of gas in which carbon is condensing into soot. The presence of rapidly outflowing gas is shown by blue-shifted absorption components of the Na {\\sc i} D and K {\\sc i} 7698 \\AA resonance lines.

  3. The molecular environment of massive star forming cores associated with Class II methanol maser emission

    E-Print Network [OSTI]

    S. N. Longmore; M. G. Burton; P. J. Barnes; T. Wong; C. R. Purcell; J. Ott

    2007-04-13

    Methanol maser emission has proven to be an excellent signpost of regions undergoing massive star formation (MSF). To investigate their role as an evolutionary tracer, we have recently completed a large observing program with the ATCA to derive the dynamical and physical properties of molecular/ionised gas towards a sample of MSF regions traced by 6.7 GHz methanol maser emission. We find that the molecular gas in many of these regions breaks up into multiple sub-clumps which we separate into groups based on their association with/without methanol maser and cm continuum emission. The temperature and dynamic state of the molecular gas is markedly different between the groups. Based on these differences, we attempt to assess the evolutionary state of the cores in the groups and thus investigate the role of class II methanol masers as a tracer of MSF.

  4. Mass Loss From Evolved Stars in Elliptical Galaxies

    E-Print Network [OSTI]

    Parriott, Joel R

    2008-01-01

    Most of the X-ray emitting gas in early-type galaxies probably originates from red giant mass loss and here we model the interaction between this stellar mass loss and the hot ambient medium. Using two-dimensional hydrodynamic simulations, we adopt a temperature for the ambient medium of 3E6 K along with a range of ambient densities and stellar velocities. When the stellar velocity is supersonic relative to the ambient medium, a bow shock occurs, along with a shock driven into the stellar ejecta, which heats only a fraction of the gas. Behind the bow shock, a cool wake develops but the fast flow of the hot medium causes Kelvin-Helmholtz instabilities to grow and these fingers are shocked and heated (without radiative cooling). Along with the mixing of this wake material with the hot medium, most of the stellar ejecta is heated to approximately the temperature of the hot ambient medium within 2 pc of the star. With the addition of radiative cooling, some wake material remains cool (< 1E5 K), accounting for ...

  5. Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars

    E-Print Network [OSTI]

    Tramper, F; Sanyal, D; Sana, H; de Koter, A; Gräfener, G; Langer, N; Vink, J S; de Mink, S E; Kaper, L

    2015-01-01

    Context. Oxygen sequence Wolf-Rayet (WO) stars represent a very rare stage in the evolution of massive stars. Their spectra show strong emission lines of helium-burning products, in particular highly ionized carbon and oxygen. The properties of WO stars can be used to provide unique constraints on the (post-)helium burning evolution of massive stars, as well as their remaining lifetime and the expected properties of their supernovae. Aims. We aim to homogeneously analyse the currently known presumed-single WO stars to obtain the key stellar and outflow properties and to constrain their evolutionary state. Methods. We use the line-blanketed non-local thermal equilibrium atmosphere code cmfgen to model the X-Shooter spectra of the WO stars and deduce the atmospheric parameters. We calculate dedicated evolutionary models to determine the evolutionary state of the stars. Results. The WO stars have extremely high temperatures that range from 150 kK to 210 kK, and very low surface helium mass fractions that range f...

  6. Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars

    E-Print Network [OSTI]

    Hainich, R; Todt, H; Shenar, T; Sander, A; Hamann, W -R

    2015-01-01

    Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while ...

  7. EPA ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to help your property get from application to award.

  8. Can star cluster environment affect dust input from massive AGB stars?

    E-Print Network [OSTI]

    Zhukovska, Svitlana; Henning, Thomas

    2015-01-01

    We examine the fraction of massive asymptotic giant branch (AGB) stars remaining bound in their parent star clusters and the effect of irradiation of these stars by intracluster ultraviolet (UV) field. We employ a set of N-body models of dynamical evolution of star clusters rotating in a galactic potential at the solar galactocentric radius. The cluster models are combined with stellar evolution formulae, a library of stellar spectra, and simple models for SiO photodissociation in circumstellar environment (CSE). The initial stellar masses of clusters are varied from $50\\rm M_\\odot$ to $10^{5}\\rm M_\\odot$. Results derived for individual clusters are combined using a mass distribution function for young star clusters. We find that about 30% of massive AGB stars initially born in clusters become members of the field population, while the rest evolves in star clusters. They are irradiated by strong intracluster UV radiation resulting in the decrease of the photodissociation radius of SiO molecules, in many stars...

  9. Gas pump with movable gas pumping panels

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  10. Evolution of Gas and Dust in Circumstellar Disks

    E-Print Network [OSTI]

    David W. Koerner

    1999-12-17

    A clear understanding of the chemical processing of matter, as it is transferred from a molecular cloud to a planetary system, depends heavily on knowledge of the physical conditions endured by gas and dust as these accrete onto a disk and are incorporated into planetary bodies. Reviewed here are astrophysical observations of circumstellar disks which trace their evolving properties. Accretion disks that are massive enough to produce a solar system like our own are typically larger than 100 AU. This suggests that the chemistry of a large fraction of the infalling material is not radically altered upon contact with a vigorous accretion shock. The mechanisms of accretion onto the star and eventual dispersal are not yet well understood, but timescales for the removal of gas and optically thick dust appear to be a few times 10$^6$ yrs. At later times, tenuous ``debris disks'' of dust remain around stars as old as a few times 10$^8$ yrs. Features in the morphology of the latter, such as inner holes, warps, and azimuthal asymmetries, are likely to be the result of the dynamical influence of large planetary bodies. Future observations will enlighten our understanding of chemical evolution and will focus on the search for disks in transition from a viscous accretion stage to one represented by a gas-free assemblage of colliding planetesimals. In the near future, comparative analysis of circumstellar dust and gas properties within a statistically significant sample of young stars at various ages will be possible with instrumentation such as SIRTF and SOFIA. Well-designed surveys will help place solar system analogs in a general context of a diversity of possible pathways for circumstellar evolution, one which encompasses the formation of stellar and brown-dwarf companions as well as planetary systems.

  11. On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the H-R diagram

    E-Print Network [OSTI]

    Briquet, M; De Cat, P; Aerts, C; North, P; Scholler, M; 10.1051/0004-6361:20066940

    2009-01-01

    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods. We carry out a comparative study between samples of confirmed and well-studied SPB stars and a sample of well-studied Bp stars with known periods and magnetic field strengths. We determine their evolutionary state using accurate HIPPARCOS parallaxes and Geneva photometry. We discuss the occurrence and strengths of magnetic fields as well as the occurrence of stellar pulsation among both groups. Further, we make a comparison of Geneva photometric variability for both kinds of stars. Results. The group of Bp stars is significantly younger than the group of SPB stars. Longitudinal magnetic fields in SPB stars are weaker than those of Bp stars, suggesting that the magnetic field strength is an important factor for B type stars to become chemically pec...

  12. Vacuum fluctuation inside a star and their consequences for neutron stars, a simple model

    E-Print Network [OSTI]

    Gunther Caspar; Isaac Rodriguez; Peter O. Hess; Walter Greiner

    2015-06-03

    Applying semi-classical Quantum Mechanics, the vacuum fluctuations within a star are determined, assuming a constant mass density and applying a monopole approximation. It is found that the density for the vacuum fluctuations does not only depend linearly on the mass density, as assumed in a former publication, where neutron stars up to 6 solar masses were obtained. This is used to propose a simple model on the dependence of the dark energy to the mass density, as a function of the radial distance r. It is shown that stars with up to 200 solar masses can, in principle, be obtained. Though, we use a simple model, it shows that in the presence of vacuum fluctuations stars with large masses can be stabilized and probably stars up to any mass can exist, which usually are identified as black holes.

  13. Progressive star formation in the young galactic super star cluster NGC 3603

    E-Print Network [OSTI]

    Beccari, Giacomo; De Marchi, Guido; Paresce, Francesco; Young, Erick; Andersen, Morten; Panagia, Nino; Balick, Bruce; Bond, Howard; Calzetti, Daniela; Carollo, C Marcella; Disney, Michael J; Dopita, Michael A; Frogel, Jay A; Hall, Donald N B; Holtzman, Jon A; Kimble, Randy A; McCarthy, Patrick J; O'Connell, Robert W; Saha, Abhijit; Silk, Joseph I; Trauger, John T; Walker, Alistair R; Whitmore, Bradley C; Windhorst, Rogier A

    2010-01-01

    Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  14. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  15. GAS EXPLORATION Winter 2006 GasTIPS 5

    E-Print Network [OSTI]

    Rubin, Yoram

    GAS EXPLORATION Winter 2006 · GasTIPS 5 T he prediction of reservoir parameters such as gas or oil, but is particularly challenging in the case of gas exploration. Current seismic imaging technol- ogy cannot accurately discriminate between economic and non-eco- nomic concentrations of gas. This is primarily because

  16. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

  17. Thermoacoustic natural gas liquefier

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.; Hayden, M.; Radebaugh, R.; Wollan, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a natural-gas-powered natural-gas liquefier that has absolutely no moving parts and requires no electrical power. It should have high efficiency, remarkable reliability, and low cost. The thermoacoustic natural-gas liquefier (TANGL) is based on our recent invention of the first no-moving-parts cryogenic refrigerator. In short, our invention uses acoustic phenomena to produce refrigeration from heat, with no moving parts. The required apparatus comprises nothing more than heat exchangers and pipes, made of common materials, without exacting tolerances. Its initial experimental success in a small size lead us to propose a more ambitious application: large-energy liquefaction of natural gas, using combustion of natural gas as the energy source. TANGL was designed to be maintenance-free, inexpensive, portable, and environmentally benign.

  18. Cryogenic treatment of gas

    DOE Patents [OSTI]

    Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  19. Supersonic gas compressor

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2007-11-13

    A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

  20. Pasta structures in compact stars

    E-Print Network [OSTI]

    Toshiki Maruyama; Toshitaka Tatsumi; Tomoki Endo; Satoshi Chiba

    2006-05-31

    We review our recent works about ``pasta'' structures following the first-order phase transition in dense matter, which correspond to the structured mixed phases with geometrical symmetries. Three kinds of phase transitions at different density ranges are examined as the stages of pasta structures: liquid-gas phase transition at subnuclear density, kaon condensation and hadron-quark phase transition at high density. Charge density as well as particle density is non-uniform there. A consistent treatment of the Coulomb potential and the particle densities is presented and a peculiar role of the Coulomb potential is elucidated: the physical picture of the Maxwell construction will be effectively recovered. It largely influences the density regime of pasta structures by the charge screening effect.