National Library of Energy BETA

Sample records for locations lexington kentucky

  1. Kentucky

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kentucky

  2. Kentucky Consortium for Carbon Storage | Open Energy Information

    Open Energy Info (EERE)

    Consortium for Carbon Storage Jump to: navigation, search Name: Kentucky Consortium for Carbon Storage Place: Lexington, Kentucky Zip: 40506-0107 Product: Kentucky based...

  3. Fayette County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Fayette County, Kentucky Lexington-Fayette urban, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleFayetteCounty,Kentu...

  4. DOE Awards Task Order for Lexington Project Office Audit

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) Office of Environmental Management today awarded a task order to KPMG LLP, of McLean, Virginia to perform audit services for the Portsmouth/Paducah Project Office in Lexington, Kentucky. The task order has an approximate value of $2.9 million over a two-year performance period.

  5. Lexington, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Registered Networking Organizations in Lexington, Massachusetts Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Lexington, Massachusetts...

  6. Kentucky - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  7. Kentucky - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  8. Kentucky - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  9. City of Lexington, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Lexington, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Lexington Place: Oklahoma Phone Number: (405) 527-6123 Website: www.cityoflexington.comutilit...

  10. City of Lexington, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    City of Lexington, Nebraska (Utility Company) Jump to: navigation, search Name: Lexington Municipal Power Place: Nebraska Phone Number: 308.324.2343 Website: www.cityoflex.com...

  11. City of Lexington, North Carolina (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    North Carolina Phone Number: (704) 948-0550 Website: www.lexingtonnc.netindex.aspx Twitter: @CityofLexington Facebook: https:www.facebook.comCityofLexington Outage...

  12. Lexington Children`s Museum final report on EnergyQuest

    SciTech Connect (OSTI)

    1998-08-01

    EnergyQuest is a museum-wide exhibit that familiarizes children and their families with energy sources, uses, and issues and with the impact of those issues on their lives. It was developed and built by Lexington Children`s Museum with support from the US Department of Energy, Kentucky Utilities, and the Kentucky Coal Marketing and Export Council. EnergyQuest featured six hands-on exhibit stations in each of six museum galleries. Collectively, the exhibits examine the sources, uses and conservation of energy. Each EnergyQuest exhibit reflects the content of its gallery setting. During the first year after opening EnergyQuest, a series of 48 public educational programs on energy were conducted at the Museum as part of the Museum`s ongoing schedule of demonstrations, performances, workshops and classes. In addition, teacher training was conducted.

  13. EECBG Success Story: Software Helps Kentucky County Gauge Energy Use |

    Office of Environmental Management (EM)

    Department of Energy Software Helps Kentucky County Gauge Energy Use EECBG Success Story: Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis Lexington-Fayette Urban County, Kentucky invested $140,000 of a $2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The energy management software will allow the county to track energy usage and greenhouse gas emission levels in targeted properties as well as process reports and

  14. Harlan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky Cumberland, Kentucky Evarts, Kentucky Harlan, Kentucky Loyall, Kentucky Lynch, Kentucky South Wallins, Kentucky Wallins Creek, Kentucky Retrieved from "http:...

  15. City of Lexington, Texas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    cms Facebook: https:www.facebook.compagesLexington-Chamber-of-Commerce137165246349765 Outage Hotline: (979) 773-2221; (979) 773-4878 References: EIA Form...

  16. Maxey Flats, Kentucky, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    3 Fact Sheet Maxey Flats, Kentucky, Disposal Site This fact sheet provides information about the Maxey Flats, Kentucky, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Maxey Flats, Kentucky, Disposal Site Site Description and History The Maxey Flats site is an inactive, low-level radioactive waste disposal site located in eastern Kentucky about 10

  17. Jefferson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Broeck Pointe, Kentucky Brownsboro Farm, Kentucky Brownsboro Village, Kentucky Cambridge, Kentucky Coldstream, Kentucky Creekside, Kentucky Crossgate, Kentucky Douglass...

  18. Categorical Exclusion Determinations: Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kentucky Categorical Exclusion Determinations: Kentucky Location Categorical Exclusion Determinations issued for actions in Kentucky. DOCUMENTS AVAILABLE FOR DOWNLOAD December 1, 2014 CX-100119 Categorical Exclusion Determination No Heat Spray Drying Technology Award Number: DE-EE0005774 CX(s) Applied: A9, B3.6 Date: 12/01/2014 Location(s): KY Office(s): Golden Field Office December 5, 2013 CX-011735: Categorical Exclusion Determination UHV Technologies, Inc. - Low Cost High Throughput In-Line

  19. Hardin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Elizabethtown, Kentucky Fort Knox, Kentucky Muldraugh, Kentucky Radcliff, Kentucky Sonora, Kentucky Upton, Kentucky Vine Grove, Kentucky West Point, Kentucky Retrieved from...

  20. Kenton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakeside Park, Kentucky Ludlow, Kentucky Park Hills, Kentucky Ryland Heights, Kentucky Taylor Mill, Kentucky Villa Hills, Kentucky Walton, Kentucky Retrieved from "http:...

  1. Christian County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Commonwealth AgriEnergy Places in Christian County, Kentucky Crofton, Kentucky Fort Campbell North, Kentucky Hopkinsville, Kentucky LaFayette, Kentucky Oak Grove, Kentucky...

  2. Owen County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Owen County, Kentucky Gratz, Kentucky Monterey, Kentucky Owenton, Kentucky Sparta, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleOwenCounty,Kentucky...

  3. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  4. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  5. Hopkins County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Hopkins County, Kentucky Dawson Springs, Kentucky Earlington, Kentucky Hanson, Kentucky Madisonville, Kentucky Mortons...

  6. Oldham County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Oldham County, Kentucky Buckner, Kentucky Crestwood, Kentucky Goshen, Kentucky La Grange, Kentucky Orchard Grass...

  7. Lincoln County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crab Orchard, Kentucky Eubank, Kentucky Hustonville, Kentucky Junction City, Kentucky Stanford, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleLincolnCounty,Kent...

  8. Kentucky.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Kentucky.pdf More Documents & Publications Kentucky Recovery Act State Memo Slide 1 Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

  9. Kentucky National Guard Radiation Specialist Course | Department...

    Office of Environmental Management (EM)

    Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course PDF icon Kentucky National Guard Radiation Specialist Course More Documents...

  10. Caldwell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Caldwell County, Kentucky Dawson Springs, Kentucky Fredonia, Kentucky Princeton, Kentucky Retrieved from "http:...

  11. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Monroe County, Kentucky Fountain Run, Kentucky Gamaliel, Kentucky Tompkinsville, Kentucky Retrieved from "http:...

  12. Gallatin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Gallatin County, Kentucky Glencoe, Kentucky Sparta, Kentucky Warsaw, Kentucky Retrieved from "http:en.openei.orgw...

  13. Barren County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Barren County, Kentucky Cave City, Kentucky Glasgow, Kentucky Park City, Kentucky Retrieved from "http:en.openei.orgw...

  14. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Pendleton County, Kentucky Butler, Kentucky Falmouth, Kentucky Williamstown, Kentucky Retrieved from "http:...

  15. Grayson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Places in Grayson County, Kentucky Caneyville, Kentucky Clarkson, Kentucky Leitchfield, Kentucky Retrieved from "http:en.openei.orgw...

  16. Kentucky Natural Gas Processed in Kentucky (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Kentucky (Million Cubic Feet) Kentucky Natural Gas Processed in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,941 67,568 61,463 56,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Kentucky-Kentucky

  17. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Kentucky (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-Kentucky

  18. Lexington Hills, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":37.164668,"lon":-121.9730139,"alt":0,"address":"","i...

  19. Kentucky/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives for Kentucky CSV (rows 1 - 71) Incentive Incentive Type Active Atmos Energy - Natural Gas and Weatherization Efficiency Program (Kentucky) Utility Rebate Program Yes...

  20. Kentucky Save Energy Now Program

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

  1. Western Kentucky thrives

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2005-10-01

    Independents and big boys struggle to keep up with increasing demand and a lack of experienced workers in the Illinois Basin. This is the second of a two part series reviewing the coal mining industry in the Illinois Basin which also includes Indiana and Western Kentucky. It includes a classification/correction to Part 1 of the article published in the September 2005 issue (see Coal Abstracts Entry data/number Dec 2005 00204). 4 photos.

  2. About Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us About Us PPPO LOGO-4 4-3.png The Portsmouth/Paducah Project Office (PPPO) manages the Department of Energy (DOE) cleanup efforts at two gaseous diffusion plant sites - Portsmouth, Ohio, and Paducah, Kentucky. Located in Lexington, Kentucky, the PPPO office lies between the Kentucky and Ohio Sites. Although the Acting PPPO Manager is based at the Lexington project office, frequent and routine site interactions occur between management and staff among all three locations. PPPO maintains a

  3. Fulton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Fulton County, Kentucky Fulton, Kentucky Hickman, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleFultonCounty,Kentu...

  4. Madison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Madison County, Kentucky Berea, Kentucky Richmond, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleMadisonCounty,Kent...

  5. Calloway County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Calloway County, Kentucky Hazel, Kentucky Murray, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCallowayCounty,Kent...

  6. Trimble County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Trimble County, Kentucky Bedford, Kentucky Milton, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleTrimbleCounty,Kentu...

  7. CX-002289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cavitation Pretreatment of a Flotation Feedstock for Enhanced Coal RecoveryCX(s) Applied: B3.6Date: 05/19/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  8. CX-002393: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dewatering of Fine Coal PelletsCX(s) Applied: B3.6Date: 05/24/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  9. CX-006286: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Advanced Systems for Preprocessing and Characterizing Coal-Biomass MixturesCX(s) Applied: B3.6Date: 08/01/2011Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  11. Columbus, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Columbus is a city in Hickman County, Kentucky. It falls under Kentucky's 1st congressional district.12...

  12. Adairville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Adairville is a city in Logan County, Kentucky. It falls under Kentucky's 1st congressional district.12...

  13. Kentucky Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Midwest Energy Efficiency Alliance – Chicago, ILPartners:   -  Kentucky Department of Housing, Buildings and Construction (DHBC) – Frankfort, KY  -  Kentucky Department of Energy...

  14. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  15. West Kentucky Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    West Kentucky Rural E C C Jump to: navigation, search Name: West Kentucky Rural E C C Place: Kentucky Phone Number: 270-247-1321 or 1-877-495-7322 Website: www.wkrecc.com Twitter:...

  16. City of Olive Hill, Kentucky (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name: Olive Hill City of Place: Kentucky Phone Number: (606) 286-2192 Website: www.cityofolivehillutiliti...

  17. Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky, ...

  18. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  19. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    DNR Oil and Gas Division Jump to: navigation, search Name: Kentucky DNR Oil and Gas Division Address: 1025 Capital Center Drive Place: Kentucky Zip: 40601 Website:...

  20. Crittenden County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Crittenden County, Kentucky Marion, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCrittendenCounty,Ke...

  1. City of Glasgow, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Kentucky (Utility Company) Jump to: navigation, search Name: City of Glasgow Place: Kentucky Phone Number: (270) 651-8341 Website: www.glasgowepb.net Facebook: https:...

  2. City of Owensboro, Kentucky (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Owensboro, Kentucky (Utility Company) Jump to: navigation, search Name: City of Owensboro Place: Kentucky Phone Number: (270) 926-3200 Website: omu.org Facebook: https:...

  3. Breathitt County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Breathitt County, Kentucky Jackson, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleBreathittCounty,Ke...

  4. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  5. Northern Kentucky Veterans Job Fair | Department of Energy

    Energy Savers [EERE]

    Northern Kentucky Veterans Job Fair Northern Kentucky Veterans Job Fair March 23, 2016 8:00AM to 4:40PM EDT Receptions, Erlanger, KY

  6. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  7. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources (Redirected from Hickman, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5711721, -89.1861791 Show Map Loading map......

  8. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Place: Kentucky Phone Number: 865-632-2101 Website: www.tva.comabouttvacontact.h Twitter: @TVANewsroom Facebook: https:www.facebook.comTVAapp116943498446376 Outage...

  9. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  10. Kentucky/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. Kentucky Utilities Co (Tennessee) | Open Energy Information

    Open Energy Info (EERE)

    Co (Tennessee) Jump to: navigation, search Name: Kentucky Utilities Co (Tennessee) Place: Tennessee Phone Number: 800-981-0600 Website: lge-ku.comcustomer-serviceou Outage...

  12. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. Sonora, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sonora, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.524226, -85.8930192 Show Map Loading map... "minzoom":false,"mappingservic...

  14. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  15. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11122-45 GSI Environmental Multiple sites, KY Kentucky Geological Survey, University of Kentucky, Lexington, KY (CX approval is for the sub-recipient only) FE/TDIC/OG/UOG Team David P. Cercone Reducing the Impacts of Gas Shale Development; Advanced Analytical Methods for.. University of Kentucky will go to eastern Kentucky field locations and collect samples from wells in the study area. The samples will be analyzed and reported from facilities at the University. DAVID CERCONE Digitally signed

  16. CX-005154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    United States-China Advanced Coal Technologies Consortium - University of KentuckyCX(s) Applied: A9, A11, B3.6Date: 02/04/2011Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative

  18. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Kentucky Trucking Company Adds CNG Vehicles to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Google Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG

  19. Kentucky Residents Cash in on Rebate Program

    Broader source: Energy.gov [DOE]

    A look at Kentucky's energy efficient rebate program, which has issued nearly 29,500 rebates for 16 different types of energy efficient appliances to residents across the state.

  20. Biodiesel is Working Hard in Kentucky

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet describes the use of biodiesel fuel in 6 school districts throughout Kentucky. It contains usage information for each school district, as well as contact information for local Clean Cities Coordinators and Biodiesel suppliers.

  1. City of Hickman, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hickman, Kentucky (Utility Company) Jump to: navigation, search Name: City of Hickman Place: Kentucky Phone Number: (270) 236-3951 or (270) 236-2535 Website: hickman.cityof.org...

  2. Kentucky's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Kentucky's 1st congressional district Commonwealth AgriEnergy Four Rivers BioEnergy Retrieved from "http:en.openei.orgwindex.php?titleKentucky%27s1stcongressiona...

  3. City of Murray, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Kentucky (Utility Company) Jump to: navigation, search Name: City of Murray Place: Kentucky Phone Number: (270) 753-5312 Website: www2.murray-ky.net Twitter:...

  4. West Point, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Point is a city in Hardin County, Kentucky. It falls under Kentucky's 2nd congressional...

  5. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:43 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  6. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  7. Kentucky Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles.

  8. Alternative Fuels Data Center: Kentucky Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Kentucky Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  9. Kentucky Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Kentucky Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 5 2010's 4 4 4 4 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production Shale G

  10. Kentucky Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 20 55 2010's 10 41 34 46 50 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Kentucky Shale Gas Proved Reserves, Reserves

  11. Kentucky Launches State-Wide School Energy Manager Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 2:00pm Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Paul Lester Digital

  12. SEP Success Story: Kentucky Launches State-Wide School Energy Manager

    Energy Savers [EERE]

    Program | Department of Energy Kentucky Launches State-Wide School Energy Manager Program SEP Success Story: Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 9:29am Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution

  13. Kentucky Save Energy Now Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » State and Utility Engagement Activities » Kentucky Save Energy Now Initiative Kentucky Save Energy Now Initiative Kentucky The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program), has developed multiple resources and a suite of tools focused on best practices to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 (EPAct) objective of reducing industrial

  14. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  15. Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melissa Howell | Department of Energy Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell June 18, 2013 - 4:12pm Addthis With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the

  16. DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Headquarters Review Focuses on Improved LATA Kentucky Worker Safety DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety July 1, 2012 - 12:00pm Addthis Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses LATA Kentucky employees during a training session. The June regulatory assistance review was aimed at ensuring worker safety. Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement,

  17. Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy

    Energy Savers [EERE]

    Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER | Department of Energy Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER This case study summarizes energy efficiency achievements made by Sherwin-Williams' Richmond, Kentucky,

  18. EA-1642: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Design and Construction of an Early Lead Mini-Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research Near Lexington, Kentucky

  19. EA-1642: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Design and Construction of an Early Lead Mini Fischer-Tropsch Refinery at the University of Kentucky Center for Applied Energy Research Near Lexington, Kentucky

  20. EcoPower Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: ecoPower Generation LLC Place: Lexington, Kentucky Zip: 40504 Sector: Bioenergy Product: Kentucky-based wood-powered bioenergy plant developer that has proposed a...

  1. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hart County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3101304, -85.8486236 Show Map Loading map... "minzoom":false,"mapping...

  2. Clay County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1738044, -83.7199136 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Powell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8380647, -83.8260884 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Webster County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4892188, -87.7369607 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Green County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2570117, -85.56121 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  6. Boyle County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Boyle County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6526034, -84.8150781 Show Map Loading map... "minzoom":false,"mappin...

  7. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  8. Lyon County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lyon County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0247261, -88.0900762 Show Map Loading map... "minzoom":false,"mapping...

  9. Washington County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Washington County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7516142, -85.1479364 Show Map Loading map......

  10. South Kentucky Rural Electric Coop Corp (Tennessee) | Open Energy...

    Open Energy Info (EERE)

    Electric Coop Corp Place: Tennessee Phone Number: 800-772-4636 Website: www.skrecc.com Twitter: @skrecc Facebook: https:www.facebook.compagesSouth-Kentucky-RECC...

  11. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  12. Columbia Gas of Kentucky- Home Savings Rebate Program

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. These programs include:

  13. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. ,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  15. Kentucky Natural Gas Deliveries to Electric Power Consumers ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  16. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Helps Kentucky County Gauge Energy Use EECBG Success Story: Software Helps ... Learn more. Addthis Related Articles EECBG Success Story: The Jury's In: Hillsborough ...

  17. Nelson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nelson County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7647455, -85.4788065 Show Map Loading map... "minzoom":false,"mappi...

  18. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John

    2011-09-13

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  19. Seismic Hazard Assessment for Western Kentucky, Northeastern Kentucky and Southeastern Ohio

    SciTech Connect (OSTI)

    Cobb, James C; Wang, Zhenming; Woolery, Edward W; Kiefer, John D

    2002-07-01

    Earthquakes pose a seismic hazards and risk to the Commonwealth of Kentucky. Furthermore, the seismic hazards and risk vary throughout the Commonwealth. The US Nuclear Regulatory Commission uses the seismic hazard maps developed by the US Geological Survey for seismic safety regulation for nuclear facilities. Under current US Geological Survey's seismic hazard assessment it is economically unfeasible to build a new uranium plant near Paducah relative to the Portsmouth, Ohio site. This is not to say that the facility cannot be safely engineered to withstand the present seismic load, but enormously expensive to do so. More than 20 years observations and research at UK have shown that the US Geological Survey has overestimated seismic hazards in western Kentucky, particularly in the Jackson Purchase area that includes Paducah. Furthermore, our research indicates underestimated seismic hazards in northeastern Kentucky and southeastern Ohio. Such overestimation and underestimation could jeopardize possible site selection of PGDP for the new uranium plant. The existing database, research experience, and expertise in UK's Kentucky Geological Survey and Department of Geological Science put this institution in a unique position to conduct a comprehensive seismic hazard evaluation.

  20. CX-003442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine AbsorbentCX(s) Applied: B3.6Date: 08/16/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  1. CX-002296: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computational Fluid Dynamics (CFD) Analysis Density Separator of an Air-Based Density SeparatorCX(s) Applied: B3.6Date: 05/18/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  2. CX-002038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Conservation Block Grant Program Community Bike ProjectCX(s) Applied: B5.1Date: 04/20/2010Location(s): Lexington-Fayette Urban County, KentuckyOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. CX-002297: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Strategies to Minimize the Release of Toxic Metals from Coal Waste Impoundments Through Control of Coal TailingsCX(s) Applied: B3.6Date: 05/18/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane

  5. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  6. Preliminary Notice of Violation, LATA Environmental Services of Kentucky,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - WEA-2012-01 | Department of Energy LATA Environmental Services of Kentucky, LLC - WEA-2012-01 Preliminary Notice of Violation, LATA Environmental Services of Kentucky, LLC - WEA-2012-01 May 23, 2012 Issued to LATA Environmental Services of Kentucky, LLC related to a Heat Stress Event and a Uranium Hexafluoride Release at the Paducah Gaseous Diffusion Plant. On May 23, 2012, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement and Oversight

  7. Gatton Academy Wins DOE's West Kentucky Regional Science Bowl |

    Energy Savers [EERE]

    Department of Energy Gatton Academy Wins DOE's West Kentucky Regional Science Bowl Gatton Academy Wins DOE's West Kentucky Regional Science Bowl February 19, 2016 - 4:30pm Addthis Gatton Academy Team-1 won the U.S. Department of Energy’s (DOE) West Kentucky Regional Science Bowl on February 19, 2016. Gatton will travel to Washington, D.C. to compete in the National Finals of DOE’s National Science Bowl® April 28 through May 2. Pictured, from left: Gatton's Taylor Young, Seth

  8. Stimulating Energy Efficiency in Kentucky: An Implementation Model for

    Broader source: Energy.gov (indexed) [DOE]

    States | Department of Energy Stimulating Energy Efficiency in Kentucky. PDF icon Presentation More Documents & Publications DOE Perspectives on Sustainable Bioenergy Landscapes HIA ZERH Judge Bios The 2nd US-China Energy Efficiency Forum Agenda - Friday

  9. Pike County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Kentucky. Its FIPS County Code is 195. It is classified as ASHRAE...

  10. Harrison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harrison County is a county in Kentucky. Its FIPS County Code is 097. It is classified as...

  11. Hickman County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hickman County is a county in Kentucky. Its FIPS County Code is 105. It is classified as...

  12. Simpson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Simpson County is a county in Kentucky. Its FIPS County Code is 213. It is classified as...

  13. Johnson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Kentucky. Its FIPS County Code is 115. It is classified as...

  14. Logan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Kentucky. Its FIPS County Code is 141. It is classified as...

  15. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in Kentucky. Its FIPS County Code is 037. It is classified as...

  16. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Kentucky. Its FIPS County Code is 155. It is classified as...

  17. Henry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Kentucky. Its FIPS County Code is 103. It is classified as...

  18. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Kentucky. Its FIPS County Code is 217. It is classified as...

  19. Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Kentucky. Its FIPS County Code is 173. It is classified as...

  20. Indiana-Kentucky Electric Corp | Open Energy Information

    Open Energy Info (EERE)

    search Name: Indiana-Kentucky Electric Corp Place: Ohio Website: www.ovec.comindex.php Outage Hotline: (740) 289-7200 References: EIA Form EIA-861 Final Data File for 2010 -...

  1. Carter County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carter County is a county in Kentucky. Its FIPS County Code is 043. It is classified as...

  2. Butler County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Kentucky. Its FIPS County Code is 031. It is classified as...

  3. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Kentucky. Its FIPS County Code is 109. It is classified as...

  4. Floyd County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Floyd County is a county in Kentucky. Its FIPS County Code is 071. It is classified as...

  5. Kentucky Natural Gas Processed in West Virginia (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia (Million Cubic Feet) Kentucky Natural Gas Processed in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. Lee County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Kentucky. Its FIPS County Code is 129. It is classified as ASHRAE...

  7. Kentucky Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889...

  8. Lewis County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lewis County is a county in Kentucky. Its FIPS County Code is 135. It is classified as...

  9. Y-12 team garners efficiency best practices at Toyota's Kentucky...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 team garners ... Y-12 team garners efficiency best practices at Toyota's Kentucky plant Posted: October 17, 2014 - 2:25pm Y-12 Production managers recently gained a new...

  10. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Broader source: Energy.gov (indexed) [DOE]

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency ...

  11. Scott County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Scott County is a county in Kentucky. Its FIPS County Code is 209. It is classified as...

  12. Anderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Anderson County is a county in Kentucky. Its FIPS County Code is 005. It is classified as...

  13. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Perry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perry County is a county in Kentucky. Its FIPS County Code is 193. It is classified as...

  15. Kentucky Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Kentucky Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 237,759 230,940 241,558 256,522 253,652 150,627 26,888 26,673 18,707 1990's 28,379 40,966 47,425 45,782 42,877 44,734 46,015 43,352 37,929 44,064 2000's 36,734 36,901 41,078 42,758 38,208 38,792 39,559 38,158 58,899 60,167 2010's 66,579 60,941 92,883 85,549 79,985 - = No Data Reported; -- = Not

  16. Software Helps Kentucky County Gauge Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis How does it work? Software tracks energy usage, greenhouse gas levels and analyzes utility bills. County could see savings and cost recoveries of $100,000 to $200,000. Information allows county to make energy usage changes and identify retrofit needs. For county officials conscious of energy efficiency, deciphering complex utility bills and identifying both municipal

  17. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Kentucky Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Kentucky Regions Print

  18. Kentucky - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  19. West Kentucky Regional High School Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Science Bowl West Kentucky Regional High School Science Bowl February 19, 2016 8:00AM to 5:00PM CST West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Event Website Info: http://science.energy.gov/wdts/nsb/high-school/high-school-regionals/ken

  20. West Kentucky Regional Middle School Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Science Bowl West Kentucky Regional Middle School Science Bowl February 5, 2016 8:00AM to 5:00PM CST West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Event Website Info: http://science.energy.gov/wdts/nsb/middle-school/middle-school-regionals

  1. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less air pollutants per net energy gain than ethanol. Bio-diesel has advantages over ethanol due to its lower agricultural inputs and more efficient conversion. Thus, to be a viable alternative, a bio-fuel firstly should be producible in large quantities without reducing food supplies. In this aspect, larger quantity supplies of cellulose biomass are likely viable alternatives. U. S. Congress has introduced an initiative and subsequently rolled into the basic energy package, which encourages the production of fuel from purely renewable resources, biomass. Secondly, a bio-fuel should also provide a net energy gain, have environmental benefits and be economically competitive. In this aspect, bio-diesel has advantages over ethanol. The commonwealth of Kentucky is fortunate to have a diverse and abundant supply of renewable energy resources. Both Kentucky Governor Beshear in the energy plan for Kentucky "Intelligent Energy Choices for Kentucky's Future", and Kentucky Renewable Energy Consortium, outlined strategies on developing energy in renewable, sustainable and efficient ways. Smart utilization of diversified renewable energy resources using advanced technologies developed by Kentucky public universities, and promotion of these technologies to the market place by collaboration between universities and private industry, are specially encouraged. Thus, the initially question answering Governor's strategic plan is if there is any economical way to make utilization of larger quantities of cellulose and hemicellulose for production of bio-fuels, especially bio-diesel. There are some possible options of commercially available technologies to convert cellulose based biomass energy to bio-fuels. Cellulose based biomass can be firstly gasified to obtain synthesis gas (a mixture of CO and H{sub 2}), which is followed up by being converted into liquid hydrocarbon fuels or oxygenate hydrocarbon fuel through Fischer-Tropsch (F-T) synthesis. Methanol production is regarded to be the most economic starting step in many-year practices of the development of F-T synthesis technology since only C{sub 1} synthesis through F-T process can potentially achieve 100% conversion efficiency. Mobil's F-T synthesis process is based on this understanding. Considering the economical advantages of bio-diesel production over ethanol and necessary supply of methanol during bio-diesel production, a new opportunity for bio-diesel production with total supplies of biomass-based raw materials through more economic reaction pathways is likely identified in this proposal. The bio-oil part of biomass can be transesterified under available methanol (or mixed alcohols), which can be synthesized in the most easy part of F-T synthesis process using synthesis gas from gasification of cellulose fractions of biomass. We propose a novel concept to make sense of bio-diesel production economically though a coupling reaction of bio-oil transesterification and methanol synthesis. It will overcome problems of current bio-diesel producing process based on separated handling of methanol and bio-oil.

  2. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved

  3. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  4. Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 508 49 66 0 0 0 534 6 13 0 2010's 39 84 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Kentucky Dry Natural Gas Proved

  5. Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 432 50 2 0 5 1 432 4 10 0 2010's 0 100 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Kentucky Dry Natural Gas Proved Reserves Dry Natural Gas

  6. STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders November 25, 2015 - 12:00pm Addthis David Curry (far right) teaches Ayden Mowery, Jake Miller, and Bella Presson (left to right) at Ballard County Middle School to read a pH strip to test water. David Curry (far right) teaches Ayden Mowery, Jake Miller, and Bella Presson (left to right) at Ballard County Middle School to read a pH strip to test water. Ken Davis

  7. Location | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location JCESR is conveniently located on the campus of the U.S. Department of Energy's Argonne National Laboratory, 25 miles southwest of Chicago at the heart of the Midwest's broad industrial and academic research and transportation communities. Visiting JCESR Argonne is easily accessible by car or public transportation from downtown Chicago, as well as from Chicago's two airports. To reach Argonne from O'Hare International Airport, take I-294 south to I-55. Exit west on I-55 (toward St.

  8. Quality characteristics of Kentucky coal from a utility perspective

    SciTech Connect (OSTI)

    Eble, C.F.; Hoover, J.C.

    1999-07-01

    Coal in Kentucky has been, and continues to be, a valuable energy source, especially for the electric utility industry. However, Federal mandates in Titles III and IV of the Clean Air Act Amendments of 1990, and more recently proposed ``greenhouse gas'' emission reductions, have placed increasingly stringent demands on the type and grade of coal that can be burned in an environmentally-accepted manner. Therefore, a greater understanding of the spatial and temporal distribution of thickness and quality parameters, and the geological factors that control their distribution, is critical if Kentucky will continue to be a major producer of high quality coal. Information from the Kentucky Geological Survey's Coal Resource Information System data base (KCRIS) is used in this paper to document the geological and stratigraphic distribution of important factors such as bed thickness, calorific value, ash yield, and total sulfur content. The distribution of major and minor elements that naturally occur in Kentucky coal is also discussed as some of these elements contribute to slagging and fouling in coal-fired furnaces; others may require monitoring with passage of Title III of the Clean Air Act Amendments of 1990.

  9. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  10. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    090041 -0500 From "Eubanks, Cynthia M. (EUB) " <eub@bechteljacobs.org> Subject: Yellow Alert-Use of Non-Approved Electronic Equipment in a Class I, Division 2 Hazardous Location The following Bechtel Jacobs Company, LLC Lesson Learned Yellow Alert was generated as the result of a recent incident at the East Tennessee Technology Park (ETTP). This lesson learned is distributed to communicate to other DOE facilities concerns regarding the use of portable and installed electronic

  11. Proposed sale of radioactively contaminated nickel ingots located at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) proposes to sell 8,500 radioactively contaminated nickel ingots (9.350 short tons), currently in open storage at the Paducah Gaseous Diffusion Plant (PGDP), to Scientific Ecology Group, Inc. (SEG) for decontamination and resale on the international market. SEG would take ownership of the ingots when they are loaded for transport by truck to its facility in Oak Ridge, Tennessee. SEG would receive approximately 200 short tons per month over approximately 48 months (an average of 180 ingots per month). The nickel decontamination process specified in SEG`s technical proposal is considered the best available technology and has been demonstrated in prototype at SEG. The resultant metal for resale would have contamination levels between 0.3 and 20 becquerel per gram (Bq/g). The health hazards associated with release of the decontaminated nickel are minimal. The activity concentration of the end product would be further reduced when the nickel is combined with other metals to make stainless steel. Low-level radioactive waste from the SEG decontamination process, estimated to be approximately 382 m{sup 3} (12,730 ft), would be shipped to a licensed commercial or DOE disposal facility. If the waste were packaged in 0.23 m{sup 3}-(7.5 ft{sup 3}-) capacity drums, approximately 1,500 to 1,900 drums would be transported over the 48-month contract period. Impacts from the construction of decontamination facilities and the selected site are minimal.

  12. SREL Reprint #3291

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de Mxico, Mexico 2Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA 3Department of Biology, University of Kentucky, Lexington, KY, USA 4Department of...

  13. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  14. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National...

    Broader source: Energy.gov (indexed) [DOE]

    Lone Oak Middle Schools winning team at DOEs 2014 West Kentucky Regional Science Bowl, left to right, David Perriello, Drew Schofield, Ethan Brown, and David Dodd,...

  15. Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky

    Office of Environmental Management (EM)

    Power Plant | Department of Energy Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant July 21, 2014 - 10:21am Addthis Washington, D.C. - Today, construction began on an innovative $19.5 million carbon-capture pilot, funded in part by the U.S. Department of Energy (DOE), at Kentucky Utilities' E.W. Brown Generating Station near Harrodsburg, Kentucky. The 2 megawatt thermal

  16. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  17. Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736

  18. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  19. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 16 22 13 22 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  20. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 4 4 5 5 0 0 1 3 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  1. Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 1 1990's 1 0 0 1 0 1 1 1 1 0 2000's 0 0 1 1 1 1 1 1 4 4 2010's 1 5 4 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  2. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 16 1990's 25 24 32 26 39 43 46 48 54 69 2000's 56 72 66 66 72 70 105 89 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  4. ,"Kentucky Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Prices",8,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ng_pri_sum_dcu_sky_m.xls"

  5. Kentucky Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 64 -66 1980's 67 -20 -4 6 55 -126 7 68 16 14 1990's -31 97 -107 -34 40 43 -55 321 -93 34 2000's -4 158 -24 49 -40 65 -22 37 81 97 2010's -58 -34 -282 103 -9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  6. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  7. Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 26 16 1980's 3 11 33 13 22 12 6 10 51 60 1990's 42 27 35 8 35 10 10 18 20 30 2000's 2 42 92 49 96 101 23 373 200 713 2010's 383 4 0 132 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  8. Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 23 17 1980's 11 8 19 14 29 26 9 17 18 13 1990's 19 6 12 31 101 12 12 3 41 41 2000's 77 397 383 167 153 77 21 152 133 760 2010's 540 639 276 58 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 35 79 37 1980's 39 91 54 32 65 343 126 65 25 67 1990's 93 99 73 34 49 100 43 107 14 230 2000's 363 348 377 128 176 251 56 62 187 126 2010's 103 178 43 159 72 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  10. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  11. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,025 7,165 6,940 4,056 852 830 627 1990's 657 702 707 689 611 702 682 641 548 641 2000's 419 475 535 536 617 698 653 691 587 391 2010's 772 278 641 280 278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  12. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  13. DISTRIBUTION LIST Deal' Madams/Sirs:

    Office of Environmental Management (EM)

    Deal' Madams/Sirs: Department of Energy Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000 DEC 2 3 2013 PPPO-03-2125072-14 TRANSMITTAL OF TWO PHASE I ARCHAEOLOGICAL SURVEY REPORTS ON SELECTED AREAS RESULTING IN IDENTIFICATION OF HISTORIC PROPERTIES AT THE PORTSMOUTH GASEOUS DIFFUSION PLANT, PIKE COUNTY, OHIO Two archaeologicalrep0l1s are enclosed for your information: Phase I Archaeological Survey of Area 2 Located within the Portsmouth

  14. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl | Department of Energy Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl March 31, 2014 - 12:00pm Addthis Members of Lone Oak Middle School’s winning team at DOE’s 2014 West Kentucky Regional Science Bowl, left to right, David Perriello, Drew Schofield, Ethan Brown, and David Dodd, formulate their answer to a question in the middle school finals Feb. 28 in Paducah, Ky.

  15. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  16. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  17. Kentucky State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  18. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 451 545 468 1980's 508 530 551 554 613 766 841 909 923 992 1990's 1,016 1,155 1,084 1,003 969 1,044 983 1,364 1,222 1,435 2000's 1,760 1,860 1,907 1,889 1,880 2,151 2,227 2,469 2,714 2,782 2010's 2,613 2,006 1,408 1,663 1,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.35 1.29 1.36 1.34 1.33 1.23 1.25 2000's 1.29 1.19 1.21 1.22 1.16 1.16 1.08 1.09 1.12 1.08 2010's 1.14 1.08 1.04 1.11 1.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  2. Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 1,515 1,794 1,753 - = No Data Reported;

  3. Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's

  4. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Kentucky Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 227,931 205,129 218,399 2000's 225,168 208,974 227,920 223,226 225,470 234,080 211,049 229,799 225,295 206,833 2010's 232,099 223,034 225,924 229,983 254,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  5. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 0 1 1980's 2 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 0 0 0 2000's 5 0 0 0 0 17 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 42 2 131 259 94 4 1 0 6 44 1990's 2 2 5 16 50 6 45 24 2 3 2000's 10 2 1 98 0 15 3 124 15 18 2010's 5 8 1 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  7. Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,336 1,873 2,155 2,279 2,402 2,112 1,718 1990's 2,492 1,730 2,105 2,573 2,162 1,945 1,744 1,816 1,777 1,615 2000's 2,075 1,980 3,442 2,278 2,044 2,879 3,524 2,676 3,914 4,862 2010's 5,626 5,925 6,095 6,095 4,388 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  12. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. Kentucky Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355

  14. Kentucky Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Underground Storage Net Withdrawals (Million Cubic Feet) Kentucky Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 7,009 -3,443 1,276 -952 -4,745 -5,360 -7,787 -7,006 -7,202 -3,309 4,438 5,964 1991 6,950 3,513 2,589 -3,809 -2,358 -3,297 -5,327 -3,162 -3,437 460 6,590 2,686 1992 1,568 1,211 4,848 1,675 1,236 -1,546 -3,544 -1,610 -4,201 -10,704 1,514 2,982 1993 5,891 11,750 10,031 793 -6,525 -7,919 -7,627

  15. Henderson County North Middle School wins 2015 DOE West Kentucky Regional

    Energy Savers [EERE]

    Science Bowl | Department of Energy Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl February 6, 2015 - 12:08pm Addthis 1st Place Henderson County North Middle School, from left: (Top) Deegan Lawrence, Coach Chris Fifer and D.J. Banks. (Bottom) Luke Payne, Alex Chandler and Nick Cissell (not pictured). 1st Place Henderson County North Middle School, from left: (Top)

  16. DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment

    Energy Savers [EERE]

    Cabinet | Department of Energy Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet October 31, 2014 - 3:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) is awarding two separate grants together totaling about $7 million to the Commonwealth of

  17. FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor: LATA Environmental Services of Kentucky, LLC

    Office of Environmental Management (EM)

    FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor: LATA Environmental Services of Kentucky, LLC Contract No.: DE-AC30-10CC40020 Award Period: October 1, 2013 through September 30, 2014 (FY14) Basis of Evaluation: Fy14 Award Fee Plan for LATA Environmental Services of Kentucky LLC Award Fee Area Adjectival Ratings: Quality and Effectiveness of Documents and Associated Support: Very Good Quality and Effective of ESH&QA: Very Good Quality and Effective of Project Support: Excellent

  18. Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection

    Office of Environmental Management (EM)

    JUN 1 1 2013 Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection Division of Waste Management 200 Fair Oaks Lane, 2 nd Floor Frankfort, Kentucky 40601 Ms. Jennifer Tufts Federal Facility Agreement Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303 Dear Mr. Mullins and Ms. Tufts: PPPO-02-1813000-13B TRANSMITTAL OF THE COMMUNITY RELATIONS PLAN UNDER THE FEDERAL FACILITY AGREEMENT AT THE U.S. DEPARTMENT OF

  19. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  20. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  1. Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 62,011 60,735 61,687 66,432 71,791 79,578 86,584 93,785 97,094 92,657 86,693 1991 79,816 76,289 72,654 77,239 79,610 82,915 88,262 91,449 94,895 94,470 87,950 85,249 1992 84,385 83,106 78,213 76,527 75,300 76,861 80,412 82,020 86,208 96,910 95,391 92,376 1993 87,306 76,381 66,748 66,019 72,407 80,245 87,794

  2. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  3. Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684

  4. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 6,515 6,458 6,272 6,394 6,382 6,194 6,740 6,739 7,017 1992 5,425 7,142 6,716 7,270 7,191 6,365 6,320 7,295 6,011 6,813 6,684 6,458 1993 7,343 7,269 6,783 6,309 6,962 9,647 6,801 7,537 5,997 6,422 6,163 9,732 1994 6,171 6,109 5,700 5,302 5,850 8,107 5,715 6,333 5,040 5,397 5,179 8,179 1995 6,312 6,249 5,831 5,423 5,984 8,293

  5. Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Kentucky Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,054 8,742 7,395 9,901 6,629 6,460 6,740 6,597 7,074 7,364 8,090 8,851 2002 10,214 9,404 9,297 8,186 8,277 7,314 7,074 6,669 7,743 9,145 9,856 9,932 2003 11,702 9,996 8,913 7,847 7,552 6,781 6,777 7,226 7,568 8,569 8,686 10,655 2004 11,629 10,760 10,598 9,045 8,910 8,413 8,094 8,712 8,332 9,496 9,776 10,526 2005 11,242 10,146 10,519 9,307

  6. Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.55 8.47 8.09 7.29 6.31 5.90 5.58 5.10 4.29 4.78 5.09 4.77 2002 4.88 4.69 4.15 4.57 4.50 4.26 4.14 3.99 4.25 4.66 5.46 5.36 2003 5.80 6.30 8.68 6.38 6.42 6.88 6.54 6.03 6.40 5.88 6.42 6.92 2004 7.65 7.53 6.89 6.77 6.84 7.39 7.27 7.21 6.61 6.97 8.58 8.08 2005 7.92 8.11 7.89 8.38 8.17 7.79 8.32 8.91 11.11 13.42 14.35 12.71 2006

  7. Kentucky Natural Gas Marketed Production (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketed Production (Million Cubic Feet) Kentucky Natural Gas Marketed Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,865 6,165 6,721 6,372 6,316 6,135 6,256 6,243 6,056 6,593 6,590 6,862 1992 5,282 6,953 6,539 7,078 7,001 6,197 6,153 7,102 5,852 6,633 6,507 6,287 1993 7,126 7,054 6,582 6,122 6,756 9,362 6,600 7,314 5,820 6,232 5,981 9,444 1994 5,988 5,928 5,531 5,145 5,677 7,867 5,546 6,146 4,891 5,237 5,026 7,937 1995 6,148 6,086 5,679 5,282 5,828

  8. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Consumption (Million Cubic Feet) Kentucky Natural Gas Residential Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,700 10,403 8,293 5,319 3,161 1,809 1,332 1,337 1,446 3,109 6,141 13,034 1990 9,736 8,409 6,367 5,007 2,448 1,599 1,376 1,288 1,375 3,306 5,741 9,412 1991 11,629 9,644 7,168 3,430 1,805 1,378 1,278 1,168 1,487 3,120 7,676 9,682 1992 11,805 8,511 7,813 4,179 2,626 1,835 1,326 1,416 1,413 3,376 6,997 10,617 1993 11,143 11,145

  9. Kentucky Price of Natural Gas Delivered to Residential Consumers (Dollars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    per Thousand Cubic Feet) Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Kentucky Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.48 4.49 4.46 4.71 5.03 5.50 5.98 6.12 5.98 5.12 4.68 4.39 1990 4.71 4.76 4.62 4.79 5.51 5.86 6.48 6.29 5.94 5.21 4.67 4.75 1991 4.60 4.69 4.65 5.12 5.73 6.36 6.75 6.62 5.71 4.88 4.67 4.67 1992 4.67 4.46 4.54 4.69 4.98 5.79 6.25 6.42 6.96 6.34

  10. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Office Location & Hours Ombuds Office Location & Hours Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

  11. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  12. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  13. Department of Energy Cites LATA Environmental Services of Kentucky, LLC for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Worker Safety and Health and Nuclear Safety Violations | Department of Energy LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations Department of Energy Cites LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations May 24, 2012 - 3:32pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The U.S. Department of Energy (DOE) has issued a Preliminary Notice of Violation (PNOV) to LATA

  14. Finding Energy Efficiency and Savings on a Kentucky Farm | Department of

    Office of Environmental Management (EM)

    Energy Finding Energy Efficiency and Savings on a Kentucky Farm Finding Energy Efficiency and Savings on a Kentucky Farm September 28, 2010 - 4:00pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this project do? The project is expected to create $852,000 worth of energy savings. Alvin Frogue of Frogue Dairy has been in the dairy business for 50 years and until recently one of his top challenges was managing 250 cows with individualized care. Now $80,540 worth of

  15. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  16. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic, and social impacts associated with construction and operation of a 6,000-tons-per-stream-day-capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  17. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  18. ARM - Instrument Location Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation ENA NSA SGP AMF C1 C1 EF BF CF EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements

  19. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  20. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  1. EA-1599: Disposition of Radioactively Contaminated Nickel Located...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599:...

  2. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

    2002-01-01

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  3. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  4. Berkeley Lab Shower Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LBNL ShowerS Shower facilities are available at several locations: Bldg. 2-Main Entry Men's & Women's Bldg. 6-2204,2206 Men's & Women's (limited building access) Bldg. 46-143 Men's...

  5. Object locating system

    DOE Patents [OSTI]

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  6. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facts, Figures » Location and Infrastructure Location and Infrastructure The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Aerial View of Los Alamos National Laboratory The central LANL technical area is featured in this aerial view. Boundary Peak, separating the Santa Fe National Forest and

  7. Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky

    Office of Environmental Management (EM)

    Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review The groundwater underlying the Paducah Gaseous Diffusion Plant (PGDP) is contaminated by chlorinated solvents, principally trichloroethylene (TCE), as well as other

  8. Michael W. Hancock, P.E., President Secretary, Kentucky Transportation Cabinet

    Energy Savers [EERE]

    W. Hancock, P.E., President Secretary, Kentucky Transportation Cabinet Bud Wright, Executive Director 444 North Capitol Street NW, Suite 249 , Washington, DC 20001 (202) 624-5800 Fax: (202) 624-5806 * transportation.org * centennial.transportation.org Statement of Chris Smith Senior Program Manager for Freight American Association of State Highway and Transportation Officials Quadrennial Energy Review Rail, Barge, Truck Transportation August 8, 2014 Chicago, Illinois Thank you for the

  9. CX-005571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington County Energy Efficiency and Conservation Block GrantCX(s) Applied: B5.1Date: 04/04/2011Location(s): Lexington, South CarolinaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. Lexington, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.0147945, -97.3355835 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  11. EA-1642S: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  12. EA-1642S: Supplemental Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  13. EA-1642S: Final Supplemental Environmental Assessment

    Broader source: Energy.gov [DOE]

    Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, Kentucky

  14. EM Reviews Portsmouth, Paducah Site Contractor Performance, Determines Award Fees

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. – EM has completed annual performance evaluations of four prime contractors working on the deactivation, decontamination, and decommissioning of the former gaseous diffusion plants near Portsmouth, Ohio and Paducah, Kentucky.

  15. SREL Reprint #3210

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Comparative Geochemical and Microbiological Characterization of Two Thermal Pools in the Uzon Caldera, Kamchatka, Russia Elizabeth A. Burgess1, Jason M. Unrine2, Gary L. Mills1, Christopher S. Romanek3, and Juergen Wiegel4 1Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, USA 2Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, USA 3Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY, USA

  16. Schneider Electric Goes Platinum-and Silver-in Superior Energy

    Energy Savers [EERE]

    Performance | Department of Energy Technical Assistance » Superior Energy Performance » Schneider Electric Goes Platinum-and Silver-in Superior Energy Performance Schneider Electric Goes Platinum-and Silver-in Superior Energy Performance October 1, 2014 - 11:33am Addthis Schneider Electric's Lexington, Kentucky facility. <em>Photo courtesy of Schneider Electric.</em> Schneider Electric's Lexington, Kentucky facility. Photo courtesy of Schneider Electric. AMO is proud to

  17. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  18. Dipole Well Location

    Energy Science and Technology Software Center (OSTI)

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  19. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  20. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. [Demonstration plant at Newman, KY

    SciTech Connect (OSTI)

    none,

    1980-11-21

    This document and its several appendices constitute an application for a Kentucky Permit to Construct an Air Contaminant Source as well as a Prevention of Significant Air Quality Deterioration (PSD) Permit Application. The information needed to satisfy the application requirements for both permits has been integrated into a complete and logical description of the proposed source, its emissions, control systems, and its expected air quality impacts. The Department of Energy believes that it has made every reasonable effort to be responsive to both the letter and the spirit of the PSD regulations (40 CFR 52.21) and Kentucky Regulation No. 401 KAR 50:035. In this regard, it is important to note that because of the preliminary status of some aspects of the process engineering and engineering design for the Demonstration Plant, it is not yet possible precisely to define some venting operations or their associated control systems. Therefore, it is not possible precisely to quantify some atmospheric emissions or their likely impact on air quality. In these instances, DOE and ICRC have used assumptions that produce impact estimates that are believed to be worst case and are not expected to be exceeded no matter what the outcome of future engineering decisions. As these decisions are made, emission quantities and rates, control system characteristics and efficiencies, and vent stack parameters are more precisely defined; this Permit Application will be supplemented or modified as appropriate. But, all needed modifications are expected to represent either decreases or at worst no changes in the air quality impact of the SRC-I Demonstration Plant.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ,"Kentucky Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030ky2m.xls"

  6. ,"Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"Kentucky Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Kentucky Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  11. ,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Kentucky Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  16. ,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ky2m.xls"

  17. ,"Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Kentucky Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.78 5.30 4.62 5.10 5.54 6.68 6.75 6.68 2000's 5.49 7.78 9.42 11.15 -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  2. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect (OSTI)

    Eble, C.F.; Hower, J.C.

    1995-12-31

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  8. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  9. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  10. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  11. Task 16 -- Sampling and analysis at the Vortec vitrification facility in Paducah, Kentucky. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Laudal, D.L.; Lilemoen, C.M.; Hurley, J.P.; Ness, S.R.; Stepan, D.J.; Thompson, J.S.

    1997-05-01

    The Vortec Cyclone Melting System (CMS{reg_sign}) facility, to be located at the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. To assure that costs of sampling and analysis are contained, Vortec and the DOE Federal Energy Technology Center (FETC) have decided that initially the primary focus of the sampling activities will be on meeting permitting requirements of the state of Kentucky. Therefore, sampling will be limited to the feedstock entering the system, and the glass, flue gas, and water leaving the system. The authors provide suggestions for optional sampling points and procedures in case there is later interest in operations or mass balance data. The permits do not require speciation of the materials in the effluents, only opacity, total radioactivity, total particulate, and total HCl emissions for the gaseous emissions and total radioactivity in the water and solid products. In case future testing to support operations or mass balances is required, the authors include in this document additional information on the analyses of some species of interest. They include heavy metals (RCRA [Resource Conservation and Recovery Act] and Cu and Ni), radionuclides (Th{sub 230}, U{sub 235}, Tc{sup 99}, Cs{sup 137}, and Pu{sup 239}), and dioxins/furans.

  12. Kentucky Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Kentucky Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,053 1,501 1,828 1990's 1,575 2,035 2,451 2,809 3,171 4,169 3,773 3,860 4,076 4,315 2000's 5,584 6,424 7,590 7,942 7,864 7,488 6,092 6,304 6,673 7,047 2010's 7,163 7,188 6,941 7,919 7,819 - = No Data

  13. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 1 1980's 0 0 1 4 0 3 1 0 0 6 1990's 1 0 1 8 7 1 10 17 21 19 2000's 27 23 0 1 0 0 4 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  16. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W 4.91 4.91 5.24 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W 9.04 W W W W W W W W 2006 W 9.57 W W W W W 8.62 W W W W 2007 W W W W W W W W W W W W 2008 9.16 9.60 W W W W W W W W W W 2009 W W W 6.74 11.32 W W W

  18. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  19. Sherwin-Williams Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C L E A N C I T I E S Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER When Sherwin-Williams' Richmond, Kentucky, manufacturing plant made the decision to advance its energy effciency efforts, the company capitalized on the resources made available to industry by the U.S. Department of Energy's (DOE's) Industrial Technologies Program (ITP). In 2008, ITP conducted an assessment on the site's steam system

  20. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  1. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  3. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  4. GEOLOGIC CHARACTERIZATION AND CARBON STORAGE RESOURCE ESTIMATES FOR THE KNOX GROUP, ILLINOIS BASIN, ILLINOIS, INDIANA, AND KENTUCKY

    SciTech Connect (OSTI)

    Harris, David; Ellett, Kevin; Rupp, John; Leetaru, Hannes

    2014-09-30

    Research documented in this report includes (1) refinement and standardization of regional stratigraphy across the 3-state study area in Illinois, Indiana, and Kentucky, (2) detailed core description and sedimentological interpretion of Knox cores from five wells in western Kentucky, and (3) a detailed calculation of carbon storage volumetrics for the Knox using three different methodologies. Seven regional cross sections document Knox formation distribution and thickness. Uniform stratigraphic nomenclature for all three states helps to resolve state-to-state differences that previously made it difficult to evaluate the Knox on a basin-wide scale. Correlations have also refined the interpretation of an important sandstone reservoir interval in southern Indiana and western Kentucky. This sandstone, a CO2 injection zone in the KGS 1 Blan well, is correlated with the New Richmond Sandstone of Illinois. This sandstone is over 350 ft (107 m) thick in parts of southern Indiana. It has excellent porosity and permeability at sufficient depths, and provides an additional sequestration target in the Knox. The New Richmond sandstone interval has higher predictability than vuggy and fractured carbonates, and will be easier to model and monitor CO2 movement after injection.

  5. Precision zero-home locator

    DOE Patents [OSTI]

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  6. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  7. Bayesian Mulitple-Event Location

    Energy Science and Technology Software Center (OSTI)

    2010-03-30

    Bayesloc is a statistical model of the multiple seismic location system, including event hypocenters, corrections to model-based travel time predictions, assessments precision for measurement phase arrival times, and phase lavels which indicate phase ray path.

  8. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a

  9. CX-012640: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington-Longview #1 Access Road Maintenance CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  11. Kentucky Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Kentucky Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.30 4.28 4.32 4.30 4.48 4.48 4.63 4.76 4.66 4.43 4.39 4.23 1990 4.54 4.53 4.42 4.40 4.72 4.76 5.00 4.71 4.78 4.45 4.30 4.50 1991 4.41 4.42 4.43 4.64 4.62 4.72 5.09 4.75 4.19 4.16 4.34 4.42 1992 4.43 4.27 4.16 4.27 4.19 4.46 4.50 4.75 4.61 4.52 4.77 4.78 1993

  12. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  13. Sauk structural elements and depositional response in Ohio and northern Kentucky

    SciTech Connect (OSTI)

    Coogan, A.H.; Peng, Shengfeng (Kent State Univ., OH (United States). Dept. of Geology)

    1992-01-01

    Three area structural elements were inherited from Precambrian events--the Rome Trough, Middle Run trough at the Grenville Line, and the Ohio platform on part of the more stable Grenville Province. They strongly influence the type of basal Sauk clastic and non-clastic deposits as documented from hundreds of wells in Ohio and adjacent northern Kentucky. These elements and the topography resulting from erosion during the Lipalian Interval most directly influence sedimentation during the onlap phase of the basal Sauk Sequence. Clastic wedge-base deposits are the Mt. Simon, Rome'', and Eau Claire formations. Deposition of the middle Cambrian Conasauga Shale coincides with the maximum marine onlap and wedge middle position. Upper Sauk Sequence deposition of the Knox Group carbonate rocks (Cooper Ridge Dolomite, Beekmantown Dolomite) and their interbedded clastic units (Steam Corners and Rose Run formations) represents the shallowing upward, pulsating clastic depositional events which anticipate the differential uplift and erosion that occurred later during the Taconic Orogeny and Early Ordovician hiatus. New Taconic structural elements involve the uplift of the central Ohio platform on the western part of the Grenville Province along reactivated, pre-Grenville sutures identified by CoCorp seismic lines. Platform uplift exposes lower Knox rocks to erosion. Younger Knox rocks are preserved east of the fault line zone. The Appalachian Basin's western edge is marked at this time by the trend of the Rose Run and Beekmantown subcrop below the Knox Unconformity surface and by the edge of the high magnetic intensity basement.

  14. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  15. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  16. Mr. Todd Mullins

    Office of Environmental Management (EM)

    Todd Mullins Department of Energy Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000 NOV 1 4 1014 Federal Facility Agreement Manager Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2 nd Floor Frankfort, Kentucky 40601 Ms. Jennifer Tufts Federal Facility Agreement Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303 Dear Mr. Mullins and Ms. Tufts:

  17. LOCATION: Johnson County Sheriff's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOCATION: Johnson County Sheriff's Office Criminalistics Laboratory 11890 Sunset Drive Olathe, Kansas 66061 DATE: JULY 15TH - JULY 18TH, 2013 TUITION: MAFS MEMBERS: $550 Non-MAFS Members: $650 HOW TO ENROLL: Follow this link and complete on-line registration. Pay- ment may be made online via PayPal or a company check may be mailed to MAFS Treasurer. Payment information is all located at the registration site: http://www.mafs.net/summer-workshop LODGING AND TRAVEL: Training Rate $107.77 per night

  18. Energy Storage Demonstration Project Locations | Department of...

    Office of Environmental Management (EM)

    Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with ...

  19. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  1. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  2. WINDExchange: School Wind Project Locations

    Wind Powering America (EERE)

    School Wind Project Locations Tips for Using the Google Map On top of the Google Map, use the Country, State, Project Status, and Project Type dropdown lists to filter projects. Along the left margin, use the zooming meter to zoom in or out of your view. In the top left corner, click Reset View to reset all the filters and zooming. Click on Map, Satellite, and Terrain to view the map three different ways. Click and drag the map to move it around. Use the right scroll bar to view the project

  3. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-31

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information. 5 figs.

  4. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  5. I-75 Project Brings Biofuels to one of the Nation's Longest Highways |

    Office of Environmental Management (EM)

    Department of Energy I-75 Project Brings Biofuels to one of the Nation's Longest Highways I-75 Project Brings Biofuels to one of the Nation's Longest Highways June 30, 2014 - 4:30pm Addthis Drivers refuel at a station along the I-75 Clean Fuels Corridor in Lexington, Kentucky. | Photo by East Tennessee Clean Fuels Coalition Drivers refuel at a station along the I-75 Clean Fuels Corridor in Lexington, Kentucky. | Photo by East Tennessee Clean Fuels Coalition Reuben Sarkar Reuben Sarkar Deputy

  6. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  7. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    SciTech Connect (OSTI)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, a total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.

  8. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations GE Global Research is innovating around the clock. Select one of our locations to learn more about operations there.GE Global Research is innovating around the clock. Select a location to learn more about our operations. Home > Locations GE Global Research is ALWAYS OPEN Already know about our locations? Experience a special look at a day in our life around the world! See What We're Doing Dhahran, Saudi Arabia Founded: 2015 Employees: 15 Focus Areas: Material Characterization,

  9. Lexington County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Oak Grove, South Carolina Pelion, South Carolina Pine Ridge, South Carolina Red Bank, South Carolina Seven Oaks, South Carolina South Congaree, South Carolina...

  10. DOE/EA-1927, Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky

    Office of Environmental Management (EM)

    Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky U.S. Department of Energy Portsmouth/Paducah Project Office December 2015 DOE/EA-1927 ACRONYMS AND ABBREVIATIONS CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations dBA A-weighted decibel DOE U.S. Department of Energy DUF 6 depleted uranium hexafluoride EA

  11. Alternative Fueling Station Locator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fueling Station Locator Alternative Fueling Station Locator Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count

  12. Final environmental impact assessment of the Paducah Gaseous Diffusion Plant site, Paducah, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This document considers: the need for uranium enrichment facilities; site location; plant description; and describes the power generating facilities in light of its existing environment. The impacts from continuing operations are compared with alternatives of shutdown, relocation, and alternative power systems. (PSB)

  13. Mobile Truck Stop Electrification Site Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Mobile Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a trip to that location. Some sites in our database have addresses that could not be located. This may result in the site appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at 800-254-6735. They will be able to assist

  14. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  15. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  16. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  17. Sandia National Laboratories: Locations: Albuquerque, New Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Housing Education Recreation Locations Life in Albuquerque Photo of New Mexico landscape Albuquerque is New Mexico's largest city, with a population of more than 545,000....

  18. google-map-of-argonne-location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Map of Argonne Location Map of Building 222 (TRACC)- Green Arrow TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling

  19. Population Sensitivity Evaluation of Two Candidate Locations...

    Energy Savers [EERE]

    Locations for Possible Small Modular Reactor Siting This report documents population density studies of selected sites in the Hampton Roads, Virginia area. PDF icon Population...

  20. Hyperspectral Remote Sensing Techniques For Locating Geothermal...

    Open Energy Info (EERE)

    Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For...

  1. Energy Department Selects Deactivation Contractor for Paducah Gaseous Diffusion Plant

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. The U.S. Department of Energy (DOE) today awarded a Task Order under the Nationwide Environmental Management ID/IQ Unrestricted Contract to Fluor Federal Services, Inc. for deactivation activities at the Paducah Gaseous Diffusion Plant (GDP) in Paducah, Kentucky, which is currently leased to the United States Enrichment Corporation (USEC).

  2. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  3. Kentucky-Kentucky Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    60,941 67,568 61,463 56,226 2011-2014 Total Liquids Extracted (Thousand Barrels) 3,625 3,593 3,606 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 5,006

  4. Assessment of User Home Location Geoinference Methods

    SciTech Connect (OSTI)

    Harrison, Joshua J.; Bell, Eric B.; Corley, Courtney D.; Dowling, Chase P.; Cowell, Andrew J.

    2015-05-29

    This study presents an assessment of multiple approaches to determine the home and/or other important locations to a Twitter user. In this study, we present a unique approach to the problem of geotagged data sparsity in social media when performing geoinferencing tasks. Given the sparsity of explicitly geotagged Twitter data, the ability to perform accurate and reliable user geolocation from a limited number of geotagged posts has proven to be quite useful. In our survey, we have achieved accuracy rates of over 86% in matching Twitter user profile locations with their inferred home locations derived from geotagged posts.

  5. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  6. Sandia National Laboratories: Locations: Livermore, California: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/California: Maps and Directions Locations Maps and Directions to Sandia/California Sandia/California is located at 7011 East Avenue in Livermore, Calif., a suburban community about 45 miles east of San Francisco. Lawrence Livermore National Laboratory (LLNL) is directly across the street from Sandia on the north side of East Avenue. Access to Sandia's California site is limited to those with authorized badges. If you do not have an authorized badge, be sure to make arrangements with

  7. Russian Locations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  8. Our Locations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Locations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  9. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  10. Research Site Locations for Current and Former EERE Postdoctoral...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Site Locations for Current and Former EERE Postdoctoral Awards Research Site Locations for Current and Former EERE Postdoctoral Awards Research Site Locations for Current ...

  11. Leak locating microphone, method and system for locating fluid leaks in pipes

    DOE Patents [OSTI]

    Kupperman, David S. (Oak Park, IL); Spevak, Lev (Highland Park, IL)

    1994-01-01

    A leak detecting microphone inserted directly into fluid within a pipe includes a housing having a first end being inserted within the pipe and a second opposed end extending outside the pipe. A diaphragm is mounted within the first housing end and an acoustic transducer is coupled to the diaphragm for converting acoustical signals to electrical signals. A plurality of apertures are provided in the housing first end, the apertures located both above and below the diaphragm, whereby to equalize fluid pressure on either side of the diaphragm. A leak locating system and method are provided for locating fluid leaks within a pipe. A first microphone is installed within fluid in the pipe at a first selected location and sound is detected at the first location. A second microphone is installed within fluid in the pipe at a second selected location and sound is detected at the second location. A cross-correlation is identified between the detected sound at the first and second locations for identifying a leak location.

  12. Major DOE Biofuels Project Locations | Department of Energy

    Office of Environmental Management (EM)

    Biomass Program Major DOE Biofuels Project Locations in the United States PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

  13. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  14. Detrecting and Locating Partial Discharges in Transformers

    SciTech Connect (OSTI)

    Shourbaji, A.; Richards, R.; Kisner, R. A.; Hardy, J.

    2005-02-04

    A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNL researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity and its ability to characterize a PD event. Other sensing techniques have been also identified, such as the wavelength shifting fiber optics and custom fabricated fibers with special coatings.

  15. Radioactive Waste Management Site located in

    National Nuclear Security Administration (NNSA)

    Radioactive Waste Management Site located in the southeastern portion of the Nevada National Security Site. This disposal facility features a multi-layer liner and collection system that drains any potential moisture away from the buried waste containers. This technologically advanced cell became operational in December 2010 and replaces the previous mixed low-level waste disposal cell which closed on November 30, 2010. All mixed low-level waste disposed at the Nevada National Security Site

  16. EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications

    Broader source: Energy.gov [DOE]

    This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold.

  17. CX-003610: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Ross-Lexington Number 1 Access Road Repair ProjectCX(s) Applied: B1.3Date: 08/25/2010Location(s): Cowlitz County, WashingtonOffice(s): Bonneville Power Administration

  18. CX-000016: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ross-Lexington #1 Meter ProjectCX(s) Applied: B3.1Date: 12/17/2009Location(s): Vancouver, WashingtonOffice(s): Bonneville Power Administration

  19. CX-010728: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Longview-Chehalis No. 1 and No. 3, and Lexington-Longview No. 1 Access Roads Maintenance CX(s) Applied: B1.3 Date: 08/22/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-010430: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lexington-Delameter 115-kilovolt (kV) Transmission Line Sale CX(s) Applied: B1.24 Date: 06/20/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  1. Thickness measurement locations of mechanical integrity

    SciTech Connect (OSTI)

    Decker, J.R.; Rivas, N.

    1996-07-01

    This paper will describe the importance of establishing thickness measurement location (TNE) criteria. It will also seek to quantify the frequency of inspections and review the methods for establishing techniques to ensure reliability and repeatability of inspections at TMLs using qualified inspectors. Also discussed will be the most useful way to document the results of an inspection and how to effectively maintain consistency in the mechanical integrity program. It reviews different methods of inspection and uses lessons learned from in-service experience with numerous mechanical projects in the petrochemical industry. The importance of qualified inspectors, quality inspection, electronic data acquisition and electronic data storage will be discussed.

  2. Date Time Event Description/Participants Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: 06/11/2015 Date Time Event Description/Participants Location Point of Contact 11 thru 12 All Day Meeting Todd Allen, deputy director of Science and Technology at INL, has been invited to speak at the Idaho Society of Professional Engineers (ISPE) annual meeting. Coeur d'Alene, ID Sara Prentice, 526-9591 18 9:00 AM Education Outreach Approximately 50 iSTEM students and instructors will tour various INL Idaho Falls facilities Idaho Falls, ID INL Tours Office, 526-0050 23 All Day Meeting

  3. Algae Biofuels Co-Location Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with themore » requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.« less

  4. Kentucky Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    47 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Commercial 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Industrial 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015 Vehicle Fuel -- -- -- 1992-2012 Electric Power W W W W W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,613 2,006 1,408 1,663 1,611 1977-2014 Adjustments -58 -34 -282 103 -9 1977-2014 Revision Increases

  5. Kentucky Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  6. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 3.44 3.41 3.34 3.41 3.21 3.85 1989-2015 Residential Price 23.26 22.36 21.14 16.21 11.07 9.41 1989-2015 Percentage of Total Residential Deliveries included in Prices 96.9 97.6 97.2 97.6 97.4 96.7 2002-2015 Commercial Price 11.98 11.34 10.55 9.42 8.63 7.72 1989-2015 Percentage of Total Commercial Deliveries included in Prices 66.4 67.6 68.0 72.3 76.0 80.6 1989-2015 Industrial Price 4.24 4.05 3.86 3.78 3.44 3.58 2001-2015

  7. Kentucky Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    47 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential Price 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Percentage of Total Residential Deliveries included in Prices 95.7 95.5 95.9 96.2 96.3 96.3 1989-2015 Commercial Price 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Percentage of Total Commercial Deliveries included in Prices 80.5 79.2 77.4 78.8 80.5 79.2 1990-2015 Industrial Price 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015

  8. Kentucky Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 1 0 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 149 106 75 6 3 6 1996-2014 Nonassociated Gas (billion cu ft) 149 106 75 6 3 6 1996-2014 Associated Gas (billion cu ft) 0 0 0 0 0 0

  9. Final report. Paducah Gaseous Diffusion Plant PCB sediment survey: Big Bayou Creek and Little Bayou Creek, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-12-01

    Laboratory analysis of collected samples along drainage features at PGDP. Report documents levels of PCB contamination and considers locations of contamination and known releases to theorize probable sources to further investigate.

  10. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  11. Location performance objectives for the NNWSI area-to-location screening activity

    SciTech Connect (OSTI)

    Sinnock, S.; Fernandez, J.A.

    1984-01-01

    Fifty-four objectives were identified to guide the screening of the Nevada Research and Development Area of the Nevada Test Site for relatively favorable locations for the disposal of nuclear waste in a mined geologic repository. The objectives were organized as a hierarchy composed of 4 upper-level, 12 middle-level, and 38 lower-level objectives. The four upper-level objectives account for broad national goals to contain and isolate nuclear waste in an environmentally sound and economically acceptable manner. The middle-level objectives correspond to topical categories that logically relate the upper-level objectives to site-specific concerns such as seismicity, sensitive species, and flooding hazards (represented by the lower-level objectives). The relative merits of alternative locations were compared by an application of decision analysis based on standard utility theory. The relative favorabilities of pertinent physical conditions at each alternative location were weighted in relation to the importance of objectives, and summed to produce maps indicating the most and the least favorable locations. Descriptions of the objectives were organized by the hierarchical format; they detail the applicability of each objective to geologic repository siting, previously published siting criteria corresponding to each objective, and the rationale for the weight assigned to each objective, and the pertinent attributes for evaluating locations with respect to each objective. 51 references, 47 figures, 4 tables.

  12. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Project Locations Smart Grid Demonstration Project Locations Map of the United States showing the location of Smart Grid Demonstration projects created with funding from the Smart Grid Demonstration Program, funded through the American Recovery and Reinvestment Act. PDF icon Smart Grid Demonstration Project Locations More Documents & Publications Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Energy Storage Demonstration Project Locations Update

  13. Categorical Exclusion Determinations: Other Location | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Location Categorical Exclusion Determinations: Other Location Location Categorical Exclusion Determinations issued for actions in other locations. DOCUMENTS AVAILABLE FOR DOWNLOAD September 22, 2014 CX-012256: Categorical Exclusion Determination Bench-Scale Development of a Non-Aqueous Solvent Carbon Dioxide Capture Process CX(s) Applied: B3.6 Date: 09/11/2014 Location(s): Norway Offices(s): National Energy Technology Laboratory June 25, 2014 CX-012274: Categorical Exclusion Determination

  14. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

  15. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share

  16. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  17. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  18. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  19. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  20. Property:EIA/861/NercLocation | Open Energy Information

    Open Energy Info (EERE)

    type String. Description: Nerc Location NERC Location: The North American Electric Reliability Corporation (NERC) region where the utility has its primary business operations...

  1. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect (OSTI)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  2. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    SciTech Connect (OSTI)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  3. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  4. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  5. Uranium Lease Tracts Location Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map PDF icon Uranium Lease Tracts Location Map More Documents & Publications EA-1037: Final Environmental Assessment EA-1535: Final Programmatic Environmental Assessment EIS-0472: Notice of Intent to Prepare a Programmatic Environmental Impact Statement

  6. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2003-05-31

    This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

  7. Research Site Locations for Current and Former EERE Postdoctoral Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Site Locations for Current and Former EERE Postdoctoral Awards Research Site Locations for Current and Former EERE Postdoctoral Awards Research Site Locations for Current and Former EERE Postdoctoral Awards, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon Facility Location Map 2015-2016.pdf More Documents & Publications Research Site Locations for Current EERE Postdoctoral Awards EERE Resources for Graduate

  8. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  9. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.; Hansen, Tom

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  10. File:VallesLocationMap.pdf | Open Energy Information

    Open Energy Info (EERE)

    VallesLocationMap.pdf Jump to: navigation, search File File history File usage Metadata File:VallesLocationMap.pdf Size of this preview: 800 479 pixels. Full resolution (934...

  11. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Office of Environmental Management (EM)

    Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States ...

  12. A Look at Health Care Buildings - Where are they located

    U.S. Energy Information Administration (EIA) Indexed Site

    Location Return to: A Look at Health Care Buildings How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they...

  13. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    20,236 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours of operation, and access. About the data

  14. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  15. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural

  16. Research Site Locations for Current EERE Postdoctoral Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Site Locations for Current EERE Postdoctoral Awards Research Site Locations for Current EERE Postdoctoral Awards Image icon map_postdoctoral-research_awards.png More Documents & Publications Research Site Locations for Current and Former EERE Postdoctoral Awards EERE: VTO - Red Leaf PNG Image EERE: VTO - Hybrid Bus PNG Image

  17. UK FT PDU Facility Draft EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42S Final Supplemental Environmental Assessment for University of Kentucky Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis Lexington, KY February 2014 Prepared for: Department of Energy National Energy Technology Laboratory This page intentionally left blank. Final Supplemental Environmental Assessment DOE/EA-1642S Fischer-Tropsch Process Development Unit February 2014 Cover Sheet Proposed

  18. Robert E. Edwards, III | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Robert E. Edwards, III About Us Robert E. Edwards, III - Manager (Acting) & Deputy Manager Robert E. Edwards, III Mr. Robert Edwards currently serves as Acting Manager of the Department of Energy's Portsmouth/Paducah Project Office (PPPO) in Lexington, Kentucky. He joined PPPO as Deputy Manager on December 30, 2012. PPPO is charged with the environmental remediation, deactivation, and decontamination and decommissioning of the former gaseous diffusion plants at Paducah, KY and Portsmouth,

  19. TITLE PAGE

    Office of Scientific and Technical Information (OSTI)

    October 1, 2004 Reporting Period End Date: March 31, 2005 Principal Authors: Douglas G. Patchen, Katharine Lee Avary, John M. Bocan, Michael Hohn, John B. Hickman, Paul D. Lake, James A. Drahovzal, Christopher D. Laughrey, Jaime Kostelnik, Taury Smith, Ron Riley and Mark Baranoski April 2005 DOE Award Number: DE-FC26-03NT41856 West Virginia University Research Corporation P.O. Box 6845, Morgantown, WV 26506-6845 University of Kentucky Research Foundation 109 Kinkead Hall, Lexington, KY

  20. DOE Meeting Memorandum: Ex Parte Communications | Department of Energy

    Energy Savers [EERE]

    Meeting Memorandum: Ex Parte Communications DOE Meeting Memorandum: Ex Parte Communications Big Ass Fans is headquartered in Lexington, Kentucky, and designs and manufactures a variety of fan models for commercial, industrial and residential use. BAF met with DOE to discuss the ongoing rulemaking process for the commercial and industrial fans and blowers energy conservation standards, docket EERE-2013-BT-STD-0006, and for residential ceiling fans energy conservation standards, docket number

  1. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    167 Physical Sciences,Inc. Andover, MA Equinox Chemicals, Albany, GA; University of Kentucky CAER, Lexington, KY FE/TDIC/Coal/ETP Charles Miller High Yield, Economical & Environmentally Safe Production of REEs from Coal Ash This Phase 1 project will include sampling and characterization of REE-bearing feedstocks, bench-scale testing, feasibility study, a system design, and a Renewal Application for competitive down selection. PHASE ONE Chuck Miller Digitally signed by Chuck Miller DN:

  2. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6952 Duke University Durham, NC Yale University - New Haven, CT; University of Kentucky - Lexington, KY; Research Triangle Institute International - Research Triangle Park, NC FE/TDIC/Coal/ETP Jason Hissam Novel Membrane and Electrodeposition-Based Separation and Recovery of Rare Earth The goal of this project is to develop and demonstrate a bench-scale technology to separate and concentrate rare earth elements from coal fly ash and other coal combustion residues. Jason C. Hissam Digitally

  3. Notification of Investigation at BWCS

    Energy Savers [EERE]

    July 17, 2015 Mr. John D. Woolery President and Project Manager Portsmouth and Paducah DUF 6 Project BWXT Conversion Services, LLC 1020 Monarch Street Suite 300 Lexington, Kentucky 40513 Dear Mr. Woolery: This letter serves as notification of the Office of Enterprise Assessments' Office of Enforcement's decision to conduct an investigation into the facts and circumstances associated with the potassium hydroxide injury event at the Portsmouth DUF 6 Conversion Plant on March 25, 2015. BWXT

  4. OHIO E.P.A.

    Energy Savers [EERE]

    OHIO E.P.A. JUL 16 zm2 BEFORE THE OHIO ENVIRONMENTAL PROTECTION AGENCY dHEi(Eu DihECTOfrs JOURNAL In the Matter of United StatesD~artment of Energy Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 lexington, Kentucky 40513 Respondent For the Site Known As: The DOE Portsmouth Gaseous Diffusion Plant (Decontamination And Decommissioning Project) Director's Final Findings and Orders - Second Modification of April 13, 2010 Director's Final Findings and Orders for Removal Action and

  5. DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 - 11:06am Addthis LEXINGTON, Ky. (Dec. 24, 2015) - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities at Paducah, Kentucky and Portsmouth, Ohio for a

  6. PPPO Leadership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » PPPO Leadership PPPO Leadership Robert E. Edwards, III Manager (Acting) & Deputy Manager Mr. Robert Edwards currently serves as Acting Manager of the Department of Energy's Portsmouth/Paducah Project Office (PPPO) in Lexington, Kentucky. He joined PPPO as Deputy Manager on December 30, 2012. PPPO is charged with the environmental remediation, deactivation, and decontamination and decommissioning of the former gaseous diffusion plants at Paducah, KY and Portsmouth, OH. More about

  7. Portsmouth/Paducah Project Office Press Releases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth/Paducah Project Office Press Releases Portsmouth/Paducah Project Office Press Releases RSS December 24, 2015 DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants LEXINGTON, Ky. (Dec. 24, 2015) - The U.S. Department of Energy's Office of Environmental Management (EM) today announced it is extending its contract for Operations of Depleted Uranium Hexafluoride (DUF6) Conversion Facilities at Paducah, Kentucky and Portsmouth, Ohio for a period of up to nine

  8. William E. Murphie | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    William E. Murphie - Manager of Portsmouth/Paducah Project Office William E. Murphie William Murphie was appointed in 2003 to manage the activities of the U.S. Department of Energy's newly created Portsmouth/Paducah Project Office (PPPO) in Lexington, Kentucky to provide leadership and focus to the specific cleanup challenges at the Portsmouth and Paducah Gaseous Diffusion Plants. Bill's management and oversight responsibilities encompass environmental remediation, waste management, and facility

  9. DOE Meeting Memorandum: Ex Parte Communications

    Office of Environmental Management (EM)

    June 4, 2013 DOE Attendees: Ashley Armstrong, Lucy DeButts, and John Cymbalsky, EERE Building Technologies Program; Eric Haas, General Counsel Outside attendees: Patrick Keal, Big Ass Fans; Janie Wise, Vern Simmons, & Terry Paul, Cassidy & Associates Meeting Contact: Janie Wise - jwise@cassidy.com / 202-585-2553 Subject: Pending rulemakings on (1) Commercial and industrial fans and (2) Residential fans and lighting kits. Summary: Big Ass Fans is headquartered in Lexington, Kentucky, and

  10. Dr. David Snyder, Ph.D. Archaeology Reviews Manager Ohio Historic Preservation Office

    Office of Environmental Management (EM)

    Snyder, Ph.D. Archaeology Reviews Manager Ohio Historic Preservation Office 1982 Velma Avenue Columbus, Ohio 43211 Dear Dr. Snyder: Department of Energy Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000 OCT 1 1 2011 PPPO-03-1265954-11 SUBMITTAL OF A REPORT REGARDING PREHISTORIC NATIVE AMERICAN EARTHWORKS AND MOUND SITES IN THE AREA OF THE PORTSMOUTH GASEOUS DIFFUSION PLANT IN SCIOTO AND SEAL TOWNSHIPS, PIKETON, OHIO Enclosed please find a

  11. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  12. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    SciTech Connect (OSTI)

    Placido, Andrew; Liu, Kunlei; Challman, Don; Andrews, Rodney; Jacques, David

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.

  13. Assessment of the influences of groundwater colloids on the migration of technetium-99 at the Paducah Gaseous Diffusion Plant Site in Paducah, Kentucky

    SciTech Connect (OSTI)

    Gu, B.; McDonald, J.A.; McCarthy, J.F.; Clausen, J.L.

    1994-07-01

    This short report summarizes the influences of groundwater colloids on the migration/transport of {sup 99}Tc at the Paducah Gaseous Diffusion Plant (PGDP) site in Paducah, Kentucky. Limited data suggest that inorganic colloidal materials (e.g., aluminosilicate clay minerals) may not play a significant role in the retention and transport of Tc. Studies by size fractionation reveal that both Tc and natural organic matter (NOM) are largely present in the <3K fraction. The role of NOM on Tc retention and transport is not conclusive on the basis of this study. However, a literature review suggests that Tc is very likely associated with the groundwater organics. The presence of the organic matter could have increased the solubility and cotransport of Tc at the PGDP site. Further studies, applying such techniques as gel chromatography, size exclusion, and spectroscopy, may be useful to determine the association of organic matter with Tc. If Tc is associated with groundwater organics, appropriate protocols for removal of organic matter associated with Tc may be developed. Time and resources were limited so this study is not comprehensive with respect to the role of mobile organic and inorganic colloidal materials on Tc transport in subsurface soils. The redox conditions (DO) of groundwaters reported may not represent the true groundwater conditions, which could have influenced the association and dissociation of Tc with groundwater colloidal materials. Because Tc concentrations in the groundwater (on the order of nCi/L) at the PGDP site is much lower than the solubility of reduced Tc (IV) (on the order of {approximately}10{sup {minus}8} mol/L or parts per billion), regardless of the redox conditions, Tc will stay in solution phase as TC(IV) or Tc(VII). The mechanisms of adsorption/association vs precipitation must be understood under reduced and low Tc conditions so that strategic plans for remediation of Tc contaminated soils and groundwaters can be developed.

  14. Automated detection and location of indications in eddy current signals

    DOE Patents [OSTI]

    Brudnoy, David M. (Albany, NY); Oppenlander, Jane E. (Burnt Hills, NY); Levy, Arthur J. (Schenectady, NY)

    2000-01-01

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  15. Drone Detection, Video Feed Interception and Pilot Locating System |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Drone Detection, Video Feed Interception and Pilot Locating System The invention provides the capability of detecting commercially available and custom homemade remotely operated aerial vehicles while capturing data used by the drone operator to make decisions regarding security of the monitoring site. It is also possible to use the data captured to trigger a search for the location of the operator of the vehicle. Once the location of the operator is identified,

  16. Energy Department Announces Locations of Consent-Based Siting

    Energy Savers [EERE]

    Initiative's Eight Public Meetings | Department of Energy Energy Department Announces Locations of Consent-Based Siting Initiative's Eight Public Meetings Energy Department Announces Locations of Consent-Based Siting Initiative's Eight Public Meetings February 18, 2016 - 12:10pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov WASHINGTON - The U.S. Department of Energy today announced the locations of eight public meetings on the Department's consent-based siting initiative. These

  17. Population Sensitivity Evaluation of Two Candidate Locations for Possible

    Energy Savers [EERE]

    Small Modular Reactor Siting | Department of Energy Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting This report documents population density studies of selected sites in the Hampton Roads, Virginia area. PDF icon Population Sensitivity Evaluation of Two Candidate Locations for Possible Small Modular Reactor Siting More Documents &

  18. Energy Department Announces Student Teams, New Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 | Department of Energy New Location for Solar Decathlon 2013 Energy Department Announces Student Teams, New Location for Solar Decathlon 2013 January 26, 2012 - 10:56am Addthis WASHINGTON, DC - At an event today in Albuquerque, New Mexico, U.S. Department of Energy Secretary Steven Chu announced the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2013 and unveiled the competition's location, the Orange County Great Park in Irvine, California. The

  19. Locations of Industrial Assessment Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assessment Centers (IACs) » Locations of Industrial Assessment Centers Locations of Industrial Assessment Centers To apply for an assessment, contact one of the 24 schools across the country that currently participate in the IAC Program. Click on a university name below for contact information for each location. Map of participating schools West Oregon State University San Diego State University San Francisco State University Boise State University Midwest Bradley University Indiana

  20. Check Out the New Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    With more than 10,000 publicly accessible alternative fueling stations, the new Alternative Fuel Station Locator map makes fueling your alternative fuel vehicle easier than ever.

  1. Title 33 CFR 115 Bridge Locations and Clearances: Administrative...

    Open Energy Info (EERE)

    115 Bridge Locations and Clearances: Administrative Procedures Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  2. Wind Turbine Manufacturers in the U. S.: Locations and Local...

    Wind Powering America (EERE)

    Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Wind Turbine Manufacturers in the U.S.: Locations and Local Impacts WINDPOWER 2010 Conference...

  3. Evaluation of Potential Locations for Siting Small Modular Reactors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals Evaluation of Potential Locations for Siting Small Modular Reactors near Federal ...

  4. LEDS Collaboration in Action Workshop Location | Open Energy...

    Open Energy Info (EERE)

    location close to London (Underground direct to Little Chalfont), the M25 and Heathrow Airport. The Conference Centre is designed around a major presentation suite and offers...

  5. Condensing Heating and Water Heating Equipment Workshop Location...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: ...

  6. Alternative Fueling Station Locator - Mobile | Open Energy Information

    Open Energy Info (EERE)

    version of the Alternative Fueling Station Locator, part of the Department of Energy's Alternative Fuels and Advanced Vehicles Datacenter, allows users to search for alternative...

  7. Argonne Site Map Showing CNM Location | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Site Map Showing CNM Location Find your way to the Center for Nanoscale Materials on the Argonne National Laboratory campus. PDF icon CNM-Argonne_map

  8. Location | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location Project Assessment (OPA) OPA Home About Director Staff & Responsibilities Location Jobs Project Management SC Projects Other Links SC Federal Project Directors (FPD) and FPD Resources Contact Information Project Assessment U.S. Department of Energy SC-28/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4840 F: (301) 903-8520 E: Email Us About Location Print Text Size: A A A FeedbackShare Page The Office of Project Assessment is located at: Room #D-222

  9. REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd Stewart, L; Hans Stroo, H

    2007-08-15

    On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

  10. Energy Department Announces Student Teams, Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Location for Solar Decathlon 2015 Energy Department Announces Student Teams, Location for Solar Decathlon 2015 February 13, 2014 - 1:00pm Addthis News Media Contact (202) 586-4940 IRVINE, Calif. - At an event today in Irvine, Calif., U.S. Deputy Secretary of Energy Daniel Poneman will announce the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2015 and unveil the competition's location - the Orange County Great Park. The

  11. Colorado CRS 29-20-108, Location, Construction, or Improvement...

    Open Energy Info (EERE)

    CRS 29-20-108, Location, Construction, or Improvement of Major Electrical or Natural Gas Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  12. NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage Dedication Plat Author State of New...

  13. Microfluidic ultrasonic particle separators with engineered node locations

    Office of Scientific and Technical Information (OSTI)

    and geometries (Patent) | SciTech Connect SciTech Connect Search Results Patent: Microfluidic ultrasonic particle separators with engineered node locations and geometries Citation Details In-Document Search Title: Microfluidic ultrasonic particle separators with engineered node locations and geometries An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a

  14. Microfluidic ultrasonic particle separators with engineered node locations

    Office of Scientific and Technical Information (OSTI)

    and geometries (Patent) | SciTech Connect Microfluidic ultrasonic particle separators with engineered node locations and geometries Citation Details In-Document Search Title: Microfluidic ultrasonic particle separators with engineered node locations and geometries An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact.

  15. Microfluidic ultrasonic particle separators with engineered node locations

    Office of Scientific and Technical Information (OSTI)

    and geometries (Patent) | SciTech Connect Microfluidic ultrasonic particle separators with engineered node locations and geometries Citation Details In-Document Search Title: Microfluidic ultrasonic particle separators with engineered node locations and geometries × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  16. Energy, Interior Departments Announce New Location for Solar Decathlon 2011

    Energy Savers [EERE]

    | Department of Energy Energy, Interior Departments Announce New Location for Solar Decathlon 2011 Energy, Interior Departments Announce New Location for Solar Decathlon 2011 February 23, 2011 - 12:00am Addthis WASHINGTON -- The Department of Energy and the Department of the Interior today announced that the U.S. Department of Energy Solar Decathlon 2011 will be held at the National Mall's West Potomac Park, on the banks of the Potomac River along the path between the Lincoln and Jefferson

  17. Microfluidic ultrasonic particle separators with engineered node locations

    Office of Scientific and Technical Information (OSTI)

    and geometries (Patent) | SciTech Connect ultrasonic particle separators with engineered node locations and geometries Citation Details In-Document Search Title: Microfluidic ultrasonic particle separators with engineered node locations and geometries × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  18. NREL Developed Mobile App for Alternative Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Released - News Releases | NREL NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable

  19. NSO Explores Closure Options for Historic Nuclear Testing Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSO Explores Closure Options for Historic Nuclear Testing Locations Recent environmental restoration work at the Nevada National Security Site (NNSS) focuses on a number of locations that played a part in nuclear weapons testing programs of the 1950s and 60s. Cleanup experts are challenged with studying the nature and extent of the contamination in these areas and implementing the most suitable closure strategies. In the past two years, the U.S Department of Energy, National Nuclear Security

  20. Implementing Rational Surface Locations Measured From Thomson Scattering Into

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementing Rational Surface Locations Measured From Thomson Scattering Into MSTfit by Curtis A. Johnson Senior Thesis (Physics) at the University of Wisconsin-Madison 2014 i Abstract Measurements of rational surface (RS) locations in the Madison Symmetric Torus as measured by Thomson Scattering (TS) have been implemented in the equilibrium reconstruction program MSTfit. Possible correlated errors between diagnostics show a small impact on the equilibrium reconstruction done by MSTfit. TS RS

  1. Mobile Truck Stop Electrification Locator Now Available - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Mobile Truck Stop Electrification Locator Now Available Truck drivers can find idle reduction facilities using cell phones and PDAs September 15, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) expanded its suite of Web-based, fuel-efficiency tools by launching the Mobile Truck Stop Electrification Locator. This comprehensive mobile application helps truck drivers find public truck stops with idle reduction facilities using a cell phone,

  2. Microfluidic ultrasonic particle separators with engineered node locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and geometries (Patent) | SciTech Connect ultrasonic particle separators with engineered node locations and geometries Citation Details In-Document Search Title: Microfluidic ultrasonic particle separators with engineered node locations and geometries An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic

  3. The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations

    Energy Savers [EERE]

    Department's Fleet Vehicle Sustainability Initiatives at Selected Locations DOE/IG-0896 October 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 24, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations" BACKGROUND In Fiscal Year (FY) 2012, the

  4. Solar Decathlon 2013: New Teams! New Location! | Department of Energy

    Energy Savers [EERE]

    New Teams! New Location! Solar Decathlon 2013: New Teams! New Location! January 26, 2012 - 1:32pm Addthis Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Richard King Richard King Director, Solar Decathlon "With each competition, entry into the Solar

  5. Energy Department Announces Denver as Next Location for Solar Decathlon

    Energy Savers [EERE]

    Competition in 2017 | Department of Energy Announces Denver as Next Location for Solar Decathlon Competition in 2017 Energy Department Announces Denver as Next Location for Solar Decathlon Competition in 2017 March 11, 2016 - 12:01pm Addthis Under Secretary for Science and Energy Dr. Franklin Orr announces Denver as the host city for the 2017 U.S. Department of Energy Solar Decathlon. | Photo courtesy of Ellen Jaskol Under Secretary for Science and Energy Dr. Franklin Orr announces Denver as

  6. Evaluation of Potential Locations for Siting Small Modular Reactors near

    Office of Environmental Management (EM)

    Federal Energy Clusters to Support Federal Clean Energy Goals | Department of Energy Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals This report investigates three additional federal energy clusters for favorability for siting an SMR: the Florida Panhandle, South-Central Texas, and

  7. Historical Procurement Information - by Location | Department of Energy

    Office of Environmental Management (EM)

    Historical Procurement Information - by Location Historical Procurement Information - by Location Small business contracing is difficult to navigate. We've built the Small Business Opportunities Tool to identify historical records of what the Department of Energy has purchased, which you can use to identify likely future opportunities. Use the downloads below to view historical procurement by state. PDF icon California.pdf PDF icon Colorado.pdf PDF icon DistrictColumbia.pdf PDF icon Georgia.pdf

  8. Lexington-Blue Grass Depot Activity, EEAP Project No. 208; volume 1 - executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1984-01-01

    This report is a product of the Army Facilities Energy Plan. The plan`s goals are: To reduce baseline FY 1975 total facilities energy consumption (BTU) 20 percent by FY 1985 and 40 percent by FY 2000. To develop the capabilities to use synthetic gases by FY 2000. To reduce heating oil consumption by 75 percent by FY 2000. Five programs have been established to help achieve the above goals. The programs are: (1) The Energy Engineering Analysis Program (EEAP). (2) The Energy Conservation Investment Program (ECIP). (3) The Energy Conservation and Management Program (ECAM). (4) Solid Fuels Conversion Program. (5) The Boiler Efficiency Improvement Program (BEIP).

  9. CX-003710: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Kentucky Biofuels Research LabCX(s) Applied: A9, B3.6Date: 09/14/2010Location(s): KentuckyOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. CX-001469: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kentucky Net - Zero Energy Schools -- State Energy Program (SEP)CX(s) Applied: B5.1Date: 04/05/2010Location(s): Kenton County, KentuckyOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  11. CX-003154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    East Kentucky Bioenergy Capacity Assessment ProjectCX(s) Applied: A9, B3.6, B5.1Date: 07/21/2010Location(s): KentuckyOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. CX-004556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kentucky-County-HardinCX(s) Applied: B3.6, B5.1Date: 11/23/2010Location(s): Hardin County, KentuckyOffice(s): Energy Efficiency and Renewable Energy

  13. CX-010986: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improve Fuel Economy through Formulation Design and Modeling CX(s) Applied: B3.6, B5.1 Date: 09/13/2013 Location(s): Kentucky, Kentucky Offices(s): National Energy Technology Laboratory

  14. CX-004538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kentucky Rural Energy Supply Program - University of Louisville Research Foundation, Inc.CX(s) Applied: B3.6Date: 11/29/2010Location(s): KentuckyOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  15. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-02-07

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  16. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  17. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  18. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect (OSTI)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  19. Predicting threshold and location of laser damage on optical surfaces

    DOE Patents [OSTI]

    Siekhaus, W.

    1985-02-04

    Disclosed is an apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities. The apparatus comprises a focused and pulsed laser, a photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  20. Algae Biofuels Co-Location Assessment Tool for Canada

    Energy Science and Technology Software Center (OSTI)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated betweenmore » points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.« less

  1. ARM - Evaluation Product - KAZR Active Remotely-Sensed Cloud Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (KAZRARSCL) Active Remotely-Sensed Cloud Locations (KAZRARSCL) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : KAZR Active Remotely-Sensed Cloud Locations (KAZRARSCL) [ ARM research - evaluation data product ] The KAZR-ARSCL VAP provides cloud boundaries and best-estimate time-height fields of radar

  2. Mobile Alternative Fueling Station Locator Now Available - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Mobile Alternative Fueling Station Locator Now Available Drivers can now find alternative fueling stations using cell phones & PDAs February 4, 2009 Driving cross-country or even around town in an alternative fuel vehicle used to require drivers to do a little homework to find the nearest fueling station - but not anymore. Consumers on-the-go can now access the U.S. Department of Energy's (DOE) Alternative Fueling Station Locator using their cell phone, BlackBerry, or other personal

  3. New Location for Solar Decathlon 2011 Announced | Department of Energy

    Office of Environmental Management (EM)

    Location for Solar Decathlon 2011 Announced New Location for Solar Decathlon 2011 Announced February 23, 2011 - 5:00pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What are the key facts? Sept. 23-Oct. 2, 2011 The National Mall -- West Potomac Park in Washington, D.C. This year's U.S. Department of Energy Solar Decathlon competition will be held at the National Mall's West Potomac Park. Specifically, between the Franklin Delano Roosevelt

  4. Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    60,167 66,579 60,941 92,883 85,549 79,985 1967-2014 Total Liquids Extracted (Thousand Barrels) 2,469 3,317 3,398 4,740 4,651 4,668 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,270 4,576 4,684 6,571 6,443 6,471

  5. Slide 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky Recovery Act State Memo Kentucky

  6. Location and identification of radioactive waste in Massachusetts Bay

    SciTech Connect (OSTI)

    Colton, D.P.; Louft, H.L.

    1993-12-31

    The accurate location and identification of hazardous waste materials dumped in the world`s oceans are becoming an increasing concern. For years, the oceans have been viewed as a convenient and economical place to dispose of all types of waste. In all but a few cases, major dump sites have been closed leaving behind years of accumulated debris. The extent of past environmental damage, the possibility of continued environmental damage, and the possibility of hazardous substances reaching the human food chain need to be carefully investigated. This paper reports an attempt to accurately locate and identify the radioactive component of the waste material. The Department of Energy`s Remote Sensing Laboratory (RSL), in support of the US Environmental Protection Agency (EPA), provided the precision navigation system and prototype underwater radiological monitoring equipment that were used during this project. The paper also describes the equipment used, presents the data obtained, and discusses future equipment development.

  7. 200-Area plateau inactive miscellaneous underground storage tanks locations

    SciTech Connect (OSTI)

    Brevick, C.H.

    1997-12-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

  8. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore: Housing Housing Sandia/California's unique location at the edge of the San Francisco Bay Area means that employees can choose from a wide range of housing options and prices to fit their needs while maintaining a reasonable daily commute. Those who prefer urban environments can live in San Francisco or Oakland, while those seeking more affordable housing options often turn east toward San Joaquin County and the Central Valley. And Sandia's proximity to Silicon Valley makes it very

  9. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W. (Cedar Crest, NM)

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  10. Load cell having strain gauges of arbitrary location

    DOE Patents [OSTI]

    Spletzer, Barry (Albuquerque, NM)

    2007-03-13

    A load cell utilizes a plurality of strain gauges mounted upon the load cell body such that there are six independent load-strain relations. Load is determined by applying the inverse of a load-strain sensitivity matrix to a measured strain vector. The sensitivity matrix is determined by performing a multivariate regression technique on a set of known loads correlated to the resulting strains. Temperature compensation is achieved by configuring the strain gauges as co-located orthogonal pairs.

  11. Structure for identifying, locating and quantifying physical phenomena

    DOE Patents [OSTI]

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  12. Scaled Tests and Modeling of Effluent Stack Sampling Location Mixing

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Ballinger, Marcel Y.; Barnett, J. M.

    2009-02-01

    The Pacific Northwest National Laboratory researchers used a computational fluid dynamics (CFD) computer code to evaluate the mixing at a sampling system location of a research and development facility. The facility requires continuous sampling for radioactive air emissions. Researchers sought to determine whether the location would meet the criteria for uniform air velocity and contaminant concentration as prescribed in the American National Standard Institute (ANSI) standard, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Standard ANSI/HPS N13.1-1999 requires that the sampling location be well-mixed and stipulates specific tests (e.g., velocity, gas, and aerosol uniformity and cyclonic flow angle) to verify the extent of mixing.. The exhaust system for the Radiochemical Processing Laboratory was modeled with a CFD code to better understand the flow and contaminant mixing and to predict mixing test results. The CFD results were compared to actual measurements made at a scale-model stack and to the limited data set for the full-scale facility stack. Results indicated that the CFD code provides reasonably conservative predictions for velocity, gas, and aerosol uniformity. Cyclonic flow predicted by the code is less than that measured by the required methods. In expanding from small to full scale, the CFD predictions for full-scale measurements show similar trends as in the scale model and no unusual effects. This work indicates that a CFD code can be a cost-effective aid in design or retrofit of a facilitys stack sampling location that will be required to meet Standard ANSI/HPS N13.1-1999.

  13. THE LABORATORY Located in Menlo Park, California, SLAC National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide to uncover scientifc mysteries on the smallest and the largest scales-from the workings of the atom to the mysteries of the cosmos. The result has been 50 years of discovery and innovation in both basic and applied science, with tangible benefts for our everyday lives. The following examples highlight some of the roles

  14. Location of the essential spectrum in curved quantum layers

    SciTech Connect (OSTI)

    Krej?i?k, David; Lu, Zhiqin

    2014-08-15

    We consider the Dirichlet Laplacian in tubular neighbourhoods of complete non-compact Riemannian manifolds immersed in the Euclidean space. We show that the essential spectrum coincides with the spectrum of a planar tube provided that the second fundamental form of the manifold vanishes at infinity and the transport of the cross-section along the manifold is asymptotically parallel. For low dimensions and codimension, the result applies to the location of propagating states in nanostructures under physically natural conditions.

  15. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  16. Meeting Location: Las Vegas, NV- DOE Office at Lossee Road

    Office of Environmental Management (EM)

    1 th EM QUALITY ASSURANCE CORPORATE BOARD MEETING Meeting Location: Las Vegas, NV- DOE Office at Lossee Road With Limited Conference Call Capabilities Room: 6404 Agenda for May 1, 2012 1:00-1:15 pm Agenda, Introductions, Status of Action Items from Last Board Meeting Bob Murray (EM-43) 1:15-1:35 pm Discussion and Summary of the Site ISM/QA Declarations Steven Ross (EM-43) 1:35-2:05 pm Status of Phase II Follow-up Reviews for Field Offices including Use and Status of the Standard Review Plan Bob

  17. Collection of liquid from below-ground location

    DOE Patents [OSTI]

    Phillips, Steven J. (Kennewick, WA); Alexander, Robert G. (Kennewick, WA)

    1995-01-01

    A method of retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container.

  18. RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE

    Office of Legacy Management (LM)

    h ' . * ' 1. MI). q-8 RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE FUTURA CHEMICAL COMPANY FACILITY 9200 LATTY AVENUE HAZELWOOD, MISSOURI L.W. Cole J.D. Berger W.O. Helton B.M. Putnam T.J. Sowell C.F. Weaver R.D. Condra September 9, 1981 Work performed by Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, Tennessee 37830 Under Interagency Agreement DOE No. 40-770-80 NRC Fin. No. A-9093-0

  19. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site. An alternate, site the Department of Defense (DOD) Charleston Navy Weapons Station, Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Tasks 4, 5, and 6 will be performed at the Charleston Navy Weapons Station. Task 4 will be executed twice. The project team had almost completed Task 4 at Paducah before access was denied.

  20. Collection of liquid from below-ground location

    DOE Patents [OSTI]

    Phillips, S.J.; Alexander, R.G.

    1995-05-30

    A method is described for retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container. 3 figs.

  1. Location deterministic biosensing from quantum-dot-nanowire assemblies

    SciTech Connect (OSTI)

    Liu, Chao [Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Kim, Kwanoh [Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Fan, D. L., E-mail: dfan@austin.utexas.edu [Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-08-25

    Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10?nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.

  2. Methods, systems and devices for detecting and locating ferromagnetic objects

    DOE Patents [OSTI]

    Roybal, Lyle Gene (Idaho Falls, ID) [Idaho Falls, ID; Kotter, Dale Kent (Shelley, ID) [Shelley, ID; Rohrbaugh, David Thomas (Idaho Falls, ID) [Idaho Falls, ID; Spencer, David Frazer (Idaho Falls, ID) [Idaho Falls, ID

    2010-01-26

    Methods for detecting and locating ferromagnetic objects in a security screening system. One method includes a step of acquiring magnetic data that includes magnetic field gradients detected during a period of time. Another step includes representing the magnetic data as a function of the period of time. Another step includes converting the magnetic data to being represented as a function of frequency. Another method includes a step of sensing a magnetic field for a period of time. Another step includes detecting a gradient within the magnetic field during the period of time. Another step includes identifying a peak value of the gradient detected during the period of time. Another step includes identifying a portion of time within the period of time that represents when the peak value occurs. Another step includes configuring the portion of time over the period of time to represent a ratio.

  3. Where the Rubber Meets the Road-- the Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    To use the Alternative Fuel Station Locator, travelers with alternative fuel vehicles just enter their address alternative fuel station locator mobile and pick their fuel.

  4. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Kentucky. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Until April 1, 1979, the Public Service Commission had been vested with exclusive jurisdiction over the regulation of rates and service of utilities. As of that date two new agencies, the Energy Regulatory Commission (ERC) and the Utility Regulatory Commission (URC), have replaced the Public Service Commission. The ERC consists of three full-time members appointed by the governor for four year terms and is responsible for enforcing the provisions of the Kentucky statutes relating to electric and gas utilities. The three-member URC is responsible for enforcing the provisions relating to non-energy utilities such as telephone, sewer, and water utilities. The statutes vest all regulatory authority over public utilities in either the ERC or the URC. Local governments retain only the power to grant local franchises. However, it should be noted, that any utility owned or operated by a political subdivision of the state is exempt from regulation. Thus, local government has complete authority over utilities which are self-owned. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  5. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    SciTech Connect (OSTI)

    Fenimore, Edward E.; Triplett, Laurie A.

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: simple where the time delay goes as the inverse of the frequency-squared, full Appleton-Hartree, the BobRD integrals and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the cause of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.

  6. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  7. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  8. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  9. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  10. Joint Urban 2003: Study Overview And Instrument Locations

    SciTech Connect (OSTI)

    Allwine, K Jerry; Flaherty, Julia E.

    2006-08-16

    Quality-assured meteorological and tracer data sets are vital for establishing confidence that indoor and outdoor dispersion models used to simulate dispersal of potential toxic agents in urban atmospheres are giving trustworthy results. The U.S. Department of Defense-Defense Threat Reduction Agency and the U.S. Department of Homeland Security joined together to conduct the Joint Urban 2003 atmospheric dispersion study to provide this critically-needed high-resolution dispersion data. This major urban study was conducted from June 28 through July 31, 2003, in Oklahoma City, Oklahoma, with the participation of over 150 scientists and engineers from over 20 U.S. and foreign institutions. The Joint Urban 2003 lead scientist was Jerry Allwine (Pacific Northwest National Laboratory) who oversaw study design, logistical arrangements and field operations with the help of Joe Shinn (Lawrence Livermore National Laboratory), Marty Leach (Lawrence Livermore National Laboratory), Ray Hosker (Atmospheric Turbulence and Diffusion Division), Leo Stockham (Northrop Grumman Information Technology) and Jim Bowers (Dugway Proving Grounds). This report gives a brief overview of the field campaign, describing the scientific objectives, the dates of the intensive observation periods, and the instruments deployed. The data from this field study is available to the scientific community through an on-line database that is managed by Dugway Proving Ground. This report will be included in the database to provide its users with some general information about the field study, and specific information about the instrument coordinates. Appendix A of this document provides the definitive record of the instrument locations during this field campaign, and Appendix B lists all the study principal investigators and participants.

  11. CX-007837: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Kentucky Offices(s): Energy Efficiency and Renewable Energy

  12. Location standards for RCRA Treatment, Storage, and Disposal Facilities (TSDFs). RCRA Information Brief

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This bulletin describes RCRA location standards for hazardous waste storage and disposal facilities.

  13. CX-003092: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ross-Lexington Number 1 New Access Road Construction: 15/1 to 15/2CX(s) Applied: B1.13Date: 06/08/2010Location(s): Clark County, WashingtonOffice(s): Bonneville Power Administration

  14. CX-004414: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grants to Promote Mid-Size Renewables at Private and Government Buildings-Saint Mary's County Public SchoolCX(s) Applied: B5.1Date: 11/16/2010Location(s): Lexington Park, MarylandOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  15. CX-006555: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gallium Nitride Electronics for Grid ApplicationsCX(s) Applied: A1, A2, A9, A11, B3.6Date: 08/17/2011Location(s): Lexington, MassachusettsOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  16. CX-009708: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    FY13 Environmental Drainage Upgrades at Bonneville Power Administrations Clatsop, Garrison, Lexington, Mapleton, Ovando, Pearl, and Wren Substations CX(s) Applied: B4.6 Date: 12/03/2012 Location(s): Oregon, Montana, Washington, Oregon, Oregon Offices(s): Bonneville Power Administration

  17. SREL Reprint #3176

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Soil nitrogen availability and in situ nitrogen uptake by Acer rubrum L. and Pinus palustris Mill. in the southeastern U.S. Coastal Plain Virginia L. Jin1, Christopher S. Romanek2, Lisa A. Donovan3, and Rebecca R. Sharitz4 1USDA-ARS, Lincoln, NE 68583 2Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506 3Department of Plant Biology, University of Georgia, Athens, GA 30702 4Savannah River Ecology Laboratory, Aiken, SC 29802 Abstract: Plant uptake of soil

  18. Paleogeographic Setting

    Office of Scientific and Technical Information (OSTI)

    April 1, 2005 Reporting Period End Date: September 30, 2005 Principal Authors: Douglas G. Patchen, Taury Smith, Ron Riley, Mark Baranoski, David Harris, John Hickman, John Bocan and Michael Hohn October 2005 DOE Award Number: DE-FC26-03NT41856 West Virginia University Research Corporation P.O. Box 6845, Morgantown, WV 26506-6845 University of Kentucky Research Foundation 109 Kinkead Hall, Lexington, KY 40506-0057 New York State Museum Institute Room 3140 CEC, Albany, NY 12230 Ohio Division of

  19. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    035 University of Kentucky Lexington, KY Virginia Tech: Blacksburg,VA; West Virginia University: Morgantown,WV; Eriez Manufacturing: Erie,PA; Blackhawk Mining: Leatherwood,KY; Arch Coal: St.Charles,WV; Arch Coal: Grafton,WV FE/TDIC/Coal/ETP Charles Miller Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth... This Phase 1 project will include sampling and characterization of REE-bearing feedstocks, bench-scale testing, feasibility study, a system design, and a Renewal

  20. Portsmouth/Paducah Project Office

    Energy Savers [EERE]

    1017 Majestrc Drive, Suite 200 Lexington, Kentucky 4051 3 (85s) 219-4000 MAR 21 \An Ms. Maria Galanti Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138 PPPO-03- t426732-12 Dear Ms. Galanti: FINAL ACTION MEMORANDUM FOR TFIB PLANT SUPPORT BUILDINGS AND S'TRUCTURES AT THE PORTSMOUTI{ GASBOUS DIFFUSION PLANT, PIKETON' OHIO References: l. Letter from V. Adams to M. Galanti, "Draft Action Memorandum for the Plant Sr"rpport Buildings and