Sample records for locations hawaii officess

  1. University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Firestone, Jeremy

    Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth

  2. CX-009543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sopogy Subcontract CX(s) Applied: A9, B5.15 Date: 11/28/2012 Location(s): Hawaii Offices(s): Golden Field Office

  3. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  4. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  5. Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)

    E-Print Network [OSTI]

    Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in Cable, Sound & Sea Technology (SST) Luis A. Vega, HNEI-University of Hawaii Energy Ocean International

  6. Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs #12;Social & Economic Benefits Flood Control Dam reservoirs help to control floods Mitigate high peak

  7. Hawaii geothermal resource assessment: 1982

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  8. CX-008592: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hawaii State Energy Program Annual Formula CX(s) Applied: A9, A11 Date: 07/12/2012 Location(s): Hawaii Offices(s): Golden Field Office

  9. CX-009567: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hawaii National Marine Renewable Energy Center CX(s) Applied: A9, A11, B3.6 Date: 12/06/2012 Location(s): Hawaii Offices(s): Golden Field Office

  10. CX-011407: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hawaii National Marine Renewable Energy Center Wave Energy Test Site Environmental Testing at 30-meter Site CX(s) Applied: B5.25 Date: 11/26/2013 Location(s): Hawaii Offices(s): Golden Field Office

  11. Lana'ai Hawaii: An Inside Look at the World's Most Advanced Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lanai with multi-megawatt solar PV generation. Location Hawaii United States See map: Google Maps Date October 2009 Topic Solar Basics & Educating Consumers Systems...

  12. Hawaii Bioenergy Master Plan Stakeholder Comment

    E-Print Network [OSTI]

    of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School ......................................................................................2 Hawaii Department of Transportation, Harbors Division..........................................................................................................................7 The Gas Co

  13. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    for GM Equinox Fuel Cell Vehicles Team Partners: Hawai`i Natural Energy Institute School of Ocean Motors (GM) Equinox fuel cell electric vehicles located at Marine Corps Base (MCB) Hawai at MCB Hawai`i. Overall, this project will support operations of the GM fuel cell vehicle demonstration

  14. Ferdinand Emmerich Quer durch Hawaii

    E-Print Network [OSTI]

    Prodinger, Helmut

    Ferdinand Emmerich Quer durch Hawaii 1. KAPITEL. Mein Kurs lag ostwÀrts. Meine Aufgabe war nahe- zu

  15. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01T23:59:59.000Z

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  16. Hawaii Guide to the Implementation and Practice of the Hawaii...

    Open Energy Info (EERE)

    the Implementation and Practice of the Hawaii Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  17. Designing Hawaiis First LEED Platinum Net Zero Community: ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kaupuni Village Department of Hawaiian Home Lands Designing Hawaii's first LEED Platinum Net Zero Community GUIDING PRINCIPALS *Pihapono *Hoa ina *Mlama ina Enable Native...

  18. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    for Hawaii. Some agricultural wastes and sugar industrygrains; to any kind of agricultural waste containing cellu~municipal solid wastes, agricultural residues, and crops

  19. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Sugar Cane Juice , Molasses • , Bagasse Pineapple MethanolSugar Cane • Sugar Production in Hawaii Bagasse Production/Consumption Bagasse and Cane Trash Displayed by Sugar

  20. CX-100039: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reducing Soft Costs Through Hardware Innovation CX(s) Applied: B3.6 Date: 09/04/2014 Location(s): Hawaii Offices(s): Golden Field Office Technology Office: Solar Energy Technologies Award Number: DE-EE0006689

  1. CX-010213: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wave Energy Technology- New Zealand Multi-Mode Wave Energy Converter Advancement Project CX(s) Applied: A9 Date: 01/08/2013 Location(s): Hawaii, Oregon Offices(s): Golden Field Office

  2. CX-011412: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zealand Multi-Mode Technology Demonstration at the United States Navy's Wave Energy Test Site CX(s) Applied: B5.25 Date: 11262013 Location(s): Hawaii Offices(s): Golden Field...

  3. CX-011404: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine and Hydrokinetic Environmental Effects Assessment and Monitoring CX(s) Applied: A9 Date: 11/14/2013 Location(s): California, Hawaii Offices(s): Golden Field Office

  4. CX-007540: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spectral Signal Processing: A New Approach to Mapping Reservoir Flow and Permeability CX(s) Applied: A9, B3.1 Date: 01/19/2012 Location(s): Hawaii Offices(s): Golden Field Office

  5. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  6. Being Blue in Hawai‘i: Politics, Affect, and the Last Queen of Hawai‘i

    E-Print Network [OSTI]

    Harvey, Bruce

    2011-01-01T23:59:59.000Z

    Being Blue in Hawai‘i: Politics, Affect, and the Last Queenmore primarily violated. To be blue in Hawai‘i is to be in amore subtle nuances of being blue in Hawai‘i. Yet also in

  7. Preliminary geothermal assessment surveys for the State of Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.E.; Lienert, B.R.; Kauahikaua, J.P.; Mattice, M.D.

    1980-09-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys in ten separate locations within the State of Hawaii in an effort to identify and assess potential geothermal areas throughout the state. The techniques applied include groundwater chemistry and temperatures, soil mercury surveys, ground radon emanometry, time-domain electromagnetic surveys and Schlumberger resistivity soundings. Although geochemical and geophysical anomalies were identified in nearly all the survey sites, those areas which show most promise, based on presently available data, for a geothermal resource are as follows: Puna, Kailua Kona, and Kawaihae on the island of Hawaii; Haiku-Paia and Olowalu-Ukumehame canyons on Maui; and Lualualei Valley on Oahu. Further surveys are planned for most of these areas in order to further define the nature of the thermal resource present.

  8. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    , contaminant removal/control for gas quality improvement, H2 production · Biochemical ­ syngas fermentation #12;http://www.hnei.hawaii.edu Bio-Conversion of Syngas into Biopolyester & Bio-Oil Res

  9. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2011 1 (2011). Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. J. Geophysics

  10. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2000 1 Sensing Volcanism, Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series 116, Mouginis

  11. Environmental Compliance Schofield Barracks, Hawaii

    E-Print Network [OSTI]

    Environmental Compliance Specialist Schofield Barracks, Hawaii POSITION An Environmental Compliance Specialist (Research Associate II Special) position is available with the Center for Environmental Management resource stewardship. We collaborate with our sponsors and within CSU to resolve complex environmental

  12. Hawaii-Okinawa Building Evaluations

    SciTech Connect (OSTI)

    Metzger, I.; Salasovich, J.

    2013-05-01T23:59:59.000Z

    NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

  13. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science & Technology ­ University of Hawai`i at Mnoa Water, Energy and Soil Sustainability Phone: (808) 956-8890 ­ Fax

  14. Hawaii Bioenergy Master Plan Business Partnering

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Business Partnering Steven Chiang, Director Agribusiness Incubator a productive bioenergy industry, successful partnering amongst industry "players" is essential. This section of the Hawaii Bioenergy Master Plan specifically evaluates facilitating the bioenergy industry through

  15. Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oahu Kauai Maui Hawaii Lanai Molokai Total Biomass 355 Report b 7 20 8 20 No data 6 KIUC Renewable Energy Technology Assessment c 20 Hawaii Energy Strategy 2000 d 25 25 25 50...

  16. Hawaii energy strategy report, October 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  17. Hawaii energy strategy: Executive summary, October 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is an executive summary to a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  18. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  19. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Jones, A.T. [Jones (Anthony T.), Vancouver, British Columbia (Canada); Smith, C.R. [Smith (Craig R.), Kailna, HI (United States); Kalmijn, A.J. [Kalmijn (Adrianus J.), Encinitas, CA (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  20. Hawaii Natural Energy Institute www.hnei.hawaii.edu

    E-Print Network [OSTI]

    + hours Endurance · Full tank of fuel · Fully charged battery pack · Repeated 20 minutes load profile estimate using energy balance results under a 20 minutes load profile #12;4Hawaii Natural Energy Institute three UAV Systems · Novel Partial Hybrid (PH) System · Non-Hybrid (Load Following (LF)) and Full Hybrid

  1. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2003 1 volcanic collapse formation, Geochemistry, Geophysics, Geosystems, 4 (9), 1077, doi:10.1029/2002GC000483

  2. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2005 1. 2 craters. Journal of Geophysical Research 110, E10001, doi: 10.1029/2004JE002338, 2005. 7. Blewett, D. T

  3. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    for GM Equinox Fuel Cell Vehicles Team Partners: Hawai`i Natural Energy Institute School of Ocean systems for fueling General Motors (GM) Equinox fuel cell electric vehicles located at Marine Corps Base`i. Overall, this project will support operations of the GM fuel cell vehicle demonstration program in Hawai

  4. Draft Bioenergy Master Plan for the State of Hawaii

    E-Print Network [OSTI]

    Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

  5. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part included the characterization of the general environmental impacts and issues associated with bioenergy

  6. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    Pathways #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Biomass Resources in Hawaii Manure Bagasse for transportation, greater power generation efficiency, greater number of potential end uses ­ Gasification quality standards (e.g. ash chemistry) to meet requirements of pyrolysis and gasification technologies

  7. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science) has identified a strategic need for energy storage technologies to mitigate the impacts of renewable

  8. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science Department of Energy) Contact Information: Richard Rocheleau Principal Investigator HNEI 808

  9. Hawaii National Pollutant Discharge Elimination System (NPDES...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Hawaii National Pollutant Discharge Elimination System (NPDES) Permit PacketPermittingRegulatory...

  10. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01T23:59:59.000Z

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  11. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building 1151 Punchbowl St., Room 325 Place: Honolulu, Hawaii Zip:...

  12. Innovative Financing Solutions to Hawaii's Clean Energy Challenges...

    Energy Savers [EERE]

    Energy Challenges Overview of on-bill financing basics, Hawaii's energy landscape and Green Energy Market Securitization. Author: Hawaii Public Utilities Commission Innovative...

  13. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Environmental Management (EM)

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  14. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

  15. Hawaii Department of Land and Natural Resources Commission on...

    Open Energy Info (EERE)

    Hawaii Department of Land and Natural Resources Commission on Water Resource Management Address: Kalanimoku Building 1151 Punchbowl Street Room 227 Place: Honolulu, Hawaii Zip:...

  16. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  17. Panel 1, Hawaii Hydrogen Projects Status & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status & Lessons Learned Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at...

  18. CX-007394: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Potential lmpacts of Ocean Thermal Energy Conversion Intakes on Aquatic Organisms at an OTEC Site under Development on Kauai, Hawaii CX(s) Applied: A9, B3.3, B3.6 Date: 12/21/2011 Location(s): Hawaii Offices(s): Golden Field Office

  19. Renewable energy in Hawaii--Lessons learned

    SciTech Connect (OSTI)

    Hubbard, H.M.; Totto, L.; Harvison, D. [Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-11-01T23:59:59.000Z

    Hawaii`s extensive renewable resources and limited access to conventional fuels has, in a sense, created a natural environment for the development and implementation of renewable energy processes, technologies, and materials. Aside from its traditional combustion of bagasse at sugar mills, Hawaii has invested in a wide range of renewable energy technologies, including municipal waste-to-energy incineration, hydropower, wind energy, solar photovoltaic (PV), small-scale solar, geothermal, and innovative hybrid wind/diesel and wind/pumped hydro systems. While regarded as a leader in the field of renewable energy, Hawaii`s pioneering approach has generally focused on research and development rather on implementation and commercialization. Despite being a front-runner in the utilization of a number of renewable energy resources, Hawaii`s dependence on petroleum continues to be among the highest in the United States. In 1990, petroleum constituted 92% of Hawaii`s energy supply in contrast to renewable energy`s contribution of 8%. The introduction of coal-fired electricity generation in 1992 has helped to diversify the energy base and decrease the share of oil. But, coal`s low fuel costs may also impact negatively on the prospects for renewable energy. The combination of the impending decline of sugarcane and the growing concerns for the islands` energy and environmental security is changing Hawaii`s energy landscape. While a number of traditional options may be phased out over the next few years, the emergence of new prospects holds considerable promise for an expanded role for renewable energy in the future.

  20. Sandia-Power Surety Task Force Hawaii foam analysis.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-11-01T23:59:59.000Z

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  1. Hawaii County, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville,NewOpen EnergyWebpageCounty, Hawaii:

  2. Geothermal energy for Hawaii: a prospectus

    SciTech Connect (OSTI)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01T23:59:59.000Z

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  3. Hawaii Natural Energy Institute Energy Programs

    E-Print Network [OSTI]

    ) · Run-of-river Hydro (limited resource) · Ocean Energy ­ OTEC, Wave (UH National Marine Renewable EnergyHawaii Natural Energy Institute Energy Programs by Rick Rocheleau to Dr. M.R. C. Greenwood December 28, 2009 #12;Outline of Talk · Introduction to HNEI · Hawaii Energy Situation · HNEI Energy

  4. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sengupta, M.; Andreas, A.

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  5. HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization of

    E-Print Network [OSTI]

    HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization manufacture #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu 5 E CS 2004 Meeting The HybridThe Hybrid of HybridHybrid PhotoelectrodePhotoelectrode forfor Solar WaterSolar Water--SplittingSplitting Bjorn Marsen

  6. Hawai'i's EVolution: Hawai'i Powered. Technology Driven. (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    This Hawaii Clean Energy Initiative (HCEI) brochure outlines Hawaii's energy and transportation goals and the implementation of electric vehicles (EV) and electric vehicle infrastructure since HCEI began in 2008. It includes information about Hawaii's role in leading the nation in available EV charging infrastructure per capita; challenges for continuing to implement EV technology; features on various successful EV users, including the Hawaiian Electric Company, Enterprise Rent-A-Car, and Senator Mike Gabbard; how EVs can integrate into and help propel Hawaii's evolving smart grid; and much more.

  7. Alternative Fuels Data Center: Hawaii Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Hawaii, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  8. Webinar: Supporting a Hawaii Hydrogen Economy

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

  9. Hawaii Clean Energy Initiative Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis of potential policy options to help the state reach the 70% Hawaii Clean Energy Initiative (HCEI) goal, including possible pathways to attain the goal based on currently available technology.

  10. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01T23:59:59.000Z

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  11. A University of Hawai`i Portrait 2011 Building Hawai`i's Future

    E-Print Network [OSTI]

    /affirmative action institution #12;1 Putting the power of higher education to work for Hawai`i I n February 2010, I`i is working to build a brighter future for the people of Hawai`i. As the state's sole system of public higher and Places highlights the people, programs and partnerships that illustrate how the University of Hawai

  12. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    processing for pilot scale production of bioplastics and bio-oil; Process economic evaluation for commercial be converted to bio-oil in supercritical methanol. The liquid products have the similar performance of C5-C24 & Technology ­ University of Hawai`i at Mnoa Bioplastics and Bio-OilTeam Partners: Hawai`i Natural Energy

  13. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2002 1-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances, Journal of Geophysical distribution of lunar composition: New results from Lunar Prospector Journal of Geophysical Research, VOL. 107

  14. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2006 1 with an albedo feature near Airy crater in the lunar nearside highlands. Geophysical Research Letters. 9. Boyce viewed by the THEMIS instrument: Double-layered ejecta craters. J. Geophysical Research, 111, E10005, doi

  15. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    & Technology ­ University of Hawai`i at Mnoa Hydrogen for GM Equinox Fuel Cell Vehicles Phone: (808) 956 for fueling General Motors (GM) Equinox fuel cell electric vehicles. Since the system at MCB Hawai`i will have fuel cell electric vehicles. Another goal is to provide validation for the various hydrogen

  16. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Integration Study Maui Grid Analysis Project Maui Smart Grid Project Hydrogen for GM Equinox Fuel Cell successful integration of additional renewable resources. #12;Hawai`i Natural Energy Institute ­ Oahu Grid & Technology ­ University of Hawai`i at Mnoa Oahu Grid Analysis Project Phone: (808) 956-8890 ­ Fax: (808) 956

  17. The University of Hawai`i 21st Century

    E-Print Network [OSTI]

    issues. President Greenwood welcomes your comments and questions. Call her at (808) 956-8207 Email her at mrcgreenwood@hawaii.edu Visit her webpage at www.hawaii.edu/offices/op An Equal Employment Opportunity

  18. Health-hazard Evaluation Report Heta 90-179-2172, National Park Service, Hawaii Volcanoes National Park, Hilo, Hawaii

    SciTech Connect (OSTI)

    Burr, G.A.; Stephenson, R.L.; Kawamoto, M.W.

    1992-01-01T23:59:59.000Z

    In response to a request from the National Park Service, an evaluation was undertaken of possible hazardous exposures to volcanic emissions, both gases and particulates, at the Hawaii Volcanoes National Park (SIC-7999) on the island of Hawaii in the State of Hawaii. Concerns included exposures to sulfur-dioxide (7446095) (SO2), asphalt decomposition products from burning pavement, acid mists when lava enters the ocean, volcanic caused smog, and Pele's hair (a fibrous glass like material). Two other related requests for study were also received in regard to civil defense workers in these areas. No detectable levels of SO2 were found during long term colorimetric detector tube sampling used to characterize park workers' personal full shift exposures. Short term detector tube samples collected near a naturally occurring sulfur vent showed SO2 levels of 1.2 parts per million (ppm). Work related symptoms reported by more than 50% of the respondents included headache, eye irritation, throat irritation, cough, and phlegm. Chest tightness or wheezing and shortness of breath were also frequently reported. Samples collected for hydrochloric-acid (7647010) and hydrofluoric-acid (7664393) recorded concentrations of up to 15ppm for the former and 1.0ppm for the latter acid. Airborne particulates in the laze plume were comprised largely of chloride salts. Airborne fibers were detected at a concentration of 0.16 fibers per cubic centimeter. The authors conclude that excessive exposure to SO2 can occur at some locations within the park. The authors recommend that workers and visitors to the park be informed of the potential for exposures.

  19. http://business.uhh.hawaii.edu ...UH Hilo's

    E-Print Network [OSTI]

    Olsen, Stephen L.

    http://business.uhh.hawaii.edu ...UH Hilo's Business Administration Degree program! Coming Soon to West Hawai`i!... What? A five-semester cohort program leading to an accredited Business Administration degree from UH Hilo. Through a business pathway agreement between UH Hilo and Hawaii Community College

  20. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele Chillingworth Scott of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop for biofuel for biofuels has increased interest in growing algae in Hawaii for biofuels. An analysis of algae production

  1. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department agency thereof. #12;Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele University of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop

  2. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    at levels sufficient to contribute a significant renewable energy resource to the State of HawaiHawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109

  3. Waipio, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio, Hawaii: Energy

  4. Kailua, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: EnergyKDOTIIKailua, Hawaii:

  5. Hawaii Hydrogen Energy Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting the HawaiiHawaii

  6. Final Technical Report: Hawaii Hydrogen Center for

    E-Print Network [OSTI]

    Alkaline Electrolyzer System 8 2.4.1.2 5 kW PEM Fuel Cell System 9 2.4.2 Experiments/Results and Economic 2.8 Acknowledgements 47 2.9 References 47 3 Task 2 ­ Hydrogen Fuel Purity Assessment 49 3.1 GoalsFinal Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy

  7. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  8. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  9. Hawaii Energy Strategy program. Annual report 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This is the second annual report on the Hawaii Energy Strategy (HES) program which began on March 2, 1992, under a Cooperative Agreement (FCO3-92F19l68) with the United States Department of Energy (USDOE). The HES program is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives. The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State`s fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the (US)DOE mission, will reduce the State`s vulnerability to energy supply disruptions and contributes to the public good.

  10. Hawaii Clean Energy Iniative - Construction Upon a State Highway...

    Open Energy Info (EERE)

    Construction Upon a State Highway Permit Packet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean...

  11. University of Hawaii, EHSO October 2005 PROTOCOL FOR UNIVERSITY PERSONNEL

    E-Print Network [OSTI]

    or operation at any time. These agencies include: FEDERAL - Environmental Protection Agency (EPA), Nuclear (DOH), Department of Agriculture (DOA), Department of Labor and Industrial Relations (DLIR), Hawaii

  12. Hawaii Clean Energy Initiative Certificate of Public Convenience...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative Certificate of Public Convenience and Necessity Permit...

  13. Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

  14. Hawaii Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hawaii Regions Hawaii Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules,...

  15. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Broader source: Energy.gov (indexed) [DOE]

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  16. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

    1993-12-01T23:59:59.000Z

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  17. CX-011403: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evaluating the Potential for Marine and Hydrokinetic Devices to Become Artificial Reefs of Fish Aggregating Devices Based on Analysis of Surrogates in Tropical, Subtropical and Temperate United States West Coast and Hawaiian Coastal Waters CX(s) Applied: A9 Date: 11/15/2013 Location(s): California, Hawaii Offices(s): Golden Field Office

  18. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    SciTech Connect (OSTI)

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01T23:59:59.000Z

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  19. Identification and Assessment of Food Waste Generators in Hawaii

    E-Print Network [OSTI]

    Department of Agriculture By University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Sciences and Technology Wendy Okazaki Scott Q. Turn December 2005 #12;2 Table of Contents 1. Executive............................................................................................... 11 3.4 Survey data entry and Microsoft Access database

  20. UNIVERSITY OF HAWAI`I COMMUNITY COLLEGES POLICY

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of Hawai`i Executive Policy E5.211 Ethical Standards in Research and Scholarly Activities. http://www.hawaii.edu/apis these recognized standards of the profession an integral part of their professional lives. The expectation reinforces the expectations and standards, which we strive to achieve. II. Related University Policies

  1. Detailed Work Plan for Development of a Hawai`i

    E-Print Network [OSTI]

    Subtask 9.1 First Deliverable By the University of Hawaii Hawaii Natural Energy Institute School of Ocean energy and economic security and sustainability. Moreover, unlike wind, solar, geothermal, or ocean.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847

  2. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Research http://www.onr.navy.mil Related Projects: Maui Smart Grid Batteries for Grid Management Grid to environmental changes, and interaction with the associated electric grid. A prime example test bed is the one for use in Hawai`i and application to future grid integration by HELCO and other utilities on O`ahu, Maui

  3. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    to electricity as power sources. BFCs promise niche applications for generation of electricity at small scale & Technology ­ University of Hawai`i at Mnoa Bio-Fuel Cells Project Period of Performance: From 2003 Project of immobilization (e.g., covalent attachment versus physical entrapment of enzyme). Project Benefits Bio-fuel cells

  4. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect (OSTI)

    Canon, P.

    1980-06-01T23:59:59.000Z

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  5. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    vehicles, hardware- in-loop dynamic testing or autonomous vehicles, and use of alternate fuels. Fuel Cell & Technology ­ University of Hawai`i at Mnoa Airborne Contaminants and Fuel Cell Performance Phone: (808) 956 Contaminants and Fuel Cell Performance Effects of Defects in Fuel Cell MEA Components Background

  6. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Hydrogen for GM Fuel Cell Vehicles Project Description and Goals As one of the tasks under an award from Laboratory www.nrl.navy.mil Related Projects: Bio-Fuel Cells Project Fuel Cell Hardware-in-Loop (HiL) Testing of HNEI's Hawai`i Fuel Cell Test Facility. Besides the basic energy need for hydrate exploitation, HNEI

  7. School of Ocean and Earth Science and Technology, University of Hawai`i at Mnoa Hawai`i's Changing Climate

    E-Print Network [OSTI]

    Wang, Yuqing

    1880). How is global warming influencing the climate in Hawai`i? The purpose of this briefing sheet of global warming. In Hawai`i: · Air temperature has risen; · Rainfall and stream flow have decreased`i's water resources and forests, coastal communities, and marine ecology. There is a significant need

  8. Metrics for Measuring Progress under the Hawai`i Clean Energy Initiative

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Manoa #12 by Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology University of HawaiMetrics for Measuring Progress under the Hawai`i Clean Energy Initiative: Hawai`i Clean Energy

  9. Energy Incentive Programs, Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgia EnergyHawaii

  10. MHK Projects/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformationGriffin ProjectHawaii

  11. Waikane, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources Jump to:

  12. Waimalu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources Jump

  13. Waimanalo, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources

  14. Waipahu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy ResourcesWainscott,

  15. Categorical Exclusion Determinations: Hawaii | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 Categorical ExclusionCalifornia|GeorgiaHawaii

  16. Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogenGuascorHamidjojoHawaii: Energy

  17. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc Jump to: navigation,

  18. Kahaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: Energy Resources

  19. Kahuku, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: EnergyKahuku,

  20. Kaneohe, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota: EnergyKaneohe, Hawaii:

  1. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's

  2. Kahului, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: EnergyKDOTII

  3. Hauula, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville, NewPennsylvania:Hauula, Hawaii: Energy

  4. Punaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant on Hawaii's

  5. Pupukea, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant onPupukea, Hawaii:

  6. Hawaii State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney ElectricHaryanaHavanaHawaii

  7. Species trials for biomass plantations in Hawaii: a first appraisal. Forest Service research paper (Final)

    SciTech Connect (OSTI)

    Schubert, T.H.; Whitesell, C.D.

    1985-08-01T23:59:59.000Z

    Fast-growing trees producing high-density wood are required to justify from an exonomic standpoint short rotation biomass plantations. Nine species trials were established on five sub-tropical sites on the island of Hawaii. Survival and growth of 27 introduced species and the native Acacia koa were appraised at one or more locations, for periods from 24 to 60 months. Performance varied greatly, within, and between all species tested. Eucalyptus saligna and E. grandis usually proved to be the species best adapted to well drained sites. Most failures a-d unsatisfactory performances related to harsh site conditions, such as low soil fertility, droughts, and high winds.

  8. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Ocean Thermal Energy Conversion Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth of Ocean Thermal Energy Conversion (OTEC) in Hawai`i. OTEC uses the difference between the cold deep water

  9. UNIVERSITY OF HAWAI`I SYSTEM FEASIBILITY STUDY REPORT

    E-Print Network [OSTI]

    Olsen, Stephen L.

    STUDY OF GREEN ROOF TECHNOLOGIES IN URBAN DISTRICTS IN HAWAII SR-86 (2006) December 2006 #12;Feasibility Benefits...........................................................................19 Energy conservation Increase in wildlife habitat and native plant communities............................23 Noise and radiation

  10. Greta Smith Aeby Hawaii Institute of Marine Biology

    E-Print Network [OSTI]

    Wang, Yuqing

    Greta Smith Aeby Hawaii Institute of Marine Biology PO Box 1346 Kaneohe, HI 96744 Work, TM, Forsman, Rogers, A, Sanciangco, J, Sheppard, A, Sheppard, C, Smith, J, Stuart, S, Turak, E, Veron, J, Wallace, C

  11. MIE Regional Climate Change Impact Webinar Series: Hawaii & Pacific Islands

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Minorities in Energy Initiative is hosting a webinar on Hawaii and Pacific Islands impacts of climate change on minority and tribal communities featuring...

  12. Hawaii Solar Integration Study Final Technical Report for Oahu

    E-Print Network [OSTI]

    Hawaii Solar Integration Study Final Technical Report for Oahu Prepared for: The National Renewable ..................................................................................................................19 4.5. Statistical analysis of wind, solar and load data ................................................................................................................................... 21 5.1. Solar Site Selection Process

  13. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-02-21T23:59:59.000Z

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  14. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect (OSTI)

    Erkelens, Conrad

    1994-03-01T23:59:59.000Z

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  15. FORECASTING THE ROLE OF RENEWABLES IN HAWAII

    E-Print Network [OSTI]

    Sathaye, Jayant

    2013-01-01T23:59:59.000Z

    a prime location for ocean thermal energy conversion (OTEC).resource, geothermal and ocean thermal energy are available

  16. EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities

    E-Print Network [OSTI]

    UHM EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities FIELD TECHNICIAN OPPORTUNITY: employment with possible development of a senior thesis project in GESCarlo, edecarlo@soest.hawaii.edu JOB REFERENCE NUMBER ON STUDENT EMPLOYMENT WEBSITE: none Student

  17. Memorandum of Understanding Between the State of Hawaii and the U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document describes the Memorandum of Understanding signed between the state of Hawaii and the U.S. Department of Energy, outlining their intent to work together to help Hawaii develop its natural renewable resources.

  18. Hawaii Natural Energy Institute: Annual report, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.

  19. DECEMBER 2000 Economic Impact of the University of Hawai`i System

    E-Print Network [OSTI]

    REPORT ON THE ECONOMIC IMPACT OF THE UNIVERSITY OF HAWAI`I SYSTEM DECEMBER 2000 #12;Economic Impact of the University of Hawai`i System Prepared by: University of Hawai`i: Economic Research Organization (UHERO Department of Business, Economic Development and Tourism. #12;1 Economic Impact of the University of Hawai

  20. Report on Business Case in Hawai`i for Storage Options

    E-Print Network [OSTI]

    Report on Business Case in Hawai`i for Storage Options Prepared for the U.S. Department of Energy on Business Case in Hawai`i for Storage Options Prepared by Hawai`i Natural Energy Institute School of Ocean, and minimize energy costs. This study will help determine where energy storage technologies can best fit

  1. HIGH SCHOOL BACKGROUND OF FIRST-TIME STUDENTS UNIVERSITY OF HAWAI`I

    E-Print Network [OSTI]

    HIGH SCHOOL BACKGROUND OF FIRST-TIME STUDENTS UNIVERSITY OF HAWAI`I FALL 2007 Institutional, Students Reports available online at: http://www.hawaii.edu/iro/maps.htm #12;HIGH SCHOOL BACKGROUND 1). Enrollment of first-time students from Hawai`i high schools measured 5,967, a 9.4% increase from

  2. Compilation of Expenditures for the Hawai`i Gateway Energy Center

    E-Print Network [OSTI]

    `i Distributed Energy Resource Technologies for Energy Security Subtask 2.2 Deliverable #3 By Hawai`i Natural`i Distributed Energy Resource Technologies for Energy Security project, the Hawai`i Natural Energy InstituteCompilation of Expenditures for the Hawai`i Gateway Energy Center Prepared for the U.S. Department

  3. 148 Faculty and Staff Hawai`i Community College 2013-2014 RobertYamane

    E-Print Network [OSTI]

    Olsen, Stephen L.

    and Staff 149Hawai`i Community College 2013-2014 Grace Funai Recipient, Chancellor's`A`ali`i Award James AU, KAREN L. Educational Specialist, University of Hawai`i Center, West Hawai`i B.A. 1998, University

  4. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  5. The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park

    E-Print Network [OSTI]

    Heggie, Travis Wade

    2006-04-12T23:59:59.000Z

    TABLE 15 Behavioral and preparedness factors most frequently involved in frontcountry incidents in Hawaii Volcanoes National Park??????. 72 16 Frontcountry destinations in Hawaii Volcanoes National Park with the highest number... Park????????????????????????. 86 27 Behavioral and preparedness factors commonly associated with backcountry incidents in Hawaii Volcanoes National Park??????.. 87 28 Distribution of roadway incidents by specific road and severity...

  6. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect (OSTI)

    None

    1981-06-01T23:59:59.000Z

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  7. FAD Research in Hawaii the story so far...........

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    FAD Research in Hawaii ­ the story so far........... #12;#12;Characterization of Tuna Movements Around FADs Method: Active Acoustic Tracking #12;#12;#12;#12;#12;#12;#12;Characterization of Movements #12;#12;System Design · 192 kHz Side Scan like transducers · Mechanically scanned system · Battery

  8. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    faster #12;Galen Sasaki EE 361 University of Hawaii 5 Components: CMOS drain source gate n-channel transistor drain source gate p-channel transistor gate = `1' --> close gate = `0' --> open gate = `1 · Write bit back after a read Capacitor Passive transistor Word line Bit line A cell Word line

  9. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    faster #12;3 Galen Sasaki EE 361 University of Hawaii 5 Components: CMOS drain source gate n-channel transistor drain source gate p-channel transistor gate = `1' --> close gate = `0' --> open gate = `1 · Write bit back after a read Capacitor Passive transistor Word line Bit line A

  10. Internship Opportunities Akamai Internship Program for Hawaii Residents

    E-Print Network [OSTI]

    Internship Opportunities Akamai Internship Program for Hawaii Residents http://cfao.ucolick.org/EO/internshipsnew/akamai/index.php American Meteorological Society http://www.ametsoc.org/amsstudentinfo/internships.html Explorations information, visit: Geotimes Summer Internship http://www.geotimes.org/internship.html Joint

  11. Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.

    E-Print Network [OSTI]

    energy future require an expeditious and broad implementation of clean and renewable energy applications of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford the perception that investment and green energy initiatives are hindered by a lack of support from State

  12. Hawaii Renewable Hydrogen Program State & Regional Initiatives Webinar

    E-Print Network [OSTI]

    MWPotential Biom ass W ind G eotherm alHydro Solar(roof) Solar(utility) M SW O cean Molokai Lanai Hawaii Maui Kauai Routes Crater Rim Drive 11 miles Elevation 4,000 ft Chain of Craters Road 48 miles round trip Steep

  13. Environmental Resources of Selected Areas of Hawaii: Socioeconomics (DRAFT)

    SciTech Connect (OSTI)

    Saulsbury, J.W.; Sorensen, B.M.; Schexnayder, S.M.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the Environmental Impact Statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed. Regis. 5925638), withdrawing its Notice of Intent (Fed Regis. 57:5433), of February 14, 1992, to prepare the HGPEIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District (Fig. 1). Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. This report describes existing socioeconomic resources in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are (1) population, (2) housing, (3) land use, (4) economic structure (primarily employment and income), (5) infrastructure and public services (education, ground transportation, police and fire protection, water, wastewater, solid waste disposal, electricity, and emergency planning), (6) local government revenues and expenditures, and (7) tourism and recreation.

  14. Environmental resources of selected areas of Hawaii: Socioeconomics

    SciTech Connect (OSTI)

    Saulsbury, J.W.; Sorensen, B.M.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Schexnayder, S.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the environmental impact statement (EIS) for Phases 3--4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The USDOE published a notice withdrawing its Notice of Intent to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District. Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. this report describes existing socioeconomic resources in the areas studied and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are population, housing, land use, economic structure, infrastructure and public services, local government revenues and expenditures, and tourism and recreation.

  15. DOE 2003 Program Review Hawaii Natural Energy Institute

    E-Print Network [OSTI]

    DOE 2003 Program Review Hawaii Natural Energy Institute School of Ocean&Earth ScienceHydrogen Production Eric L.Miller Richard E. Rocheleau ACKNOWLEDGEMENTS -U.S. Department of Energy for continued.)catalyst films CIS, CIGS iron-oxideelectrochemical metal oxide semiconductor films tungsten trioxide titanium

  16. The Social Networks of Hawaii's Longline Fishery a

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    The Social Networks of Hawaii's Longline Fishery ­ a preliminary assessment Michele Barnes, Shawn Future Outlook #12;Introduction Project Goal Examine the role of Social Networks on vessel economic) Vietnamese-American (57) source: panoramio.com #12;Methodology 1. Social Network Analysis Structured survey

  17. Principle Investigator M. Cooney (Hawaii Natural Energy Institute)

    E-Print Network [OSTI]

    (Engineering Overview), Hawaii American Waters (Host WWTP), RealGreen Power (Technology Provider), Pacific Biodiesel (Produce Biodiesel from grease trap waste and fryer grease), Diacarbon Energy (Biochar producer that approaches theoretical maximum of 0.35 m3/Kg COD reduced. GTW Brown grease for biodiesel Separated wastewater

  18. Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications

    E-Print Network [OSTI]

    Energy Institute School of Ocean and Earth Sciences and Technology Scott Q. Turn Vheissu Keffer MiltonAnalysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples

  19. HAWAI`I UNDERSEA RESEARCH LABORATORY NOAA's Undersea Research Center for Hawai`i and the Western Pacific

    E-Print Network [OSTI]

    resources of the Pa- cific and renewable energy from the sea, HURL's contributions will continue to play accepts funded requests from private, state, or federal agencies and participates in international Region Hawai`i Northwestern Hawaiian Islands American SamoaAustralia Japan CNMI Guam Marshall IslandsFederated

  20. Geo-neutrinos and silicate earth enrichment of U and Th Hawaii Pacific University, Kaneohe, Hawaii, USA

    E-Print Network [OSTI]

    Mcdonough, William F.

    Frontiers Geo-neutrinos and silicate earth enrichment of U and Th S.T. Dye Hawaii Pacific of refractory lithophile elements, including U and Th, in the silicate earth by 1.5. Global removal of volatile elements potentially increases this enrichment to 2.8. The K content of the silicate earth follows from

  1. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  2. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  3. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Inverters for High- Penetration Photovoltaic Applications Team Partners: Hawai`i Natural Energy Institute Projects: Maui Smart Grid Project PV Test Beds in the Micro- Climates of Hawai`i Energy Efficiency Research-industry partnership for a multi-year project to develop a Smart Grid Inverter (SGI). The SGI will be used to assess

  4. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ://www.heco.com Maui Electric Company http://www.mauielectric.com General Electric Company Periods of Performance-Principal Investigator HNEI 808-956-8346 rochelea@hawaii.edu Links: HNEI http://www.hnei.hawaii.edu General Electric. General Electric Company ­ it will provide expertise in application of smart grid technology. Project

  5. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  6. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  7. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    SciTech Connect (OSTI)

    Matsuoka, J.K; Minerbi, L. [Cultural Advocacy Network for Developing Options (CANDO) (United States); Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury [Oak Ridge National Lab., TN (United States); Trettin, L.D. [Tennessee Univ., Knoxville, TN (United States)

    1996-05-01T23:59:59.000Z

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

  8. 36 ways to save energy and money - right now! Hawai'i Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and money in Hawaii, in the office, at home, and in the car. 47304.pdf More Documents & Publications Energy Conservation Plans Energy Saver Guide Emergency Preparedness Resources...

  9. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K. [ed.

    1993-12-01T23:59:59.000Z

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  10. Hawaii Clean Energy Initiative Permit to Cross or Enter the State...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative Permit to Cross or Enter the State Energy CorridorPermitting...

  11. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15T23:59:59.000Z

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  12. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

  13. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01T23:59:59.000Z

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  14. The Impact of Trade-wind Strength on Precipitation over the Windward Side of the Island of Hawaii

    E-Print Network [OSTI]

    Chen, Yi-Leng

    The Impact of Trade-wind Strength on Precipitation over the Windward Side of the Island of Hawaii@hawaii.edu #12;ABSTRACT The effects of trade-wind strength and the diurnal heating cycle on the production of summer trade-wind rainfall on the windward side of the island of Hawaii are examined from the data

  15. Cylindrical Equidis LAMONT (LDEO) WOODS HOLE O.I. NOAA U.HAWAII SOEST US NAVY

    E-Print Network [OSTI]

    HOLE O.I. NOAA U.HAWAII SOEST US NAVY SCRIPPS INST.OC U RHODE ISLAND RUSSIA US COAST GUARD GERMANY US NOAA 330 415326 415326 0 0 0 0 1932257 U.HAWAII SOEST 1 5873 5319 3992 5387 0 0 69927 US NAVY 3 3486

  16. Estimation of Fire Danger in Hawai`i Using Limited Weather Data and Simulation1

    E-Print Network [OSTI]

    Stephens, Scott L.

    199 Estimation of Fire Danger in Hawai`i Using Limited Weather Data and Simulation1 David R. Weise: The presence of fire in Hawai`i has increased with introduction of nonnative grasses. Fire danger estimation using the National Fire Danger Rat- ing System (NFDRS) typically requires 5 to 10 yr of data

  17. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report presents analyses for the potential demand for LNG in Hawai`i, potential benefits and costs of LNG importation, and features of the regulatory structure, policy, and practices for LNG. The report was submitted

  18. The Development and Decline of Hawaii's Skipjack Tuna Fishery CHRISTOFER H. BOGGS and BERT S. KIKKAWA

    E-Print Network [OSTI]

    pelamis, was the largest commercial fishery in Hawaii. Annual pole-and-line landings of skipjack tuna, I Bert S. Kikkawa. An update of the skipjack tuna, Katsuwonus pelamis, baitboat fishery in Hawaii-2396, unpub!. manuscr. ABSTRACT-The pole-and-line fishery for skipjack tuna, Katsuwonus pelamis

  19. Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources

    E-Print Network [OSTI]

    Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

  20. LIST OF FISH AT A PROPOSED OTEC SITE OFF KE-AHOLE POINT, HAWAII, DERIVED FROM COMMERCIAL FISH RECORDS, 1959-1978

    E-Print Network [OSTI]

    Jones, Anthony T.

    2012-01-01T23:59:59.000Z

    a proposed Ocean Thermal Energy Conversion Hawaii areproposed Ocean Thermal Energy Conversion (OTEC) site are A

  1. LIST OF FISH AT A PROPOSED OTEC SITE OFF KE-AHOLE POINT, HAWAII, DERIVED FROM COMMERCIAL FISH RECORDS, 1959-1978

    E-Print Network [OSTI]

    Jones, Anthony T.

    2012-01-01T23:59:59.000Z

    a proposed Ocean Thermal Energy Conversion Hawaii area presented. proposed Ocean Thermal Energy Conversion (OTEC)

  2. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  3. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  4. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01T23:59:59.000Z

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  5. Aeromagnetic study of the Island of Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | OpenInformation Zablocki,Energyof Hawaii

  6. Waimanalo Beach, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources JumpWaimanalo

  7. Waipio Acres, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy

  8. Whitmore Village, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitman County, Washington:Village, Hawaii:

  9. HAWAI'I CLEAN ENERGY DRAFT PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthePerformanceofPathwaySeptember 11HAWAI'I

  10. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz! | DepartmentThe Hawaii

  11. Spurring Solar Installations in Hawaii | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring Solar Installations in Hawaii Spurring

  12. Hawaii Department of Transportation Highways Division | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |Hatchet RidgeInformation Hawaii

  13. Hawaii's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's 1st

  14. Hawaii Habitat Conservation Plans Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii Habitat Conservation

  15. Hawaii Historic Preservation Permit Packet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii Habitat

  16. Hawaii Individual Wastewater Management Permit Packet | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii

  17. Hawaii Land Study Bureau's Land Classification Finder | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen

  18. Hawaii Underground Injection Control Program Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI ReferenceNoiseInformation State of Hawaii

  19. Mililani Town, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii: Energy Resources Jump to:

  20. Hawaii Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »FundingGlenn6-7, 2013of ScienceHawaii

  1. Hawaii Solar Integration Study: Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting theRenewableHawaii

  2. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana <UtahGeneralHawaii <

  3. RAPID/Geothermal/Environment/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii < RAPID‎ |

  4. RAPID/Geothermal/Land Access/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii <

  5. RAPID/Geothermal/Water Use/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii < RAPID‎

  6. RAPID/Geothermal/Well Field/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎Hawaii <

  7. RAPID/Overview/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado <Hawaii)

  8. Geothermal Energy in Hawaii: Present and Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |Information 6thGeothermalInformationHawaii:

  9. Village Park, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging JumpWorkstreamVilas County,Park, Hawaii:

  10. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    SciTech Connect (OSTI)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O'Toole, D.; Fetter, J.

    2010-04-01T23:59:59.000Z

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  11. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01T23:59:59.000Z

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  12. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  13. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  14. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Broader source: Energy.gov (indexed) [DOE]

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey...

  15. University of Hawai`i ACCESS REQUEST TO DATAAND REPORTS IN OPERATIONAL DATA STORE (ODS)

    E-Print Network [OSTI]

    Olsen, Stephen L.

    University of Hawai`i ACCESS REQUEST TO DATAAND REPORTS IN OPERATIONAL DATA STORE (ODS) Name Title Approved Denied ODS Data Administrator's name (print or type) Signature Date Send completed form to

  16. Hawai'i Makes Progress Toward Clean Energy Goals with Energy...

    Office of Environmental Management (EM)

    29, 2014 - 4:50pm Addthis Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  17. U.S. Department of Energy and State of Hawaii Sign Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    Energy on Island Nations Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  18. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009- June 30, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  19. Assessing Pathways in the U.S. Virgin Islands and Hawai'i | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hawai'i Establishes Goal of Achieving 70% Clean Energy by 2030 Energy Transition Initiative: Islands Playbook A 448-kW PV system installed at the Cyril...

  20. Energy Independence . . . It's up to us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    This tri-fold brochure provides an overview of how the State of Hawaii will work toward a goal of 70% clean energy by 2030 and the importance of meeting this goal.

  1. Results of Electric Survey in the Area of Hawaii Geothermal Test...

    Open Energy Info (EERE)

    of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey...

  2. Residential building design : comprehensive comparative guidelines for building single-family dwellings in Hawaii

    E-Print Network [OSTI]

    Nagata, Rochelle Morie

    1997-01-01T23:59:59.000Z

    Energy shortages, earthquakes, and hurricanes are environmental factors that challenge the home designers of Hawaii. The depletion of renewable natural resources and global warming trends foreshadow energy shortage and the ...

  3. Report Summarizing Development and Testing of Solar Forecasting for Hawai`i

    E-Print Network [OSTI]

    .S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE.1 Deliverable 5 Photovoltaic Systems By the Hawai`i Natural Energy Institute School of Ocean and Earth Science

  4. The causes and consequences of condo hotel conversion in Waikiki, Hawaii

    E-Print Network [OSTI]

    Lu, Mark C. K

    2005-01-01T23:59:59.000Z

    This paper explores the causes and consequences of the recent conversions of hotels into 'condo hotels' in Waikiki, Hawaii, through an examination of local and national real estate trends. Condo hotels result from the ...

  5. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    SciTech Connect (OSTI)

    Finch, P.; Potes, A.

    2010-06-01T23:59:59.000Z

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  6. A New Day in Hawai‘i: the Lingle to Abercrombie Transition and the State Budget

    E-Print Network [OSTI]

    Belt, Todd L.

    2012-01-01T23:59:59.000Z

    Transition and the State Budget Abstract: The Stateof Hawai‘i’s budget for Fiscal Year 2012 was balanced by aon his predecessor’s budget proposal, against a some- what

  7. Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure...

  8. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. The University of Hawaii Wide Field Imager (UHWFI)

    E-Print Network [OSTI]

    Klaus W. Hodapp; Andreas Seifahrt; Gerard A. Luppino; Richard Wainscoat; Ed Sousa; Hubert Yamada; Alan Ryan; Richard Shelton; Mel Inouye; Andrew J. Pickles; Yanko K. Ivanov

    2006-04-01T23:59:59.000Z

    The University of Hawaii Wide-Field Imager (UHWFI) is a focal compressor system designed to project the full half-degree field of the UH 2.2 m telescope onto the refurbished UH 8Kx8K CCD camera. The optics use Ohara glasses and are mounted in an oil-filled cell to minimize light losses and ghost images from the large number of internal lens surfaces. The UHWFI is equipped with a six-position filter wheel and a rotating sector blade shutter,both driven by stepper motors. The instrument saw first light in 2004 in an engineering mode. After filling the lens cell with index matching oil, integration of all software components into the user interface, tuning of the CCD performance, and the purchase of the final filter set, UHWFI is now fully commissioned at the UH 2.2 m telescope.

  11. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  12. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  13. 36 Ways to Save Energy and Money - Right Now! Hawai'i Clean Energy Initiative (HCEI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    Fact sheet outlining top ways to save energy and money in Hawaii, in the office, at home, and in the car.

  14. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  15. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  16. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01T23:59:59.000Z

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  17. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    and Innovation for Vehicle efficiency and Energy sustainability) partnership. Existing lithium-ion battery ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Battery.energy.gov/v ehiclesandfuels/about/partners hips/usdrive.html Related Projects: Batteries for Grid Management HNEI

  18. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    : Grid Management Using Hydrogen Hydrogen for GM Equinox Vehicles Fuel Cell Hydrogen Contaminants Project, the Hawai`i Natural Energy Institute (HNEI) will provide hydrogen for fueling plug-in hybrid electric of the overall system to provide hydrogen for fueling the PHEV shuttle buses used for visitors to HAVO, 2

  19. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Description and Goals With funding from federal agencies and industrial sponsors, Dr. Jian Yu has invented renewable energy; developing bioreactors with high mass transfer rate of insoluble gases for high cell ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Bio

  20. Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1998, Kona, Hawaii.

    E-Print Network [OSTI]

    of the electric power market, the viability of a spot market for reactive power remains cloudy. In [2 Sciences, January 6- 9, 1998, Kona, Hawaii. A Simulation Based Approach to Pricing Reactive Power James D the simulation of real and reactive power spot markets. While spot pricing of real power remains a viable option

  1. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Inverters for High- Penetration Photovoltaic Applications Team Partners: Hawai`i Natural Energy Institute://www.heco.com Maui Electric Company http://www.mauielectric.com Related Projects: Maui Smart Grid Project PV Test into a Fronius inverter to create a Smart Grid inverter (SGI). The project will then demonstrate the ability

  2. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ) validation of the various hydrogen infrastructure elements involved, 3) validation for operation of the PHEV infrastructure required to advance the "Hydrogen Economy." Status A vendor for supply of the hydrogen dispensing ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Hydrogen

  3. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ) validation of the various hydrogen infrastructure elements involved, 3) validation for operation of the PHEV infrastructure required to advance the "Hydrogen Economy." Status The hydrogen production, storage, dispensing ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Hydrogen

  4. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Batteries that fast-response Battery Energy Storage System (BESS) solutions are an integral part of a comprehensive) wind farm and on O`ahu at the Waiawa substation with a large distributed PV system. The objective

  5. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    of fuel cell systems and avoid future costly failures in fuel cell vehicles and electricity generation Contaminants and Fuel Cell Performance Team Partners: Hawai`i Natural Energy Institute Center for Clean Energy in HNEI's fuel cell test facility to characterize, analyze, and understand the effects of airborne

  6. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Laboratory www.nrl.navy.mil Related Projects: Bio-Fuel Cells Project Hydrogen for GM Fuel Cell Vehicles Ocean of HNEI's Hawai`i Fuel Cell Test Facility. Besides the basic energy need for hydrate exploitation, HNEI hydrate technologies are relevant in areas such as subsea power and logistical fuel supply; geophysical

  7. School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa 1680 East West Rd, POST 802, Honolulu, HI 96822 USA ! www.soest.hawaii.edu

    E-Print Network [OSTI]

    School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa 1680 East West Rd, POST 802, Honolulu, HI 96822 USA ! www.soest.hawaii.edu The UH School of Ocean and Earth School ­ Kapalama "Identification of Marine Fungi Found on Oahu Beaches" SOEST Senior Research, Second

  8. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01T23:59:59.000Z

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  9. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  10. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    SciTech Connect (OSTI)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)] [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01T23:59:59.000Z

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  11. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01T23:59:59.000Z

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  12. Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project

    E-Print Network [OSTI]

    Wang, Yuqing

    Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

  13. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  14. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  15. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2009-05-15T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  16. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  17. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  18. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  19. Measurements of electric and magnetic fields in the Waianae, Hawaii area

    SciTech Connect (OSTI)

    Mantiply, E.D.

    1992-07-01T23:59:59.000Z

    During November 27--30, 1990, the US Environmental Protection Agency (EPA) conducted a measurement survey of electric and magnetic field levels along the southwest coast of Oahu, Hawaii. These measurements were requested by the State of Hawaii to determine the levels of radiofrequency (RF) electric and magnetic fields near Naval radio transmitters at Lualualei. The objective was to determine maximum fields in residential areas. This report documents the measurement results. Also, a few measurements were made of extremely-low-frequency (ELF) electric and magnetic fields at 60 hertz, the frequency used for electrical power.

  20. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse ...

  1. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse ...

  2. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

    1993-10-01T23:59:59.000Z

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  3. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  4. Contribution, Linkages and Impacts of the Fisheries Sector to Hawaii's Economy

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    : A Social Accounting Matrix Analysis Shawn Arita Joint Institute for Marine and Atmospheric Research details to reflect the income distribution process of the economy. Hawaii's fisheries operate in a complex environment that is constantly changing due to the varied interest involved with the fishery. The legal issues

  5. 1UNIVERSITY OF HAWAI`I AT HILO GENERAL CATALOG GENERAL CATALOG

    E-Print Network [OSTI]

    Wiegner, Tracy N.

    earned their doctorate degrees · Due to small class size, our faculty are able to develop teaching success. The University of Hawai`i at Hilo truly offers a quality education at a great value. I constantly ....................................................................................... 11 College of Agriculture, Forestry & Natural Resource Management (CAFNRM

  6. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under of the United States Government. Neither the United States Government nor any agency thereof, nor any

  7. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Final Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

  8. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect (OSTI)

    Trettin, L.D. [Univ. of Tennessee (United States)] [Univ. of Tennessee (United States); Petrich, C.H.; Saulsbury, J.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1996-01-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  9. Hawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

    E-Print Network [OSTI]

    the performance of traditional and emerging PV materials and inverter technologies," Institute Director Richard of the inverters, which convert direct current or DC power generated by the PV panels into alternating currentHawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

  10. Presented at the 34th Annual Hawaii Conference on Systems Sciences, January 3-6 ,2001

    E-Print Network [OSTI]

    company, and the Long Island Power Authority (LIPA) serves customers on the island through itsPresented at the 34th Annual Hawaii Conference on Systems Sciences, January 3-6 ,2001 "Electricity Since electricity, and its reliable provision on command, is a multi-attribute commodity, it should

  11. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  12. University of Hawai`i Strategic Plan for Information Technology 2000

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of information technology as recurring costs that include stable budgets for computers, software, maintenanceUniversity of Hawai`i Strategic Plan for Information Technology 2000 Executive Summary This Strategic Plan for Information Technology outlines the vision and planning context for moving forward

  13. Hawai'i Community College John Morton, Vice President for Community Colleges

    E-Print Network [OSTI]

    1 Focusing on Boundaries 2 Hawai'i DOE UH Community Colleges 3 High School to College 2,931 3,020 3 Graduates Fall Placement DOE Student Readiness 8 New HS graduation requirements effective with Fall 2012 sciences Common core standards in math and English Common assessment for these standards CTE pathway

  14. Assessment of coal technology options and implications for the State of Hawaii

    SciTech Connect (OSTI)

    Carlson, J.L.; Elcock, D.; Elliott, T.J. [and others] [and others

    1993-12-01T23:59:59.000Z

    The mandate of this research report was to provide the state of Hawaii with an assessment of the potential opportunities and drawbacks of relying on coal-fired generating technologies to diversify its fuel mix and satisfy future electric power requirements. This assessment was to include a review of existing and emerging coal-based power technologies-including their associated costs, environmental impacts, land use, and infrastructure requirements-to determine the range of impacts likely to occur if such systems were deployed in Hawaii. Coupled with this review, the report was also to (1) address siting and safety issues as they relate to technology choice and coal transport, (2) consider how environmental costs associated with coal usage are included in the integrated resource planning (ERP) process, and (3) develop an analytical tool from which the Department of Business, Economic Development & Tourism of the State of Hawaii could conduct first-order comparisons of power plant selection and siting. The prepared report addresses each element identified above. However, available resources and data limitations limited the extent to which particular characteristics of coal use could be assessed. For example, the technology profiles are current but not as complete regarding future developments and cost/emissions data as possible, and the assessment of coal technology deployment issues in Hawaii was conducted on an aggregate (not site-specific) basis. Nonetheless, the information and findings contained in this report do provide an accurate depiction of the opportunities for and issues associated with coal utilization in the state of Hawaii.

  15. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01T23:59:59.000Z

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  16. Long-term management and discounting of groundwater resources with a case study of KukioÌ? HawaiiÌ?

    E-Print Network [OSTI]

    Duarte, Thomas Kae̕ o, 1973-

    2002-01-01T23:59:59.000Z

    Long-term management strategies for groundwater resources are examined with theoretical examples and with a case study of Kuki'o, Hawai'i. In Part I a groundwater mining and a dryland salinization optimal management problem ...

  17. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    SciTech Connect (OSTI)

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01T23:59:59.000Z

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  18. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01T23:59:59.000Z

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

  19. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect (OSTI)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  20. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01T23:59:59.000Z

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  1. Geothermal spas in Hawaii: A new tourist industry. : A preliminary report

    SciTech Connect (OSTI)

    Woodruff, J.L.

    1987-07-01T23:59:59.000Z

    There are at least three very good uses for active volcanism: Obtain energy from it. Study it. Enjoy it. We are already obtaining electrical energy and industrial heat from Kilauea's abundant resource by drilling geothermal wells and building power plants. Our Volcano Observatory is recognized as a world renowned center of learning about volcanism. Our Volcanoes National Park allows us to view and appreciate this awesome phenomenon. For several years people have speculated about the high potential in Hawaii for another way of enjoying this warmth of mother earth -- spas or resorts that would make use of water that is naturally heated and mineralized by volcanic activity. However, before spas are developed in Hawaii, answers are needed to several important questions dealing with such topics as the suitability of our geothermal waters, sources of water that could be tapped, special equipment and materials needed, land availability, governmental and environmental hurdles, and the economics of this unique business. Though a considerable amount of research is still needed, it was felt worthwhile to summarize the information gathered to date from historical works, brochures, personal communications, and other sources. This report should stimulate interest in, and perhaps accelerate, the development of one of Hawaii's most important natural resources.

  2. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  3. Precision zero-home locator

    DOE Patents [OSTI]

    Stone, W.J.

    1983-10-31T23:59:59.000Z

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  4. http://www.bizjournals.com/pacific/blog/morning_call/2012/11/fuel-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST

    E-Print Network [OSTI]

    system costs, Scott Seu, vice president for energy resources at Hawaiian Electric, a subsidiary-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST Fuel cell test lab renamed Hawaii Sustainable Energy Research Facility Staff Pacific Business News The Hawaii Fuel Cell Test Facility, a 10-year-old research project sponsored

  5. Phase 1 archaeological investigation, cultural resources survey, Hawaii Geothermal Project, Makawao and Hana districts, south shore of Maui, Hawaii

    SciTech Connect (OSTI)

    Erkelens, C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)] [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-04-01T23:59:59.000Z

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. The survey team documented a total of 51 archaeological sites encompassing 233 surface features. Archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Maonakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. Twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bones from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area.

  6. Hawaii Information Package for Chemical Inventory Form (HCIF)/Tier II |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen Energy

  7. Hawaii NPDES General Permit Notice of Intent Forms Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpenInformation

  8. Synchronized sampling improves fault location

    SciTech Connect (OSTI)

    Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-04-01T23:59:59.000Z

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  9. Location logistics of industrial facilities

    E-Print Network [OSTI]

    Hammack, William Eugene

    1981-01-01T23:59:59.000Z

    of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

  10. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect (OSTI)

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01T23:59:59.000Z

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  11. Building Address Locations -Assumes entire

    E-Print Network [OSTI]

    Guenther, Frank

    Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

  12. Boston, Massachusetts Location: Boston, MA

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -recovery ventilation and water-source heat pumps Each unit has fresh air ducted independently. Each residence is warmed by a heat pump that taps the Trigen Energy Corporation steam lines that run underneath the street. #12;WallsBoston, Massachusetts #12;Location: Boston, MA Building type(s): Multi-unit residential, Retail 350

  13. The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I: Observations and Numerical Predictions*

    E-Print Network [OSTI]

    The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I differ significantly. The S2 kinetic energy pattern re- sembles the predicted pattern. In contrast, the observed structure and magnitude of the more important M2 kinetic energy pattern differs significantly from

  14. University of Hawaii Advisory Task Group -Operational Assessment Report on System Level Administration Operating Policies and Practices

    E-Print Network [OSTI]

    #12;University of Hawaii ­ Advisory Task Group - Operational Assessment Report on System Level") approved the formation of an Advisory Task Group on Operational and Financial Controls Improvement ("ATG of eight members, four members from the BOR, and four from private industry with expertise in financial

  15. World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS

    E-Print Network [OSTI]

    IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

  16. Weather Internship opportunity with KITV 4 Island Television is the ABC television affiliate in Honolulu, Hawai`i.

    E-Print Network [OSTI]

    Weather Internship opportunity with KITV 4 Island Television is the ABC television affiliate in Honolulu, Hawai`i. KITV recognizes that a good internship program can add practical experience to the education a student gains in college or graduate school. KITV has a long-established Internship Program

  17. UNIVERSITYOF HAWAI'I lIl3RARY INTERNAL TIDE SCATTERING AT M1DOCEAN TOPOGRAPHY

    E-Print Network [OSTI]

    Luther, Douglas S.

    of the topography and along a tidal beam up to the first surface bounce. A transition from a beam structure nearUNIVERSITYOF HAWAI'I lIl3RARY INTERNAL TIDE SCATTERING AT M1DOCEAN TOPOGRAPHY A DISSERTATION The scattering ofmode-oneM, internal tides from I) idealized Gaussian topography and 2) the Line Islands Ridge

  18. MTS/IEEE Oceans 2001, Honolulu, Hawaii, November 2001 Controlling an uninstrumented ROV manipulator by visual servoing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MTS/IEEE Oceans 2001, Honolulu, Hawaii, November 2001 Controlling an uninstrumented ROV manipulator of the approach. I. INTRODUCTION In this paper we present a vision-based method to control the manipulator manipulator called Sherpa. The Sherpa manipulator is not instrumented and is open-loop controlled

  19. Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

  20. Impacts of Radioactive 137Cs on Marine Bacterioplankton: Effects of the Fukushima Disaster on Hawaii's Kaneohe Bay Bacterial Communities

    E-Print Network [OSTI]

    Heller, Paul

    Impacts of Radioactive 137Cs on Marine Bacterioplankton: Effects of the Fukushima Disaster such catastrophe, a tsunami off the coast of Japan, occurred on March 11, 2011. The tsunami caused the Fukushima on the bacterioplankton community of Kaneohe Bay in Oahu, Hawaii. The bay is in the direct path of Fukushima's radioactive

  1. Sequence Logos: A Powerful, Yet Simple, Tool version = 3.03 of hawaii.tex 2003 Feb 12

    E-Print Network [OSTI]

    Schneider, Thomas D.

    Sequence Logos: A Powerful, Yet Simple, Tool version = 3.03 of hawaii.tex 2003 Feb 12 Mark C DNA and protein sequences, the sequence logo, is now available to re- searchers. This method has advantages over the con- ventional method of creating a consensus. For exam- ple, a logo of DNA shows all

  2. Ocean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu Ocean Thermal Resources off the Hawaiian Islands

    E-Print Network [OSTI]

    information to assist developers of ocean thermal energy conversion (OTEC) systems in site selection Energy Conversion The immense size of the ocean thermal resource and the baseload capability of OTECOcean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Ocean Thermal Resources off

  3. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25T23:59:59.000Z

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  4. Joint microseismic event location with uncertain velocity

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01T23:59:59.000Z

    We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...

  5. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  6. Asymptotic analysis of an optimal location problem

    E-Print Network [OSTI]

    2003-05-13T23:59:59.000Z

    Asymptotic analysis of an optimal location problem. One considers the problem of optimal location of masses(say production centers) in order to approximate a ...

  7. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  8. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  9. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect (OSTI)

    Rocheleau, Richard E.

    2008-09-30T23:59:59.000Z

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

  10. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01T23:59:59.000Z

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  11. A Preliminary Report on the Early History and Archaeology of Kahauale'A, Puna, Hawaii

    SciTech Connect (OSTI)

    Holmes, Tommy

    1982-04-14T23:59:59.000Z

    The following is a report on the findings of a documentary literature search on the ahupuaa of Kahauale'a in the Puna District of the island of Hawaii. Attention is given to the entirety of the ahupuaa, though the emphasis is on the mauka portions from about 1,500 to 3,800-feet elevation, or roughly three miles inland to the northern terminus of the ahupuaa, just below Kilauea. The report was commissioned by The Estate of James Campbell for purposes of ascertaining what the extent of early Hawaiian activities and/or habitation occurred in the mauka regions of Kahauale'a--specifically to see if proposed geothermal drilling activities in these areas would disturb any archaeological sites.

  12. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31T23:59:59.000Z

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  13. CX-012313: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chicago Office Technical Support Services Contract CX(s) Applied: A8 Date: 06/13/2014 Location(s): CX: none Offices(s): Chicago Office

  14. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  15. CX-010367: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Asbestos Abatement Actions CX(s) Applied: B1.16 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  16. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  17. CX-009005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Henderson Solar Energy Project CX(s) Applied: B5.16 Date: 08/22/2012 Location(s): Nevada Offices(s): Golden Field Office

  18. CX-011116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sunpath SANFAB CX(s) Applied: B5.16 Date: 08/09/2013 Location(s): Nevada Offices(s): Golden Field Office

  19. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-011237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lightspeed Networks Inc. Fiber Installation CX(s) Applied: B4.9 Date: 10/24/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  2. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  3. CX-008797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  4. CX-010590: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kalispell Shunt Cap Addition Project CX(s) Applied: B4.11 Date: 07/01/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  5. CX-008234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Whole Energy Glycerin Refinery CX(s) Applied: B5.15 Date: 04/20/2012 Location(s): Washington Offices(s): Golden Field Office

  6. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  7. CX-011368: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Temperature Thermal Properties CX(s) Applied: B1.31 Date: 10/23/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  8. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  9. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-008215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Hydropower Research and Development Technology Project CX(s) Applied: A9 Date: 04/03/2012 Location(s): Colorado Offices(s): Golden Field Office

  11. CX-011535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    East Grangeville Substation Sale CX(s) Applied: B1.24 Date: 11/14/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  12. CX-012233: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shed Acquisition at Kalispell Substation CX(s) Applied: B1.24 Date: 06/09/2014 Location(s): Montana Offices(s): Bonneville Power Administration

  13. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  14. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  15. CX-010581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Shell Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  16. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-011115: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Realization of Algae Potential CX(s) Applied: A9 Date: 08/29/2013 Location(s): New Mexico Offices(s): Golden Field Office

  18. CX-007844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Retrofits CX(s) Applied: B5.1 Date: 12/01/2011 Location(s): Rhode Island Offices(s): Energy Efficiency and Renewable Energy

  19. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  20. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-009542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Parks Project CX(s) Applied: B5.16 Date: 11/09/2012 Location(s): Florida Offices(s): Golden Field Office

  2. CX-008876: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Railroad Island Property Funding CX(s) Applied: B1.25 Date: 08/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  4. CX-010739: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): California Offices(s): Golden Field Office

  5. CX-010751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Ready 2 CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  7. CX-010338: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Fiber Interconnection CX(s) Applied: B4.7 Date: 05/21/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-011531: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Targhee Substation Land Acquisition CX(s) Applied: B1.24 Date: 11/05/2013 Location(s): Idaho Offices(s): Bonneville Power Administration

  9. CX-010435: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    De Moss Substation Expansion CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  10. CX-011537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wanacut Creek Upper Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  11. CX-011538: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ninemile Creek Lower Property Funding CX(s) Applied: B1.25 Date: 11/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-011536: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aeneans Creek Spring Property Funding CX(s) Applied: B1.25 Date: 11/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  14. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  15. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  16. CX-012038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  17. CX-010582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spring Creek Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  18. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  19. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  20. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  1. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  2. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  3. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  4. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  5. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-010583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Upper Jocko River Property Funding CX(s) Applied: B1.25 Date: 07/16/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  7. CX-011019: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    2013 Location(s): Washington Offices(s): National Energy Technology Laboratory Computational modeling of magnesium corrosion. CX-011019.pdf More Documents & Publications CX-011018...

  8. CX-011131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Puget Sound Pilot Tidal Energy Project CX(s) Applied: A9 Date: 08/13/2013 Location(s): Washington Offices(s): Golden Field Office

  9. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  10. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  11. CX-009698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  12. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  14. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  15. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  16. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  18. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  19. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  20. CX-011679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Antifoam Degradation Testing CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-012118: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  2. CX-010951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  3. CX-007358: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Integration of the University of Oregon's Cogeneration Project CX(s) Applied: B1.7 Date: 12012011 Location(s): Oregon Offices(s):...

  4. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  5. CX-010588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis Substation Tree Clearing CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  8. CX-007866: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  9. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  10. CX-008264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  11. CX-008468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  12. CX-007382: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Manufacturing CX(s) Applied: B5.1 Date: 10/26/2011 Location(s): Wisconsin Offices(s): Golden Field Office

  13. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  14. CX-012054: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Catalyst Synthesis CX(s) Applied: B3.6 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-007517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    UPF Mock Wall Project CX(s) Applied: B3.6 Date: 11/29/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  16. CX-011642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pantex Lake Land Utilization CX(s) Applied: B1.11 Date: 11/05/2013 Location(s): Texas Offices(s): Pantex Site Office

  17. CX-011634: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  18. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  19. CX-008535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office

  20. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  1. CX-100018: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Wind Generator Project CX(s) Applied: A9 Date: 08152014 Location(s): Michigan Offices(s): Golden Field Office Technology Office: Wind Program Award Number:...

  2. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  3. CX-009272: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  4. CX-010578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Celilo Converter Station Upgrades CX(s) Applied: B4.11 Date: 07/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  5. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  6. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  7. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  8. CX-008291: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Applied: B5.22 Date: 05012012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory Install biodiesel fueling infrastructure in Wake Forest, North...

  9. CX-008517: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Applied: B5.22 Date: 07122012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory Install biodiesel fueling infrastructure in Wilmington, North...

  10. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  11. CX-010770: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wildland Fire Chainsaw Training CX(s) Applied: B1.2 Date: 08/01/2013 Location(s): Idaho Offices(s): Nuclear Energy

  12. CX-008341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A-6 Office Building CX(s) Applied: B1.15 Date: 04/19/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program

  13. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  14. CX-008571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Project Blue Energy CX(s) Applied: A9 Date: 06/20/2012 Location(s): Utah Offices(s): Golden Field Office

  15. CX-012172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Repackage Lead Shot CX(s) Applied: B6.1 Date: 04/14/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-009426: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Auxiliary Services Hydrogen Refueling Facility Performance Evaluation and Optimization CX(s) Applied: A9, B5.22 Date: 10242012 Location(s): California Offices(s):...

  17. CX-010124: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chromatography / Mass Spectrometry CX(s) Applied: B3.6 Date: 03/20/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  18. CX-009617: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Mass Spectrometry CX(s) Applied: B3.6 Date: 11/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-010113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compression Stress Relaxometer CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-008146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC

  2. CX-010768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  3. CX-011707: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laser Nanoparticle Lab CX(s) Applied: B3.6 Date: 01/15/2014 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  4. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-008556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Haiti Renewable Resource Study CX(s) Applied: A9, A11 Date: 07/23/2012 Location(s): Haiti Offices(s): Golden Field Office

  6. CX-010422: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mt. Richmond Property Funding CX(s) Applied: B1.25 Date: 06/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  7. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  8. CX-012097: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  9. CX-010797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Serration Behavior of High Entropy Alloys CX(s) Applied: A9 Date: 08/14/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  10. CX-010734: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Covington District Culvert Replacements CX(s) Applied: B1.3 Date: 07/22/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  11. CX-012122: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  12. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  13. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles 

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  14. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  15. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  16. THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS

    SciTech Connect (OSTI)

    Gwyn, Stephen D. J., E-mail: Stephen.Gwyn@nrc-cnrc.gc.ca [Canadian Astronomy Data Centre, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, V9E 2E7 (Canada)

    2012-02-15T23:59:59.000Z

    This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg{sup 2}, with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 Multiplication-Sign 10{sup 6} sources. The Wide Survey consists of 150 deg{sup 2} split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 Multiplication-Sign 10{sup 7} sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

  17. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  18. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01T23:59:59.000Z

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  19. Contact information: Richard Rocheleau (808) 956-8346; Larry Cutshaw (808) 956-7787 Phone: (808) 956-8890; Fax: (808) 956-2336; 1680 East-West Road, POST 109; Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    in the CCS Figure 4 Flow chart of initial Wind Smoothing Algorithm embedded in the CCS After completing://www.hnei.hawaii.edu/ An Equal Opportunity/Affirmative Action Institution HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean Description Integrating intermittent renewable energy resources onto the electricity grid gives rise

  20. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  1. Location theory and the location of industry along an interstate highway

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    to determine the significance of these locational factors among plants with different characteristics that have located in certain localities should provide pertinent information with both practical and theoretical implications. Since 1956, approximately 64... Summary of Plant Location Theory Cost Fac'tots . . . . . . . . . . . . . ~ The Importance of 'the Demand Factor Greenhut's General Theory of Plant Location and the Intangible Factor Location Factors as Revealed by Empirical Study Greenhut's Case...

  2. Regenerator Location Problem in Flexible Optical Networks

    E-Print Network [OSTI]

    BARIS YILDIZ

    2014-11-22T23:59:59.000Z

    Nov 22, 2014 ... Abstract: In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand, ...

  3. Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)

    SciTech Connect (OSTI)

    None

    1992-09-18T23:59:59.000Z

    This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

  4. Early recovery of a Hawaiian lowland rainforest following clearcutting at Kalapana on the Island of Hawaii

    SciTech Connect (OSTI)

    Grossman, D.H.

    1992-01-01T23:59:59.000Z

    The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms, represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.

  5. Automated Fault Location In Smart Distribution Systems 

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    ............................................................................................................................ 88 x LIST OF FIGURES Page Figure 1 Multiple possible fault location estimation for a fault at node A ........................ 7 Figure 2 Simple faulted network model [1] © [2011] IEEE ............................................ 40 Figure 3... Types C and D voltage sags for different phases [51] © [2003] IEEE .............. 42 Figure 4 Rf estimation procedure [1] © [2011] IEEE ...................................................... 45 Figure 5 Flow chart of the fault location algorithm [1...

  6. RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED

    E-Print Network [OSTI]

    Miami, University of

    RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

  7. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report by the Concurrent Technologies Corporation (CTC) and the Power Systems Engineering Research Center (PSERC). NeitherOptimized Fault Location Final Project Report Power Systems Engineering Research Center A National

  8. Locating and tracking assets using RFID 

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    , this research presents a mathŹematical model of using RFID (both handheld readers and stationary readers) for e?cient asset location. We derive the expected cost of locating RFIDŹtagged objects in a multiŹarea environment where handŹheld RF readers are used. We...

  9. Location Privacy and the Personal Distributed Environment

    E-Print Network [OSTI]

    Atkinson, Robert C

    Location Privacy and the Personal Distributed Environment Robert C Atkinson, Swee Keow Goo, James-- The Personal Distributed Environment is a new concept being developed within the Mobile VCE Core 3 research, wherever their location: ubiquitous access. Devices are co-ordinated by Device Management Entities (DMEs

  10. The Construction of Locative Situations: Locative Media and the Situationist International, Recuperation or Redux?

    E-Print Network [OSTI]

    McGarrigle, Conor

    2009-01-01T23:59:59.000Z

    closely aligned to the SI's construction of situations. ThisG (1957) Report on the Construction of Situations and on theThe Construction of Locative Situations: Locative Media and

  11. SFSU Building Coordinators List College or Administrative Unit Location(s)

    E-Print Network [OSTI]

    SFSU Building Coordinators List College or Administrative Unit Location(s) Building Coordinator81193 cathym@sfsu.edu GYM 102B Student Services Building SSB Mirel Tikkanen x53566 mtikkane@sfsu.edu SSB

  12. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  13. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont. Together, these firms operated about 820 mines. Estimated value of all marketable clay produced was about

  14. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin. A total of 238 companies operated approximately 700 clay pits or quarries. The leading 20 firms

  15. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, these firms operated approximately 739 mines. The estimated value of all marketable clay produced was about $1

  16. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  17. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode clay produced was about $2.14 billion. Major domestic uses for specific clays were estimated as follows

  18. Hawaii Hydrogen Power Park The U.S. Department of Energy (U.S. DOE) has promoted the vision that the transition to a

    E-Print Network [OSTI]

    ). The objective of the PICHTR project was developing and testing the use of wind and solar power to power small demonstration program we used the electricity generated by the wind turbine and solar array to powerHawaii Hydrogen Power Park Background The U.S. Department of Energy (U.S. DOE) has promoted

  19. The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES

    E-Print Network [OSTI]

    Maruyama, Shigeo

    The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN ABSTRACT Several heat transfer problems related to single

  20. PHOTOMETRIC REDSHIFTS IN THE HAWAII-HUBBLE DEEP FIELD-NORTH (H-HDF-N)

    SciTech Connect (OSTI)

    Yang, G.; Xue, Y. Q.; Kong, X.; Wang, J.-X.; Yuan, Y.-F.; Zhou, H. Y. [Key Laboratory for Research in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Wu, X.-B. [Department of Astronomy, Peking University, Beijing 100871 (China); Yuan, F., E-mail: yg1991@mail.ustc.edu.cn, E-mail: xuey@ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-01-01T23:59:59.000Z

    We derive photometric redshifts (z {sub phot}) for sources in the entire (?0.4 deg{sup 2}) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point-spread-function-matched photometry of 15 broad bands from the ultraviolet (U band) to mid-infrared (IRAC 4.5 ?m). Our catalog consists of a total of 131,678 sources. We evaluate the z {sub phot} quality by comparing z {sub phot} with spectroscopic redshifts (z {sub spec}) when available, and find a value of normalized median absolute deviation ?{sub NMAD} = 0.029 and an outlier fraction of 5.5% (outliers are defined as sources having |z{sub phot} – z{sub spec} |/(1 + z{sub spec} ) > 0.15) for non-X-ray sources. More specifically, we obtain ?{sub NMAD} = 0.024 with 2.7% outliers for sources brighter than R = 23 mag, ?{sub NMAD} = 0.035 with 7.4% outliers for sources fainter than R = 23 mag, ?{sub NMAD} = 0.026 with 3.9% outliers for sources having z < 1, and ?{sub NMAD} = 0.034 with 9.0% outliers for sources having z > 1. Our z {sub phot} quality shows an overall improvement over an earlier z {sub phot} work that focused only on the central H-HDF-N area. We also classify each object as a star or galaxy through template spectral energy distribution fitting and complementary morphological parameterization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2 Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having z {sub spec}), we improve their z {sub phot} quality by adding three additional active galactic nucleus templates, achieving ?{sub NMAD} = 0.035 and an outlier fraction of 12.5%. We make our catalog publicly available presenting both photometry and z {sub phot}, and provide guidance on how to make use of our catalog.

  1. THE PLANAR HUB LOCATION PROBLEM: A PROBABILISTIC ...

    E-Print Network [OSTI]

    2012-11-21T23:59:59.000Z

    Nov 5, 2012 ... Aykin and Brown, [4]. ...... [8] J.F. Campbell, Integer programming formulations of discrete hub location problems, European J. of O.R.. 72(1994) ...

  2. Developing a theory of nightclub location choice

    E-Print Network [OSTI]

    Crim, Stephen J. (Stephen Johnson)

    2008-01-01T23:59:59.000Z

    This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

  3. Techniques for Mobile Location Estimation in UMTS 

    E-Print Network [OSTI]

    Thomas, Nicholas J

    The subject area of this thesis is the locating of mobile users using the future 3rd generation spread spectrum communication system UMTS. The motivation behind this work is twofold: firstly the United States Federal ...

  4. Driver expectancy in locating automotive controls 

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  5. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er... assessment of automotive industry practices in 1971 and concluded that only 50% of controls/displays on various models could be said to have a common location. Perel (1974) reviewed prior research and found that it would be difficult to pinpoint...

  6. Locating Boosted Kerr and Schwarzschild Apparent Horizons

    E-Print Network [OSTI]

    Mijan F. Huq; Matthew W. Choptuik; Richard A. Matzner

    2000-02-22T23:59:59.000Z

    We describe a finite-difference method for locating apparent horizons and illustrate its capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild metric. We apply a Lorentz boost to this spacetime metric and then carry out a 3+1 decomposition. The result is a slicing of Kerr/Schwarzschild in which the black hole is propagated and Lorentz contracted. We show that our method can locate distorted apparent horizons efficiently and accurately.

  7. Reconstructing Spatial Distributions from Anonymized Locations

    SciTech Connect (OSTI)

    Horey, James L [ORNL] [ORNL; Forrest, Stephanie [University of New Mexico, Albuquerque] [University of New Mexico, Albuquerque; Groat, Michael [University of New Mexico, Albuquerque] [University of New Mexico, Albuquerque

    2012-01-01T23:59:59.000Z

    Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstruction algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.

  8. Location theory and the location of industry along an interstate highway 

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    a greater gamble. This sect. ion has been devoted to s review of the fundamental factors underlying all plant location ss recognised in location theory. The next section will review some recent. empirical attempts to determine the actual... for this thesis was possible through the assistance provided )ointly by the Texas Highway Department and the Bureau of Public Roads. i. v TABLE OF CONTENTS Chapter Page INTRODUCTION Purpose Plan of Study REVIEW OF PLANT LOCATION CONCEPTS Introduction...

  9. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01T23:59:59.000Z

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  10. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  11. Locating and tracking assets using RFID

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . 10 C. Different Technologies for Asset Tracking / Locating . . . . 10 1. Hand-held Reader . . . . . . . . . . . . . . . . . . . . 11 2. Fixed Reader Installed in Area . . . . . . . . . . . . . 11 3. Fixed Reader Installed at Chokepoint... . . . . . . . . . . . 34 a. CaseofInstallingtheFixedReaderintheMost Probable Area . . . . . . . . . . . . . . . . . . . . 35 b. Case of Installing the Fixed Reader in the Far- thest Area . . . . . . . . . . . . . . . . . . . . . . 36 3. Extension of Experiments...

  12. Recycling Bin Guide Locations and prices

    E-Print Network [OSTI]

    Kirschner, Denise

    Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

  13. Ontology-based Disambiguation of Spatiotemporal Locations

    E-Print Network [OSTI]

    Hyvönen, Eero

    , in the semantic portal MuseumFinland3 [7] a location parton- omy4 was used for annotating museum artifacts. #12;A problem when creating a semantic cultural heritage portal is that places, both modernFinland originate from regions that no longer exist and/or are not part of Finland but of Russia with new names

  14. Transportation Networks and Location A Geometric Approach

    E-Print Network [OSTI]

    Palop del Río, Belén

    Transportation Networks and Location A Geometric Approach Belén Palop1,2 1Departamento de March 2009 Florida State University #12;Belén Palop, UVa, SUNY Outline Transportation Network Model;Transportation Network Model Belén Palop, UVa, SUNY Outline Transportation Network Model Network placement

  15. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  16. RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

    E-Print Network [OSTI]

    Levinson, David M.

    RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

  17. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15T23:59:59.000Z

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  18. Automated Fault Location In Smart Distribution Systems

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    Quality Meters (PQM), are installed to capture harmonics and certain disturbances for analyzing the power quality indices. Digital Protective Relays are utilized to detect occurrence of the faults and isolate faulted section as fast as possible. Digital... Protective Relays) use synchronous methods [28]. Therefore, if the available data is provided by RTUs, fault location methods that operate based on direct comparison of the input samples cannot be 17 utilized. However, if the data could be gathered from...

  19. Evaluation of workplace air monitoring locations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. (Pacific Northwest Lab., Richland, WA (United States)); Aldrich, L.K. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-10-01T23:59:59.000Z

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  20. A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report

    SciTech Connect (OSTI)

    Evans, K.; Woodside, D.; Bruegmann, M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

    1994-08-01T23:59:59.000Z

    A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds, resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.

  1. Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations InEnergyGeocodedEnergy

  2. EIS-0463: Notice of Public Meeting Location Change | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location Change EIS-0463: Notice of Public Meeting Location Change Presidential Permit Application for Northern Pass Transmission, New Hampshire On September 6, 2013, DOE...

  3. Optimization Online - p-facility Huff location problem on networks

    E-Print Network [OSTI]

    Rafael Blanquero

    2014-10-30T23:59:59.000Z

    Oct 30, 2014 ... Abstract: The p-facility Huff location problem aims at locating facilities on a competitive environment so as to maximize the market share.

  4. Preliminary geothermal evaluation of the Mokapu Peninsula on the Island of Oahu, Hawaii

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    Preliminary geological, geochemical, and geophysical field surveys have been conducted on Mokapu Peninsula on the island of Oahu in an effort to determine whether sufficient indications of geothermal potential exist within or adjacent to the peninsula to justify further, more detailed, exploratory efforts. An evaluation of existing geologic data as well as recently completed mapping on Mokapu indicate that the peninsula is located on the edge of or immediately adjacent to the inferred caldera of Koolau volcano. Geochemical surveys conducted within and around the Mokapu Peninsula included mercury and radon ground gas surveys as well as a limited evaluation of groundwater chemistry. Groundwater sampling on Mokapu Peninsula was severely restricted due to the absence of wells within the study area and thus water chemistry analyses were limited to the Nuupia fish ponds. Schlumberger resistivity soundings were completed in three locations on the peninsula: KVS1, in the northeast quadrant within the Ulupau crater, KVS2 in the northwest quadrant along the main jet runway, and KVS3 in the southeast along Mokapu Road. KVS1 encountered a relatively high resistivity to a depth of approximately 20 meters below sea level which was underlain by a basement resistivity of about 2 to 3 ohm meters. KVS2 and KVS3 detected similar resistivities of 2 to 3 ohm meters at much shallower depths (approximately equivalent to local sea level) below a thin, moderately resistive layer having an impedance ranging from 15 to 118 ohm meters.

  5. CX-009524: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  6. CX-009798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  7. CX-011031: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 09/10/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory

  8. Pattern Alteration: Location of Bust Fullness

    E-Print Network [OSTI]

    2006-08-04T23:59:59.000Z

    ). Figure 1. Bodice with Darts Darts should point toward the fullest part of the bust, ending ? to 1 ? inches (1 to 4 cm) from its tip. This depends on the garment style, your fi gure and personal preference. The Personal Measurement Chart (line 6) can... help you deter- mine the position of your bust point on the pattern. If your measurement and the pattern bust point location differ, you need an alteration. 1. To fi nd the bust point on a basic pattern, extend the center lines of the darts until...

  9. Location of laccase in ordered mesoporous materials

    SciTech Connect (OSTI)

    Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

    2014-11-01T23:59:59.000Z

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  10. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and MethaneLocations GE

  11. Our Locations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthisOur HistoryHistoryLocations |

  12. Location-Tracking Applications ecent technological advances in wireless loca-

    E-Print Network [OSTI]

    Gruteser, Marco

    areas they have visited. #12;Location-Tracking Applications broker as part of their service contract

  13. Locating a Recycling Center: The General Density Case Jannett Highfill

    E-Print Network [OSTI]

    Mou, Libin

    Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

  14. Calendar year 2007 annual site environmental report for Tonopah Test range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect (OSTI)

    Agogino, Karen [Department of Energy, Albuquerque, NM (US), NNSA; Sanchez, Rebecca [Sandia Corp., Albuquerque, NM (US)

    2008-09-30T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  15. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  16. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13T23:59:59.000Z

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  17. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01T23:59:59.000Z

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  18. MobiEyes: A Distributed Location Monitoring Service Using Moving Location Queries

    E-Print Network [OSTI]

    Liu, Ling

    , distributed algorithms, mobile data management. Ç 1 INTRODUCTION WITH the growing availability of mobile-sensitive resource management. The former uses location data to tailor the information delivered to the mobile users traffic and weather. Examples include systems for fleet manage- ment, mobile workforce management

  19. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30T23:59:59.000Z

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  20. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.