Powered by Deep Web Technologies
Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

wayne  

Office of Legacy Management (LM)

Wayne, New Jersey, Site. Wayne, New Jersey, Site. This site is currently managed by the U.S. Army Corps of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Location of the Wayne, New Jersey, Site Site Description and History The Wayne, New Jersey, Site (also called the Wayne Interim Storage Site) is located at 868 Black Oak Ridge Road in Wayne Township in northern New Jersey

2

wayne  

Office of Legacy Management (LM)

the U.S. Army Corps of Engineers but will eventually transfer to the U.S. Department of Energy Office of Legacy Management. Location of the Wayne, New Jersey, Site Site...

3

The Department of Geology at Wayne State University is located in a urban environmental set-  

E-Print Network (OSTI)

The Department of Geology at Wayne State University is located in a urban environmental set- ting-time faculty and four part-time instructors. Faculty include: Drs. Mark Baskaran (Isotope Geo- chemistry), Jeff Howard (Sedimentology), Larry Lemke (Hydrogeology), Ed van Hees (Economic Geology), and Sarah Brownlee

Cinabro, David

4

wayne.cdr  

Office of Legacy Management (LM)

Wayne, New Jersey, Site. This site is managed by the U.S. Department of Energy Office of Legacy Management. Location of the Wayne, New Jersey, Site Site Description and History The...

5

Wayne Hurlbert  

NLE Websites -- All DOE Office Websites (Extended Search)

Wayne-Hurlbert.jpg Wayne E. Hurlbert Storage Systems Group, National Energy Research Scientific Computing Center WEHurlbert@lbl.gov Phone: (510) 486-8618 , Fax: (510) 486-4316...

6

Microsoft Word - FUSRAP Wayne NJ.rtf  

Office of Legacy Management (LM)

Wayne Interim Storage Site (WISS) Wayne, New Jersey FACT SHEET January 2004 DESCRIPTION: The Wayne site is located in a highly developed area of northern New Jersey, approximately 20 miles north-northwest of Newark, New Jersey. The site was formerly owned and operated by Rare Earths, Inc. and W.R. Grace & Co. Contamination at the property resulted from rare earths and thorium processing activities conducted at the facility during the period of 1948 to 1971. The property is now owned by the U.S. government and is designated as the Wayne Interim Storage Site (WISS). The site is located at the intersection of Black Oak Ridge Road and Pompton Plains Cross Road in Wayne Township, Passaic County, New Jersey. The WISS consists of approximately 6.5 acres of fenced property, roughly

7

Wayne-White Counties Elec Coop | Open Energy Information  

Open Energy Info (EERE)

Wayne-White Counties Elec Coop Wayne-White Counties Elec Coop Jump to: navigation, search Name Wayne-White Counties Elec Coop Place Illinois Utility Id 20222 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 1 Residential Rate 2 Residential Average Rates Residential: $0.1220/kWh Commercial: $0.1100/kWh Industrial: $0.0707/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Wayne-White_Counties_Elec_Coop&oldid=412155

8

Holmes-Wayne Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Holmes-Wayne Electric Coop Inc Holmes-Wayne Electric Coop Inc Jump to: navigation, search Name Holmes-Wayne Electric Coop Inc Place Ohio Utility Id 8761 Utility Location Yes Ownership C NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png FARM & RESIDENTIAL Residential GENERAL SERVICE Residential Average Rates Residential: $0.1050/kWh Commercial: $0.0957/kWh Industrial: $0.0725/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Holmes-Wayne_Electric_Coop_Inc&oldid=410832"

9

Wayne, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wayne, Illinois: Energy Resources Wayne, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9521°, -88.261288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9521,"lon":-88.261288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

DOE - Office of Legacy Management -- Wayne Site - NJ 16  

Office of Legacy Management (LM)

Wayne Site - NJ 16 Wayne Site - NJ 16 FUSRAP Considered Sites Wayne, NJ Alternate Name(s): Wayne Interim Storage Site (WISS) W.R. Grace and Company W.R. Grace Site Rare Earths, Inc. Davison Chemical Division NJ.16-1 NJ.16-2 NJ.16-3 Location: 868 Black Oak Road, Wayne, New Jersey NJ.16-5 Historical Operations: Produced crude thorium hydroxide and rare earth elements from monazite sands. Site was also used for interim storage of contaminated material removed from vicinity properties under FUSRAP. NJ.16-5 Eligibility Determination: Eligible NJ.16-1 NJ.16-11 Radiological Survey(s): Assessment Surveys NJ.16-3 NJ.16-6 NJ.16-7 NJ.16-8 NJ.16-9 Site Status: USACE cleanup complete, not yet delisted from the National Priorities List. USACE Website EPA Website Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

11

Revised History of Fort Watauga.  

E-Print Network (OSTI)

??The history of the Revolutionary War Fort Watauga located in present day Elizabethton, TN has yet to be completed. The critique of several Tennessee historians (more)

Compton, Brian Patrick

2005-01-01T23:59:59.000Z

12

Thermochronometry At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Thermochronometry At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Thermochronometry Activity Date Usefulness not indicated...

13

Wayne County, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wayne County, Michigan: Energy Resources Wayne County, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.2790746°, -83.336188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2790746,"lon":-83.336188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Wayne Meitzler PNNL Component Security R&D Program Manager  

E-Print Network (OSTI)

Wayne Meitzler PNNL Component Security R&D Program Manager Wayne Meitzler, as Pacific Northwest National Laboratory (PNNL) Component Security R&D Program Manager, has over 15 years of cyber security R systems. In the 90s, Wayne was one of the early cyber security R&D leaders at PNNL, and his research

Perkins, Richard A.

15

City of Wayne, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Nebraska (Utility Company) Nebraska (Utility Company) Jump to: navigation, search Name City of Wayne Place Nebraska Utility Id 20219 Utility Location Yes Ownership M NERC Location MRO Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Service Commercial Commercial General Service Demand (Single Phase) Commercial Commercial General Service Demand (Single Phase) Primary Commercial Commercial General Service Demand (Single Phase) Transformer Primary

16

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

17

Town of Fort Supply, Oklahoma (Utility Company) | Open Energy...  

Open Energy Info (EERE)

Supply, Oklahoma (Utility Company) Jump to: navigation, search Name Town of Fort Supply Place Oklahoma Utility Id 6618 Utility Location Yes Ownership M NERC Location SPP NERC SPP...

18

CA Mr. Wayne Klassing Klassing Hardbrake Company  

Office of Legacy Management (LM)

s/L / ' s/L / ' CA _ _.- Mr. Wayne Klassing Klassing Hardbrake Company P.O. Box 860 Joliet, Illinois 60434 E- 3 --- ,"".Y.- 1 , -4 v / 1 /89 ., ._ I.. Dear Mr. Klassing: The Department of Energy (DOE) has completed its review of the preliminary radiological data from the May 1989 survey of your facility in Joliet, Illinois, which is the site of the former W. E. Pratt Manufacturing Company. We are pleased to inform you that the survey has verified that the radiological condition of your facility is in compliance with applicable DOE Guidelines and that no remedial action or further investigations are necessary. We have directed our contractor, Oak Ridge Associated Universities, to send you a copy of the final report as soon as it is published. Once the final report is published, your site

19

Mr. Wayne Klassing Klassing Handbrake Company  

Office of Legacy Management (LM)

, , '? 4,"?+s64!!m .a j ,; 1 -T ' a j II. 7 . iII4.J OCT 2 O 19199 . - Mr. Wayne Klassing Klassing Handbrake Company P.O. Box 860 Joliet, Illinois 60434 o a & E D @- r 1 /I i' .' .; rJ - -- -.--. -.- ' % \I! ,yG9 I .._M -' ?J -2 F K 1 - - /89 Dear Hr. Edmonds: Enclosed is a copy of the final survey report for your facility in Joliet, Illinois, which is the-site of the former W. E. Pratt Nanufacturing Company. This survey report documents the fact that the radiological condition of your facility is in compliance with applicable Department of Energy Guidelines and that no remedial action or further investigations are necessary. If you have any questions regarding the survey results or our associated actions, contact Mr. James Wagoner of my staff at

20

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 181 Implementation Challenges in Deployment of an Energy Security Microgrid for Army Reserve Facilities located on the Former Fort Devens Army Base  

Science Conference Proceedings (OSTI)

This documents reports on a request for technical assistance from Fort Devens to analyze procurement of energy from nearby renewable generating resources.

Warwick, William M.

2010-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE - Office of Legacy Management -- Wayne_FUSRAP  

Office of Legacy Management (LM)

New Jersey New Jersey Wayne, New Jersey, Site FUSRAP Site Wayne Map Background-The Wayne, New Jersey, Site was remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission operations. History-Rare Earths, Inc. and then W.R. Grace and Company operated the 6.5-acre site as a rare earth and thorium processing facility from 1948 to 1971. Contaminated waste materials were buried on site and the facility license was terminated. DOE acquired the property for interim storage of contaminated soil and debris removed from nearby (vicinity) properties. The U.S. Environmental Protection Agency listed the site on the National

22

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

23

Water Reclamation and Reuse at Fort Carson  

NLE Websites -- All DOE Office Websites (Extended Search)

Fort Carson has built a successful and Fort Carson has built a successful and award-winning water conservation program through a series of initiatives that avoid using potable water. The program involves an innovative approach to utilizing alter- native sources of water, water reclamation, and recycling. Fort Carson is located near Colorado Springs, Colorado, and together with the Piñon Canyon Maneuver Site, occupies 373,000 acres. The army base has more than 9 million square feet of facility space-buildings that serve the army base-and an additional 4 million square feet of private family housing. Fort Carson serves as a training facility for the U.S. Army Special Forces, an infantry division, and Army Reserves. The base hosts more than 45,000 military personnel annu- ally. Approximately 20,000 civilians and military personnel

24

Water Reclamation and Reuse at Fort Carson  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Army's Fort Carson has built a successful and Army's Fort Carson has built a successful and award-winning water conservation program through a series of initiatives that avoid using potable water. The program involves an innovative approach to utilizing alter- native sources of water, water reclamation, and recycling. Fort Carson is located near Colorado Springs, Colorado, and together with the Piñon Canyon Maneuver Site, occupies 373,000 acres. The army base has more than 9 million square feet of facility space-buildings that serve the army base-and an additional 4 million square feet of private family housing. Fort Carson serves as a training facility for the U.S. Army Special Forces, an infantry division, and Army Reserves. The base hosts more than 45,000 military personnel annu- ally. Approximately 20,000 civilians and military personnel

25

DOE - Office of Legacy Management -- Fort St Vrain - 011  

Office of Legacy Management (LM)

Fort St Vrain - 011 Fort St Vrain - 011 FUSRAP Considered Sites Site: Fort St Vrain (011) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Fort St. Vrain Independent Spent Fuel Storage Installation is located in Weld County, Colorado. In 1965, the U.S. Atomic Energy (a predecessor agency to DOE) agreed to provide permanent storage for a large portion of the Fort St. Vrain¿s spent nuclear fuel. Originally, Fort St. Vrain was a nuclear power generating facility that operated from 1976 to 1989. In 1989, the nuclear power plant was decommissioned and the plant was converted to a natural gas power plant.

26

NIST Child Care Center Parent Handbook 1 Jolene Wayne  

E-Print Network (OSTI)

NIST Child Care Center Parent Handbook 1 2010 Jolene Wayne Director NIST Child Care Center Parent Handbook #12;NIST Child Care Center Parent Handbook August 20102 This page left intentionally blank. #12;NIST Child Care Center Parent Handbook August 20103 CONTENTS WELCOME TO THE NIST CHILD CARE CENTER

Magee, Joseph W.

27

Multispectral Imaging At Cove Fort Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Laney, 2005) Cove Fort Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Cove Fort Area (Laney, 2005) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Vegetalspectral analysis at Cove Fort-Sulphurdale, Utah was tested as a method of detecting hidden faults in exploration efforts. This effort proved to be successful and resulted in the Following published paper: Nash, G. D., J. N. Moore, and T. Sperry, 2003. "Vegetal-spectral anomaly detection at the Cove Fort-Sulphurdale thermal anomaly, Utah, USA: implications for use in geothermal exploration." Geothermics, v. 32, p.

28

Fort Totten Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Totten Wind Farm Totten Wind Farm Jump to: navigation, search Name Fort Totten Wind Farm Facility Fort Totten Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Spirit Lake Sioux Energy Purchaser Spirit Lake Sioux Location Fort Totten ND Coordinates 47.9817°, -99.0029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.9817,"lon":-99.0029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

By Eric S. Wayne, P.E., CCE, PMP OECM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eric S. Wayne, P.E., CCE, Eric S. Wayne, P.E., CCE, PMP OECM Let us first define the term "ball park" estimate. A good definition for this term is a rough approximation, made with a degree of knowledge and confidence that the esti- mated figure falls within a reasonable range of values. This is also referred to as a Rough-Order of Magnitude (ROM) estimate. The ability to provide a ROM estimate is important, since it helps to define the cost range at Critical Decision (CD)-0, Ap- prove Mission Need. Referring to DOE O 413.3B, the cost range provided at CD-0 should be a ROM esti- mate and is used to deter- mine the Acquisition Execu- tive (AE) authority designa- tion. This range does not represent the Performance Baseline (PB), which will be

30

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

31

Fort Bidwell Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bidwell Geothermal Area Fort Bidwell Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bidwell Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8617,"lon":-120.1592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Microsoft Word - JAS-Fort Nelson.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Name Fort Nelson Demonstration Test Test Location British Columbia, Canada Amount and Source of CO 2 Tons Approximately 1.2 million tons of CO 2 per year Source...

34

Wayne, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

014415°, -83.4735393° 014415°, -83.4735393° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3014415,"lon":-83.4735393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Fort Drum integrated resource assessment  

Science Conference Proceedings (OSTI)

The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

1992-12-01T23:59:59.000Z

36

Front Row (left to right): Bryan Reed, Wayne King, Nigel Browning ...  

DTEM Team Members: Front Row (left to right): Bryan Reed, Wayne King, Nigel Browning, Judy Kim, Michael Armstrong Back Row (left to right): Thomas LaGrange ...

37

Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Radiometrics At Fort Bliss Area (DOE GTP) Radiometrics At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Radiometrics Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Radiometrics_At_Fort_Bliss_Area_(DOE_GTP)&oldid=402615" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863747441

38

Spontaneous Potential At Fort Bidwell Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Spontaneous Potential At Fort Bidwell Area (Laney, 2005) Spontaneous Potential At Fort Bidwell Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Spontaneous Potential Well Log At Fort Bidwell Area (Laney, 2005) Exploration Activity Details Location Fort Bidwell Area Exploration Technique Spontaneous Potential Well Log Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell

39

Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration Activity Details Location...

40

OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL  

SciTech Connect

This is the second progress and final technical report of the remediation of abandoned wells in Clay and Wayne Counties in Illinois. The wells will be identified as the Routt No.3 and No.4 and the Bates Hosselton 1 and 2. Both sites have met all legal, financial and environmental requirements to drill and/or pump oil on both leases. We have also obtained all available information about both leases. All steps were taken to improve access roads, dig the necessary pits, and build the necessary firewalls. This progress and final technical report will address the remediation efforts as well as our results and conclusions.

Peter L. Dakuras; Larry Stieber; Dick Young

2003-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HOG on a WIM Aaron Stafford Wayne Piekarski Bruce H. Thomas  

E-Print Network (OSTI)

HOG on a WIM Aaron Stafford Wayne Piekarski Bruce H. Thomas Wearable Computer Lab School-mail: aaron.stafford@unisa.edu.au e-mail: wayne.piekarski@unisa.edu.au e-mail: bruce display system as presented in Stafford et al. [10]. With a projector based display, objects such as hands

Thomas, Bruce

42

Airport Electrification Strategy at the John Wayne Airport in Orange County, California  

Science Conference Proceedings (OSTI)

As a growth-oriented airport in the Los Angeles Metropolitan area, John Wayne Airport is taking a proactive approach to emission reduction in order to facilitate low environmental impact growth. This report evaluates existing electrification efforts at John Wayne Airport and explores new electrification opportunities in an effort to develop an overall strategy for minimizing emissions in the future.

2010-02-05T23:59:59.000Z

43

Fort Bidwell Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bidwell Geothermal Area Fort Bidwell Geothermal Area (Redirected from Fort Bidwell Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bidwell Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8617,"lon":-120.1592,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Cove Fort Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cove Fort Geothermal Area Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (30) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6,"lon":-112.55,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Nick Balthaser! Wayne Hurlbert! LBNL/NERSC Storage Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Wayne Hurlbert! Wayne Hurlbert! LBNL/NERSC Storage Systems Group T10KC Technology in Production --- 1 --- May 9 , 2 013 Agenda * Environment - Number T 10KC d rives - Length o f 9 me i n p roduc9on - Drive f eatures i n u se * Data V olume - Carts, T B, fi les * Workload - Exchanges/unit 9 me - IO R ates: R aw v s. H PSS * Error R ates * Data L oss * Conclusion --- 2 --- Environment * Currently 3 4 T 10KC i n p roducDon - Total p opula9on o f 1 62 O racle/STK t ape d rives i n 4 SL8500s - First s et o f 1 8 C d rives p ut i nto p roduc9on o n 0 1/25/2012 - Second s et o f 1 6 d rives p ut i nto p roduc9on i n 0 7 --- 0 8/2012 - Adding t hird s et o f 1 0 d rives A SAP 2 013 ( drives o n s ite) - Intending t o p urchase a nother s et A SAP * No opDonal drive features in use - We d o n ot u se e ncryp9on - We d o n ot u se t he t ape l ength e xtension

46

Fort Payne Improvement Auth | Open Energy Information  

Open Energy Info (EERE)

Auth Auth Jump to: navigation, search Name Fort Payne Improvement Auth Place Alabama Utility Id 6612 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Business Commercial Commercial Commercial Industrial Industrial Residential Residential Average Rates Residential: $0.0894/kWh Commercial: $0.0907/kWh Industrial: $0.0810/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Fort_Payne_Improvement_Auth&oldid=41071

47

Fort Loudoun Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Fort Loudoun Electric Coop Fort Loudoun Electric Coop Place Tennessee Utility Id 6608 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate-Schedule GSA 1 Commercial General Power Rate-Schedule GSA 2 Commercial General Power Rate-Schedule GSA 3 Commercial OUTDOOR LIGHTING RATE ( 150 Watt Metal Halide) Lighting OUTDOOR LIGHTING RATE ( 250 Watt HPS) Lighting OUTDOOR LIGHTING RATE ( 400 Watt HPS) Lighting OUTDOOR LIGHTING RATE ( 400 Watt Metal Halide) Lighting OUTDOOR LIGHTING RATE( 100 Watt HPS) Lighting

48

City of Fort Collins, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Collins, Colorado (Utility Company) Collins, Colorado (Utility Company) (Redirected from City of Fort Collins Utilities) Jump to: navigation, search Name Fort Collins City of Place Fort Collins, Colorado Utility Id 6604 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Fort Collins Utilities Smart Grid Project was awarded $18,101,263 Recovery Act Funding with a total project value of $36,202,527. Utility Rate Schedules

49

Air traffic control communication at Detroit Metro Wayne County Airport August 17, 1987  

E-Print Network (OSTI)

This report contains a transcript of radio communications between air traffic controllers and pilots. The transcript was prepared as part of the ATC Interaction Research Project (AIR Project) at the Oregon Graduate Institute, which has been investigating computational representations of air traffic control (ATC) communication. The transcript was made from a tape prepared and narrated by Lawrence L. Porter, a consultant in the field of air traffic control and aircraft accidents. It follows Northwest Airlines Flight 255 as it landed and took off from Detroit Metro Wayne County Airport on August 17, 1987, showing the pilot's interaction with each of the controller positions (Arrival Radar, Local Control, Ground Control, and Clearance Delivery). A copy of this recording on cassette may be obtained by writing to the Department of Computer Science and Engineering of the Oregon Graduate Institute. The authors thank Mr. Porter for providing the recording and narration. The transcript is in two parts. The section entitled "Full Transcript" depicts all exchanges chronologically as they occurred. However, air traffic control dialogue can be viewed as many interleaved yet fairly independent conversations, so in the "Separated Transcripts" section utterances are grouped by aircraft to show the course of each individual conversation. The utterance numbers from the full transcript are preserved in the separated transcripts so that the utterance context may be located easily. The notation and transcription conventions used in these transcripts are described in Appendix A. Appendix B contains charts describing the airspace around Detroit Metro Wayne County Airport.. The utterances in this transcript contain specialized terms and usages specific to the Air Traffic Control (ATC) domain. B...

Karen Ward; David Novick; Carolyn Sousa

1990-01-01T23:59:59.000Z

50

Nebraska Nuclear Profile - Fort Calhoun  

U.S. Energy Information Administration (EIA) Indexed Site

Fort Calhoun" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date"...

51

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

52

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

53

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

54

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) |  

Open Energy Info (EERE)

(Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Redirected from Direct-Current Resistivity At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location.

55

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., Cove Fort Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal

56

Fort Fairfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Fort Fairfield Biomass Facility Jump to: navigation, search Name Fort Fairfield Biomass Facility Facility...

57

Microsoft Word - JAS-Fort Nelson.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Fort Nelson Demonstration Test Fort Nelson Demonstration Test 1 FACT SHEET FOR PARTNERSHIP DEMONSTRATION TEST Partnership Name Plains CO 2 Reduction (PCOR) Partnership - Phase III Contacts: DOE/NETL Project Mgr. Name Organization E-Mail Darin Damiani, U.S. Department of Energy, Darin.Damiani@netl.doe.gov Principal Investigator Edward Steadman Field Test Information: Field Test Name Fort Nelson Demonstration Test Test Location British Columbia, Canada Amount and Source of CO 2 Tons Approximately 1.2 million tons of CO 2 per year Source Fort Nelson natural gas-processing plant Spectra Energy Natural Resources Canada Field Test Partners (Primary Sponsors) British Columbia Ministry of Energy, Mines, and Petroleum Resources

58

Bright Green Spot: Fort Worth Library | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bright Green Spot: Fort Worth Library Bright Green Spot: Fort Worth Library Bright Green Spot: Fort Worth Library September 30, 2010 - 4:07pm Addthis Lindsay Gsell Fort Worth's Central Library is seeing tremendous energy savings by cutting down consumption. Using an Energy Efficiency and Conservation Block Grant from the Recovery Act, the city was able to have the building retrofitted and install a building management system. The system allows library staff to control the indoor climate of the library from one location to reduce operating costs of the facility. Addthis Related Articles Captured data from the monitoring system at the public library shows that energy usage was highest at 10:30a.m., a time when a number of patrons in the library would be using computers and lighting. | Photo courtesy of Texas Institute for Sustainable Technology Research

59

Update On Geothermal Exploration At Fort Bidwell, Surprise Valley  

Open Energy Info (EERE)

Geothermal Exploration At Fort Bidwell, Surprise Valley Geothermal Exploration At Fort Bidwell, Surprise Valley California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Details Activities (1) Areas (1) Regions (0) Abstract: A fourth exploration well within Fort Bidwell Indian Community (FBIC) lands has been successfully drilled to a total depth of 4,670 feet. Mud return temperatures and cuttings analysis are consistent with the hydrothermal model on which the well location was based. Wireline surveys have encountered an obstruction just below the casing shoe, and further evaluation of this well and resource awaits clean-out and testing activities. Author(s): Joe LaFleur, Anna Carter, Karen Moore, Ben Barker, Paul

60

Wayne J. Shotts, 1990 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wayne J. Shotts, 1990 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life...

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Operational Implementation of the MARSSIM Process at the Wayne Interim Storage Site  

DOE Green Energy (OSTI)

This paper describes the methodologies behind the operational implementation of the Multi Agency Radiation Site Survey and Investigation Manual (MARSSIM) process at the Wayne Interim Storage Site (WISS). The United States Army Corps of Engineers (USACE) and Environmental Chemical Corporation (ECC) have implemented the MARSSIM process using various surveys producing raw data. The final remedial status of a survey unit is derived through data reduction, while maintaining a high degree of efficiency in the construction aspects of the remedial action. Data reduction of field measurements is accomplished by merging the data outputs of a Digital Global Positioning System, an exposure rate meter, and laboratory analyses to produce maps which present exposure rates, elevations, survey unit boundaries, direct measurement locations, and sampling locations on a single map. The map serves as a data-posting plot and allows the project team to easily judge the survey unit's remedial status. The operational implementation of the MARSSIM process has been successful in determining the eligibility of survey units for final status surveys at the WISS and also in demonstrating final status radiological and chemical conditions while maintaining an efficient remedial action effort.

Hays, D. C. Jr.; Trujillo, P. A. IV.; Zoller, S. G.

2002-02-27T23:59:59.000Z

62

Fort Carson Wind Resource Assessment  

DOE Green Energy (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

63

City of Fort Collins, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Fort Collins City of Place Fort Collins, Colorado Utility Id 6604 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. City of Fort Collins Utilities Smart Grid Project was awarded $18,101,263 Recovery Act Funding with a total project value of $36,202,527. Utility Rate Schedules Grid-background.png GENERAL SERVICE Single Phase 200 AMP Service Commercial

64

FORT UNION DEEP  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

Lyle A. Johnson Jr.

2002-09-01T23:59:59.000Z

65

FORT UNION DEEP  

Science Conference Proceedings (OSTI)

Coalbed methane (CBM) is currently the hottest area of energy development in the Rocky Mountain area. The Powder River Basin (PRB) is the largest CBM area in Wyoming and has attracted the majority of the attention because of its high permeability and relatively shallow depth. Other Wyoming coal regions are also being targeted for development, but most of these areas have lower permeability and deeper coal seams. This project consists of the development of a CBM stimulation system for deep coal resources and involves three work areas: (1) Well Placement, (2) Well Stimulation, and (3) Production Monitoring and Evaluation. The focus of this project is the Washakie Basin. Timberline Energy, Inc., the cosponsor, has a project area in southern Carbon County, Wyoming, and northern Moffat County, Colorado. The target coal is found near the top of the lower Fort Union formation. The well for this project, Evans No.1, was drilled to a depth of 2,700 ft. Three coal seams were encountered with sandstone and some interbedded shale between seams. Well logs indicated that the coal seams and the sandstone contained gas. For the testing, the upper seam at 2,000 ft was selected. The well, drilled and completed for this project, produced very little water and only occasional burps of methane. To enhance the well, a mild severity fracture was conducted to fracture the coal seam and not the adjacent sandstone. Fracturing data indicated a fracture half-length of 34 ft, a coal permeability of 0.2226 md, and permeability of 15.3 md. Following fracturing, the gas production rate stabilized at 10 Mscf/day within water production of 18 bpd. The Western Research Institute (WRI) CBM model was used to design a 14-day stimulation cycle followed by a 30-day production period. A maximum injection pressure of 1,200 psig to remain well below the fracture pressure was selected. Model predictions were 20 Mscf/day of air injection for 14 days, a one-day shut-in, then flowback. The predicted flowback was a four-fold increase over the prestimulation rate with production essentially returning to prestimulation rates after 30 days. The physical stimulation was conducted over a 14-day period. Problems with the stimulation injection resulted in a coal bed fire that was quickly quenched when production was resumed. The poststimulation, stabilized production was three to four times the prestimulation rate. The methane content was approximately 45% after one day and increased to 65% at the end of 30 days. The gas production rate was still two and one-half times the prestimulation rate at the end of the 30-day test period. The field results were a good match to the numerical simulator predictions. The physical stimulation did increase the production, but did not produce a commercial rate.

Lyle A. Johnson Jr.

2002-03-01T23:59:59.000Z

66

Fort Valley Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Utility Comm Utility Comm Jump to: navigation, search Name Fort Valley Utility Comm Place Georgia Utility Id 6617 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL: #20 Commercial INDUSTRIAL LARGE POWER: #26/28 Industrial INSTITUTIONAL: #14 Commercial Industrial Small Power Industrial RESIDENTIAL: #10 Residential SMALL COMMERCIAL: #22 Commercial Average Rates Residential: $0.0787/kWh Commercial: $0.1030/kWh Industrial: $0.0772/kWh References

67

Fort Pierce Utilities Auth | Open Energy Information  

Open Energy Info (EERE)

Utilities Auth Utilities Auth Jump to: navigation, search Name Fort Pierce Utilities Auth Place Florida Utility Id 6616 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes ISO Other Yes Operates Generating Plant Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Commercial Commercial General Service High Load Factor Industrial General Service Large Demand Industrial Non-Demand Commercial Single Phase Commercial Non-Demand Commercial Three Phase Commercial Residential Residential Average Rates Residential: $0.1440/kWh

68

Fort Sill Tribal Energy Plan  

SciTech Connect

The Fort Sill Apache Tribe of Oklahoma has concluded an energy project funded through the First Steps Toward Developing Renewable Energy & Energy Efficiency program provided by the Department of Energy. The intent of the project was to include the establishment of a tribal Energy Office, an energy audit of tribal facilities, and a Strategic Energy Plan.

Shamieka Ross

2006-06-26T23:59:59.000Z

69

Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Cove Fort Area - Liquid (Combs 2006) Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Controlled Source Audio MT Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Controlled_Source_Audio_MT_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598122"

70

Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) | Open  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) Direct-Current Resistivity At Cove Fort Area - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598123

71

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Direct-Current Resistivity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Vapor_(Warpinski,_Et_Al.,_2004)&oldid=598134"

72

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al.,  

Open Energy Info (EERE)

Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., Direct-Current Resistivity At Cove Fort Area - Liquid (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Cove_Fort_Area_-_Liquid_(Warpinski,_Et_Al.,_2004)&oldid=598125" Categories: Exploration Activities

73

Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Warpinski, Et Al., 2004) Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598118" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

74

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

75

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

76

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598130" Categories: Exploration Activities DOE Funded Activities

77

Tunability of electron spin coherence in IIIV quantum wells Wayne H. Lau and Michael E. Flattea)  

E-Print Network (OSTI)

Tunability of electron spin coherence in III­V quantum wells Wayne H. Lau and Michael E. Flatte, Iowa 52242 We have calculated both T1 and T2 for 110 -oriented GaAs/AlGaAs quantum wells near room temperature. The altered symmetry of 110 -oriented quantum wells leads to an increase in calculated spin

Flatte, Michael E.

78

Performance of the ECMWF Model in Predicting the Movement of Typhoon Wayne (1986)  

Science Conference Proceedings (OSTI)

Typhoon Wayne (1986) was one of the most unusual typhoons over recorded over the western North Pacific. During its life span of over 20 days, it made four directional reversals, all of which took place over the northern part of the South China ...

Johnny C. L. Chang; Hilda Lam

1989-06-01T23:59:59.000Z

79

Meents, Wayne F. Analysis of natural gas in Illinois. -Champaign, IIl.  

E-Print Network (OSTI)

(601, gas seeps (38), landfill vents (Id), and water springs (Id). Several methods were used#12;Meents, Wayne F. Analysis of natural gas in Illinois. - Champaign, IIl. : Illinois State Geological Survey, 1981. 64 p. : ill., tables ;28 cm. - (Illinois petroleum ; 122) 1. Gas, Natural

80

Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) | Open Energy  

Open Energy Info (EERE)

Warpinski, Et Al., 2002) Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Et Al., 2002) Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a

82

Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

83

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Vapor (Warpinski, Et Al., 2002) Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. References N. R. Warpinski, A. R. Sattlerl, D. A. Sanchez (2002) Geothermal Resource Exploration And Definition Project

84

Anthony Wayne: The History and Archaeology of an Early Great Lakes Steamboat  

E-Print Network (OSTI)

The Great Lakes side-wheel steamboat Anthony Wayne was built in 1837 at Perrysburg, OH and participated in lakes shipping during a time when such vessels were experiencing their heyday. Designed as a passenger and cargo carrier, the steamer spent 13 years transporting goods and people throughout the Upper Lakes until succumbing to a boiler explosion while headed to Buffalo on 28 April 1850. The remains of Anthony Wayne were discovered in 2006 and two years later a collaborative project was begun for the purposes of documenting and assessing the present day condition of the wreck. Anthony Wayne is the oldest steamboat wreck on the Great Lakes to be studied by archaeologists and represents an important piece of maritime heritage that can aid researchers in understanding architectural and machinery specifics that are unknown to us today. This thesis presents the results of an archaeological and archival investigation of Anthony Wayne. Information pertaining to the discovery and significance of the vessel are presented, followed by descriptions of Perrysburg and its shipping industry, the steamer's owners, and how the vessel was built. The operational history of Anthony Wayne is then outlined chronologically, including ports of call, cargoes, masters, and incidents the steamer experienced. Details of the explosion and the aftermath of the sinking are then discussed, followed by a brief summary of other Great Lakes steamboat catastrophes from 1850 and why boilers explode. Focus then shifts to the two-year archaeological investigation, including project objectives, methodology, and findings. The construction specifics of the steamboat's hull, drive system, and associated artifacts are then presented, followed by post-project analysis and conclusions. A catalog of Great Lakes steam vessels, vessel enrollment documentation, the coroner's inquest following the disaster, and the initial dive report from the discoverers are furnished as appendices.

Krueger, Bradley Alan

2012-05-01T23:59:59.000Z

85

Direct-Current Resistivity Survey At Cove Fort Area - Liquid (Combs 2006) |  

Open Energy Info (EERE)

- Liquid (Combs 2006) - Liquid (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Combs 2006) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes "SP, dipole-dipole resistivity, CSAMT; sufficient electrical data are available. Reservoir model?" References Jim Combs (1 January 2006) Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_-_Liquid_(Combs_2006)&oldid=598127"

86

Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) | Open  

Open Energy Info (EERE)

Nash, Et Al., 2002) Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And

87

Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al.,  

Open Energy Info (EERE)

Nash, Et Al., Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area (Nash, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale, Utah thermal anomaly, in relation to geology References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management

88

City of Fort Morgan, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Fort Morgan Fort Morgan Place Colorado Utility Id 6610 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL AREA LIGHTING (FLAT RATE) Lighting HIGHWAY FOG LIGHTING (FLAT RATE) Lighting INDUSTRIAL TRANSMISSION LEVEL Industrial INTERRUPTIBLE LOAD MANAGEMENT SERVICE Industrial IRRIGATION Commercial LARGE COMMERCIAL Commercial MUNICIPAL Commercial RESIDENTIAL DEMAND METERED Residential RESIDENTIAL GENERAL Residential RESIDENTIAL LIGHTING (FLAT RATE) Lighting SMALL COMMERCIAL DEMAND METERED Commercial

89

Boralex Fort Fairfield Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Boralex Fort Fairfield Biomass Facility Facility Boralex Fort Fairfield Sector Biomass Location Aroostook County, Maine Coordinates 46.819941°, -68.4766064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.819941,"lon":-68.4766064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Facility Fort Boise Veteran's Hospital Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

91

Fort Belknap Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Belknap Electric Coop Inc Belknap Electric Coop Inc Jump to: navigation, search Name Fort Belknap Electric Coop Inc Place Texas Utility Id 6611 Utility Location Yes Ownership C NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1090/kWh Commercial: $0.1090/kWh Industrial: $0.0807/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Fort_Belknap_Electric_Coop_Inc&oldid=410715

92

City of Fort Meade, Florida (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Meade, Florida (Utility Company) Meade, Florida (Utility Company) Jump to: navigation, search Name City of Fort Meade Place Florida Utility Id 6609 Utility Location Yes Ownership M NERC Location FRCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial, Demand Commercial Commercial, Non-Demand Commercial Residential, Inside City Residential Residential, Outside City Residential Average Rates Residential: $0.1550/kWh Commercial: $0.1570/kWh Industrial: $0.1540/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Fort_Meade,_Florida_(Utility_Company)&oldid=409610

93

"Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton  

NLE Websites -- All DOE Office Websites (Extended Search)

November 28, 2012, 4:15pm November 28, 2012, 4:15pm MBG Auditorium "Progress in U.S. ITER Magnet Systems", Wayne Reiersen, Princeton University Mr. Wayne Reiersen Princeton University U.S. ITER is responsible for providing the ITER Central Solenoid (CS), nine lengths of Toroidal Field (TF) Coil conductor, and Insert Coils for assessing CS and TF conductor performance. The status of the ongoing design and fabrication efforts will be reviewed. The interesting hurdles that had to be negotiated, the lingering problems, and the lessons learned will be discussed. (At the presenter's request, no video or presentation materials are available for this lecture.) Contact Information Coordinator(s): Carol Ann Austin caustin@pppl.gov Host(s): Phil Heitzenroeder pheitzen@pppl.gov PPPL Entrance Procedures

94

Fort Pierce Utilities Authority - Solar Water Heating Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Pierce Utilities Authority - Solar Water Heating Rebate (Florida) Fort Pierce Utilities Authority - Solar Water Heating Rebate (Florida) < Back Eligibility Residential Savings...

95

NREL: Department of Defense Energy Programs - Fort Carson  

NLE Websites -- All DOE Office Websites (Extended Search)

Fort Carson NREL is helping Fort Carson, Colorado, meet its net zero energy, water, and waste by 2020 goal by conducting technology demonstrations and providing support for...

96

Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fort Bliss Area (DOE GTP)...

97

MHK Projects/Fort Adams | Open Energy Information  

Open Energy Info (EERE)

Fort Adams Fort Adams < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.0533,"lon":-91.5651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

98

U.S. Army Fort Carson Environmental Document  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF SUITABILITY TO LEASE FINDING OF SUITABILITY TO LEASE 3 Phases Energy Services Land Lease Us Army Installation Management Command Headquarters, United States Army Garrison, Fort Carson 1.0 PURPOSE The purpose of this Finding of Suitability to Lease (FOSL) is to document the environmental suitability of property at Fort Carson, Colorado, for leasing and construction of a 2 Megawatt (2 MW) solar photovoltaic (PV) plant consistent with Department of Defense (DOD) and Army policy. In addition, the FOSL identifies use restrictions as specified in the attached Environmental Protection Provisions necessary to protect human health or the environment and to prevent interference with existing and planned environmental restoration activities. 2.0 PROPERTY DESCRIPTIONS The property to be leased consists of approximately 18.1518 acres of land located inside a

99

U.S. Army Fort Carson Environmental Document  

NLE Websites -- All DOE Office Websites (Extended Search)

FINDING OF SUITABILITY TO LEASE FINDING OF SUITABILITY TO LEASE 3 Phases Energy Services Land Lease Us Army Installation Management Command Headquarters, United States Army Garrison, Fort Carson 1.0 PURPOSE The purpose of this Finding of Suitability to Lease (FOSL) is to document the environmental suitability of property at Fort Carson, Colorado, for leasing and construction of a 2 Megawatt (2 MW) solar photovoltaic (PV) plant consistent with Department of Defense (DOD) and Army policy. In addition, the FOSL identifies use restrictions as specified in the attached Environmental Protection Provisions necessary to protect human health or the environment and to prevent interference with existing and planned environmental restoration activities. 2.0 PROPERTY DESCRIPTIONS The property to be leased consists of approximately 18.1518 acres of land located inside a

100

Cedar Fort, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fort, Utah: Energy Resources Fort, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3271707°, -112.1043852° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3271707,"lon":-112.1043852,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Resistivity Log At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Log At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Resistivity_Log_At_Fort_Bliss_Area_(DOE_GTP)&oldid=689878" Categories: Exploration Activities

102

Ground Gravity Survey At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Toksoz, Et Al, 2010) Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

103

Static Temperature Survey At Fort Bliss Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Fort Bliss Area (Combs, Et Al., 1999) Fort Bliss Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Three principal types of data were obtained from this drilling project: core samples of the lithology penetrated by the holes, records of drilling behavior (such as water level in the hole, changes in rate of penetration etc.), and multiple temperature logs (both during and after drilling) in each well. A suite of geophysical logs (gamma ray, neutron, sonic, and resistivity) was also run after completion of drilling.

104

Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

105

DOE - Office of Legacy Management -- Reactor Site - Fort Belvoir - VA 0-02  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Site - Fort Belvoir - VA Reactor Site - Fort Belvoir - VA 0-02 FUSRAP Considered Sites Site: REACTOR SITE - FORT BELVOIR (VA.0-02 ) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Fort Belvoir , Virginia VA.0-02-1 Evaluation Year: 1987 VA.0-02-1 Site Operations: No evidence of AEC involvement with reactor operations. AEC conducted health and safety inspections of this site. Probably a licensed operation. VA.0-02-1 Site Disposition: Eliminated - Referred to DOD VA.0-02-1 Radioactive Materials Handled: Reactor fuel Primary Radioactive Materials Handled: Reactor Fuel Radiological Survey(s): Health and safety inspections VA.0-02-1 Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD VA.0-02-1

106

Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy  

Open Energy Info (EERE)

Cove Fort Area (Toksoz, Et Al, 2010) Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

107

Slim Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Fort Bliss Area (Combs, Et Al., 1999) Fort Bliss Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes When the U. S. Army was in the planning stages for a geothermal exploration program at Ft. Bliss, they approached the Geothermal Research Department for input on the structure of this progrm, this consultation led to a Work-for-Others (WFO) contract from the Army to Sandia for assistance on the exploratory holes. That assistance included consultation and dmection of drilling operations, numerous temperature logs during and after drilling, and project documentation. This report comprises a summary of

108

Gamma Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Fort Bliss Area (Combs, Et Al., 1999) Fort Bliss Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Gamma Log Activity Date Usefulness not indicated DOE-funding Unknown Notes Three principal types of data were obtained from this drilling project: core samples of the lithology penetrated by the holes, records of drilling behavior (such as water level in the hole, changes in rate of penetration etc.), and multiple temperature logs (both during and after drilling) in each well. A suite of geophysical logs (gamma ray, neutron, sonic, and resistivity) was also run after completion of drilling. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr.,

109

Wayne County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7.7763333° 7.7763333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.282369,"lon":-87.7763333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Wayne County, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0.5257823° 0.5257823° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.0388739,"lon":-90.5257823,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Wayne County, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -81.9534815° °, -81.9534815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7588598,"lon":-81.9534815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Wayne County, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7.973865° 7.973865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3565499,"lon":-77.973865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Wayne County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

88.7108964° 88.7108964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.7130601,"lon":-88.7108964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Wayne County, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -97.179026° °, -97.179026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2479453,"lon":-97.179026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Wayne County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

8.4016041° 8.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3899815,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Wayne County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

981754° 981754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.831882,"lon":-84.981754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Wayne County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4.8567932° 4.8567932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.7571907,"lon":-84.8567932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Wayne County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -81.909826° °, -81.909826° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5092107,"lon":-81.909826,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Wayne County, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

75.2479061° 75.2479061° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6738865,"lon":-75.2479061,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Wind Monitoring Report for Fort Wainwright's Donnelly Training Area  

DOE Green Energy (OSTI)

Using the wind data collected at a location in Fort Wainwrights Donnelly Training Area (DTA) near the Cold Regions Test Center (CRTC) test track, Pacific Northwest National Laboratory (PNNL) estimated the gross and net energy productions that proposed turbine models would have produced exposed to the wind resource measured at the meteorological tower (met tower) location during the year of measurement. Calculations are based on the proposed turbine models standard atmospheric conditions power curves, the annual average wind speeds, wind shear estimates, and standard industry assumptions.

Orrell, Alice C.; Dixon, Douglas R.

2011-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wayne, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

709046°, -77.1055262° 709046°, -77.1055262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4709046,"lon":-77.1055262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Wayne County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1°, -82.4752757° 1°, -82.4752757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1598501,"lon":-82.4752757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Wayne County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

677356°, -93.3388917° 677356°, -93.3388917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6677356,"lon":-93.3388917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Wayne County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

024°, -77.010385° 024°, -77.010385° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2020024,"lon":-77.010385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Wayne County, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

024°, -110.8076084° 024°, -110.8076084° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3337024,"lon":-110.8076084,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a non-equilibrated maximum temperature probably in the range of 157degrees C and a very complicated geologic structure.

127

U.S. Army Fort Carson Photovoltaics Project Lease  

Energy.gov (U.S. Department of Energy (DOE))

Document describes the project lease issued for the Fort Carson photovoltaic (PV) power purchase agreement (PPA).

128

Renewable Energy Opportunities at Fort Hood, Texas  

Science Conference Proceedings (OSTI)

This report presents the results of Pacific Northwest National Laboratory's (PNNL) follow-on renewable energy (RE) assessment of Fort Hood. Fort Hood receives many solicitations from renewable energy vendors who are interested in doing projects on site. Based on specific requests from Fort Hood staff so they can better understand these proposals, and the results of PNNL's 2008 RE assessment of Fort Hood, the following resources were examined in this assessment: (1) Municipal solid waste (MSW) for waste-to-energy (WTE); (2) Wind; (3) Landfill gas; (4) Solar photovoltaics (PV); and (5) Shale gas. This report also examines the regulatory issues, development options, and environmental impacts for the promising RE resources, and includes a review of the RE market in Texas.

Solana, Amy E.; Warwick, William M.; Orrell, Alice C.; Russo, Bryan J.; Parker, Kyle R.; Weimar, Mark R.; Horner, Jacob A.; Manning, Anathea

2011-11-14T23:59:59.000Z

129

City of Fort Worth - Executive Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

program eligibility Advocate for and develop commercial PACE program Support On program 1 INTRODUCTION Fort Worth is a rapidly growing city of over 700,000 people. The City's...

130

Fort Hood solar energy project  

DOE Green Energy (OSTI)

During the period April 1975 to March 1978, the American Technological University (ATU) of Killeen, Texas, was awarded several follow-on contracts by the Division of Solar Energy (DSE), Energy Research and Development Administration (ERDA), which subsequently became the Division of Solar Technology (DST), Department of Energy (DOE). The contracts were to design a solar total energy system for use at Fort Hood, Texas. A review encompassing the period of the project from January 1975 to March 1978, was conducted by the Office of Inspector General (IG), DOE. The review examined both the management of the project by ATU and ERDA personnel and the award and administration by ERDA of the contracts to ATU for support of the project. The IG review found that: (1) there was a lack of continuity in the management of the project by both ATU and ERDA; (2) ERDA failed to maintain control of the project and failed to issue specific project direction to ATU; (3) ERDA failed to follow existing procurement regulations for the review and acceptance of unsolicited proposals from ATU; (4) the ERDA Headquarters program Manager and the Contract Administrator for the conceptual design phase of the project had failed to ensure that all the tasks which had been funded were performed by ATU; and (5) the decision by the Director, ERDA/DSE, to award successive contracts to ATU was questionable in view of ATU's performance on the project.

Not Available

1980-07-30T23:59:59.000Z

131

City of Fort Collins Utilities Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Collins Utilities Smart Grid Project Collins Utilities Smart Grid Project Jump to: navigation, search Project Lead City of Fort Collins Utilities Country United States Headquarters Location Fort Collins, Colorado Recovery Act Funding $18,101,263.00 Total Project Value $36,202,527.00 Coverage Area Coverage Map: City of Fort Collins Utilities Smart Grid Project Coordinates 40.5852602°, -105.084423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

132

Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Science Conference Proceedings (OSTI)

This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure; radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.

Not Available

1993-05-01T23:59:59.000Z

133

Limited energy studies, Fort Rucker, Alabama  

SciTech Connect

The objective of this project was to evaluate the technical and economic feasibility of building and operating a liquified petroleum gas (LPG) storage facility at Fort Rucker. The primary heating fuel at Fort Rucker is natural gas; it is used in central steam plants and in central forced-air furnaces for family housing. Natural gas is purchased from the Southeast Alabama Gas District at there lowest rate. However, Fort Rucker also pays a natural gas demand charge based on the amount of natural gas used during curtailment. During a curtailment period, the natural gas demand is intended to be reduced as much as possible by switching the central steam plants to oil; but the family housing area continues to use nature gas. storage system would provide the capability of injecting a mixture of air and propane into the natural as distribution system during curtailment to reduce natural gas demand. This would result in lower gas bills throughout the year.

NONE

1993-03-01T23:59:59.000Z

134

The Department of Geology at Wayne State University consists of five full-time faculty and five  

E-Print Network (OSTI)

Geology (Site Assessment, Soils and Soil Pollution, Environmental Isotope Geochemistry, EnvironmentalThe Department of Geology at Wayne State University consists of five full-time faculty and five part-time instructors. Faculty include: Drs. Mark Baskaran (Isotope Geochemistry), Sarah Brownlee

Cinabro, David

135

Renewable Energy Opportunities at Fort Sill, Oklahoma  

DOE Green Energy (OSTI)

This document provides an overview of renewable resource potential at Fort Sill, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Sill took place on June 10, 2010.

Boyd, Brian K.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

2011-03-31T23:59:59.000Z

136

Core Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Core Holes At Fort Bliss Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Core Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes Drilling for the four holes followed the same general pattern: 1) set a conductor casing to a depth of 30-50', 2) drill - 6" hole through mostly sand/clay sedentary formations to 500-600', 3) set 4-1/2" surface casing at that depth 4) core HQ (3.89" dia.) mostly through limestone/dolornite or

137

Resistivity Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Log At Fort Bliss Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness not indicated DOE-funding Unknown Notes Three principal types of data were obtained from this drilling project: core samples of the lithology penetrated by the holes, records of drilling behavior (such as water level in the hole, changes in rate of penetration

138

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

(Warpinski, Et Al., (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Cove_Fort_Area_(Warpinski,_Et_Al.,_2004)&oldid=598126" Categories: Exploration Activities DOE Funded Activities What links here

139

Reflection Survey At Cove Fort Area - Liquid (Toksoz, Et Al, 2010) | Open  

Open Energy Info (EERE)

(Toksoz, Et Al, 2010) (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Reflection Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion provides a detailed model of the Cove Fort geothermal region.

140

Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft PowerPoint - Wayne_Shirley_Decoupling_Mechanics_and_Issues.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decoupling: Decoupling: Mechanics and Issues Presentation to the New Mexico Public Regulation Commission Energy Efficiency Incentives Workshop July 16-17, 2008 The Regulatory Assistance Project Presented by Wayne Shirley The Regulatory Assistance Project 110 B Water St. Hallowell, Maine USA 04347 Tel: 207.623.8393 50 State Street, Suite 3 Montpelier, Vermont USA 05602 Tel: 802.223.8199 27 Penny Lane Cedar Crest, New Mexico USA 87008 Tel: 505.286.4486 Fax: 207.623.8369 Fax: 802.223.8172 E-Fax: 773.347.1512 Website: http://www.raponline.org Context for Decoupling All forms of regulation are incentive regulation Utilities can be expected to respond to the incentives they are given - Direct relationship to profitability - Management pay structure If incentives are poorly designed, expect

142

Energy Engineering Analysis Program (EEAP), Fort Bliss headquarters building, lighting retrofit, Fort Bliss, El Paso, Texas  

SciTech Connect

The purpose of this study is to analyze the use of high efficiency fluorescent lighting with energy efficient lamps and electronic ballast for the Headquarters Building (Bldg. number 2) at Fort Bliss.

1993-02-01T23:59:59.000Z

143

Fort Stewart integrated resource assessment. Volume 3: Resource assessment  

SciTech Connect

The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

1993-10-01T23:59:59.000Z

144

Geology of the Cove Fort-Sulphurdale KGRA  

DOE Green Energy (OSTI)

The Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA) is located on the northwestern margin of the Marysvale volcanic field in southwestern Utah. The geology of the KGRA is dominated by lava flows and ash-flow tuffs of late Oligocene to mid-Miocene age that were deposited on faulted sedimentary rocks of Paleozoic to Mesozoic age. The geothermal system of the Cove Fort-Sulphurdale KGRA is structurally controlled by normal faults. High-angle faults control fluid flow within the geothermal reservoir, while the gravitational glide blocks provide an impermeable cap for the geothermal system in the central part of the field. Surficial activity occurring to the north and south of the glide blocks is characterized by the evolution of hydrogen sulfide and deposition of native sulphur. Intense acid alteration of the aluvium, resulting from downward migration of sulphuric acid, has left porous siliceous residues that retain many of the original sedimentary structures. Detailed logs of Union Oil Company drill holes Forminco No. 1, Utah State 42-7, and Utah State 31-33 are included.

Moore, J.N.; Samberg, S.M.

1979-05-01T23:59:59.000Z

145

Solar Energy Development Assistance for Fort Hunter Liggett  

DOE Green Energy (OSTI)

Pacific Northwest National Laboratory provided assistance to Fort Hunter Liggett to determine the opportunities for solar energy development on the site. Increasing use of renewable energy is mandated by several executive orders and legislation. Fort Hunter Liggett has many attributes that enhance its suitability for renewable energy development. First, the site is located south of San Francisco in a remote portion of the costal foothills. Brush and forest fires are frequent and often result in power outages, which subsequently impacts the sites training mission. In addition, the sites blended electric rate during fiscal year (FY) 2010 was high at 12 /kWh. Lastly, the solar resource is moderately high; the site receives nearly 5.7 kWh/m2/day on a south facing, latitude-tilted surface. In light of these factors, the site is a clear candidate for a solar photovoltaic array. Prior to Pacific Northwest National Laboratorys (PNNL) involvement, the site secured funding for a 1 megawatt (MW) photovoltaic (PV) array that will also provide shading for site vehicles. To best implement this project, PNNL conducted a site visit and was tasked with providing the site technical guidance and support regarding module selection, array siting, and other ancillary issues.

Russo, Bryan J.; Hoffman, Michael G.; Chvala, William D.

2011-03-30T23:59:59.000Z

146

Fort Drum integrated resource assessment. Volume 3, Resource assessment  

Science Conference Proceedings (OSTI)

The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

1992-12-01T23:59:59.000Z

147

Fort Huachuca Water Awareness Program: Best Management Practice Case Study #2: Information and Education Programs (Revised), Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Army Fort Huachuca contracted the University of Army Fort Huachuca contracted the University of Arizona Cooperative Extension to provide comprehensive water and energy conservation awareness programs under its Water Wise and Energy Smart (WWES) program. Ongoing since 1998, this program provides outreach, education, and services to approximately 14,000 Fort Huachuca military and civilian employees and their families. Fort Huachuca is home of the U.S. Army Intelligence Center, Network Enterprise Technology Command/9th Army Signal Command, Joint Interoperability Test Command, and the Electronic Proving Ground. The military base encompasses approximately 78,000 acres and just over eight million square feet of real property. Fort Huachuca is located at the base of the Huachuca Moun- tains and adjacent to the City of Sierra Vista near Tucson,

148

Fort Huachuca Water Awareness Program: Best Management Practice Case Study #2: Information and Education Programs (Revised), Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Army Fort Huachuca contracted the University of Army Fort Huachuca contracted the University of Arizona Cooperative Extension to provide comprehensive water and energy conservation awareness programs under its Water Wise and Energy Smart (WWES) program. Ongoing since 1998, this program provides outreach, education, and services to approximately 14,000 Fort Huachuca military and civilian employees and their families. Fort Huachuca is home of the U.S. Army Intelligence Center, Network Enterprise Technology Command/9th Army Signal Command, Joint Interoperability Test Command, and the Electronic Proving Ground. The military base encompasses approximately 78,000 acres and just over eight million square feet of real property. Fort Huachuca is located at the base of the Huachuca Moun- tains and adjacent to the City of Sierra Vista near Tucson,

149

Fort Benning Indianhead Townhome Renovations  

Science Conference Proceedings (OSTI)

The NAHB Research Center partnered with production builder Winchester/Camberley Homes to build a DOE Building America New Construction Test House (NCTH). This single family, detached house, located in the mixed-humid climate zone of Silver Spring, MD, was completed in June 2011. The primary goal for this house was to improve energy efficiency by 30% over the Building America B10 benchmark by developing and implementing an optimized energy solutions package design that could be cost effectively and reliably constructed on a production basis using quality management practices. The intent of this report is to outline the features of this house, discuss the implementation of the energy efficient design, and report on short-term testing results. During the interactive design process of this project, numerous iterations of the framing, air sealing, insulation, and space conditioning systems were evaluated for energy performance, cost, and practical implementation. The final design featured numerous advanced framing techniques, high levels of insulation, and the HVAC system entirely within conditioned space. Short-term testing confirmed a very tight thermal envelope and efficient and effective heating and cooling. In addition, relevant heating, cooling, humidity, energy, and wall cavity moisture data will be collected and presented in a future long-term report.

Stephenson, R.; Roberts, S.; Butler, T.; Kim, E.

2012-12-01T23:59:59.000Z

150

Renewable Energy Opportunities at Fort Hood, Texas  

DOE Green Energy (OSTI)

The document provides an overview of renewable resource potential at Fort Hood based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 DoD Renewables Assessment. This effort focuses on grid-connected generation of electricity from renewable energy sources and also ground source heat pumps for heating and cooling buildings, as directed by IMCOM.

Chvala, William D.; Warwick, William M.; Dixon, Douglas R.; Solana, Amy E.; Weimar, Mark R.; States, Jennifer C.; Reilly, Raymond W.

2008-06-30T23:59:59.000Z

151

Fort Worth, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Worth, Texas: Energy Resources Worth, Texas: Energy Resources (Redirected from Fort Worth, TX) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.725409°, -97.3208496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.725409,"lon":-97.3208496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

fort hood range revegetation Located on the northern edge of the Texas Hill Country, Fort Hood Military  

E-Print Network (OSTI)

training and maneuver area for two armored divisions for more than 60 years. These training activities have

153

City of Fort Collins Comment on Information Collection Extension, October  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Fort Collins Comment on Information Collection Extension, City of Fort Collins Comment on Information Collection Extension, October 2011 City of Fort Collins Comment on Information Collection Extension, October 2011 The City of Fort Collins provided comments to the Department of Energy's notice of intent to seek approval of an extension of Information Collection 1910-5149 for Recovery Act Smart Grid Investment Grant reporting for four years, which was published in the Federal Register August 10, 2011, Vol. 76, No. 154, page 49460. Fort Collins finds the current collection period burdensome and recommends quarterly reporting. View information on Recovery Act Smart Grid Investment Grants. View the Federal Register Notice. City of Fort Collins FRN Information Collection comments.pdf More Documents & Publications

154

Fort Boise Veteran's Hospital District Heating Low Temperature...  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

155

Fort Collins Utilities - Residential and Small Commercial Appliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RefrigeratorFreezer Recycling: 35, plus free pick-up Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers....

156

NETL: News Release - Federal Environmental Laboratory at Fort...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Laboratory at Fort Meade to be Powered by Revolutionary Fuel Cell Power Plant Richardson, Browner Announce Government "Showcase" Project WASHINGTON, DC - The...

157

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area (Warpinski, Et Al., 2004) Exploration Activity Details...

158

Geographic Information System At Cove Fort Area - Vapor (Nash...  

Open Energy Info (EERE)

Unknown Notes An example, shown in Figure 1, shows results from the classification of big sagebrush (Artimesia tridentata) spectra, acquired over the Cove Fort-Sulphurdale,...

159

Fort Loramie, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Ohio. It falls under Ohio's 4th congressional district.12 Registered Energy Companies in Fort Loramie, Ohio LP Hoying, LLC References US Census Bureau...

160

U.S. Army Fort Carson Photovoltaics Project Lease  

NLE Websites -- All DOE Office Websites (Extended Search)

with Fort Carson's hazardous waste. g. If it is determined by the Environmental Baseline Survey andlor NEPA process that there is the potential for hazardous waste, fuel, and...

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pressure Temperature Log At Fort Bliss Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Edit History Facebook icon Twitter icon Pressure Temperature Log At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

162

Fort Thompson, South Dakota: Energy Resources | Open Energy Informatio...  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Fort Thompson, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

163

Fort Campbell, Kentucky A Forester position is available with the Center for Environmental Management of Military Lands. This position is  

E-Print Network (OSTI)

and Forest Management Plan. · Integrate military training support with habitat management, sustainable timber · Experience in the design and execution of forest inventories · Experience in forest inventory data analysis for Environmental Management of Military Lands. This position is located at Fort Campbell, Kentucky. ORGANIZATION

164

School of Social Work Fort Collins, Colorado 80523-1586  

E-Print Network (OSTI)

environment and graduating social work practitioners who excel in their professional lives. Students-time; or taking your courses in Thornton, Colorado Springs, Fort Collins or on-line, the School of Social WorkSchool of Social Work Fort Collins, Colorado 80523-1586 Phone (970) 491-6612 Fax (970) 491

Stephens, Graeme L.

165

2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

2-M Probe At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Fort Bliss Area (DOE GTP) Exploration...

166

Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density Log at Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fort Bliss Area (DOE GTP) Exploration...

167

Lincoln-Fort Rice, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lincoln-Fort Rice, North Dakota: Energy Resources Lincoln-Fort Rice, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.7374001°, -100.7514845° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7374001,"lon":-100.7514845,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Neutron Log At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Area (Combs, Et Al., 1999) Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Neutron Log At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Neutron Log Activity Date Usefulness not indicated DOE-funding Unknown Notes Three principal types of data were obtained from this drilling project: core samples of the lithology penetrated by the holes, records of drilling behavior (such as water level in the hole, changes in rate of penetration etc.), and multiple temperature logs (both during and after drilling) in each well. A suite of geophysical logs (gamma ray, neutron, sonic, and resistivity) was also run after completion of drilling. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr.,

169

Core Analysis At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fort Bliss Area (Combs, Et Al., 1999) Exploration Activity Details Location Fort Bliss Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Three principal types of data were obtained from this drilling project: core samples of the lithology penetrated by the holes, records of drilling behavior (such as water level in the hole, changes in rate of penetration etc.), and multiple temperature logs (both during and after drilling) in each well. A suite of geophysical logs (gamma ray, neutron, sonic, and resistivity) was also run tier completion of drilling. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr.,

170

Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) | Open  

Open Energy Info (EERE)

Bidwell Area (Lafleur, Et Al., 2010) Bidwell Area (Lafleur, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) Exploration Activity Details Location Fort Bidwell Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Four wells have been successfully drilled into this resource since the early 1980s using a combination of funds provided by the California Energy Commission (CEC) and the United State Department of Energy (USDOE). The first three wells, FB-1, -2 and -3 have been discussed in a previous paper (Barker et al., 2005). The current status of the FBIC project to evaluate the potential geothermal resource under the reservation is that a deep

171

Master environmental plan for Fort Devens, Massachusetts  

SciTech Connect

Argonne National Laboratory has prepared a master environmental plan (MEP) for Fort Devens, Massachusetts, for the US Army Toxic and Hazardous Materials Agency. The MEP is an assessment based on environmental laws and regulations of both the federal government and the Commonwealth of Massachusetts. The MEP assess the physical and environmental status of 58 potential hazardous waste sites, including 54 study areas (SAs) that pose a potential for releasing contamination into the environment and 4 areas of concern (AOCs) that are known to have substantial contamination. For each SA or AOC, this MEP describes the known history and environment, identifies additional data needs, and proposes possible response actions. Most recommended response actions consist of environmental sampling and monitoring and other characterization studies. 74 refs., 63 figs., 50 tabs.

Biang, C.A.; Peters, R.W.; Pearl, R.H.; Tsai, S.Y. (Argonne National Lab., IL (United States). Energy Systems Div.)

1991-11-01T23:59:59.000Z

172

Operational testing highlights of Fort St. Vrain  

SciTech Connect

The Fort St. Vrain program has progressed through construction, preoperational testing, fuel loading, initial criticality, and operational testing at power levels up to 2 percent related power. To date, all tests necessary before the rise to full power have been completed, and the rise-to- power program is expected to be resumed again in late 1975. Major plant systems, including the prestressed concrete reactor vessel and circulators, have demonstrated adequate performance. Extensive tests on the reactor core at zero power and up to 2 percent power have demonstrated the accuracy in the design predictions of such core characteristics as critical rod position, control system worths, neutron flux distributions, and temperature coefficients. Gaseous fission product release measurements to date have confirmed the extensive analytical estimates. 6 references (auth)

Cadwell, J.J.; McEachern, D.W.; Read, J.W.; Simon, W.A.; Walker, R.F.

1975-09-29T23:59:59.000Z

173

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

SciTech Connect

The U.S. Army's Fort Carson installation was selected to serve as a prototype for net zero energy assessment and planning. NREL performed the comprehensive assessment to appraise the potential of Fort Carson to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations. This study is part of a larger cross-laboratory effort that also includes an assessment of renewable opportunities at seven other DoD Front Range installations, a microgrid design for Fort Carson critical loads and an assessment of regulatory and market-based barriers to a regional secure smart grid.

Anderson, K.; Markel, T.; Simpson, M.; Leahey, J.; Rockenbaugh, C.; Lisell, L.; Burman, K.; Singer, M.

2011-10-01T23:59:59.000Z

174

Fort Stewart integrated resource assessment. Volume 1, Executive summary  

SciTech Connect

The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the US Army US Forces Command (FORSCOM) Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 2, Baseline Detail, and Volume 3, Resource Assessment.

Larson, L.L.; Keller, J.M.

1993-10-01T23:59:59.000Z

175

Clean Cities: Dallas-Fort Worth Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dallas-Fort Worth Clean Cities Coalition Dallas-Fort Worth Clean Cities Coalition The Dallas-Fort Worth Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Dallas-Fort Worth Clean Cities coalition Contact Information Pamela Burns 817-704-2510 pburns@nctcog.org Coalition Website Clean Cities Coordinator Pamela Burns Photo of Pamela Burns Pamela Burns has been a co-coordinator of the Dallas-Ft. Worth Clean Cities coalition since 2007. She is also a communications coordinator with the North Central Texas Council of Governments, the Metropolitan Planning Organization (MPO) for the Dallas-Ft. Worth (DFW) area. The MPO serves the region by developing transportation plans and programs that address the transportation needs of the rapidly growing metropolitan area. Burns works

176

Fort Collins Utilities - Residential and Small Commercial Appliance Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Small Commercial Appliance and Small Commercial Appliance Rebate Program Fort Collins Utilities - Residential and Small Commercial Appliance Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Program Info Funding Source Fort Collins Utilities and the Governor's Energy Office State Colorado Program Type Utility Rebate Program Rebate Amount Clothes washer: $50 Dishwasher: $25 Refrigerator/Freezer Recycling: $35, plus free pick-up Fort Collins Utilities offers a number of appliance and recycling rebates to residential and small commercial customers. The appliance rebate program offers a $50 rebate for Energy Star rated clothes washers and $25 for Energy Star dishwashers. Applications for equipment rebates are available on the Fort Collins web site as well as at select local manufacturers and

177

Fort Pierce Utilities Authority - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Pierce Utilities Authority - Residential Energy Efficiency Fort Pierce Utilities Authority - Residential Energy Efficiency Rebate Program Fort Pierce Utilities Authority - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Maximum Rebate Insulation: $300 Room A/C Units: 2 per household All other equipment: 1 per customer account Program Info State Florida Program Type Utility Rebate Program Rebate Amount Room A/C Unit: $150 Insulation: $0.40/sq ft (NEW); $0.125/sq ft (ADDED) Central A/C System/Heat Pumps: $50 - $2,100; varies by size and efficiency Programmable Thermostat: $25 Clothes Washer: $50 Refrigerator: $50 Provider Fort Pierce Utilities Authority

178

Fort Collins Utilities - Residential On-Bill Financing Program Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins Utilities - Residential On-Bill Financing Program Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Heating & Cooling Heating Heat Pumps Water Heating Solar Maximum Rebate $15,000 Program Info State Colorado Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space heating systems, and

179

Federal Energy Management Program: Case Study - Fort Knox Strikes...  

NLE Websites -- All DOE Office Websites (Extended Search)

resource Send a link to Federal Energy Management Program: Case Study - Fort Knox Strikes Energy-Savings Gold in Partnership with Utility to someone by E-mail Share Federal Energy...

180

Four years of operations and results with FORTE  

DOE Green Energy (OSTI)

The FORTE (Fast Onboard Recording of Transient Events) satellite was launched on 29 August 1997 and has been in continuous operation since that time. FORTE was placed in a nearly circular, 825-km-altitude, 70 degrees inclination orbit by a Pegasus rocket funded by Air Force Space Test Program. The Department of Energy funded the FORTE satellite, which was designed and built at Los Alamos. FORTE's successful launch and engineered robustness were a result of several years of dedicated work by the joint Los Alamos National Laboratory/Sandia National Laboratory project team, led through mission definition, payload and satellite development, and launch by Dr. Stephen Knox. The project is now led by Dr. Abram Jacobson. FORTE carries a suite of instruments, an optical system and a rf system, for the study of lightning and anthropogenic signals. As a result of this effort, new understandings of lightning events have emerged as well as a more complete understanding of the relationship between optical and rf lightning events. This paper will provide an overview of the FORTE satellite and will discuss the on orbit performance of the subsystems.

Klingner, P. L. (Phillip L.); Carlson, L. D. (Leslie D.); Dingler, R. D. (Robert D.); Esch-Mosher, D. M. (Diana M.); Jacobson, A. R.; Roussel-Dupre, D. (Diane)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FOUR YEARS OF OPERATIONS AND RESULTS WITH FORTE  

DOE Green Energy (OSTI)

The FORTE (Fast Onboard Recording of Transient Events) satellite was launched on 29 August 1997 and has been in continuous operation since that time. FORTE was placed in a nearly circular, 825-km-altitude, 70 degrees inclination orbit by a Pegasus rocket funded by Air Force Space Test Program. The Department of Energy funded the FORTE satellite, which was designed and built at Los Alamos. FORTE's successful launch and engineered robustness were a result of several years of dedicated work by the joint Los Alamos National Laboratory/Sandia National Laboratory project team, led through mission definition, payload and satellite development, and launch by Dr. Stephen Knox. The project is now led by Dr. Abram Jacobson. FORTE carries a suite of instruments, an optical system and a rf system, for the study of lightning and anthropogenic signals. As a result of this effort, new understandings of lightning events have emerged as well as a more complete understanding of the relationship between optical and rf lightning events. This paper will provide an overview of the FORTE satellite and will discuss the on orbit performance of the subsystems.

D. ROUSSEL-DUPRE; P. KLINGNER; L. CARLSON; ET AL

2001-06-01T23:59:59.000Z

182

Microsoft PowerPoint - Wayne_Shirley_Overview_of_Incentives2008_08_22.ppt [Compatibility Mode]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Incentives Utility Incentives Presentation to the Kansas Corporation Commission E Effi i I i W k h Energy Efficiency Incentives Workshop August 26, 2008 Presented by The Regulatory Assistance Project Presented by Wayne Shirley The Regulatory Assistance Project 110 B Water St. Hallowell, Maine USA 04347 Tel: 207.623.8393 50 State Street, Suite 3 Montpelier, Vermont USA 05602 Tel: 802.223.8199 27 Penny Lane Cedar Crest, New Mexico USA 87008 Tel: 505.286.4486 Fax: 207.623.8369 Fax: 802.223.8172 E-Fax: 773.347.1512 Website: http://www.raponline.org About RAP RAP is a non-profit organization providing technical and educational assistance to government officials on energy and environmental issues. RAP Principals all have and environmental issues. RAP Principals all have extensive utility regulatory experience.

183

Continuous Commissioning of the Dallas/Fort Worth International Airport  

E-Print Network (OSTI)

The DFW International Airport is one of the largest and busiest airports in the world. Located in North Texas, squarely between the cities of Dallas and Fort Worth, the DFW Airport not only serves a huge population in the North Texas area for domestic flights but also is a major airport for international flights. The Energy and Transportation Management (ETM) Department, at the Airport, is responsible for reducing energy within their facilities, and they are very aggressive in energy management. In recent years they have renovated or replaced much of the equipment in their central utilities plant and added a huge 90,000 ton-hr (316.5 MWh) chilled water thermal storage system. The electric bills, for the accounts managed by ETM, was $29 million (20 million) in 2007. Although the ETM staff had initiated many energy efficiency measures, they felt that the energy consuming systems could be optimized to realize additional energy and cost savings. The Energy Systems Laboratory was hired to apply the Continuous Commissioning (CC) process at the airport. Five projects have been identified to date including: 1. An energy audit and assessment of Terminal B and a lighting demonstration pilot project. 2. CC of the Consolidated Rent-A-Car Center. 3. CC of the Airport Administration Building. 4. CC of the new International Terminal D (on-going). 5. CC of the Utilities Plant, Energy Plaza (on-going). This paper will focus on the completed projects: the Consolidated Rent-A-Car Center, the Airport Administration Building, and the major on-going projects, CC of Terminal D and Energy Plaza.

Yazdani, B.; Schroeder, F.; Kramer, L.; Baltazar, J. C.; Turner, W. D.; Wei, G.; Deng, S.; Henson, R.; Dennis, J. R.; T., R.

2008-10-01T23:59:59.000Z

184

Thunderstorm and Lightning Studies using the FORTE Optical Lightning System (FORTE/OLS)  

Science Conference Proceedings (OSTI)

Preliminary observations of simultaneous RF and optical emissions from lightning as seen by the FORTE spacecraft are presented. RF/optical pairs of waveforms are routinely collected both as individual lightning events and as sequences of events associated with cloud-to-ground (CG) and intra-cloud (IC) flashes. CG pulses can be distinguished from IC pulses based on the properties of the RF and optical waveforms, but mostly based on the associated RF spectrograms. The RF spectrograms are very similar to previous ground-based VHF observations of lightning and show signatures associated with return strokes, stepped and dart leaders, and attachment processes,. RF emissions are observed to precede the arrival of optical emissions at the satellite by a mean value of 280 microseconds. The dual phenomenology nature of these observations are discussed in terms of their ability to contribute to a satellite-based lightning monitoring mission.

Argo, P.; Franz, R.; Green, J.; Guillen, J.L.; Jacobson, A.R.; Kirkland, M.; Knox, S.; Spalding, R.; Suszcynsky, D.M.

1999-02-01T23:59:59.000Z

185

Central Energy System Modernization at Fort Jackson, South Carolina  

SciTech Connect

An evaluation of technology options was conducted for the central energy systems at Fort Jackson, South Carolina. There were two objectives in conducting this study. From a broader viewpoint, the Army would like to develop a systematic approach to management of its central energy systems and selected Fort Jackson for this ''pilot'' study for a prospective Central Energy System Modernization Program. From a site-specific perspective, the objective was to identify the lowest life-cycle cost energy supply option(s) at Fort Jackson for buildings currently served by central boilers and chillers. This study was co-funded by the Army's Southeast Region and the U.S. Department of Energy's Federal Energy Management Program.

Brown, Daryl R.; Chvala, William D.; Dirks, James A.

2006-11-29T23:59:59.000Z

186

Project Location  

E-Print Network (OSTI)

USGS quadrangle base-map. 2. Plot Plan with Exploration Data with Building Footprint: 1 boring or exploration shaft per 5000 ft 2, with minimum of 2 for any one building. Exploratory trench locations. 3. Site Coordinates: (Latitude & Longitude) Engineering Geology/Site Characterization 4. Regional Geology and Regional Fault Maps: Concise page-sized illustrations with site plotted. 5. Geologic Map of Site: Detailed (large-scale) geologic map with proper symbols and geologic legend. 6. Subsurface Geology: Engineering geology description summarized from boreholes or trench logs. Summarize ground water conditions. 7. Geologic Cross Sections: Two or more detailed geologic sections with pertinent foundations and site grading. 8. Active Faulting & Coseismic Deformation Across Site: Prepare page-sized extract map of Alquist-Priolo Earthquake Fault Zones and/or any potential fault rupture hazard identified from the Safety Element of the local agency (city or county); show location of fault investigation trenches; 50-foot setbacks perpendicular from fault plane and proposed

Date Reviewed __________________________

2007-01-01T23:59:59.000Z

187

Renewable Energy Opportunities at Fort Campbell, Tennessee/Kentucky  

DOE Green Energy (OSTI)

This document provides an overview of renewable resource potential at Fort Campbell, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Campbell took place on June 10, 2010.

Hand, James R.; Horner, Jacob A.; Kora, Angela R.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Nesse, Ronald J.

2011-03-31T23:59:59.000Z

188

Renewable Energy Opportunities at Fort Drum, New York  

DOE Green Energy (OSTI)

This document provides an overview of renewable resource potential at Fort Drum, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Drum took place on May 4 and 5, 2010.

Brown, Scott A.; Orrell, Alice C.; Solana, Amy E.; Williamson, Jennifer L.; Hand, James R.; Russo, Bryan J.; Weimar, Mark R.; Rowley, Steven; Nesse, Ronald J.

2010-10-20T23:59:59.000Z

189

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling, Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Program Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Located near Louisville, Kentucky, Fort Knox is home to the U.S. Army's Armor Center, Armor School, Recruiting Command, and numerous other facilities. The post has a daytime population of more than 30,000 people and more than 3,000 family housing units. In total, Fort Knox encompasses 11 million square feet of conditioned space across more than 109,000 acres. A military post of this size consumes a significant amount of energy. Fort Knox is acutely aware of the need for sustainability to ensure continuous operations and meet Federal energy goals and requirements.

190

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling, Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Program Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Located near Louisville, Kentucky, Fort Knox is home to the U.S. Army's Armor Center, Armor School, Recruiting Command, and numerous other facilities. The post has a daytime population of more than 30,000 people and more than 3,000 family housing units. In total, Fort Knox encompasses 11 million square feet of conditioned space across more than 109,000 acres. A military post of this size consumes a significant amount of energy. Fort Knox is acutely aware of the need for sustainability to ensure continuous operations and meet Federal energy goals and requirements.

191

Poudre High School From Fort Collins , Colorado Wins U.S. Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl Poudre High School From Fort Collins , Colorado Wins U.S. Department of...

192

FINISHED CORRECTIONS for the reprint of Barton H. Barbour, Fort Union and the Upper Missouri Fur Trade  

E-Print Network (OSTI)

Blackfeet torched Fort Piegan in 1832, and the Company built a new post, Fort McKenzie, a few miles away

Barrash, Warren

193

Energy survey of Army Laundry Facilities, Fort Jackson, South Carolina; executive summary  

SciTech Connect

The purpose of this study is to evaluate the technical and economic feasibility of energy conservation opportunities at the Fort Jackson Laundry Facility. This study was conducted under Contract Number DACA21-85-C-0587 entitled `Energy Survey of Army Laundry Facilities, Fort Bragg, North Carolina and Fort Jackson, South Carolina.` The Fort Jackson portion of this study was initiated on March 26, 1986 by letter from Jerry T. Hines, Lieutenant Colonel, Corps of Engineers.

1985-12-31T23:59:59.000Z

194

Fort Irwin Integrated Resource Assessment. Volume 2, Baseline detail  

SciTech Connect

This report documents the assessment of baseline energy use at Fort Irwin, a US Army Forces Command facility near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL has designed to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Irwin. This analysis examines the characteristics of electric, propane gas, and vehicle fuel use for a typical operating year. It records energy-use intensities for the facilities at Fort Irwin by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that accounts for all energy use among buildings, utilities, and applicable losses.

Richman, E.E.; Keller, J.M.; Dittmer, A.L.; Hadley, D.L.

1994-01-01T23:59:59.000Z

195

Fort Union Regional Task Forces, proceedings. Volume II  

SciTech Connect

North Dakota, South Dakota, Montana, and Wyoming created seven task forces to study the interstate effects of the Fort Union Coal Formation which underlies parts of each of these states. Volume 2 discusses the following: (1) social and economic impact; (2) taxation of energy resources; and (3) water quality and quality problems. (Portions of this document are not fully legible)

1977-01-01T23:59:59.000Z

196

Fort Union Regional Task Forces, proceedings. Volume I  

SciTech Connect

North Dakota, South Dakota, Montana, and Wyoming created seven task forces to study the interstate effects of the Fort Union Coal Formation which underlies parts of each of these states. Volume 1 covers: (1) air quality; (2) common data element and information exchange; (3) energy development, regulation, and plant siting; and (4) reclamation and land use. (Portions of this document are not fully legible)

1977-01-01T23:59:59.000Z

197

Cove Fort Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Project Location Information Coordinates 38.6075°, -112.57472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6075,"lon":-112.57472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Savings Report for the Fort Hood Army Base  

E-Print Network (OSTI)

This report presents electricity consumption and electric demand savings analysis for the Thermal Plant, buildings located in the 87000 block, III Corp building and other buildings that were determined to be part of the ESPC project at Ft. Hood, a total of 21 sites. The savings analysis for the Thermal Plant is not completed due to lack of post-retrofit data and will be included in the report upon receiving more data from Fort Hood. The data used for savings calculations were collected through the synergistic loggers installed at the Thermal Plant and III Corp building and portable loggers attached to Watt-hour meters in selected buildings. For each site, the hourly data collected for the pre- and post periods are converted to daily usage and then modeled with ASHRAEs IMT change-point linear models. The electricity consumption savings is then calculated for the months post-retrofit data are available. The weather-independent analysis, which utilizes 24-hour profiles that were developed using ASHRAEs 1093-RP diversity factor procedures, combined with ASHRAEs IMT change-point linear models, are used to evaluate demand savings. In Section 1 of the report, savings summaries for the sites measured and all the sites are given. In summary, the total measured savings of 1,034,473 kWh for the measured period corresponds to 60.7% of the audit-estimated electricity savings. The total of the measured demand savings of 1,220 kW for the measured period corresponds to 37.2% of the audit-estimated savings. Both measured electricity and demand savings fall short of expectations. The projected annual savings, which include the projected annual measured savings for the sites measured and the stipulated annual savings for the sites not measured, to match the JCI estimates for all the 57 sites, is also presented in Section 1. 78.2% of the audit-estimated electricity savings and 72.0% of the audit-estimated demand savings could be achieved assuming that the sites not measured were achieving 100% of the audit-estimated savings. The detailed savings summary and the plots showing the savings analysis for each site are presented in Sections 2 to 22. An Appendix is also provided that includes the list of data files in the accompanying CDROM with this report.

Song, S.; Liu, Z.; Cho, S.; Baltazar-Cervantes, J. C.; Haberl, J. S.

2005-12-01T23:59:59.000Z

199

Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities  

SciTech Connect

The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

1995-02-01T23:59:59.000Z

200

Force-limited vibration tests aplied to the FORTE` satellite  

SciTech Connect

A force limited random vibration test was conducted on a small satellite called FORTE{prime}. This type of vibration test reduces the over testing that can occur in a conventional vibration test. Two vibration specifications were used in the test: The conventional base acceleration specification, and an interface force specification. The vibration level of the shaker was controlled such that neither the table acceleration nor the force transmitted to the test item exceeded its specification. The effect of limiting the shake table vibration to the force specification was to reduce (or ``notch``) the shaker acceleration near some of the satellite`s resonance frequencies. This paper describes the force limited test conducted for the FORTE{prime} satellite. The satellite and its dynamic properties are discussed, and the concepts of force limiting theory are summarized. The hardware and setup of the test are then described, and the results of the force limited vibration test are discussed.

Stevens, R.R.; Butler, T.A.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CX-001863: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63: Categorical Exclusion Determination 63: Categorical Exclusion Determination CX-001863: Categorical Exclusion Determination Fort Wayne, Indiana American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant (S) Statement of Work for Revised Activity #1 and Activity #3 CX(s) Applied: A9, A11, B5.1 Date: 04/23/2010 Location(s): Fort Wayne, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant fund. The following activities are included in Fort Wayne's signed Statement of Work (SOW) and are therefore categorically excluded from National Environmental Policy Act: Activity #1 Expanded Energy Efficiency Retrofit Program, Activity #3 Financial Incentive Program - Direct Grant Program DOCUMENT(S) AVAILABLE FOR DOWNLOAD

202

Geothermal heat pumps at Fort Polk: Early results  

DOE Green Energy (OSTI)

At Fort Polk, LA an entire city (4,003 military family housing units) is being converted to geothermal heat pumps (GHP) under a performance contract. At the same time other efficiency measures such as compact fluorescent lights (CFLs), low-flow water outlets, and attic insulation are being installed. If these contracts and this technology are to be used widely in US Department of Defense (DoD) facilities and other public buildings, better data from actual projects is the key. Being the first GHP project of this type and size, Fort Polk proved to be very challenging for all concerned. To get from RFP to start of construction took several years. This hard work by others created a once-in-a-lifetime opportunity to address many of the due diligence issues that delayed the Fort Polk project. So that future projects can move faster, an evaluation has been undertaken to address the following barriers: absence of a documented large-scale demonstration of GHP energy, demand, and maintenance savings (a barrier to acceptance by federal customers, performance contractors, and investors); newness of large-scale facility capital renewal procurements at federal facilities under energy savings performance contracts (ESPCs) or traditional appropriations (lack of case studies); and variability in current GHP design tools (increases risks and costs for federal customers, performance contractors, investors and designers). This paper presents early energy and demand savings results based on data collection through January 1996.

Hughes, P.J.; Shonder, J.A.

1996-12-31T23:59:59.000Z

203

Development of Baseline Monthly Utility Models for Fort Hood, Texas  

E-Print Network (OSTI)

The Fort Hood Army base in central Texas has more than 5,200 buildings and can be considered as typical of large Department of Defense Army bases in the continental United States. The annual utility bill of the base exceeds $25 million. Baseline monthly models for electricity use, electricity demand, gas use, and water use for the three cantonment areas of Fort Hood have been developed. Such models can be used as screening tools for detecting changes in future utility bills and also to track/evaluate the extent to which Presidential Executive Order 12902, mandating 30% decrease in energy utility bills from 1985 to 2005, is being met. In this analysis, 1990 has been selected as the baseline year to illustrate the predictive capability of the models. Since ascertaining the uncertainty of our predictions is very important for meaningful evaluations, we have also presented the relevant equations for computing the 95% prediction intervals of the regression models and illustrated their use with measured data over the period of 1989-1993. This study also evaluated two different types of energy modeling software- the Princeton Scorekeeping method (PRISM) and EModel- in order to ascertain which is more appropriate for baseline modeling of large Army installations such as Fort Hood. It was found that the EModel software, which has more flexibility to handle different types of linear single variate change point models, gave more accurate modeling results.

Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

1996-04-01T23:59:59.000Z

204

Development of Baseline Monthly Utility Models for Fort Hood, Texas  

E-Print Network (OSTI)

The Fort Hood Army base in central Texas has more than 5,200 buildings and can be considered as typical of large Department of Defense Army bases in the continental United States. The annual utility bill of the base exceeds $25 million. Baseline monthly models for electricity use, electricity demand, gas use, and water use for the three cantonment areas of Fort Hood have been developed. Such models can be used as screening tools for detecting changes in future utility bills and also to track/evaluate the extent to which Presidential Executive Order 12902, mandating 30% decrease in energy utility bills from 1985 to 2005, is being met. In this analysis, 1990 has been selected as the baseline year to illustrate the predictive capability of the models. Since ascertaining the uncertainty of our predictions is very important for meaningful evaluations, we have also presented the relevant equations for computing the 95% prediction intervals of the regression models and illustrated their use with measured data over the period 1989 - 1993. This study also evaluated two different types of energy modeling software- the Princeton Scorekeeping method (PRISM) and EModel- in order to ascertain which is more appropriate for baseline modeling of large Army installations such as Fort Hood. It was found that the EModel software, which has more flexibility to handle different types of linear single variate change point models, gave more accurate modeling results.

Reddy, T. A.; Saman, N. F.; Claridge, D. E.; Haberl, J. S.; Turner, W. D.; Chalifoux, A.

1996-01-01T23:59:59.000Z

205

Geochemical controls on production in the Barnett Shale, Fort Worth Basin.  

E-Print Network (OSTI)

??The Newark East field (Barnett Shale) in the Fort Worth Basin, Texas currently has the largest daily production of any gas field in Texas. Major (more)

Klentzman, Jana L.

2009-01-01T23:59:59.000Z

206

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)  

DOE Green Energy (OSTI)

FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

Not Available

2010-04-01T23:59:59.000Z

207

Core Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Core Analysis At Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core...

208

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet covers the FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney barracks.

209

An evaluation of the Fort Polk energy savings performance contract  

SciTech Connect

The US Army, in cooperation with an energy services company (ESCO), used private capital to retrofit 4,003 family housing units on the Fort Polk, Louisiana, military base with geothermal heat pumps (GHPs). The project was performed under an energy savings performance contract (ESPC) that provides for the Army and the ESCO to share the cost savings realized through the energy retrofit over the 20-year life of the contract. Under the terms of the contract, the ESCO is responsible for maintaining the GHPs and provides ongoing measurement and verification (M and V) to assure cost and energy savings to the Army. An independent evaluation conducted by the Department of Energy`s Oak Ridge National Laboratory indicates that the GHP systems in combination with other energy retrofit measures have reduced annual whole-community electrical consumption by 33%, and natural gas consumption by 100%. These energy savings correspond to an estimated reduction in CO{sub 2} emissions of 22,400 tons per year. Peak electrical demand has been reduced by 43%. The electrical energy and demand savings correspond to an improvement in the whole-community annual electric load factor from 0.52 to 0.62. As a result of the project, Fort Polk saves about $450,000 annually and benefits from complete renewal of the major energy consuming systems in family housing and maintenance of those systems for 20 years. Given the magnitude of the project, the cost and energy savings achieved, and the lessons learned during its design and implementation, the Fort Polk ESPC can provide a model for other housing-related energy savings performance contracts in both the public and private sectors.

Hughes, P.J.; Shonder, J.A.

1998-11-01T23:59:59.000Z

210

Dynamic computer simulation of the Fort St. Vrain steam turbines  

SciTech Connect

A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

Conklin, J.C.

1983-01-01T23:59:59.000Z

211

Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

Targeting Net Zero Targeting Net Zero Energy at Fort Carson: Assessment and Recommendations Prepared for the U.S. Department of Energy Federal Energy Management Program By National Renewable Energy Laboratory Kate Anderson, Tony Markel, Mike Simpson, John Leahey, Caleb Rockenbaugh, Lars Lisell, Kari Burman, and Mark Singer October 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

212

Strategic Energy Management Plan For Fort Buchanan, Puerto Rico  

SciTech Connect

This document reports findings and recommendations as a result of a design assistance project with Fort Buchanan with the goals of developing a Strategic Energy Management Plan for the Site. A strategy has been developed with three major elements in mind: 1) development of a strong foundation from which to build, 2) understanding technologies that are available, and 3) exploring financing options to fund the implementation of improvements. The objective of this report is to outline a strategy that can be used by Fort Buchanan to further establish an effective energy management program. Once a strategy is accepted, the next step is to take action. Some of the strategies defined in this Plan may be implemented directly. Other strategies may require the development of a more sophisticated tactical, or operational, plan to detail a roadmap that will lead to successful realization of the goal. Similarly, some strategies are not single events. Rather, some strategies will require continuous efforts to maintain diligence or to change the culture of the Base occupants and their efforts to conserve energy resources.

Parker, Steven A.; Hunt, W. D.

2001-10-31T23:59:59.000Z

213

Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Devens: Cold Climate Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40 Harvard, Massachusetts PROJECT INFORMATION Project Name: Devens Sustainable Housing Location: Harvard, MA Partners: Metric Construction www.metriccorp.com Consortium for Advanced Residential Buildings www.carb-swa.com Size: 1,300 ft 2 plus basement Price: approx. $250,000 Year Completed: 2012 Climate Zone: Cold PERFORMANCE DATA HERS Index: 39 (before renewables) Projected Annual Energy Savings: $580 Incremental Cost of Energy Efficiency Measures: $7,804 Incremental Annual Mortgage increase: $503 Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontrac-

214

Thermal design of the fast-on-orbit recording of transient events (FORTE) satellite  

SciTech Connect

Analytical tools were used to design a thermal control system for the FORTE satellite. An overall spacecraft thermal model was developed to provide boundary temperatures for detailed thermal models of the FORTE instruments. The thermal design will be presented and thermal model results discussed.

Akau, R.L.; Behr, V.L. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, R. [Los Alamos National Lab., NM (United States)

1994-10-01T23:59:59.000Z

215

City of Fort Collins - Green Building Requirement for City-Owned Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins - Green Building Requirement for City-Owned Fort Collins - Green Building Requirement for City-Owned Buildings City of Fort Collins - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider The City of Fort Collins The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed and constructed to

216

Fort Collins Utilities - Home Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Efficiency Program Home Efficiency Program Fort Collins Utilities - Home Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Windows, Doors, & Skylights Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website Air Sealing: $200 - $500 Conditioned Crawl Space Insulation: $0.30/sq ft. - $0.75/sq ft. Cold Crawl Space: $0.30/sq ft. - $0.45/sq ft. Basement Wall Insulation:$0.50/sq ft. - $1.00/sq ft., Cantilever Floor Insulation: $0.50/sq ft. - $0.75/sq ft. Frame Floor Insulation Over Garage: $0.50/sq ft. - $0.75/sq ft.

217

United States Army; Fort Gordon, Georgia, Range Control Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT DRAFT Joint Standard Operating Procedures (JSOP) For Military Training at the Savannah River Site August 2011 U.S. Department of Energy, Savannah River Operations Office, Savannah River Site And U.S. Department Of The Army, Fort Gordon, Georgia DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2 Chapter 1 General, 1.1 Purpose, page 8 1.2 Scope, page 8 1.3 Explanation of abbreviation and terms, page 8 1.4 Applicability, page 8 1.5 Deviations and Amendments, page 8 Chapter 2 Responsibilities 2.1 DOE-Savannah River Point of Contact (DOE-SR POC), page 10 2.2 DOE-Assistant Manager for Integration and Planning (AMIP), page 10 2.3 SRNS Interface Management Office, page 10 2.4 Directorate of Plans, Training, Mobilization, and Security (DPTMS), Page 10

218

Barnett shale rising star in Fort Worth basin  

Science Conference Proceedings (OSTI)

The Mississippian-age Barnett shale of the Fort Worth basin, North Texas, has emerged as a new and active natural gas play. Natural gas production from the Barnett shale at Newark East field in Denton and Wise counties, Texas, has reached 80 MMcfd from more than 300 wells. However, very little publicly available information exists on resource potential and actual well performance. The US Geological Survey 1995 National Assessment of US Oil and Gas Resources categorized the Mississippian Barnett shale play (play number 4503) as an unconventional gas play but did not quantitatively assess this resource. This article, which expands upon a recent USGS open-file resource assessment report, provides an updated look at the Barnett shale and sets forth a new quantitative assessment for the play.

Kuuskraa, V.A.; Koperna, G. [Advanced Resources International Inc., Arlington, VA (United States); Schmoker, J.W.; Quinn, J.C. [Geological Survey, Denver, CO (United States)

1998-05-25T23:59:59.000Z

219

Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Windows, Doors, & Skylights Maximum Rebate Building Tune Up: $50,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Roof Top A/C: $100 - $150, plus $5 for each 0.1 SEER or IEER above minimum requirement Variable Frequency Drives: $85 - $120/HP Packaged Terminal A/C: $50, plus $5 for each 0.1 EER above minimum

220

U.S. Army Fort Carson Photovoltaics Project Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DACA45-1-07-6037 DACA45-1-07-6037 DEPARTMENT OF THE ARMY LEASE FORT CARSON MILITARY INSTALLATION EL PAS0 COUNTY, COLORADO THIS LEASE, made on behalf of the United States, between the SECRETARY OF THE ARMY, hereinafter referred to as the Secretary, and Carson Solar I, LLC., a limited liability company organized and existing under and by virtue of the laws of the State of Delaware, with its principal office at 31 897 Del Obispo, Suite 220, San Juan Capistrano, CA 92675, hereinafter referred to as the Lessee. WITNESSETH: The Secretary, by the authority of Title 10, United States Code, Section 2667, and for the consideration hereinafter set forth, hereby leases to the Lessee the property over, across, in and upon lands of the United States, identified in Exhibits "A" and "B," attached hereto and made a

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of natural gas supply strategies at Fort Drum  

SciTech Connect

This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

1992-07-01T23:59:59.000Z

222

System specification for Fort Hood Solar Cogeneration Facility  

DOE Green Energy (OSTI)

The characteristics and design and environmental requirements are specified for a solar cogeneration facility at the Fort Hood Army Base in Killeen, Texas. Characteristics of the system and major elements are described, and applicable standards, codes, laws and regulations are listed. Performance requirements for the total system and for each individual subsystem are presented. Survival requirements are given for various environmental extremes, with consideration given to lightning protection and effects of direct or adjacent lightning strikes. Air quality control standards are briefly mentioned. The facility operates in two principal modes: energy collection and energy utilization. The plant is capable of operating in either mode independently or in both modes simultaneously. The system is also operational in transitional and standby/inactive modes. (LEW)

Not Available

1981-05-01T23:59:59.000Z

223

Preliminary assessment of Fort Hood solar cogeneration plant performance  

DOE Green Energy (OSTI)

An analysis has been performed to enable a preliminary assessment of the performance that can be expected of a solar thermal cogeneration system designed to serve a selected group of buildings at Fort Hood, Texas. A central receiver system utilizing a molten salts mixture as the receiver coolant, heat transfer fluid, and storage medium is assumed. The system is to supply a large share of the space heating, air conditioning, domestic hot water, and electricity needs of a 20-building Troop Housing Complex. Principal energy loads are graphed and tabulated, and the principal electric parasitic loads are tabulated and the methodology by which they are estimated is reviewed. The plant model and the performance calculations are discussed. Annual energy displacement results are given. (LEW)

Ator, J.

1981-04-01T23:59:59.000Z

224

Fort Hood solar cogeneration facility conceptual design study  

DOE Green Energy (OSTI)

A study is done on the application of a tower-focus solar cogeneration facility at the US Fort Hood Army Base in Killeen, Texas. Solar-heated molten salt is to provide the steam for electricity and for room heating, room cooling, and domestic hot water. The proposed solar cogeneration system is expected to save the equivalent of approximately 10,500 barrels of fuel oil per year and to involve low development risks. The site and existing plant are described, including the climate and plant performance. The selection of the site-specific configuration is discussed, including: candidate system configurations; technology assessments, including risk assessments of system development, receiver fluids, and receiver configurations; system sizing; and the results of trade studies leading to the selection of the preferred system configuration. (LEW)

Not Available

1981-05-01T23:59:59.000Z

225

Fuel selection study for Fort Leonard Wood, Missouri. Volume 2. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

226

Fuel selection study for Fort Leonard Wood, Missouri. Volume 1. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

227

Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels  

SciTech Connect

Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

1993-09-01T23:59:59.000Z

228

Location and Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Facts, Figures Location and Infrastructure Location and Infrastructure LANL's mission is to develop and apply science and technology to ensure the safety, security, and...

229

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

230

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

231

2010 DOE National Science Bowl® Photos - Spanish Fort Middle School |  

Office of Science (SC) Website

Spanish Fort Middle School Spanish Fort Middle School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Spanish Fort Middle School Print Text Size: A A A RSS Feeds FeedbackShare Page The Spanish Fort Middle School team, from Spanish Court, AL, explores the

232

Poudre High School From Fort Collins , Colorado Wins U.S. Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Poudre High School From Fort Collins , Colorado Wins U.S. Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® Poudre High School From Fort Collins , Colorado Wins U.S. Department of Energy National Science Bowl® April 30, 2007 - 12:45pm Addthis WASHINGTON, DC - Poudre High School from Fort Collins, Colorado won the 2007 U.S. Department of Energy (DOE) National Science Bowl® for high school students today at the National 4-H Youth Conference Center. Poudre High School beat State College Area High School from State College, Pennsylvania in the national championship match. Teams representing 64 high schools from across the United States competed in the National Finals. Members of the winning team include Patrick Chaffey, Sam Elder, Winston Gao, Sam Sun, Logan Wright and coach Jack Lundt. The team won a science

233

Fort Collins, Colorado on Track to Net Zero | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins, Colorado on Track to Net Zero Fort Collins, Colorado on Track to Net Zero Fort Collins, Colorado on Track to Net Zero November 18, 2010 - 2:23pm Addthis Ian Hamos What does this mean for me? Using electricity during "peak periods" requires more fuel and creates more emissions to produce the same amount as energy as non-peak periods. By integrating demand-side resources, distributed and renewable power sources, and smart grid technologies, Fort Collins is creating a net Zero Energy District (ZED) -- potentially creating hundreds of permanent jobs and setting an example for cities nationwide. Just like traffic has peaks at rush hour, electricity demand rises and falls at particular times of day. During electricity's peak periods, power plants turn on gas-fired turbines and other supplemental energy

234

A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN,  

E-Print Network (OSTI)

Chapter SB A SUMMARY OF COAL IN THE FORT UNION FORMATION (TERTIARY), BIGHORN BASIN, WYOMING assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U...........................................................................................................................SB-1 Coal Production History

235

An Unusual Summertime Downslope Wind Event in Fort Collins, Colorado, on 3 July 1993  

Science Conference Proceedings (OSTI)

An unseasonal, severe downslope windstorm along the eastern foothills of the Colorado Rocky Mountains is described. The storm, which occurred on 3 July 1993, produced wind guts in Fort Collins, Colorado, over 40 m s?1 and resulted in extensive ...

William R. Cotton; John F. Weaver; Brian A. Beitler

1995-12-01T23:59:59.000Z

236

Fort Hood Solar Total Energy Project. Volume I. Executive summary. Final report  

DOE Green Energy (OSTI)

A summary of the history, design, performance, supporting activities, and management plans for the Solar Total Energy System for the troop housing complex at Fort Hood, Texas, is presented. (WHK)

None

1979-01-01T23:59:59.000Z

237

Reassembling the rolling bridge : an art gallery at Fort Point Channel, Boston  

E-Print Network (OSTI)

Spanning the Fort Point Channel for nearly a century, Boston's Rolling Bridge is a familiar landmark to many railway commuters and residents of the city. Its robust steel assembly, characterized by three anthropomorphic ...

Lim, Winston E

1996-01-01T23:59:59.000Z

238

Habitat Restoration/Enhancement Fort Hall Reservation : 2008 Annual Report.  

Science Conference Proceedings (OSTI)

Habitat enhancement, protection and monitoring were the focus of the Resident Fisheries Program during 2008. Enhancement and protection included sloping, fencing and planting wetlands plugs at sites on Spring Creek (Head-waters). Many previously constructed instream structures (rock barbs and wing dams) were repaired throughout the Fort Hall Indian Reservation (Reservation). Physical sampling during 2008 included sediment and depth measurements (SADMS) in Spring Creek at the Car Removal site. SADMS, used to track changes in channel morphology and specifically track movements of silt through Bottoms stream systems were completed for 5 strata on Spring Creek. Water temperature and chemistry were monitored monthly on Spring Creek, Clear Creek, Diggie Creek, and Portneuf (Jimmy Drinks) and Blackfoot rivers. Fish population densities and biomass were sampled in five reservation streams which included nine sites. Sampling protocols were identical to methods used in past years. Numbers of fish in Spring Creek series remained relatively low, however, there was an increase of biomass overall since 1993. Salmonid fry densities were monitored near Broncho Bridge and were similar to 2006, and 2007, however, as in years past, high densities of macrophytes make it very difficult to see fry in addition to lack of field technicians. Mean catch rate by anglers on Bottoms streams stayed the same as 2007 at 1.5/hr. Numbers of fish larger than 18-inches caught by anglers increased from 2007 at .20 to .26/hr.

Osborne, Hunter [Shoshone Bannock Tribes

2009-07-23T23:59:59.000Z

239

Fort St. Vrain Decommissioning: Final Site Radiation Survey: Summary Report and Lessons Learned  

Science Conference Proceedings (OSTI)

This report describes the final step in the decommissioning process at Public Service Company of Colorado's (PSCo) Fort St. Vrain nuclear power plant. The final site radiation survey documents that all nuclear facility surfaces meet the established release limits for unrestricted use. The survey formed the legal basis for the termination of the Fort St. Vrain nuclear license, which occurred in August 1997. The lessons learned in this process will be valuable to other utilities with permanently shutdown p...

1998-02-13T23:59:59.000Z

240

Facility Energy Decision System (FEDS) Assessment Report for Fort Buchanan, Puerto Rico  

Science Conference Proceedings (OSTI)

This report documents the findings of the Facility Energy Decision System (FEDS) assessment at Fort Buchanan, Puerto Rico, by a team of PNNL engineers under contract to the Installation Management Agency (IMA) Southeast Region Office (SERO). Funding support was also provided by the Department of Energy's Federal Energy Management Program. The purpose of the assessment was to determine how energy is consumed at Fort Buchanan, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

Chvala, William D.; Solana, Amy E.; Dixon, Douglas R.

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Direct-Current Resistivity Survey At Cove Fort Area - Vapor ...  

Open Energy Info (EERE)

geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location....

242

Direct-Current Resistivity Survey At Cove Fort Area (Warpinski...  

Open Energy Info (EERE)

geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location....

243

Water Reclamation and Reuse at Fort Carson: Best Management Practice Case Study #14 - Alternate Water Sources (Brochure)  

SciTech Connect

FEMP Water Efficiency Best Management Practice #14 Case Study: Overview of the water reclamation and reuse program at the U.S. Army's Fort Carson.

Not Available

2009-08-01T23:59:59.000Z

244

Olivella Grooved Rectangle Beads from a Middle Holocene Site in the Fort Rock Valley, Northern Great Basin  

E-Print Network (OSTI)

Lake Fort Rock and other local sources. The primary culturalRock Valley currently receives no water from a perennial source.

Jenkins, Dennis L; Erlandson, Jon M

1996-01-01T23:59:59.000Z

245

Habitat Restoration/Enhancement Fort Hall Reservation : 2001 Annual Report.  

DOE Green Energy (OSTI)

Habitat enhancement, protection and monitoring were the focus of the Resident Fisheries Program during 2001. Enhancement and protection included sloping, fencing and planting willows at sites on Diggie Creek, Clear Creek and Spring Creek. In addition, many previously constructed instream structures (rock barbs and wing dams) were repaired throughout the Fort Hall Indian Reservation (Reservation). In 2001, exclosure fences were erected on Diggie Creek (250 m barbed wire; (70 m jack), Wood Creek (500 m jack), Clear Creek (20 m jack), Ross Fork Creek (200 m jack), West Fork Creek (200 m jack)) and the Portneuf River (1 km barbed wire; 100 m jack). Jack and rail exclosure fences that had deteriorated over the past ten years were repaired at numerous areas throughout the Reservation. Physical sampling during 2001 included sediment and depth surveys (SADMS) in Big Jimmy Creek and Diggie Creek. SADMS, used to track changes in channel morphology and specifically track movements of silt through Bottoms stream systems were completed for eight and nine strata in the Big Jimmy and Diggie Creek, respectively. Baseline SADM data was collected in Diggie Creek to monitor the effects of bank sloping and revegetation on channel morphology and sediment levels through time. Water temperature was monitored (hourly) in Spring Creek, Clear Creek, Ross Fork Creek and Big Jimmy Creek. Biotic sampling included invertebrate sampling in the 200 and 300 series of Clear Creek. Fish population densities and biomass were sampled in Clear Creek 200 and 300 series. Sampling protocols were identical to methods used in past years. Numbers of fish in Clear Creek 300 series remained similar to 2000 while numbers of fish in Clear Creek 200 series dropped to near pre project levels. Salmonid fry densities were monitored near Broncho Bridge and were significantly higher than 2000. A mark-recapture study was initiated in spring 2001 to estimate numbers of spawning adults using the Head End of Spring Creek Mean catch rate by anglers on Bottoms streams increased from 0.55 in 2000 to 0.77 fish per hour in 2001. Numbers of fish 18 inches caught by anglers decreased from 0.41 in 2000 to 0.19 in 2001.

Moser, David C.

2003-03-01T23:59:59.000Z

246

Liquefied Petroleum Gas (LPG) storage facility study Fort Gordon, Georgia. Final report  

SciTech Connect

Fort Gordon currently purchases natural gas from Atlanta Gas Light Company under a rate schedule for Large Commercial Interruptible Service. This offers a very favorable rate for `interruptible` gas service, however, Fort Gordon must maintain a base level of `firm gas`, purchased at a significantly higher cost, to assure adequate natural gas supplies during periods of curtailment to support family housing requirements and other single fuel users. It is desirable to provide a standby fuel source to meet the needs of family housing and other single fuel users and eliminate the extra costs for the firm gas commitment to Atlanta Gas Light Company. Therefore, a propane-air standby fuel system is proposed to be installed at Fort Gordon.

NONE

1992-09-01T23:59:59.000Z

247

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

248

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Fiat 500 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer...

249

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Nissan Altima Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle...

250

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input...

251

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Chrysler 300 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer...

252

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 i-Stop Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop...

253

Wind resource assessment and wind energy system cost analysis: Fort Huachuca, Arizona  

DOE Green Energy (OSTI)

The objective of this joint DOE and National Renewable Energy Laboratory (NREL) Strategic Environmental Research and Development Program (SERDP) project is to determine whether wind turbines can reduce costs by providing power to US military facilities in high wind areas. In support of this objective, one year of data on the wind resources at several Fort Huachuca sites was collected. The wind resource data were analyzed and used as input to an economic study for a wind energy installation at Fort Huachuca. The results of this wind energy feasibility study are presented in the report.

Olsen, T.L. [Tim Olsen Consulting, Denver, CO (United States); McKenna, E. [National Renewable Energy Lab., Golden, CO (United States)

1997-12-01T23:59:59.000Z

254

Facility location: distributed approximation  

Science Conference Proceedings (OSTI)

In this paper, we initiate the study of the approximability of the facility location problem in a distributed setting. In particular, we explore a trade-off between the amount of communication and the resulting approximation ratio. We give a distributed ... Keywords: distributed approximation, facility location, linear programming, primal-dual algorithms

Thomas Moscibroda; Rogert Wattenhofer

2005-07-01T23:59:59.000Z

255

Reading Room Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

FOIA Offices and Reading Rooms FOIA Offices and Reading Rooms FOIA Office Locations Our FOIA Officers are located at various sites throughout the DOE complex, each with responsibility for records located at or under the jurisdiction of the site. We recommend that you send your request directly to that specific site. This will shorten the processing time. However, if you do not know which location has responsive records, you may either call the Headquarters FOIA office at (202) 586-5955 to determine the appropriate office, or mail the request to the Headquarters FOIA office. Other records are publicly available in the facilities listed below: Headquarters U.S. Department of Energy FOIA/Privacy Act Group 1000 Independence Avenue, SW Washington, D.C. 20585 Phone: 202-586-5955 Fax: 202-586-0575

256

Entrance Maze Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrance Maze Locations Entrance Maze Locations for the Storage Ring Tunnel Martin Knott LS-83 2/17/87 The Purpose of this note is to document the locations and decision rationale of the entrance mazes for the APS storage ring. There are a total of seven entrance mazes, four on the infield side and three on the operating floor side of the ring. Three of the infield mazes are associated with infield buildings, one in the Extraction Building and one each in the two RF Buildings. These three were located to provide convenient passage between the technical buildings and the storage ring components associated with those buildings. The Extraction Building maze allows passage between the positron beam transfer area and the storage ring two sectors upstream of the injection

257

Magma Source Location Survey  

DOE Green Energy (OSTI)

A survey of Industry/University geophysicists was conducted to obtain their opinions on the existence of shallow (less than 10 km from surface) magma bodies in the western conterminous United States and methods for locating and defining them. Inputs from 35 individuals were received and are included. Responses were that shallow magma bodies exist and that existing geophysical sensing systems are adequate to locate them.

Hardee, H.C.; Dunn, J.C.; Colp, J.L.

1982-03-01T23:59:59.000Z

258

FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT,  

E-Print Network (OSTI)

Chapter GS FORT UNION COAL IN THE GREATER GREEN RIVER BASIN, EAST FLANK OF THE ROCK SPRINGS UPLIFT 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky in the toolbar to return. 1999 Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky

259

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

260

Fort Collins, Colorado 80523-1586 Phone (970) 491-6612  

E-Print Network (OSTI)

practitioners who excel in their professional lives. Students frequently come to the classroom with work Springs, Fort Collins or on-line, the School of Social Work welcomes you to our learning community. ALL College of Health and Human Sciences School of Social Work http://www.ssw.chhs.colostate.edu Master

Stephens, Graeme L.

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fort Collins, Colorado 80523-1586 Phone (970) 491-6612  

E-Print Network (OSTI)

environment and graduating social work practitioners who excel in their professional lives. Students-time; or taking your courses in Thornton, Colorado Springs, Fort Collins or on-line, the School of Social Work College of Health and Human Sciences School of Social Work http://www.ssw.chhs.colostate.edu Master

Stephens, Graeme L.

262

Energy study of Laundry Facilities, Fort Knox, Kentucky: Executive summary (revised). Executive summary  

SciTech Connect

This document is the Executive Summary of the Energy Survey of Laundry Facilities at Fort Knox, Kentucky. The purpose of this document is to briefly outline the existing and historical energy situation, summarize the methodology and results of the Energy Study, and present the specific energy conservation projects developed through the Energy Study.

1986-12-01T23:59:59.000Z

263

Conceptual design report for the mechanical disassembly of Fort St. Vrain fuel elements  

Science Conference Proceedings (OSTI)

A conceptual design study was prepared that: (1) reviewed the operations necessary to perform the mechanical disassembly of Fort St. Vrain fuel elements; (2) contained a description and survey of equipment capable of performing the necessary functions; and (3) performed a tradeoff study for determining the preferred concepts and equipment specifications. A preferred system was recommended and engineering specifications for this system were developed.

Lord, D.L. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Wadsworth, D.C.; Sekot, J.P.; Skinner, K.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1993-04-01T23:59:59.000Z

264

FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS  

E-Print Network (OSTI)

Chapter WS FORT UNION COAL IN THE WILLISTON BASIN, NORTH DAKOTA: A SYNTHESIS By R.M. Flores and C coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

265

Two Floods in Fort Collins, Colorado: Learning from a Natural Disaster  

Science Conference Proceedings (OSTI)

A flash flood in Fort Collins, Colorado, on 28 July 1997 resulted in 5 deaths, 62 injuries, and more than $250 million in property damage. Following the 1997 flood, a great many changes were made in the city's preparedness infrastructure. On 30 ...

John F. Weaver; Eve Gruntfest; Glenn M. Levy

2000-10-01T23:59:59.000Z

266

Fort Hood Solar Total Energy Project. Volume III. Engineering drawings. Final report  

DOE Green Energy (OSTI)

Engineering drawings are presented for the Solar Total Energy System at Fort Hood, Texas. Drawings are given for the solar collector subsystem, power conversion subsystem, instrumentation and control subsystem, thermal storage subsystem, site preparation, thermal storage area piping and equipment layout, heating/cooling and domestic hot water subsystem, STES building and facility, and electrical distribution. (WHK)

None,

1979-01-01T23:59:59.000Z

267

Fission product behavior in the Peach Bottom and Fort St. Vrain HTGRs  

SciTech Connect

Actual operating data from Peach Bottom and Fort St. Vrain were compared with code predictions to assess the validity of the methods used to predict the behavior of fission products in the primary coolant circuit. For both reactors the measured circuit activities were significantly below design values, and the observations generally verify the codes used for large HTGR design.

Hanson, D.L.; Baldwin, N.L.; Strong, D.E.

1980-11-01T23:59:59.000Z

268

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 13050 of 31,917 results. 41 - 13050 of 31,917 results. Download CX-002002: Categorical Exclusion Determination Cleveland City American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant Act 9 (Lake-to-Lake Bikeway) CX(s) Applied: A9, A11, B5.1 Date: 04/28/2010 Location(s): Cleveland, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-002002-categorical-exclusion-determination Download CX-001863: Categorical Exclusion Determination Fort Wayne, Indiana American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant (S) Statement of Work for Revised Activity #1 and Activity #3 CX(s) Applied: A9, A11, B5.1 Date: 04/23/2010 Location(s): Fort Wayne, Indiana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

269

City of Fort Pierre, South Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Pierre Pierre Place South Dakota Utility Id 6615 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Residential Rate Residential Security Lighting Lighting Small Commercial (Single Phase) Rate Commercial Small Commercial (Three Phase) Rate Commercial Average Rates Residential: $0.1120/kWh Commercial: $0.0609/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

270

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

271

Geothermal Space Heating Applications for the Fort Peck Indian Reservation in the Vicinity of Poplar, Montana. Phase I Report, August 20, 1979--December 31, 1979  

DOE Green Energy (OSTI)

This engineering and economic study is concerned with the question of using the natural heat of the earth, or geothermal energy, as an alternative to other energy sources such as oil and natural gas which are increasing in cost. This document represents a quarterly progress report on the effort directed to determine the availability of geothermal energy within the Fort Peck Indian Reservation, Montana (Figure 1), and the feasibility of beneficial use of this resource including engineering, economic and environmental considerations. The project is being carried out by the Tribal Research office, Assinboine and Sioux Tribes, Fort Peck Indian Reservation, Poplar, Montana under a contract to the United States Department of Energy. PRC TOUPS, the major subcontractor, is responsible for engineering and economic studies and the Council of Energy Resource Tribes (CERT) is providing support in the areas of environment and finance, the results of which will appear in the Final Report. The existence of potentially valuable geothermal resource within the Fort Peck Indian Reservation was first detected from an analysis of temperatures encountered in oil wells drilled in the area. This data, produced by the Montana Bureau of Mines and Geology, pointed to a possible moderate to high temperature source near the town of Poplar, Montana, which is the location of the Tribal Headquarters for the Fort Peck Reservation. During the first phase of this project, additional data was collected to better characterize the nature of this geothermal resource and to analyze means of gaining access to it. As a result of this investigation, it has been learned that not only is there a potential geothermal resource in the region but that the producing oil wells north of the town of Poplar bring to the surface nearly 20,000 barrels a day (589 gal/min) of geothermal fluid in a temperature range of 185-200 F. Following oil separation, these fluids are disposed of by pumping into a deep groundwater aquifer. While beneficial uses may be found for these geothermal fluids, even higher temperatures (in excess of 260 F) may be found directly beneath the town of Poplar and the new residential development which is being planned in the area. This project is primarily concerned with the use of geothermal energy for space heating and domestic hot water for the town of Poplar (Figure 2 and Photograph 1) and a new residential development of 250 homes which is planned for an area approximately 4 miles east of Poplar along U.S. Route 2 (Figure 2 and Photograph 2). A number of alternative engineering design approaches have been evaluated, and the cost of these systems has been compared to existing and expected heating costs.

Spencer, Glenn J.; Cohen, M. Jane

1980-01-04T23:59:59.000Z

272

Pine Tree Growth Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Pine Tree Growth Locations Pine Tree Growth Locations Name: Amielee Location: N/A Country: N/A Date: N/A Question: Why do pine trees not grow south of the equator? Replies: Dear Amielee, The natural distribution of the pines is the northern hemisphere: http://phylogeny.arizona.edu/tree/eukaryotes/green_plants/embryophytes/conif ers/pinaceae/pinus/pinus.html However, pines have become introduced into the southern hemisphere through cultivation: http://www.woodweb.com/~treetalk/Radiata_Pine/wowhome.html Sincerely, Anthony R. Brach, Ph.D. Hi Amielee Some pine trees do live south of the equator but we (I live in Australia) do not have the huge forests of native conifers that you have in the northern hemisphere. Even in the northern hemisphere conifers are only found in two forest types: 1. Tiaga

273

location | OpenEI  

Open Energy Info (EERE)

location location Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (5 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

274

Optimal fault location  

E-Print Network (OSTI)

Basic goal of power system is to continuously provide electrical energy to the users. Like with any other system, failures in power system can occur. In those situations it is critical that correct remedial actions are applied as soon as possible after the accurate fault condition and location are detected. This thesis has been focusing on automated fault location procedure. Different fault location algorithms, classified according to the spatial placement of physical measurements on single ended, multiple ended and sparse system-wide, are investigated. As outcome of this review, methods are listed as function of different parameters that influence their accuracy. This comparison is than used for generating procedure for optimal fault location algorithm selection. According to available data, and position of the fault with respect to the data, proposed procedure decides between different algorithms and selects an optimal one. A new approach is developed by utilizing different data structures such as binary tree and serialization in order to efficiently implement algorithm decision engine. After accuracy of algorithms is strongly influenced by available input data, different data sources are recommended in proposed architecture such as the digital fault recorders, circuit breaker monitoring, SCADA, power system model and etc. Algorithm for determining faulted section is proposed based on the data from circuit breaker monitoring devices. This algorithm works in real time by recognizing to which sequence of events newly obtained recording belongs. Software prototype of the proposed automated fault location analysis is developed using Java programming language. Fault location analysis is automatically triggered by appearance of new event files in a specific folder. The tests were carried out using the real life transmission system as an example.

Knezev, Maja

2007-12-01T23:59:59.000Z

275

University Location Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location Project Description Location Project Description Boise State University Boise, Idaho Boise State University has undertaken a study of the structural setting and geothermal potential at Neal Hot Springs that will integrate geology, geochemistry, and geophysics to analyze the site on the western Snake River plain. Boise State will determine if Neal Hot Springs sustains the necessary rock dilation and conduit pathways for hydrothermal fluid flow and successful geothermal development. The result will be new data acquisition, including a deep geophysical survey and fault surface data. Colorado School of Mines Golden, Colorado Colorado School of Mines will conduct an investigation near Homedale, Idaho, an area that straddles volcanic rock and unconsolidated sediments.

276

Copyright 1998 Donald Wayne Taylor  

E-Print Network (OSTI)

guidelines. From 1979 to 1982 he was counsel to the firm of Kaye Scholer Fierman Hays and Handler in New York

Washington at Seattle, University of

277

Location-based communication services  

Science Conference Proceedings (OSTI)

Our demo shows end-user-oriented location-based services based on application-layer, human understandable location descriptions. Keywords: internet telephony, location-based services

Xiaotao Wu; Ron Shacham; Matthew J. Mintz-Habib; Kundan Singh; Henning Schulzrinne

2004-10-01T23:59:59.000Z

278

Fort Worth, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

25409°, -97.3208496° 25409°, -97.3208496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.725409,"lon":-97.3208496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Fort Carson, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colorado: Energy Resources Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7374943°, -104.7888615° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7374943,"lon":-104.7888615,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Fort Hunt, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hunt, Virginia: Energy Resources Hunt, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.7328926°, -77.0580327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7328926,"lon":-77.0580327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fort McKinley, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ohio: Energy Resources Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7975578°, -84.253554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7975578,"lon":-84.253554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Fort Defiance, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Defiance, Arizona: Energy Resources Defiance, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7444602°, -109.0764828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7444602,"lon":-109.0764828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

MHK Projects/Fort Ross North | Open Energy Information  

Open Energy Info (EERE)

< MHK Projects < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4,"lon":-123.9,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

284

Fort Lee, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

New Jersey: Energy Resources New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8509333°, -73.9701381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8509333,"lon":-73.9701381,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Fort Snelling, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Snelling, Minnesota: Energy Resources Snelling, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8755939°, -93.2131232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8755939,"lon":-93.2131232,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Fort Bliss, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bliss, Texas: Energy Resources Bliss, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.80755°, -106.421663° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.80755,"lon":-106.421663,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Fort Collins, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Collins, Colorado: Energy Resources Collins, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5852602°, -105.084423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5852602,"lon":-105.084423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Fort Ripley, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

777°, -94.3602807° 777°, -94.3602807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.1660777,"lon":-94.3602807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Fort Meade, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1°, -76.741969° 1°, -76.741969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1081,"lon":-76.741969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

MHK Projects/Fort Ross South | Open Energy Information  

Open Energy Info (EERE)

South South < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3103,"lon":-123.845,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

291

Fort Lauderdale, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lauderdale, Florida: Energy Resources Lauderdale, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1223084°, -80.1433786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1223084,"lon":-80.1433786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Fort Rucker, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rucker, Alabama: Energy Resources Rucker, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.343401°, -85.715143° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.343401,"lon":-85.715143,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Fort Salonga, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Salonga, New York: Energy Resources Salonga, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9125979°, -73.3009489° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9125979,"lon":-73.3009489,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Fort Devens, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Devens, Massachusetts: Energy Resources Devens, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.536062°, -71.617668° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.536062,"lon":-71.617668,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Fort Defiance, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Defiance, Arizona: Energy Resources Defiance, Arizona: Energy Resources (Redirected from Ft. Defiance, Arizona) Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7444602°, -109.0764828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7444602,"lon":-109.0764828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Fort Washington, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania: Energy Resources Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.13845°, -75.191799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.13845,"lon":-75.191799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Fort Knox, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Knox, Kentucky: Energy Resources Knox, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.890736°, -85.963174° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.890736,"lon":-85.963174,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Fort Lupton, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lupton, Colorado: Energy Resources Lupton, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0847055°, -104.8130275° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0847055,"lon":-104.8130275,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Fort Bend County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bend County, Texas: Energy Resources Bend County, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.5692614°, -95.8142885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.5692614,"lon":-95.8142885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Electric current locator  

DOE Patents (OSTI)

The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

2012-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Facilities management: the development of a model for building condition assessment surveys conducted at Fort Riley, Kansas  

E-Print Network (OSTI)

The purpose of this study is to document the research and design of a condition assessment system for buildings by utilizing case study methods for the facilities located at Fort Riley, Kansas, an Army military installation. The design of the assessment or auditing system incorporates the following procedures: (1) identification of building components, (2) identification of building sub-components, (3) utilization of decision-tree logic diagrams to manage the information, and (4) production of inspection condition criteria and scoring for each sub-component (by visual inspection techniques) . The system was used by multiple inspectors to assess the buildings at Fort Riley. The inspectors received training in the system scoring and methodology. To verify the system's accuracy, ten percent (10%) of the buildings were re-inspected by the developers of the system (quality control) . The analysis of the system included a random sample of 20 buildings from the data collected. The data were analyzed for accuracy and consistency on the component and sub-component recognition and the inspection condition score (as compared to the quality control results) The actual inspection time was monitored to record the inspection efficiency. Statistical testing was conducted which did the following: (1) analyzed the data pair means for any significant differences, and (2) analyzed the strength of the pair relationships. From the data analysis the following was found: (1) the components and sub-components were recognized accurately and consistently, (2) the actual scores seemed to be accurate and consistent (after conducting the statistical test (T-Test) some of the means did indicate that there were some significant differences, while others indicated there were no significant differences) , (3) the data indicated that there was correlation between the data pairs. Also, it was found that this system provides reasonable inspection time and cost restraints. The building assessments are incorporated into an information system that assists the user in establishing priorities. The cost factors for each sub-component are based on building models that relate the quantities of the different sub-components to the actual floor area of the buildings. From these building models conceptual estimates can be generated and used as a tool to budget, justify, and anticipate maintenance and repair costs.

Riblett, Carl Olin

1993-01-01T23:59:59.000Z

302

them. A French military officer noted in 1750 that Indians living near Fort Figu  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

them. A French military officer noted in 1750 that Indians living near Fort Figure 11. Petroleum Production and Consumption them. A French military officer noted in 1750 that Indians living near Fort Figure 11. Petroleum Production and Consumption Duquesne (now the site of Pittsburgh) set fire to an oil-slicked creek as part of a religious ceremony. As settlement by Europeans proceeded, oil' was discovered in many places in northwestern Pennsylvania and western New York-to tile frequent dismay of the well-owners, who were drilling for salt brine./ >' Cons umption/ In the mid-1800s expanding uses for oil extracted from coal and shale began to hint at the value of rock oil and encouraged the search for readily accessible A Production supplies. This impetus launched the modem petroleum age, which began on a t 10 - Sunday afternoon in August 1859 at Oil Creek, near Titusville in northwestern-\

303

Renewable Energy Development on Fort Mojave Reservation Feasiblity Study  

SciTech Connect

The Ft. Mojave tribe, whose reservation is located along the Colorado River in the states of Arizona, California, and Nevada near the point where all three states meet, has a need for increased energy supplies. This need is a direct result of the aggressive and successful economic development projects undertaken by the tribe in the last decade. While it is possible to contract for additional energy supplies from fossil fuel sources it was the desire of the tribal power company, AHA MACAV Power Service (AMPS) to investigate the feasibility and desirability of producing power from renewable sources as an alternative to increased purchase of fossil fuel generated power and as a possible enterprise to export green power. Renewable energy generated on the reservation would serve to reduce the energy dependence of the tribal enterprises on off reservation sources of energy and if produced in excess of reservation needs, add a new enterprise to the current mix of economic activities on the reservation. Renewable energy development would also demonstrate the tribes support for improving environmental quality, sustainability, and energy independence both on the reservation and for the larger community.

Russell Gum, ERCC analytics LLC

2008-03-17T23:59:59.000Z

304

Reinhabiting the Fort Point Channel : a proposal for transforming and extending the warehouse district in South Boston  

E-Print Network (OSTI)

The focus of this design investigation is the warehouse fabric of the Fort Point Channel and its potentials as a model for further development This extensive configuration of warehouses and access roads is the product of ...

Dale, John Randall

1986-01-01T23:59:59.000Z

305

Energy efficiency campaign for residential housing at the Fort Lewis army installation  

SciTech Connect

In FY1999, Pacific Northwest National Laboratory conducted an energy efficiency campaign for residential housing at the Fort Lewis Army Installation near Tacoma, Washington. Preliminary weather-corrected calculations show energy savings of 10{percent} from FY98 for energy use in family housing. This exceeded the project's goal of 3{percent}. The work was funded by the U.S. DOEs Federal Energy Management Program (FEMP), Office of Energy Efficiency and Renewable Energy. The project adapted FEMP's national ``You Have the Power Campaign'' at the local level, tailoring it to the military culture. The applied research project was designed to demonstrate the feasibility of tailored, research-based strategies to promote energy conservation in military family housing. In contrast to many energy efficiency efforts, the campaign focused entirely on actions residents could take in their own homes, as opposed to technology or housing upgrades. Behavioral change was targeted because residents do not pay their own utility bills; thus other motivations must drive personal energy conservation. This campaign augments ongoing energy savings from housing upgrades carried out by Fort Lewis. The campaign ran from September 1998 through August 1999. The campaign strategy was developed based on findings from previous research and on input from residents and officials at Fort Lewis. Energy use, corrected to account for weather differences, was compared with the previous year's use. Survey responses from 377 of Fort Lewis residents of occupied housing showed that the campaign was moderately effective in promoting behavior change. Of those who were aware of the campaign, almost all said they were now doing one or more energy-efficient things that they had not done before. Most people were motivated by the desire to do the right thing and to set a good example for their children. They were less motivated by other factors.

AH McMakin; RE Lundgren; EL Malone

2000-02-23T23:59:59.000Z

306

Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana  

Science Conference Proceedings (OSTI)

The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

1998-03-01T23:59:59.000Z

307

Population size and contaminant exposure of bats using caves on Fort Hood Military Base  

E-Print Network (OSTI)

Seasonal cave usage patterns were determined in an effort to understand the ecology of a bat colony at Shell Mountain Bat Cave in Fort Hood, Texas. Exit counts were conducted one night each month for 13 consecutive months to estimate the population and determine seasonal patterns. This cave was used as a maternity roost by a colony of cave myotis (myotis velifer) from March through October. Total colony size varies from month to month, becoming zero when bats leave during the winter. Old guano from two abandoned caves, Egypt and Tippet, on Fort Hood, and new guano from Shell Mountain was analyzed. Organochlorine residues showed higher levels of total chlordanes, endrin, dieldrin, mirex, p,p'-DDE, and o,p'-DDT in Egypt and Tippet caves; organophosphates showed higher amounts in the Shell Mountain guano. Organophosphates have never before been found in bat guano, and so what effects, if any, these amounts may indicate on the health of the colony are unknown. Some metals were also found in higher amounts in guano from Egypt and Tippet caves. Residue concentrations of organochlorines and metals in guano and carcasses collected from the three caves are low and probably of no concern. Comparisons among spring and fall guano smaples from Shell Mountain suggest that HCB, total chlordanes, dieldrin, endrin, endosulfan II, p,p'-DDE, and o,p'-DDT are accumulated while the bats are at Fort Hood. Lindane appears to be the only chemical that increases while the bats are at Fort Hood. Organochlorines found in carcasses tended to show smallest amounts in a lactating female and largest amounts in nursing juveniles.

Land, Tarisha Ann

2001-01-01T23:59:59.000Z

308

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

1993-02-01T23:59:59.000Z

309

Clean Cities: Coalition Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

310

Clean Cities: Coalition Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

311

Fort Hood solar total energy project. Technical support and systems integration. First semiannual report, May 1-October 31, 1978  

DOE Green Energy (OSTI)

Progress on the design of a Solar Total Energy System which will supply a significant portion of the energy requirements of a troop housing complex at Fort Hood, Texas, is described. Selection and sizing of the distributed collector field are discussed, and parabolic trough collector technology is reviewed. Energy load measurements and insolation models for the Fort Hood site are described. Technical project support efforts are reviewed. (WHK)

None,

1978-01-01T23:59:59.000Z

312

Federal Energy Decision Screening (FEDS) process at Fort Drum, New York  

SciTech Connect

The federal energy manager has been directed by the Comprehensive Energy Policy Act of 1992 (EPAct) to reduce energy consumption by 20% from 1985 levels, by the year 2000. However, the tools and funding to capture this resource in a cost-effective manner have not been provided. In an effort to assist federal agencies in meeting EPAct requirements, the Pacific Northwest Laboratory (PNL) has been tasked by the US Army Forces Command (FORSCOM) to identify, evaluate, and acquire all cost-effective energy projects at selected federal facilities. PNL has developed and applied the Federal Energy Decision Screening (FEDS) methodology at the Fort Drum FORSCOM facility near Watertown, New York. The FEDS methodology is a systematic approach to evaluating energy opportunities that result in a roadmap to significantly reduce energy use in a planned, rational, cost justified fashion over a 5 to 10 year period. At Fort Drum, the net present value (NPV) of the installed cost of all cost-effective energy resource opportunities (EROS) is over $16 million (1992 $). The NPV of the savings associated with this investment is nearly $47 million (1992 $), for an overall NPV of approximately $31 million. By implementing all the cost-effective EROS, Fort Drum will reduce annual energy use by over 230,000 MBtu, or 15%. Annual energy expenditures will decrease by over $2.4 million, or a 20% reduction.

Dixon, D.R.; Daellenbach, K.K. [Pacific Northwest Lab., Richland, WA (United States); Rowley, S.E. [Directorate of Engineering & Housing, Ft. Drum, NY (United States); Gillespie, A.H. [Army Forces Command, Ft. McPherson, GA (United States)

1993-10-01T23:59:59.000Z

313

Energy saving potential of residential HVAC options at Fort Irwin, California  

Science Conference Proceedings (OSTI)

The Pacific Northwest Laboratory (PNL) evaluated heating and cooling system options for existing family housing at Fort Irwin, California. The purpose of this work was to quantify the energy conservation potential of alternative system types and to identify the most cost-effective technology available. The conventional residential heating/cooling systems at Fort Irwin are separate propane forced-air furnaces and central air conditioners. The options examined included air- and ground-source heat pumps, a natural gas furnace with central air conditioning, and a natural-gas-fired heat pump. The most cost-effective technology applicable to Fort Irwin was found to be the high-efficiency ground-source heat pumps. If all conventional units were replaced immediately, the net energy savings would be 76,660 MBtu (80.9 TJ) per year and a reduction in electrical demand of approximately 15,000 kW-month. The initial investment for implementing this technology would be approximately $7.1 million, with a savings-to-investment ratio of 1.74.

Hadley, D.L.; Stucky, D.J.

1995-03-01T23:59:59.000Z

314

Geothermal reservoir assessment: Cove Fort-Sulphurdale Unit. Final report, September 1977-July 1979  

DOE Green Energy (OSTI)

Three exploratory geothermal wells were drilled in the Cove Fort-Sulphurdale geothermal resource area in southwestern Utah to obtain new subsurface data for inclusion in the US DOE's geothermal reservoir assessment program. Existing data from prior investigations which included the drilling of an earlier exploratory well at the Cove Fort-Sulphurdale area was also provided. Two of the wells were abandoned before reaching target depth because of severe lost circulation and hole sloughing problems. The two completed holes reached depths of 5221 ft. and 7735 ft., respectively, and a maximum reservoir temperature of 353/sup 0/F at 7320 ft. was measured. The deepest well flow was tested at the rate of 47,000 lbs/h with a wellhead temperature of 200/sup 0/F and pressure of 3 psig. Based upon current economics, the Cove Fort-Sulphurdale geothermal resource is considered to be sub-commercial for the generation of electrical power. A synopsis is given of the exploratory drilling activities and results containing summary drilling, testing, geologic and geochemical information from four exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1979-12-01T23:59:59.000Z

315

Land Cover Differences in Soil Carbon and Nitrogen at Fort Benning, Georgia  

SciTech Connect

Land cover characterization might help land managers assess the impacts of management practices and land cover change on attributes linked to the maintenance and/or recovery of soil quality. However, connections between land cover and measures of soil quality are not well established. The objective of this limited investigation was to examine differences in soil carbon and nitrogen among various land cover types at Fort Benning, Georgia. Forty-one sampling sites were classified into five major land cover types: deciduous forest, mixed forest, evergreen forest or plantation, transitional herbaceous vegetation, and barren land. Key measures of soil quality (including mineral soil density, nitrogen availability, soil carbon and nitrogen stocks, as well as properties and chemistry of the O-horizon) were significantly different among the five land covers. In general, barren land had the poorest soil quality. Barren land, created through disturbance by tracked vehicles and/or erosion, had significantly greater soil density and a substantial loss of carbon and nitrogen relative to soils at less disturbed sites. We estimate that recovery of soil carbon under barren land at Fort Benning to current day levels under transitional vegetation or forests would require about 60 years following reestablishment of vegetation. Maps of soil carbon and nitrogen were produced for Fort Benning based on a 1999 land cover map and field measurements of soil carbon and nitrogen stocks under different land cover categories.

Garten Jr., C.T.

2004-02-09T23:59:59.000Z

316

Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995  

SciTech Connect

The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

1995-07-01T23:59:59.000Z

317

METHOD OF LOCATING GROUNDS  

DOE Patents (OSTI)

ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

Macleish, K.G.

1958-02-11T23:59:59.000Z

318

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 i-Stop Mazda 3 i-Stop Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop Vehicle Dynamometer Input Document Date 11/20/2012 Advanced Powertrain Research Facility Test weight [lb] 3250 Vehicle Dynamometer Input Document Date 11/20/2012 Revision Number 1 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3250 31.2 Target B [lb/mph] Target C [lb/mph^2] 0.462 0.014 Test Fuel Information - Vehicle equipped with with i-Stop package - Manual Transmission - All tests completed in ECO mode - EPA shift schedule modified based on vehicle shift light activity Revision Number 1 Notes: Fuel type EPA Tier II EEE Gasoline Test Fuel Information - Vehicle equipped with with i-Stop package

319

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Chrysler 300 Chrysler 300 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 4250 38.61 Target B [lb/mph] Target C [lb/mph^2] 0.8894 0.01105 3.6L VVT Port-injected V-6 8 speed Transmission Revision Number 3 Notes: Test Fuel Information 3.6L VVT Port-injected V-6 8 speed Transmission Fuel type Tier II EEE HF437 3.6L VVT Port-injected V-6 8 speed Transmission Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18490 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S

320

Application to Export Electric Energy OE Docket No. EA-353 Boralex Fort Fairfield LP & Boralex Ashland LP: Federal Register Notice Vol 74 No 151  

Energy.gov (U.S. Department of Energy (DOE))

Application from Boralex Fort Fairfield LP & Boralex Ashland LP to export electric energy to Canada. Federal Register Notice Vol 74 No 151

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal heat pump energy savings performance contract at Fort Polk, LA: Lessons learned  

DOE Green Energy (OSTI)

At Fort Polk, LA the space conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHP) under an energy savings performance contract (ESPC). At the same time, other efficiency measures, such as compact fluorescent lights (CFLs), low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk ESPC was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by 6,541 kW, which is 39.6% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the ESPC has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk ESPC can provide a model for other ESPCs in both the public and the private sectors. The purpose of this paper is to outline the method by which the ESPC was engineered and implemented, both from the standpoint of the facility owner (the US Army) and the energy services company (ESCO) which is carrying out the contract. The lessons learned from this experience should be useful to other owners, ESCOs and investors in the implementation of future ESPCs. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Gordon, R. [Applied Energy Management Techniques, Corvallis, OR (United States); Giffin, T. [SAIC/The Fleming Group, East Syracuse, NY (United States)

1997-08-01T23:59:59.000Z

322

ASSESSMENT OF HYDROCARBON SEEPAGE DETECTION METHODS ON THE FORT PECK RESERVATION, NORTHEAST MONTANA  

Science Conference Proceedings (OSTI)

Surface exploration techniques have been employed in separate study areas on the Fort Peck Reservation in northeastern Montana. Anomalies associated with hydrocarbon seepage are documented in all three areas and a variety of surface exploration techniques can be compared. In a small area with established production, Head Gas and Thermal Desorption methods best match production; other methods also map depletion. In a moderate-size area that has prospects defined by 3D seismic data, Head Gas along with Microbial, Iodine, and Eh soil anomalies are all associated with the best hydrocarbon prospect. In a large area that contains many curvilinear patterns observed on Landsat images, that could represent micro-seepage chimneys, results are inconclusive. Reconnaissance mapping using Magnetic Susceptibility has identified a potential prospect; subsequent Soil Gas and Head Gas surveys suggest hydrocarbon potential. In the final year of this project the principle contractor, the Fort Peck Tribes, completed a second survey in the Wicape 3D Seismic Prospect Area (also known as Area 6 in Phase I of the project) and sampled several Landsat image features contained in the Smoke Creek Aeromag Anomaly Area (also known as Area 1 in Phase II of the project). Methods determined to be most useful in Phases I and II, were employed in this final Phase III of the study. The Southwest Wicape seismic anomaly was only partially confirmed. The abundant curvilinears proposed to be possible hydrocarbon micro-seepage chimneys in the Smoke Creek Area were not conclusively verified as such. Insufficient sampling of background data precludes affirmative identification of these mostly topographic Landsat features as gas induced soil and vegetation anomalies. However relatively higher light gas concentrations were found associated with some of the curvilinears. Based on the findings of this work the Assiniboine & Sioux Tribes of the Fort Peck Reservation intend to utilize surface hydrocarbon exploration techniques for future identification and confirmation of oil and gas prospects.

Lawrence M. Monson

2003-06-30T23:59:59.000Z

323

The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson  

SciTech Connect

This study, sponsored by the U.S. General Services Administrations Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

2013-09-30T23:59:59.000Z

324

Geothermal Direct Use Feasibility Study on the Fort Bidwell Indian Reservation  

Science Conference Proceedings (OSTI)

The Fort Bidwell Indian Reservation (FBIR) is rich in renewable energy resources. Development of its geothermal resources has the potential to profoundly affect the energy and economic future of the FBIC. Geothermal energy can contribute to making the reservation energy self-sufficient and, potentially, an energy exporter. The feasibility study assessed the feasibility of installing a geothermal district heating system to provide low-cost, efficient heating of existing and planned residences, community buildings and water, using an existing geothermal well, FB-3.

Dale Merrick

2007-04-20T23:59:59.000Z

325

Fort Devens: Cold Climate, Energy-Efficient, Market-Rate Townhomes  

SciTech Connect

In 2009, Mass Development issued an RFQ and subsequent RFP for teams to develop moderately priced high-efficiency homes on two sites within the Devens Regional Enterprise Zone. MassDevelopment, a Massachusetts agency that owns the Devens site (formerly Fort Devens Army Base, in Harvard, Massachusetts), set a goal of producing a replicable example of current and innovative sustainable building practices with a near-zero energy potential. Metric Development, as primary developer and construction manager, formed one of the successful teams that included CARB and Cambridge Seven Architects (C7A).

Zoeller, W.; Slattery, M.; Grab, J.

2013-08-01T23:59:59.000Z

326

Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin  

SciTech Connect

The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

Scott R. Reeves; Randal L. Billingsley

2004-02-26T23:59:59.000Z

327

Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high-temperature gas-cooled reactors  

Science Conference Proceedings (OSTI)

The chemical impurities in the primary coolants of the Peach Bottom and Fort St. Vrain reactors are discussed. The impurity mixtures in the two plants were quite different because the sources of the impurities were different. In the Peach Bottom reactor, the impurities were dominated by H/sub 2/ and CH/sub 4/, which are decomposition products of oil. In the Fort St. Vrain reactor, there were high levels of CO, CO/sub 2/, and H/sub 2/O. Although oil ingress at Peach Bottom created carbon deposits on virtually all surfaces, its effect on reactor operation was negligible. Slow outgassing of water from the thermal insulation at Fort St. Vrain caused delays in reactor startup. The overall graphite oxidation in both plants was negligible.

Burnette, R.D.; Baldwin, N.L.

1980-11-01T23:59:59.000Z

328

Modeling soil quality thresholds to ecosystem recovery at Fort Benning, GA, USA  

SciTech Connect

The objective of this research was to use a simple model of soil carbon (C) and nitrogen (N) dynamics to predict nutrient thresholds to ecosystem recovery on degraded soils at Fort Benning, Georgia, in the southeastern USA. Artillery, wheeled, and tracked vehicle training at military installations can produce soil disturbance and potentially create barren, degraded soils. Ecosystem reclamation is an important component of natural resource management at military installations. Four factors were important to the development of thresholds to recovery of aboveground biomass on degraded soils: (1) initial amounts of aboveground biomass, (2) initial soil C stocks (i.e., soil quality), (3) relative recovery rates of biomass, and (4) soil sand content. Forests and old fields on soils with varying sand content had different predicted thresholds for ecosystem recovery. Soil C stocks at barren sites on Fort Benning were generally below predicted thresholds to 100% recovery of desired future ecosystem conditions defined on the basis of aboveground biomass. Predicted thresholds to ecosystem recovery were less on soils with more than 70% sand content. The lower thresholds for old field and forest recovery on more sandy soils were apparently due to higher relative rates of net soil N mineralization. Calculations with the model indicated that a combination of desired future conditions, initial levels of soil quality (defined by soil C stocks), and the rate of biomass accumulation determine the predicted success of ecosystem recovery on disturbed soils.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2004-12-01T23:59:59.000Z

329

Effect of military training on indicators of soil quality at Fort Benning, Georgia  

SciTech Connect

The purpose of this research was to investigate the effects of soil disturbance on several key indicators of soil quality at Fort Benning, Georgia. Military activities at Fort Benning that result in soil disturbance include infantry, artillery, wheeled, and tracked vehicle training. Soil samples were collected along a disturbance gradient that included: (1) reference sites, (2) light military use, (3) moderate military use, (4) heavy military use, and (5) remediated sites. With the exception of surface soil bulk density, measured soil properties at reference and light use sites were similar. Relative to reference sites, greater surface soil bulk density, lower soil carbon concentrations, and less carbon and nitrogen in particulate organic matter (POM) were found at moderate use, heavy use, and remediated sites. Studies along a pine forest chronosequence indicated that carbon stocks in POM gradually increased with stand age. An analysis of soil C:N ratios, as well as soil carbon concentrations and stocks, indicated a recovery of soil quality at moderate military use and remediated sites relative to heavy military use sites. Measurements of soil carbon and nitrogen are ecological indicators that can be used by military land managers to identify changes in soil from training activities and to rank training areas on the basis of soil quality.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL; Dale, Virginia H [ORNL

2003-08-01T23:59:59.000Z

330

Seeing Savings from an ESPC Project in Fort Polk's Utility Bills  

SciTech Connect

Federal agencies have implemented many energy efficiency projects over the years with direct funding or alternative financing vehicles such as energy savings performance contracts (ESPCs). While it is generally accepted that these projects save energy and costs, the savings are usually not obvious in the utility bills. This is true for many valid technical reasons, even when savings are verified in other ways to the highest degree of certainty. However, any perceived deficiency in the evidence for savings is problematic when auditors or other observers evaluate the outcome of energy projects and the achievements of energy management programs. This report discusses under what circumstances energy savings should or should not be evident in utility bills. In the special case of a large ESPC project at the Army's Fort Polk, the analysis of utility bills carried out by the authors does unequivocally confirm and quantify savings. The data requirements and methods for arriving at definitive answers through utility bill analysis are demonstrated in our discussion of the Fort Polk project. The following paragraphs address why the government generally should not expect to see savings from ESPC projects in their utility bills. We also review lessons learned and best practices for measurement and verification (M&V) that can assure best value for the government and are more practical, straightforward, and cost-effective than utility bill analysis.

Shonder, J.A.

2005-03-08T23:59:59.000Z

331

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

332

Contour Ripping and Composted Dairy Manure for Erosion Control on Fort Hood Military Installation, Texas  

E-Print Network (OSTI)

Training activities on the Fort Hood Military Installation have imposed serious impacts to its grass-dominated landscape. Six decades of tracked vehicle impacts have caused soil compaction and vegetation reduction which has lead to severe surface erosion. This investigation examined two conservation practices directed at improving and creating sustainable training conditions on Fort Hood training lands, contour ripping and the application of composted dairy manure. The application of composted dairy manure may increase vegetation, while contour ripping may decrease discharge, both of which will lead to a decrease in erosion. Three small 0.30 ha watersheds were established on Fort Hood in January 2005. Each watershed had 0.46 m berms installed on all four sides with a 0.305 m H-flume and was equipped with automated storm sampling equipment. Soil samples were collected prior to any treatments, and twice after compost applications. Discharge and precipitation was collected continuously on each watershed. Stormwater samples were collected during storm events and analyzed for water quality parameters. Water quality samples, discharge and precipitation records were collected between January 2005 and July 2007. Three composted dairy manure application rates at 0, 28 and 57 m3 ha-1 were applied on watersheds C0, C1 and C2, respectively; watersheds were evaluated for effects on NO3 and soluble reactive phosphates (SRP) concentrations and loadings in storm events and on stormwater discharge. Twenty two months after the initial compost application, the two previously composted watersheds (C1 and C2) were treated with contour ripping and C2 received a second compost application. The compost application caused the spikes in NO3 and SRP concentrations and loads immediately after application. Both NO3 and SRP concentrations decreased as the number of days from application increased. Compost application did not appear to have an effect on the discharge from watersheds. Contour ripping had a significant effect on stormwater discharge. Contour ripping decreased discharge by 74 and 80% on C1 and C2, respectively when compared to the untreated control (C0).

Prcin, Lisa J.

2009-05-01T23:59:59.000Z

334

Fort Lewis, Yakima Firing Center, and Vancouver Barracks/Camp Bonneville basewide energy use plan; executive summary. Final report  

SciTech Connect

This Executive Summary presents an overview of a series of studies, mostly energy related, of Fort Lewis, Yakima Firing Center, Vancouver Barracks, and Camp Bonneville. Collectively, the work is known as the Basewide Energy Use Plan and is a part of the Energy Conservation Investment Program (ECIP).

Smiley, D.P.

1984-03-01T23:59:59.000Z

335

Quality site seasonal report, Fort Devens Launderette, SFBP (Solar in Federal Buildings Program) 1751, December 1984 through June 1985  

DOE Green Energy (OSTI)

The active solar Domestic Hot Water (DHW) system at the Fort Devens Launderette was designed and constructed as part of the Solar in Federal Buildings Program (SFBP). This retrofitted system was one of eight systems selected for quality monitoring. The purpose of this monitoring effort was to document the performance of quality state-of-the-art solar systems in large federal buildings. The launderette is part of the Post Exchange complex at the Fort Devens Army Post in Fort Devens, Massachusetts. The solar system preheats hot water for the coin operated laundry which has an estimated 25,000 customers per year. There are 108 collector panels comprising the 2563-square foot collector array. Collected solar energy is stored in a 3800-gallon tank. Propylene glycol is used to protect the solar array from freezing. Two immersed heat exchangers provide heat transfer from the propylene glycol to directly heat the DHW supply water in the storage tank. Auxiliary energy is supplied by gas and oil boilers. This solar system can be considered one of a kind and as such is a prototype. The lessons learned from building and operating this system should be used to correct design deficiencies and improve the performance of future solar systems for this application. Highlights of the system performance at the Fort Devens Launderette solar system during the December 1984 through June 1985 monitoring period are presented in this report.

Logee, T.L.

1987-10-15T23:59:59.000Z

336

Integrated Assessment Plan Template and Operational Demonstration for SPIDERS Phase 2: Fort Carson  

Science Conference Proceedings (OSTI)

This document contains the Integrated Assessment Plan (IAP) for the Phase 2 Operational Demonstration (OD) of the Smart Power Infrastructure Demonstration for Energy Reliability (SPIDERS) Joint Capability Technology Demonstration (JCTD) project. SPIDERS will be conducted over a three year period with Phase 2 being conducted at Fort Carson, Colorado. This document includes the Operational Demonstration Execution Plan (ODEP) and the Operational Assessment Execution Plan (OAEP), as approved by the Operational Manager (OM) and the Integrated Management Team (IMT). The ODEP describes the process by which the OD is conducted and the OAEP describes the process by which the data collected from the OD is processed. The execution of the OD, in accordance with the ODEP and the subsequent execution of the OAEP, will generate the necessary data for the Quick Look Report (QLR) and the Utility Assessment Report (UAR). These reports will assess the ability of the SPIDERS JCTD to meet the four critical requirements listed in the Implementation Directive (ID).

Barr, Jonathan L.; Tuffner, Francis K.; Hadley, Mark D.; Kreyling, Sean J.; Schneider, Kevin P.

2013-09-01T23:59:59.000Z

337

Preliminary assessment report for Fort Jacob F. Wolters, Installation 48555, Mineral Wells, Texas. Installation Restoration Program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (TXARNG) property near Mineral Wells, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Wolters property, the requirement of the Department of Defense Installation Restoration Program.

Dennis, C.B.

1993-08-01T23:59:59.000Z

338

Assessment of Hydrocarbon Seepage on Fort Peck Reservation, Northeast Montana: A Comparison of Surface Exploration Techniques  

Science Conference Proceedings (OSTI)

Surface exploration techniques have been employed in separate study areas on the Fort Peck Reservation in northeastern Montana. Anomalies associated with hydrocarbon seepage are documented in all three areas and a variety of surface exploration techniques can be compared. In a small area with established production, head gas and thermal desorption methods best match production; other methods also mapped depletion. In a moderate-size area that has prospects defined by 3D seismic data, head gas along with microbial, iodine, and Eh soil anomalies are all associated with the best hydrocarbon prospect. In a large area that contains many curvilinear patterns observed on Landsat images, results are preliminary. Reconnaissance mapping of magnetic susceptibility has identified a potential prospect; subsequent soil gas and head gas surveys suggest hydrocarbon potential.

Monson, Lawrence M.

2002-09-09T23:59:59.000Z

339

Multielement geochemistry of three geothermal wells, Cove Fort-Sulphurdale geothermal area, Utah  

DOE Green Energy (OSTI)

Multielement geochemical analysis of drill cuttings from three geothermal wells, Utah State 42-7, Utah State 31-33 and Forminco No. 1, in the Cove Fort-Sulphurdale KGRA, Utah, demonstrates that the distributions of different elements are the result of different chemical processes operating throughout the geologic history of the area. Statistical analysis of geochemical-data distributions confirm the presence of several distinct element associations. Of the 36 elements determined on the samples, 12 (V, Mo, Cd, Ag, Au, Sb, Bi, U, Te, Sn, B and Th) were present in concentrations at or below detection levels. Of the remaining 24 elements, only 3 (Ni, Co and Zr) are lognormally distributed. Distributions for the remaining elements are of aggregate populations which represent background, mineralization or other processes.

Christensen, O.D.

1982-09-01T23:59:59.000Z

340

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PSI # Date Time Location Incident Description Disposition 5308 7/1/2013 0:41 Indian Fort Medical Emergency Hiker bit by snake on trail Report Filed  

E-Print Network (OSTI)

due to unknown cause BFD Responded 5311 7/2/2013 13:15 Old Broom Craft Building Theft By Unlawful Taking Copper piping stolen from new construction BPD responded 5312 7/4/2013 13:45 James Hall Fire Alarm/6/2013 12:45 Visitor Center Theft By Unlawful Taking Older Huffy bicycle stolen from parking lot Report

Baltisberger, Jay H.

342

Mobile Alternative Fueling Station Locator  

Science Conference Proceedings (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

343

Precision zero-home locator  

DOE Patents (OSTI)

A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

Stone, William J. (Kansas City, MO)

1986-01-01T23:59:59.000Z

344

Precision zero-home locator  

DOE Patents (OSTI)

A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

Stone, W.J.

1983-10-31T23:59:59.000Z

345

Methodology for Use of Reclaimed Water at Federal Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Fort Carson Golf Course, irrigated with reclaimed water. Water can be reused in three main ways: 1. Water Recycle: Discharge water from an application or process is used again in...

346

Effects of Heavy, Tracked-Vehicle Disturbance on Forest Soil Properties at Fort Benning, Georgia  

Science Conference Proceedings (OSTI)

The purpose of this report is to describe the effects of heavy, tracked-vehicle disturbance on various measures of soil quality in training compartment K-11 at Fort Benning, Georgia. Predisturbance soil sampling in April and October of 2002 indicated statistically significant differences in soil properties between upland and riparian sites. Soil density was less at riparian sites, but riparian soils had significantly greater C and N concentrations and stocks than upland soils. Most of the C stock in riparian soils was associated with mineral-associated organic matter (i.e., the silt + clay fraction physically separated from whole mineral soil). Topographic differences in soil N availability were highly dependent on the time of sampling. Riparian soils had higher concentrations of extractable inorganic N than upland soils and also exhibited significantly greater soil N availability during the spring sampling. The disturbance experiment was performed in May 2003 by driving a D7 bulldozer through the mixed pine/hardwood forest. Post-disturbance sampling was limited to upland sites because training with heavy, tracked vehicles at Fort Benning is generally confined to upland soils. Soil sampling approximately one month after the experiment indicated that effects of the bulldozer were limited primarily to the forest floor (O-horizon) and the surface (0-10 cm) mineral soil. O-horizon dry mass and C stocks were significantly reduced, relative to undisturbed sites, and there was an indication of reduced mineral soil C stocks in the disturbance zone. Differences in the surface (0-10 cm) mineral soil also indicated a significant increase in soil density as a result of disturbance by the bulldozer. Although there was some tendency for greater soil N availability in disturbed soils, the changes were not significantly different from undisturbed controls. It is expected that repeated soil disturbance over time, which will normally occur in a military training area, would simply intensify the changes in soil properties that were measured following a one-time soil disturbance at the K-11 training compartment. The experiment was also useful for identifying soil measurements that are particularly sensitive to disturbance and therefore can be used successfully as indicators of a change in soil properties as a result of heavy, tracked-vehicle traffic at Fort Benning. Measurements related to total O-horizon mass and C concentrations or stocks exhibited changes that ranged from {approx}25 to 75% following the one-time disturbance. Changes in surface (0-10 cm) mineral soil density or measures of surface soil C and N following the disturbance were less remarkable and ranged from {approx}15 to 45% (relative to undisturbed controls). Soil N availability (measured as initial extractable soil N or N production in laboratory incubations) was the least sensitive and the least useful indicator for detecting a change in soil quality. Collectively, the results suggest that the best indicators of a change in soil quality will be found at the soil surface because there were no statistically significant effects of bulldozer disturbance at soil depths below 10 cm.

Garten, C.T.,JR.

2004-05-20T23:59:59.000Z

347

Eigenvalue sensitivity studies for the Fort St. Vrain high temperature gas-cooled reactor to account for fabrication and modeling uncertainties  

SciTech Connect

Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3) a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)

Pavlou, A. T.; Betzler, B. R.; Burke, T. P.; Lee, J. C.; Martin, W. R.; Pappo, W. N.; Sunny, E. E. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

348

Modeling Soil Quality Thresholds to Ecosystem Recovery at Fort Benning, Georgia, USA  

DOE Green Energy (OSTI)

The objective of this research was to use a simple model of soil C and N dynamics to predict nutrient thresholds to ecosystem recovery on degraded soils at Fort Benning, Georgia, in the southeastern USA. The model calculates aboveground and belowground biomass, soil C inputs and dynamics, soil N stocks and availability, and plant N requirements. A threshold is crossed when predicted soil N supplies fall short of predicted N required to sustain biomass accrual at a specified recovery rate. Four factors were important to development of thresholds to recovery: (1) initial amounts of aboveground biomass, (2) initial soil C stocks (i.e., soil quality), (3) relative recovery rates of biomass, and (4) soil sand content. Thresholds to ecosystem recovery predicted by the model should not be interpreted independent of a specified recovery rate. Initial soil C stocks influenced the predicted patterns of recovery by both old field and forest ecosystems. Forests and old fields on soils with varying sand content had different predicted thresholds to recovery. Soil C stocks at barren sites on Fort Benning generally lie below predicted thresholds to 100% recovery of desired future ecosystem conditions defined on the basis of aboveground biomass (18000 versus 360 g m{sup -2} for forests and old fields, respectively). Calculations with the model indicated that reestablishment of vegetation on barren sites to a level below the desired future condition is possible at recovery rates used in the model, but the time to 100% recovery of desired future conditions, without crossing a nutrient threshold, is prolonged by a reduced rate of forest growth. Predicted thresholds to ecosystem recovery were less on soils with more than 70% sand content. The lower thresholds for old field and forest recovery on more sandy soils are apparently due to higher relative rates of net soil N mineralization in more sandy soils. Calculations with the model indicate that a combination of desired future conditions, initial levels of soil quality (defined by soil C stocks), and the rate of biomass accumulation determines the predicted success of ecosystem recovery on disturbed soils.

Garten Jr., C.T.

2004-03-08T23:59:59.000Z

349

Development of a Monitoring and Verification (M&V) Plan and Baseline for the Fort Hood ESPC Project  

E-Print Network (OSTI)

Fort Hood has selected an Energy Services Performance Contract (ESPC) contractor to help achieve its energy reduction goals as mandated by Executive Order. This ESPC is expected to be a $3.8 million, 20 year contract, which includes five primary types of Energy Conservation Measures (ECMs) in 56 buildings, and includes boiler insulation, control system upgrades, vending machine controls, cooling tower variable frequency drives (VFDs), and lighting retrofits. The plan of action for the ESPC includes cost effective M&V, using IPMVP Options B and C for the first two years after the retrofits are installed, and Option A combined with annual performance verification for the remainder of the contract. This paper discusses the development the Measurement and Verification (M&V) Plan for the Fort Hood Energy Services Performance Contract, and includes results of the baseline calculations (Haberl et al. 2002, 2003b).

Haberl, J. S.; Liu, Z.; Baltazar-Cervantes, J. C.; Lynn, B.; Underwood, D.

2004-01-01T23:59:59.000Z

350

DOE/EA-1354; Environmental Assessment for the Fort Collins 115kV Transmission Line Upgrade Project (12/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Administration Western Area Power Administration Fort Collins 115-kV Transmission Line Upgrade Project, Fort Collins, Colorado. AGENCY: Western Area Power Administration, DOE ACTION: Finding of no significant impact SUMMARY: The Department of Energy (DOE), Western Area Power Administration (Western) is the lead federal agency for a proposed project to upgrade the electric transmission system in the Fort Collins, Colorado area. Platte River Power Authority (Platte River) is proposing to add additional generation at its Rawhide Power Plant, to rebuild and upgrade segments of Western's existing Flatiron-Poudre and Poudre-Richard's Lake 115-kilovolt (kV) transmission lines, and to install additional 230 kV transmission to Platte River's existing electrical system. Western prepared an environmental assessment (EA) titled "Fort Collins 115kV Transmission

351

Fort Hood solar total energy project: technical support and systems integration. Third semiannual report, May 1, 1979-October 31, 1979  

DOE Green Energy (OSTI)

Work on the Fort Hood STES which was planned by DOE as a Large Scale Experiment for the Solar Total Energy Program is described. The history of the design evolution and management of the project which began in 1973 is summarized. The project was discontinued by DOE in December 1979. Supporting studies underway at the time are reported including: (1) reassessment of energy loads, (2) revised system concept, (3) plant sizing calculations, and (4) insolation variation measurement planning. (WHK)

Not Available

1980-02-01T23:59:59.000Z

352

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

353

Study of well logs from Cove Fort-Sulphurdale KGRA, Millard and Beaver Counties, Utah  

DOE Green Energy (OSTI)

Union Oil Company drilled four geothermal test wells in the Cove Fort-Sulphurdale KGRA between 1975 and 1979. A fairly complete suite of well logs were recorded for the three deeper holes, and these data are presented as composite well log plots in this report. The composite well log plots have facilitated the interpretation of limestone, dolomite, sandstone, quartz-monzonite, serpentine, and volcanic lithologies and the identification of numerous fractures. This has been especially helpful because of the extensive lost circulaton zones and poor cuttings recovery. Intraformational flow was identified by a fluid migration-temperature tracer log at depth in CFSU 31-33. Well log crossplots were computed to assist in lithologic identification and the determination of physical properties for specific depth intervals in a given hole. The presence of hydrous minerals sometimes results in neutron porosity somewhat higher than the true nonfracture porosity, which is generally less than 4%. Permeability is clearly controlled by fractures. A maximum well temperature of 178.9/sup 0/C, low flow rates and low probable percent flash indicate these wells are subeconomic for electric generation at present. The well log study has substantially improved our understanding of the reservoir as presently drilled.

Glenn, W.E.; Ross, H.P.

1982-07-01T23:59:59.000Z

354

Energy survey of Army Laundry Facilities, Fort Bragg, North Carolina. Executive summary. Final report  

SciTech Connect

This Final Report details Energy Conservation Opportunities (ECOs) for the Laundry and Boiler Plant at Fort Bragg, North Carolina. The ECOs noted in the table on the next page were evaluated for individual energy savings and are recommended for implementation. The energy savings and implementation costs for each measure are summarized on the following page in order of decreasing savings-to-investment (SIR) ratio. ECIP life cycle cost analyses were performed on all ECOs as a preliminary step, though all of the measures will fall into other funding categories. Because of the high internal heat gain produced in the Laundry, coupled with the fact that the laundry is not air conditioned, building envelope measures do not produce any energy savings. The most viable ECOs are related to the Boiler Plant (Boiler Replacement), recovering energy wasted in the wash water (Rinse Water Reuse) or utilizing Low Temperature Wash Water, and Changing the Hours of Laundry Operation. Additional operation and maintenance items are listed that can be addressed by the Directorate of Engineering and Housing (DEH) or the Laundry contractor, Integrity Management International, Inc., to generate quick energy savings. There are also several items included that will not produce energy savings but will improve the comfort level of the Laundry. These items should be given consideration as a method of improving productivity and/or employee morale. All ECOs evaluated by the project team are described in detail with engineering calculations for each following in Appendix 2.

1985-12-31T23:59:59.000Z

355

Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis  

SciTech Connect

DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

Taylor, Larry Lorin

2001-01-01T23:59:59.000Z

356

Information about DOE Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information about DOE Locations Information about DOE Locations The following chart provides information about the FOIA program at each of the locations. You can link to the...

357

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with...

358

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

359

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

360

The Cove Fort-Sulphurdale KGRA, a geologic and geophysical case study  

DOE Green Energy (OSTI)

Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the major structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.

Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington  

SciTech Connect

The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

1990-08-01T23:59:59.000Z

362

Energy end-use metering in two modular office buildings at Fort Irwin, California  

SciTech Connect

This report documents the application of the Mobile Energy Laboratory (MEL) at Fort Irwin for the period 21 December 1989 to 27 January 1992. The purpose of the test was to monitor electrical demands in Buildings 567 and 571 by end use and to monitor the response of the HVAC systems to internal and external loads. Results of two years of monitoring are summarized below. The observed energy-use intensities (EUIs) were 13.7 kWh/ft{sup 2}-yr for Building 567 and 10.4 kWh/ft{sup 2}-yr for Building 571. The corresponding numbers for HVAC energy were 5.9 and 5.3 kWh/ft{sup 2}-yr. Lighting used about 35%, primary HVAC 40% (heating 8%, cooling 32%), supply fans 3% and other equipment (mostly plug loads) about 20% of the total. Over 10% of the primary HVAC energy used in Building 567 was the result of simultaneous heating and cooling. Six energy conservation measures were evaluated: (1) delamping and retrofit of T-12 fluorescent fixtures with T-8 systems; (2) installation of two-speed fans with operation at the lower speed (67% of rated airflow) during occupied periods whenever a unit is not heating or cooling; (3) retrofit of heat pump compressors with two-speed compressors; (4) installation of controls that eliminate non-productive simultaneous heating and cooling and provide improved night and weekend setback; (5) coating the existing black roof material with a white reflective material; and (6) adding an economizer system to provide outside air cooling. The estimated energy savings as a percent of whole-building energy use are: Lighting HVAC Savings -- 26%; Two-Speed Fans -- 2%; Two-Speed Compressors -- 11%; Improved HVAC Controls -- 5%; White Roof Coating -- 5%; Economizer Cooling -- 5 %. The total energy savings that can be achieved through the measures is 49%.

Armstrong, P.R.; Keller, J.M.

1994-01-01T23:59:59.000Z

363

Vacuum State/Refiner/Location  

U.S. Energy Information Administration (EIA) Indexed Site

Vacuum Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 130,000 0 48,000 32,000 0 0 0 Goodway Refining LLC 4,100 0 5,000 0 0 0 0 0 0 ....................................................................................................................................................................................................

364

North American Technician Excellence Wayne Reedy  

E-Print Network (OSTI)

Pumps Gas Furnaces Oil Furnaces Hydronic Gas Hydronic Oil Light Commercial Refrigeration Commercial and light HVACR commercial technicians in air conditioning, air distribution, heat pump, gas heating and oil heating, heat pump, and oil heating) contains 100 questions about the skills, tasks and objects needed

Oak Ridge National Laboratory

365

Wayne Troyer & Associates | Open Energy Information  

Open Energy Info (EERE)

LA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

366

Wayne Hoggard Southeast Fisheries Science Center  

E-Print Network (OSTI)

Frederic Street. Pascagoula, Mississippi 39568 Aerial survey of giant bluefin tuna, Thunnus thynnus@neaq.org. 300 Abstract.-Aerial surveys were con- ducted daily from 19 May to 9 June 1995 to document bluefin tuna in this region and to compare our results with previous aerial surveys conducted in the 1950

367

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels Project Locations Pacific Ethanol (Boardman, OR) BlueFire Ethanol (Corona, CA) POET (Emmetsburg, IA) Lignol Innovations (Commerce City, CO) ICM (St. Joseph, MO) Abengoa (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage (Wisconsin Rapids, WI) Range Fuels (Soperton, GA) DSM Innovation Center (Parsippany, NJ) Novozymes (Davis, CA) Genencor (Palo Alto, CA) Verenium Corp (San Diego, CA) Dupont (Wilmington, DE) Mascoma (Lebanon, NH) Cargill Inc (Minneapolis, MN) Regional Partnerships South Dakota State University, Brookings, SD Cornell University, Ithaca, NY University of Tennessee, Knoxville, TN Oklahoma State University, Stillwater, OK Oregon State University, Corvallis, OR

368

The LHCb Vertex Locator performance and Vertex Locator upgrade  

E-Print Network (OSTI)

LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 $\\rm \\mu$m. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 10$^{16}$ 1 MeV$\\rm n_{eq}/cm^2$, more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 $\\rm \\mu m$ pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current status of the VELO will be described together with recent testbeam results.

Pablo Rodrguez Prez; for the LHCb VELO Group; for the VELO Upgrade group

2012-09-21T23:59:59.000Z

369

Preliminary assessment report for National Guard Training Center, Georgia Army National Guard, Fort Stewart, Georgia. Installation restoration program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Georgia Army National Guard (GAARNG) facility near Hinesville, Georgia, known as the National Guard Training Center (NGTC). Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a priority basis for completing corrective actions (where necessary) in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining previous site activities, types and quantities of hazardous substances utilized, and potential pathways by which contamination could affect public health and the environment. The scope of this assessment is limited to the facilities and past activities contained within the NGTC. Preliminary assessment site score sheet information is also provided for the NGTC. However, this assessment report is intended to be read in conjunction with a previous IRP assessment of Fort Stewart completed in 1992 (USATHAMA 1992) and to provide comprehensive information on the NGTC area for incorporation with information contained in that previous assessment for the entirety of Fort Stewart.

Not Available

1993-07-01T23:59:59.000Z

370

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Final report  

SciTech Connect

The Federal government is the largest single energy consumer in the United States with consumption of nearly 1.5 quads/year of energy (10{sup 15} quad = 1015 Btu) and cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP) seeks to evaluate new energy -- saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This report provides the results of a field evaluation that PNL conducted for DOE/FEMP with funding support from the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of 4 candidate energy-saving technology-a water heater conversion system to convert electrically powered water heaters to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-12-01T23:59:59.000Z

371

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

Science Conference Proceedings (OSTI)

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

372

American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 282 Renewable Energy Opportunities at Fort Gordon, Georgia  

DOE Green Energy (OSTI)

This document provides an overview of renewable resource potential at Fort Gordon, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the American Recovery and Reinvestment Act (ARRA) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment. The site visit to Fort Gordon took place on March 9, 2010.

Boyd, Brian K.; Gorrissen, Willy J.; Hand, James R.; Horner, Jacob A.; Orrell, Alice C.; Russo, Bryan J.; Weimar, Mark R.; Williamson, Jennifer L.; Nesse, Ronald J.

2010-09-30T23:59:59.000Z

373

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Allen County Schools EE CDP 115.10 BETD 2010 Judith Dyer 712010 - 3312011 Fort Wayne, IN Summit Middle School Green Roof Replace the existing roof with a sustainable...

374

Ultra Soy of America DBA USA Biofuels | Open Energy Information  

Open Energy Info (EERE)

Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name Ultra Soy of America (DBA USA Biofuels) Place Fort Wayne, Indiana Zip 46898 Sector Biofuels Product An...

375

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23% 77% Bowling Green 61% 30% 91% CAMI n a n a n a Fairfax Assy & Contig 49% 21% 70% Flint Assy 49% 19% 68% Fort Wayne 58% 21% 79% Hamtramck 63% 37% 100% Lansing Delta Twp Assy...

376

Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth  

E-Print Network (OSTI)

-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A) Ruarri J. Day-Stirrat a in revised form 8 April 2008 Accepted 16 April 2008 Keywords: Barnett Shale Goniometry Concretions Fabric Calcite-cemented zones in the prolific gas-producing Barnett Shale (Ft. Worth Basin, Texas) preserve very

377

Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report  

DOE Green Energy (OSTI)

The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

None,

1979-01-01T23:59:59.000Z

378

Gravity survey of the Cove Fort-Sulphurdale KGRA and the north Mineral Mountains area, Millard and Beaver Counties, Utah  

DOE Green Energy (OSTI)

During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort-Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver Counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid) in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively.

Brumbaugh, W.D.; Cook, K.L.

1977-08-01T23:59:59.000Z

379

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

380

Maps & Directions | Custom Map Location | Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Want to share a specific location with others? Drag the marker pin to a new location and then share the following URL: http:www.bnl.govmapspoint.php?Lat40.86827&Lng-72.88113...

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a...

382

Factors of characteristic words: Location and decompositions  

Science Conference Proceedings (OSTI)

Let @a be an irrational number with 0Keywords: Characteristic word, Decomposition, Location, Overlap factor, Return words, Separate factor

Wai-Fong Chuan; Hui-Ling Ho

2010-06-01T23:59:59.000Z

383

Optimal Location of Vertical Wells: Decomposition Approach  

E-Print Network (OSTI)

Optimal Location of Vertical Wells: Decomposition Approach M. G. Ierapetritou and C. A. Floudas®elopment plan with well locations, gi®en a reser®oir property map and a set of infrastructure constraints, represents a ®ery challenging prob- lem. The problem of selecting the optimal ®ertical well locations

384

Location tracking via social networking sites  

Science Conference Proceedings (OSTI)

The use of social media has steadily grown in recent years, and now more than ever, people are logging on to websites like Facebook, Twitter, Foursquare, and Google Latitude with the aim of broadcasting their location information. The ability to 'check ... Keywords: disclosure, intention, location-based services, location-tracking, social networking, trust

Lisa Thomas; Pam Briggs; Linda Little

2013-05-01T23:59:59.000Z

385

Location, Decentralization, and Knowledge Sources for Innovation  

Science Conference Proceedings (OSTI)

When firms seek to innovate, they must decide where to locate their innovation activity. This location choice requires firms to make a simultaneous choice about the organizational structure of innovation activity: almost by definition, multiple locations ... Keywords: decentralization, imitative innovation, new-to-the-market innovation, research and development

Aija Leiponen; Constance E. Helfat

2011-05-01T23:59:59.000Z

386

Open neighborhood locating-dominating in trees  

Science Conference Proceedings (OSTI)

For a graph G that models a facility or a multiprocessor network, detection devices can be placed at the vertices so as to identify the location of an intruder such as a thief or saboteur or a faulty processor. Open neighborhood locating-dominating sets ... Keywords: Domination, Open neighborhood locating-dominating set

Suk J. Seo; Peter J. Slater

2011-03-01T23:59:59.000Z

387

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

388

Locational analysis for the aluminum industry  

SciTech Connect

A locational analysis for the aluminum industry suggests that its locational pattern is probably even more clear-cut than that of the steel industry. Because the smelting of alumina into aluminum requires a very large amount of electric power, aluminum has become an industry highly oriented to cheap-power locations. A quick analysis, taking into account present technological and economic conditions, reveals that the potential advantages of the minimum-transport-cost location for an aluminum plant are clearly outweighed by the large power cost savings accruing from locating the plant at a cheap-power location. This holds true even with a fairly small differential in power rates between the two locations.

Isard, W.; Parcels, L.

1977-12-01T23:59:59.000Z

389

Baseline Report for the Fort Hood Army Base: Sept. 1, 2002 - Aug. 31, 2003  

E-Print Network (OSTI)

This report presents electricity, natural gas and cooling baselines for the thermal plant, buildings located in the 87000 block, III Corp building and other buildings that were determined to be part of the ESPC project at Ft. Hood. A baseline analysis is also presented for the natural gas consumption for the Ft. Hood Army base. The weather-independent analysis, which utilizes 24-hour profiles that were developed using ASHRAE??s 1093-RP diversity factor procedures are presented for data obtained from portable loggers attached to Watt-hour meters in selected buildings as well as data from the Main, West and North Substations.

Haberl, J. S.; Baltazar-Cervantes, J. C.; Liu, Z.; Claridge, D. E.; Turner, W. D.

2003-01-01T23:59:59.000Z

390

Of teapot dome, Wind river and Fort chaffee: Federal oil and gas resources  

Science Conference Proceedings (OSTI)

The move from a location system to a leasing system for the development of federally owned oil and gas was a controversial and hard fought step. Like most programs for commercial use of public lands, the oil and gas leasing system has been the target of criticism for fraud. A review of the decisions of the US DOI disclose that DOI`s role has evolved from one largely developed to resolving disputes between competing applicants for a lease to one more concerned with the requirements of the National Environmental Policy Act. This article presents a review of decisions.

Lindley, L.

1995-12-31T23:59:59.000Z

391

Methodology for Use of Reclaimed Water at Federal Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Carson Golf Course, irrigated with reclaimed water. Fort Carson Golf Course, irrigated with reclaimed water. Water can be reused in three main ways: 1. Water Recycle: Discharge water from an application or process is used again in the same application, such as recycling the final laundry rinse water for the next cycle. 2. On-site Water Reuse: Discharge water from one application or process that is captured, minimally treated, and is utilized in another application. Examples include gray water (1) reused for toilet or urinal flushing. 3. Water Reclaim: Also termed, reclaimed wastewater, is effluent generated by a wastewater treat- ment facility that is treated to a level that is appropriate for use in another application. Examples

392

Our Locations | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations | National Nuclear Security Administration Locations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Locations Home > About Us > Our Locations Our Locations The NNSA's nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear security experience. That history and technical expertise enables NNSA to

393

Our Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Locations | National Nuclear Security Administration Locations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Locations Home > About Us > Our Locations Our Locations The NNSA's nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear security experience. That history and technical expertise enables NNSA to

394

Helicopter magnetic survey conducted to locate wells  

Science Conference Proceedings (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

395

Fort Collins Utilities - Fort Collins Utilities - Residential...  

Open Energy Info (EERE)

Eligible Technologies Building Insulation, Clothes Washers, Doors, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Water Heaters, Windows,...

396

Distribution Fault Location and Waveform Characterization  

Science Conference Proceedings (OSTI)

Automated fault location algorithms for distribution systems require monitoring equipment to record voltage and current waveforms during an event. In addition, most of these algorithms require circuit-impedance parameters to evaluate the fault location. Locating incipient faults and fault waveform characterization is the main aim of this project. This project builds on work done in 2008 towards sub-cycle blip identification using an algorithm based on arc voltage.

2009-12-11T23:59:59.000Z

397

Benchmarking of Fault-Location Technologies  

Science Conference Proceedings (OSTI)

This report resumes the studies on fault-location technologies that were conducted in 2009. These studies were undertaken in a joint project done with the collaboration of Hydro-Qubec, Long Island Power Authority, and the Electric Power Research Institute (EPRI). Two fault-location technologies were tested, the Reactance to Fault (RTF) implemented in the PQView application and the Voltage Drop Fault Location (VDFL) implemented in the MILE application. The RTF is based on substation voltage and current me...

2011-03-31T23:59:59.000Z

398

Russian Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Russian Locations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

399

Locating Restricted Facilities on Binary Maps  

E-Print Network (OSTI)

The encoding could represent clean and polluted areas or desirable and undesirable zones. For this encoding, we consider several facility location problems to...

400

The Facility Location Problem with Bernoulli Demands  

E-Print Network (OSTI)

Abstract. In this paper we address a discrete capacitated facility location problem in which ...... The type of instance for FLPBD (1, 2, 3, or 4) as described above.

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2010 Hyundai LPI Hybrid Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai LPI Hybrid Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Alternative Fuel Hybrid...

402

2010 Volkswagen Golf TDI Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Golf TDI Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop Vehicle...

403

Procurement Information by Location | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement Information by Location Procurement Information by Location Procurement Information by Location As part of our Small Business Opportunity Tool, we are offering information about historical procurement by location. Find historical procurement data by state - check out the list of states below, and click on the state's name to learn more about their current programs and past procurement needs. Click on the state to learn more about our current procurement activity: California Colorado District of Columbia Georgia Idaho Illinois Iowa Louisana Maryland Missouri Nevada New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania South Carolina Tennessee Texas Virginia West Virginia Washington Wyoming

404

Sandia National Laboratories: Locations: Albuquerque, New Mexico...  

NLE Websites -- All DOE Office Websites (Extended Search)

Albuquerque Housing Education Recreation Locations Life in Albuquerque Photo of New Mexico landscape Albuquerque is New Mexico's largest city, with a population of more than...

405

Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA  

Science Conference Proceedings (OSTI)

As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

2006-03-31T23:59:59.000Z

406

Robotic location of underground chemical sources  

Science Conference Proceedings (OSTI)

This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources ... Keywords: Chemical diffusion, Chemical source location, De-mining, Robotics

R. Andrew Russell

2004-01-01T23:59:59.000Z

407

Adding Speech to Location-based Services  

Science Conference Proceedings (OSTI)

The first generation of Location-based Services (LBSs) did not succeed on the market. In order to prepare LBSs of the next generation for the challenges of pervasive service execution in different situations (e.g. while walking on the street or while ... Keywords: Human Computer Interaction (HCI), Location-based Services, Multimodality, Spoken Dialogue Systems

Patrick Nepper; Georg Treu; Axel Kpper

2008-02-01T23:59:59.000Z

408

Proxying location update for idle mode interfaces  

Science Conference Proceedings (OSTI)

In cellular networks it is the mobile node's responsibility to update the network about its location change, especially when this one enters idle mode. We developed a new framework [8] where the idle interface is powered-off to save energy and thus could ... Keywords: MIH services, idle/active mode, location-update, proxied interface, proxied multi-radio interface, proxy entity

Hicham Mahkoum; Abdelhakim S. Hafid; Behcet Sarikaya

2010-06-01T23:59:59.000Z

409

180 x 120: designing alternate location systems  

Science Conference Proceedings (OSTI)

Using 180 RFID tags to track and plot locations over time, guests to an event at the San Francisco Museum of Modern Art (SFMOMA) collectively constructed a public visualization of the individual and group activities by building a history of movement ... Keywords: RFID, crowds, design, location tracking, tessellation

Eric Paulos; Anthony Burke; Tom Jenkins; Karen Marcelo

2007-11-01T23:59:59.000Z

410

Location-Based sponsored search advertising  

Science Conference Proceedings (OSTI)

The proliferation of powerful mobile devices with built-in navigational capabilities and the adoption in most metropolitan areas of fast wireless communication protocols have recently created unprecedented opportunities for location-based advertising. ... Keywords: game theory, location-based advertising, nash equilibrium

George Trimponias, Ilaria Bartolini, Dimitris Papadias

2013-08-01T23:59:59.000Z

411

Major DOE Biofuels Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Slide 1 Major DOE Biofuels Project Locations...

412

Property:Event/Location | Open Energy Information  

Open Energy Info (EERE)

Location Location Jump to: navigation, search Property Name Event/Location Property Type String Description The location in which an event will occur. Examples: 'Golden, Colorado' or 'Prestigious Hotel: 11 Rue Leroy, Paris, France'. Pages using the property "Event/Location" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + Paris, France + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + Paris, France + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + Pretoria, South Africa + 18th Africa Partnership Forum + Paris, France + 2 2012 Bonn Climate Change Conference + Bonn, Germany + 7 7th Asia Clean Energy Forum + Manila, Philippines +

413

Property:UtilityLocation | Open Energy Information  

Open Energy Info (EERE)

UtilityLocation UtilityLocation Jump to: navigation, search Property Name UtilityLocation Property Type Boolean Description Indicates this is the "mailing" location of the Utility. Usually is Yes if the information from EIA Form 861 File1_a is on the page. Pages using the property "UtilityLocation" Showing 25 pages using this property. (previous 25) (next 25) 3 3 Phases Energy Services + true + 4 4-County Electric Power Assn + true + A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + AP Holdings LLC + true + APN Starfirst, L.P. + true + APNA Energy + true + Accent Energy Holdings, LLC + true +

414

Automated Fault Location In Smart Distribution Systems  

E-Print Network (OSTI)

Fault location in distribution systems is a critical component of outage management and service restoration, which directly impacts feeder reliability and quality of the electricity supply. Improving fault location methods supports the Department of Energy (DOE) Grid 2030 initiatives for grid modernization by improving reliability indices of the network. Improving customer average interruption duration index (CAIDI) and system average interruption duration index (SAIDI) are direct advantages of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs) installed along the feeders is quite feasible. How this may be done and what is the needed methodology to come to such solution is raised and then systematically answered. To reach this goal, the following tasks are carried out: 1) Existing fault location methods in distribution systems are surveyed and their strength and caveats are studied. 2) Characteristics of IEDs in distribution systems are studied and their impacts on fault location method selection and implementation are detailed. 3) A systematic approach for selecting optimal fault location method is proposed and implemented to pinpoint the most promising algorithms for a given set of application requirements. 4) An enhanced fault location method based on voltage sag data gathered from IEDs along the feeder is developed. The method solves the problem of multiple fault location estimations and produces more robust results. 5) An optimal IED placement approach for the enhanced fault location method is developed and practical considerations for its implementation are detailed.

Lotfifard, Saeed

2011-08-01T23:59:59.000Z

415

DOE/EA-1354; Environmental Assessment for the Fort Collins 115kV Transmission Line Upgrade Project (12/2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL ASSESSMENT ENVIRONMENTAL ASSESSMENT FOR THE FORT COLLINS 115kV TRANSMISSION LINE UPGRADE PROJECT Prepared for: Platte River Power Authority and U.S. Department of Energy Western Area Power Administration DOE/EA 1354 September 2001 i TABLE OF CONTENTS SUMMARY ............................................................................................................... S-1 1.0 INTRODUCTION ...............................................................................................1-1 1.1 DESCRIPTION OF PROPOSED PROJECT .................................................................. 1-1 1.3 PURPOSE OF ENVIRONMENTAL ASSESSMENT....................................................

416

Fort St. Vrain Decommissioning: Public Relations and Human Resources Issues: Personnel Plans and Communications During Decommissioni ng of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report details aspects of the personnel plan instrumental in the successful decommissioning of Fort St. Vrain nuclear power plant. It includes discussion of the personnel retention program, actions taken to mitigate harassment and intimidation issues, and the communications plan. The report also discusses some decommissioning pitfalls encountered, signs of trouble brewing, and ways to mitigate personnel problems before they become serious issues. Project managers designed the document to be generic ...

1998-02-13T23:59:59.000Z

417

NOx, SOx and CO2 Emissions Reduction from Continuous Commissioning (CC) Measures at the Rent-A-Car Facility in the Dallas-Fort Worth International Airport  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL) at the Texas Engineering Experiment Station, Texas A&M University System was contracted to fulfill a Continuous Commissioning (CC)project on the Rent-a-Car facility (RAC) of the Dallas-Fort Worth International Airport (DFWIA) in which energy savings are directly related to an emission reduction that can be credited. The purpose of this study is to estimate the creditable emissions reductions from energy efficiency CC measures in the RAC of DFWIA.

Baltazar-Cervantes, J. C.; Haberl, J. S.; Yazdani, B.

2006-10-27T23:59:59.000Z

418

Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet)  

SciTech Connect

Achieving aggressive energy efficiency targets requires tight coordination and clear communication among owners, designers, builders, and subcontractors. For this townhome project, MassDevelopment, the quasi-governmental agency owner, selected Metric Development of Boston, teaming with the U.S. Department of Energy (DOE) Consortium for Advanced Residential Buildings (CARB) and Cambridge Seven Architects, to build very high performing market-rate homes. Fort Devens is part of a decommissioned army base in working-class Harvard, Massachusetts, approximately one hour northwest of Boston. The team proposed 12 net zero energy-ready townhomes, meaning that the application of renewable energy systems would result in annual net zero energy use in the homes. The homes were also designed to achieve a Home Energy Rating System (HERS) Index Score of 41 before adding renewables. For this project, CARB drew on its experience working with Rural Development Inc. on a series of affordable townhomes in northern Massachusetts. The team carefully planned the site to maximize solar access, daylighting, and efficient building forms. The basic strategy was to design a very efficient thermal enclosure while minimizing incremental cost increases compared with standard construction. Using BEopt modeling software, the team established the requirements of the enclosure and investigated multiple assembly options. They settled on double-wall construction with dense-pack cellulose fill. High performance vinyl windows (U-0.24, solar heat gain coefficient [SHGC]-0.22), a vented R-59 attic, and exceptional air sealing completed the package.

Metzger, C.; Zoeller, W.

2013-11-01T23:59:59.000Z

419

Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel  

Science Conference Proceedings (OSTI)

This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository.

Hertzler, T. [Science Applications International Corp., Idaho Falls, ID (United States)

1993-02-01T23:59:59.000Z

420

Multielement geochemical exploration data for the Cove Fort-Sulphurdale Known Geothermal Resource Area, Beaver and Millard counties, Utah  

DOE Green Energy (OSTI)

Multielement geochemical exploration data have been acquired for the Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA). This was accomplished by analysis of both whole rock and +3.3 specific gravity concentrate samples from cuttings composites collected from shallow rotary drill holes. Areal distributions are reported for arsenic, mercury, lead and zinc. These are elements indicated by previous studies to be broadly zoned around thermal centers in geothermal systems and thus to be useful for selecting and prioritizing drilling targets. Results from this work suggest that reservoir temperature and/or reservoir to surface permeability, and thus possibly overall potential for a geothermal resource, increase northward beneath the approximately 18 square mile area containing shallow drill holes, possibly to beyond the northern limits of the area. The data provide a basis for development of three principal target models for the geothermal system but do not permit prioritization of these models. It is recommended that geochemical, geological, and temperature gradient surveys be expanded northward from the present survey area to more fully define the area which appears to have the best resource potential and to aid prioritization of the target models.

Bamford, R.W.; Christensen, O.D.

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah  

DOE Green Energy (OSTI)

The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

1978-12-01T23:59:59.000Z

422

Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report  

DOE Green Energy (OSTI)

This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

None,

1979-01-01T23:59:59.000Z

423

ATU/Fort Hood Solar Total Energy Military Large-Scale Experiment (LSE-1): system design and support activities. Final report, November 23, 1976-November 30, 1977  

SciTech Connect

The ATU/Fort Hood Solar Total Energy System will include a concentrating solar collector field of several acres. During periods of direct insolation, a heat-transfer fluid will be circulated through the collector field and thus heated to 500 to 600/sup 0/F. Some of the fluid will be circulated through a steam generator to drive a turbine-generator set; additional fluid will be stored in insulated tanks for use when solar energy is not available. The electrical output will satisfy a portion of the electrical load at Fort Hood's 87,000 Troop Housing Complex. Heat extracted from the turbine exhaust in the form of hot water will be used for space heating, absorption air conditioning, and domestic water heating at the 87,000 Complex. Storage tanks for the hot water are also included. The systems analysis and program support activities include studies of solar availability and energy requirements at Fort Hood, investigation of interfacing LSE-1 with existing energy systems at the 87,000 Complex, and preliminary studies of environmental, health, and safety considerations. An extensive survey of available concentrating solar collectors and modifications to a computerized system simulation model for LSE-1 use are also reported. Important program support activities are military liaison and information dissemination. The engineering test program reported involved completion of the Solar Engineering Test Module (SETM) and extensive performance testing of a single module of the linear-focusing collector.

1977-01-01T23:59:59.000Z

424

Detection and Location of Damage on Pipelines  

SciTech Connect

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

Karen A. Moore; Robert Carrington; John Richardson

2003-11-01T23:59:59.000Z

425

Method of locating underground mines fires  

DOE Patents (OSTI)

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

426

Export.gov - Export.gov - Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations Locations Print | E-mail Page Locations 800.872.8723 Domestic Offices International Offices Locations 800.872.8723 Call: 800.872.8723 (1-800-USA-TRAD(E)) Email: tic@trade.gov between 8:30 AM and 6 PM EST to receive immediate answers to your exporting questions on: Tariff and Tax Information Country-specific General Export Information Region-specific Export Information (Middle East, China, Latin America, EU, etc.) International Documentation, Regulations and Standards Logistics and Finance (HS/Schedule B numbers, Freight Forwarders, partners) Free Trade Agreements (qualifying products for FTA benefits, Certificates of origin.) Trade Data Export-related information offered by federal, state and local entities Export-related information related to other USG agencies Note for Importers: Please contact U.S. Customs at 877.227.5511

427

Fault Detection, Location, Isolation and Reconnection in ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection, location and isolation scheme for a low-voltage DC-bus microgrid system, ...

428

Developing a theory of nightclub location choice  

E-Print Network (OSTI)

This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

Crim, Stephen J. (Stephen Johnson)

2008-01-01T23:59:59.000Z

429

Federating location-based data services  

Science Conference Proceedings (OSTI)

With the emerging availability of small and portable devices which are able to determine their position and to communicate wirelessly, mobile and spatially-aware applications become feasible. These applications rely on information that is bound to locations ...

Bernhard Mitschang; Daniela Nicklas; Matthias Grossmann; Thomas Schwarz; Nicola Hnle

2005-01-01T23:59:59.000Z

430

Adaptive learning of semantic locations and routes  

Science Conference Proceedings (OSTI)

Adaptation of devices and applications based on contextual information has a great potential to enhance usability and mitigate the increasing complexity of mobile devices. An important topic in context-aware computing is to learn semantic locations and ...

Keshu Zhang; Haifeng Li; Kari Torkkola; Mike Gardner

2007-09-01T23:59:59.000Z

431

Adaptive learning of semantic locations and routes  

Science Conference Proceedings (OSTI)

Adaptation of devices and applications based on contextual information has a great potential to enhance usability and mitigate the increasing complexity of mobile devices. An important topic in context-aware computing is to learn semantic locations and ...

Keshu Zhang; Haifeng Li; Kari Torkkola; Mike Gardner

2007-10-01T23:59:59.000Z

432

Addressing endogeneity in residential location models  

E-Print Network (OSTI)

Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

Guevara-Cue, Cristin Angelo

2005-01-01T23:59:59.000Z

433

Russian Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Locations | National Nuclear Security Administration Locations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Russian Locations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Russia Tri-Lab S&T Collaborations > Travel

434

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

435

Protecting location privacy: optimal strategy against localization attacks  

Science Conference Proceedings (OSTI)

The mainstream approach to protecting the location-privacy of mobile users in location-based services (LBSs) is to alter the users' actual locations in order to reduce the location information exposed to the service provider. The location obfuscation ... Keywords: location inference attacks, location privacy, location-based services, optimal defense strategy, privacy protection, service quality, stackelberg bayesian games

Reza Shokri; George Theodorakopoulos; Carmela Troncoso; Jean-Pierre Hubaux; Jean-Yves Le Boudec

2012-10-01T23:59:59.000Z

436

Exploring temporal effects for location recommendation on location-based social networks  

Science Conference Proceedings (OSTI)

Location-based social networks (LBSNs) have attracted an inordinate number of users and greatly enriched the urban experience in recent years. The availability of spatial, temporal and social information in online LBSNs offers an unprecedented opportunity ... Keywords: location recommendation, location-based social networks, temporal effects

Huiji Gao, Jiliang Tang, Xia Hu, Huan Liu

2013-10-01T23:59:59.000Z

437

Predicted Effects of Prescribed Burning and Timber Management on Forest Recovery and Sustainability at Fort Benning, Georgia  

DOE Green Energy (OSTI)

The objective of this work was to use a simple compartment model of soil carbon (C) and nitrogen (N) dynamics to predict forest recovery on degraded soils and forest sustainability, following recovery, under different regimes of prescribed fire and timber management. This report describes the model and a model-based analysis of the effect of prescribed burning and forest thinning or clearcutting on stand recovery and sustainability at Fort Benning, GA. I developed the model using Stella{reg_sign} Research Software (High Performance Systems, Inc., Hanover, NH) and parameterized the model using data from field studies at Fort Benning, literature sources, and parameter fitting. The model included (1) a tree biomass submodel that predicted aboveground and belowground tree biomass, (2) a litter production submodel that predicted the dynamics of herbaceous aboveground and belowground biomass, (3) a soil C and N submodel that predicted soil C and N stocks (to a 30 cm soil depth) and net soil N mineralization, and (4) an excess N submodel that calculated the difference between predicted plant N demands and soil N supplies. There was a modeled feedback from potential excess N (PEN) to tree growth such that forest growth was limited under conditions of N deficiency. Two experiments were performed for the model-based analysis. In the first experiment, forest recovery from barren soils was predicted for 100 years with or without prescribed burning and with or without timber management by thinning or clearcutting. In the second experiment, simulations began with 100 years of predicted forest growth in the absence of fire or harvesting, and sustainability was predicted for a further 100 years either with or without prescribed burning and with or without forest management. Four performance variables (aboveground tree biomass, soil C stocks, soil N stocks, and PEN) were used to evaluate the predicted effects of timber harvesting and prescribed burning on forest recovery and sustainability. Predictions of forest recovery and sustainability were directly affected by how prescribed fire affected PEN. Prescribed fire impacted soil N supplies by lowering predicted soil C and N stocks which reduced the soil N pool that contributed to the predicted annual flux of net soil N mineralization. On soils with inherently high N availability, increasing the fire frequency in combination with stand thinning or clearcutting had little effect on predictions of forest recovery and sustainability. However, experiments with the model indicated that combined effects of stand thinning (or clearcutting) and frequent prescribed burning could have adverse effects on forest recovery and sustainability when N availability was just at the point of limiting forest growth. Model predictions indicated that prescribed burning with a 3-year return interval would decrease soil C and N stocks but not adversely affect forest recovery from barren soils or sustainability following ecosystem recovery. On soils with inherently low N availability, prescribed burning with a 2-year return interval depressed predicted soil C and N stocks to the point where soil N deficiencies prevented forest recovery as well as forest sustainability following recovery.

Garten, C.T.,JR.

2004-04-13T23:59:59.000Z

438

Trials and Tribulations of Ancient Starch Research: An Investigation of Contamination and Earth Ovens at Fort Hood, Texas  

E-Print Network (OSTI)

Historically, earth ovens have been used to provide direct evidence of ancient plant use through the recovery of charred macrobotanical remains and indirectly by means of experimental archaeology and the ethnographic record. Experiments suggest that direct evidence of ancient starch-rich plant use can be obtained through the recovery of starch granules deposited on fire-cracked-rock (FCR) during cooking episodes even in regions where macrobotanical remains are scarcely preserved. Starch contamination, however, can enter into the archaeological record providing background noise. Therefore, this study analyzes the results of the Paluxy Sand Geophyte Project to determine if archaeological starch (starch that is both cultural and ancient in origin) can be differentiated from contamination using FCR recovered from heating elements in well-preserved earth ovens at Fort Hood, Texas. FCR, non-cultural rock control samples (RCS), and air control samples (ACS) were processed and analyzed from 27 earth ovens at 6 sites. Contamination control measures were used, including the use of a clean bench, powder-free latex gloves, washing samples prior to processing, spot sampling, and comparisons between starch granule assemblages recovered from FCR and control samples. Laboratory and field equipment were processed and analyzed for contamination. Only one feature (Feature 4 from 41CV984) yielded starch granules that are unambiguously archaeological in origin, rather than the result of contamination, whereas starch assemblages from the other sites could be archaeological or contamination in origin. Small sample sizes, differential preservation, and/or the cooking of non-starch-rich plants could account for the lack of differences between FCR and RCS samples. Finally, maize (Zea mays) starch granules were recovered from all sample types suggesting that maize starch, most likely from powder-free gloves and air-fall is a significant source of starch contamination.

Laurence, Andrew

2013-05-01T23:59:59.000Z

439

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

440

Reconstructing Spatial Distributions from Anonymized Locations  

SciTech Connect

Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstruction algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.

Horey, James L [ORNL; Forrest, Stephanie [University of New Mexico, Albuquerque; Groat, Michael [University of New Mexico, Albuquerque

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Utility Locating in the DOE Environment  

SciTech Connect

Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

Clark Scott; Gail Heath

2006-04-01T23:59:59.000Z

442

SOLERAS - solar applications in remote locations  

Science Conference Proceedings (OSTI)

The purpose of this international technology workshop was to promote the exchange of research information on solar applications in remote locations. Scientists and engineers from the United States, Saudia Arabia, Central and South America, Southeast Asia, and Oceania were represented at this sixth annual workshop conducted under the auspices of the SOLERAS program. The objective of the workshop was to address the issues of construction, operation, and maintenance of solar energy systems in remote locations. Photovoltaic, wind, solar thermal, biomass, and geothermal technologies were considered. Also considered was the use of solar energy for agricultural purposes. Each paper has been separately indexed for inclusion in the Energy Data Base.

Khoshaim, B.H.; Williamson, J.S.; Meiners, A.; Mallory, R. (eds.)

1985-05-01T23:59:59.000Z

443

HLDB: location-based services in databases  

Science Conference Proceedings (OSTI)

This paper introduces HLDB, the first practical system that can answer exact spatial queries on continental road networks entirely within a database. HLDB is based on hub labels (HL), the fastest point-to-point algorithm for road networks, and ... Keywords: SQL, databases, large road networks, location services

Ittai Abraham; Daniel Delling; Amos Fiat; Andrew V. Goldberg; Renato F. Werneck

2012-11-01T23:59:59.000Z

444

Transportation Networks and Location A Geometric Approach  

E-Print Network (OSTI)

Transportation Networks and Location A Geometric Approach Belén Palop1,2 1Departamento de March 2009 Florida State University #12;Belén Palop, UVa, SUNY Outline Transportation Network Model;Transportation Network Model Belén Palop, UVa, SUNY Outline Transportation Network Model Network placement

Palop del Río, Belén

445

Job Location, Neighborhood Change, and Gentrification  

E-Print Network (OSTI)

This paper assesses the contribution of employment location to neighborhood change and to gentrification. At the tract level, average household income change is positively correlated both with the change in average pay for nearby jobs and with the start-year average pay for nearby jobs. The relationship between employment location and neighborhood change is stronger for tracts closer to downtown and for tracts in larger metropolitan areas. Change in job pay helps explain metropolitan gentrification within 2 miles of the CBD. The analysis combines Census tract household data for 1990-2000 from the Neighborhood Change Database and zip-code-level employment data for 1992-2000 from the National Establishment Time-Series database. I develop an algorithm for identifying changes in zip codes over time and for matching non-standard zip codes to Census tracts. Because causality between employment location and household location could run in both directions, I instrument for the tract-level change in average job pay with national-level industry growth and average pay.

Jed Kolko; Claudia Goldin; Rucker Johnson; Larry Katz; Jeffrey Lin; Stuart Rosenthal

2009-01-01T23:59:59.000Z

446

Location Games and Bounds for Median Problems  

E-Print Network (OSTI)

We consider a two-person zero-sum game in which the maximizer selects a point in a given bounded planar region, the minimizer selects K points in that region,.and the payoff is the distance from the maximizer's location ...

Haimovich, Mordecai

447

Property:Water Column Location | Open Energy Information  

Open Energy Info (EERE)

Column Location Jump to: navigation, search Property Name Water Column Location Property Type Text Pages using the property "Water Column Location" Showing 1 page using this...

448

Major DOE Biofuels Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Program Major DOE Biofuels Project Locations in the United States Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations...

449

Smart Grid Demonstration Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Demonstration Project Locations Smart Grid Demonstration Project Locations Map of the United States showing the location of Smart Grid Demonstration projects created...

450

Sandia National Laboratories: Locations: Livermore, California: Visiting  

NLE Websites -- All DOE Office Websites (Extended Search)

California California Livermore, California administration building Our location and hours of operation Sandia/California is located at 7011 East Avenue in Livermore, Calif., a suburban community about 45 miles east of San Francisco. Positioned at the eastern edge of the San Francisco Bay Area, Sandia is within easy commuting distance of many affordable housing communities in San Joaquin County and the Central Valley. The official hours of operation at Sandia/California are from 7:30 a.m. to 4 p.m. PST, Monday through Friday. General inquiries can be made by calling (925) 294-3000. See our contacts page for additional information. Getting here All three major airports in the San Francisco Bay Area provide access to Sandia/California. Oakland International Airport is the closest airport to

451

VCSEL fault location apparatus and method  

DOE Patents (OSTI)

An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

2007-05-15T23:59:59.000Z

452

Fort Worth Case Study  

NLE Websites -- All DOE Office Websites (Extended Search)

importance of natural gas to Texas, historically one of the world's great producers of oil and gas. The Energy Information Administration's Annual Energy Outlook 2011 projects...

453

Libby Havre Fort Benton  

E-Print Network (OSTI)

Columbus Anaconda Whitefish Red Lodge Lewistown Harlowton Big Sandy Wolf Point Plentywood Miles City

Maxwell, Bruce D.

454

Truckstop Electrification Locator | Open Energy Information  

Open Energy Info (EERE)

Truckstop Electrification Locator Truckstop Electrification Locator Jump to: navigation, search Tool Summary Name: Truckstop Electrification Locator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., "Perpare a Plan" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., "Implement the Plan" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

455

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 3930 of 9,640 results. 21 - 3930 of 9,640 results. Download CX-003422: Categorical Exclusion Determination State of Indiana/Central Indiana Clean Cities Alternative Fuels Implementation Plan CX(s) Applied: A1, A9, B5.1 Date: 08/19/2010 Location(s): Fort Wayne, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-003422-categorical-exclusion-determination Download CX-003629: Categorical Exclusion Determination Examination of Overglove and Hole Indicating Device from Transuranic (TRU)-Waste Drum Line CX(s) Applied: B3.6 Date: 08/19/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office http://energy.gov/nepa/downloads/cx-003629-categorical-exclusion-determination Download CX-003969: Categorical Exclusion Determination

456

Study of location management for next generation personal communication networks  

Science Conference Proceedings (OSTI)

The main target of location management is to maintain location of users while minimizing the system operation. The process consists of location update, paging, and database consideration. The location update and paging manages the user-network interaction ... Keywords: centralized database (CDB), distributed database (DDB), location area scheme, location update, timer-based update strategy, velocity paging (VP)

Teerapat Sanguankotchakorn; Panuvit Wibullanon

2005-03-01T23:59:59.000Z

457

Fresnel/photovoltaic concentrator application experiment for the Dallas-Fort Worth airport. Phase 1: system design, final technical report, 1 June 1978-28 February 1979  

DOE Green Energy (OSTI)

This Phase I Final Report summarizes the analytical, experimental, design, and specification efforts for the first nine months of the Dallas/Fort Worth Airport Fresnel/Photovoltaic Concentrator Application Experiment. The overall objective of the complete three-phase program is to develop and demonstrate a unique photovoltaic concentrator total energy system which, when mass-produced, will provide electrical and thermal energy at costs competitive with conventional energy sources. Toward this objective, the Phase I - System Design contract has been completed, resulting in a final system design, analytical definition of system performance and economics, and a successfully tested prototype collector which fully verified performance predictions. The proposed system will utilize 245 m/sup 2/ of E-Systems linear Fresnel photovoltaic collectors to provide 25 kW/sub e/ (AC) of power and 140 kW/sub t/ of heat to the Central Utility Facility of Dallas/Fort Worth Airport. The electric power will be used to meet a continuous lighting load, while the thermal energy will be used to preheat boiler feedwater. Peak system efficiencies will be 10.2% electric (insolation to net AC output) and 56% thermal (insolation to net heat delivered). Annual efficiencies will be 8.4% electric and 49% thermal. Production system economics are attractive in the near term: 7 cents/kWh electricity and $7/MMBtu heat (1975 $) could be achieved by 1981 with limited production. With higher production, these costs could be halved by 1990.

O'Neill, M.J.

1979-03-01T23:59:59.000Z

458

Using GIS and Satellite Imagery to Locate  

E-Print Network (OSTI)

The purpose of this project is to show it is possible to use remote sensing techniques to detect oil seeps and oil spills and use ArcView to determine the hydrocarbon locations. Modern remote sensing software was used to process NASA's ASTER Multispectral Images. The files were loaded with Band 3 (0.76- 0.86 m) as Red, Band 2 (0.63- 069 m) as Green and Band 1 (0.52- 0.60 m) as Blue. ASTER's 15 m ground resolution and image enhancement techniques allowed the identification of offshore oil seeps in California and the detection of oil leaking from offshore production platforms in Azerbaijan.

Jay Rauschkolb

2003-01-01T23:59:59.000Z

459

Positron Scanner for Locating Brain Tumors  

DOE R&D Accomplishments (OSTI)

A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

1962-03-00T23:59:59.000Z

460

Applying Spatiotemporal and Demographic Data to Locate Next Crime Location Control #7501  

E-Print Network (OSTI)

Geographic profiling is a tool used by law enforcement to predict the location of a serial criminals next crime. A typical geographic profile outputs estimated probabilities with the input of time and location of previous crimes. In this paper, we develop a new geographic profile that is able to incorporate demographical observations while remaining an effective predictor. We assume that (1) there are buffer zones around previous crime scenes because the criminal fears capture, (2) there is distance decay as criminals prefer something about the locations where previous crimes were committed, and (3) criminals target potential victims based on income and (4) target areas based on crime rate, which are claims supported by research of serial criminals. In order to find an effective profile, we have combined two models of criminal behavior which predict the location of future crime. First, we compute probability densities using a time-weighted kernel density algorithm, which includes buffer zone

unknown authors

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "locations fort wayne" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Title, Location, Document Number Estimated Cost Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Moody to Lev, SUBJECT: NEPA 2012 APS for DOE-SRS, Dated: JAN 25 2012 Title, Location, Document Number Estimated Cost Description EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain EA Determination Date: uncertain Transmittal to State: uncertain EA Approval: uncertain FONSI: uncertain Total Estimated Cost $65,000 Annual NEPA Planning Summary NEPA Reviews of Proposals to Implement Enterprise SRS Initiatives unknown The Savannah River Site Strategic Plan for 2011 - 2015 describes 12 initiatives that Enterprise SRS will pursue by applying SRS's management core competencies in nuclear materials. Implementation of new missions resulting from this effort will likely require NEPA review. However, until firm proposals are developed

462

Location of hydraulic fractures using microseismic techniques  

DOE Green Energy (OSTI)

Microearthquakes with magnitudes ranging between -6 and -2 have been observed in three successive massive injections of water at the Hot Dry Rock Geothermal Energy demonstration site at Fenton Hill, New Mexico. The injection was part of a program to increase the heat transfer area of hydraulic fractures and to decrease the flow-through impedance between wells. The microearthquakes were used in mapping the location of the extended hydraulic fractures. A downhole triaxial system positioned approximately 200 m vertically above the injection point in a shut-in production well was used for detection. The microearthquakes occurred in a north-northwest striking zone 400 m in length passing through the injection point. During a third substantially larger injection, microearthquakes occurred in a dispersed volume at distances as great as 800 m from the zone active in the first two injections.

Albright, J.A.; Pearson, C.F.

1980-01-01T23:59:59.000Z

463

Applicant Location Requested DOE Funds Project Summary Feasibility Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requested Requested DOE Funds Project Summary Feasibility Studies Confederated Salish and Kootenai Tribes Pablo, MT $850,000 This project will evaluate the technical and economic viability of a co-generation biomass fuel power plant. The plant would use fuels from tribal forest management activities to provide between 2.5 to 20 megawatts (MW) of electricity to heat tribal buildings or sell on the wholesale market. Standing Rock Sioux Tribe Fort Yates, ND $430,982 This project will perform a feasibility study over the course of two years on three tribal sites to support the future development of 50 to 100 MW of wind power. Navajo Hopi Land Commission (NHLCO), Navajo Nation Window Rock, AZ $347,090 This project will conduct a feasibility study to explore potential

464

Fault Locating, Prediction and Protection (FLPPS)  

Science Conference Proceedings (OSTI)

One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

2010-09-30T23:59:59.000Z

465

PARSII - New Reports and Reports With New Reporting Folder Location  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARSII - New Reports and Reports With New Reporting Folder Location Page 1 of 3 as of 1242011 Report Name Previous Location New Location Brief Description Multi-Project or Single...

466

Detecting, Locating, and Characterizing Remote Power Sources  

SciTech Connect

A feasibility study to determine range and back-azimuth detection methods for an isolated generator powering common loads was completed. The study deployed 3-component E and B field sensors with sampling rates of 100 kHz in a low noise test location in Southern California. Scripted power and load cycling was recorded at ranges of 40 meters to 4 km from the generator/load source. Three loads were tested: a 100 meter string of lights, an inverter powering an air blower, and a resistive heater. No E-field or B-field radiated signals were detected at ranges greater than 40 meters with a signal-to-noise ratio greater than one. Large variations in the broadband background electromagnetic noise were observed and may have been responsible for null detections at some measurement locations. At the 40-meter station, a frequency shift upon generator loading was observed for all load types. Harmonics from the detuned generator (operating at 56.7 Hz) could be observed for all load types but were most pronounced for the inverter source. A back-azimuth estimation methodology was applied to detected harmonics with stable and consistent results. For the inverter source, consistent back azimuths to the source were determined for the fundamental and higher detected harmonics up to the 31st. The method was applied to narrow band ''noise'' at 60 Hz and produced bimodal directions that roughly pointed to large population centers. Details of the method are withheld in this report pending a record of invention submittal. Although the generator/load combinations, which utilized wiring that tended to minimize stray signals, cannot yet be detected at large stand-off range without application of noise-filtering methods, the back-azimuth method appears promising and should be applied to other source types and frequency ranges where an E and B field can be detected. A record of invention describing this new back-azimuth method has been submitted to the Intellectual Property Law Group.

Harben, P; Carrigan, C; Kirkendall, B; Simons, D

2005-02-10T23:59:59.000Z

467

Underground Cable Fault Location Reference and Application Guide  

Science Conference Proceedings (OSTI)

This report summarizes underground cable fault location methods and details the application of the methods for transmission and distribution cable systems. It summarizes both terminal location and tracer location methods that can be applied to transmission and distribution cable systems. The report is an update to a summary of fault location methods. It provides practical technical material in the art and science of locating cable faults, including a description of common fault location instruments and p...

2011-12-23T23:59:59.000Z

468

Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles  

E-Print Network (OSTI)

Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well as recovering stolen vehicles. Because many applications require traveling vehicles, this thesis focused on the AirTouch system's ability to accurately locate a moving vehicle. Recent AirTouch vehicle location system reports were compiled and analyzed to distinguish what factors tend to affect the accuracy of the readings. Based on the results of the reports, two sites were selected to minimize the external effects that could create inaccurate readings. Six speeds were selected ranging from 0 to 80 kmph (O to 50 mph) in 16 kmph (10 mph) increments. Each velocity was tested 20 times at each site. The location readings were compared to differential Global Positioning System (dGPS) readings which currently provide the most accurate location readings available for civilian use. The dGPS readings were also collected at each test site. It was discovered that one site produced more accurate readings compared to the other site. In addition, the longitude differences accounted for most of the error in the readings. Finally, more error was prevalent in the readings associated with the vehicle's direction of travel as opposed to readings perpendicular to