National Library of Energy BETA

Sample records for locations arizona officess

  1. Arizona Indian Gaming Association (AIGA) Expo

    Office of Energy Efficiency and Renewable Energy (EERE)

    This year’s EXPO will take place November 5-7, 2014 at the Radisson Fort McDowell Resort & Casino located in Scottsdale, Arizona.

  2. Angora Goats for Conversion of Arizona Chaparral: Early Results1

    E-Print Network [OSTI]

    Angora Goats for Conversion of Arizona Chaparral: Early Results1 O. D. Knipe2 1 Presented located at the Station's Research Work Unit at Tempe, in cooperation with Arizona State Univer- sity quarter century has shown that conversion of Arizona chaparral to grass significantly increases water

  3. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Program project results in annual estimated cost savings of 313,000 for reduced consumption of gasoline, diesel, propane, and electricity. Location Arizona Partners State...

  4. CX-010678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at 40 Substations Located in Arizona During Fiscal Year 2014 CX(s) Applied: B1.3 Date: 07/01/2013 Location(s): Arizona, Arizona, Arizona, Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  5. CX-010096: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at 36 Substations Located in Arizona and California During Fiscal Year 2013 CX(s) Applied: B1.3 Date: 04/19/2013 Location(s): Arizona, Arizona, Arizona, Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  6. Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom

    E-Print Network [OSTI]

    Fay, Noah

    Aridity and Algae: Biodiesel Production in Arizona Jenna Bloxom Advisor: Dr. Scott Whiteford Center resources. Often excluded from the typical water- related concerns associated with biofuels as algae as the best location in the world to grow algae, the state of Arizona is now home to several premier algae

  7. CX-012092: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tucson-Apache 115-Kilovolt Transmission Line Structure Stabilization Project CX(s) Applied: B1.3 Date: 09/06/2013 Location(s): Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  8. 2015 Arizona Housing Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Housing Forum 2015 Arizona Housing Forum August 26, 2015 8:00AM MDT to August 28, 2015 5:00PM MDT Scottsdale, Arizona The 12th annual Arizona Housing Forum provides a...

  9. Arizona/Transmission/Agency Links | Open Energy Information

    Open Energy Info (EERE)

    and Fish Department Arizona State Historic Preservation Office Arizona Department of Transportation Arizona Department of Agriculture Arizona Department of Water Resources Central...

  10. CX-012089: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wood Pole Testing for 20 Transmission Lines in Southern Arizona and Southern California CX(s) Applied: B3.1 Date: 04/17/2014 Location(s): Arizona, Arizona, Arizona, California, California Offices(s): Western Area Power Administration-Desert Southwest Region

  11. Storage opportunities in Arizona bedded evaporites

    SciTech Connect (OSTI)

    Neal, J.T.; Rauzi, S.L.

    1996-10-01

    Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

  12. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; McCullough, J. J.

    2014-12-31

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  13. Geothermal energy in Arizona. Final report

    SciTech Connect (OSTI)

    Stone, C.; Witcher, J.C.

    1982-09-01

    Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

  14. Arizona Department of Environmental Quality's Application Forms...

    Open Energy Info (EERE)

    Arizona Department of Environmental Quality's Application Forms and Guidance Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Arizona Department...

  15. Arizona Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr May Jun19

  16. CX-011201: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Adams Tap Motor-Operator Interrupters and Control Building Replacement CX(s) Applied: B4.6 Date: 09/11/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  17. CX-007808: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mesa Substation Soil Remediation Assessment CX(s) Applied: B3.1 Date: 12/12/2011 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  18. CX-007533: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemical Vapor Deposition - Based Valence-Mending Passivation for Crystalline-Silicon Solar Cells CX(s) Applied: A9, B3.6 Date: 01/10/2012 Location(s): Arizona Offices(s): Golden Field Office

  19. CX-010409: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Installation of Cattle Guard at Western Area power Administration's Oracle Electrical Substation CX(s) Applied: B1.11 Date: 05/09/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  20. CX-011100: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film Photovoltaic CX(s) Applied: A9, B3.6 Date: 08/12/2013 Location(s): Arizona Offices(s): Golden Field Office

  1. CX-012342: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liberty Parker #2 Transmission Line - Erosion Repair at Structure 53/1 CX(s) Applied: B4.6 Date: 06/09/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  2. CX-010097: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at Lone Butte Substation During Fiscal Year 2013 CX(s) Applied: B1.3 Date: 04/24/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  3. CX-007489: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.22 Date: 12/06/2011 Location(s): Arizona Offices(s): National Energy Technology Laboratory

  4. CX-007583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.1, B5.22 Date: 12/29/2011 Location(s): Arizona Offices(s): National Energy Technology Laboratory

  5. CX-011567: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multi-Resolution In Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617 CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Arizona Offices(s): Idaho Operations Office

  6. CX-009554: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    In-situ X-ray Nanocharacterization of Defect Kinetics in Chalcogenide Solar Cell CX(s) Applied: A9, B3.6 Date: 12/04/2012 Location(s): Arizona Offices(s): Golden Field Office

  7. CX-011576: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiation Hardened Electronics Destined for Severe Nuclear Reactor Environments CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Arizona Offices(s): Idaho Operations Office

  8. CX-011648: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis-Parker 230 Kilovolt Transmission Line- Marker Ball(s) Replacement CX(s) Applied: B1.3 Date: 12/17/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  9. CX-011738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Titanium Metals Corp - A Vision of an Electrochemical Cell to Produce Clean Titanium CX(s) Applied: B3.6 Date: 11/22/2013 Location(s): Nevada, Arizona Offices(s): Advanced Research Projects Agency-Energy

  10. CX-011854: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Glen Canyon Substation 345 Kilovolt - Sulfur Hexafluoride and Concrete Pad Installation CX(s) Applied: B4.6 Date: 02/06/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  11. CX-007806: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Glen Canyon Communication Site Geologic Boring CX(s) Applied: B3.1 Date: 11/04/2011 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  12. CX-010500: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: State Geological Survey Contributions to the National Geothermal Data System CX(s) Applied: B3.1 Date: 06/18/2013 Location(s): Arizona Offices(s): Golden Field Office

  13. CX-012341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Humboldt Mountain Communication Facility - Asbestos and Lead-based Paint Testing CX(s) Applied: B3.1 Date: 06/19/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  14. CX-011227: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bi-Annual "Live Line" Maintenance Training CX(s) Applied: B1.2 Date: 10/08/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  15. Phoenix, Arizona Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Phoenix, Arizona Summary of Reported Data Phoenix, Arizona Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Phoenix, Arizona....

  16. CX-012339: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Crossman Peak Communication Site Lease and Equipment Upgrades at 5 Facilities CX(s) Applied: B1.19 Date: 06/02/2014 Location(s): Arizona, Arizona, Arizona, California, Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

  17. of Mining & www.mge.arizona.edu

    E-Print Network [OSTI]

    Holliday, Vance T.

    .621.8330 mgedept@email.arizona.edu ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS YOUR CAREER GEOMECHANICS #12;GEOMECHANICS Department of Mining & Geological Engineering www.mge.arizona.edu Contact: John Kemeny Kemeny@email.arizona.edu REQUIRED COURSES (12 units) MNE 527 Geomechanics (3 units) MNE 580 Rock Fracture Mechanics (3 units) MNE

  18. EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of a proposed new microwave communication facility to be located adjacent to a privately-owned one near Crossman Peak, east of Lake Havasu City in Mohave County, Arizona. The proposal would consist of a microwave communication facility, an access road, and an approximately 8-mile electrical service distribution line across private land and land administered by the Bureau of Land Management.

  19. Elliott Cheu University of Arizona

    E-Print Network [OSTI]

    Fay, Noah

    of Direct CP Violation in KS,L Decays", A. Alavi-Harati et al., Physical Review Letters 83, 22-32 (1999-921 (1999). 7. A. Alavi-Harati et al. "Measurements of Direct CP Violation, CPT Symmetry, and Other, 2008-present. P-20 Education Council of Southern Arizona, 2008-present. TRIF Workforce Development

  20. Arizona Teachers Prepare Students for Green Economy

    Broader source: Energy.gov [DOE]

    Students led by their building trades teacher , are wiring parts of the Raymond S. Kellis High School in Glendale, Arizona for solar power.

  1. Arizona/Transmission | Open Energy Information

    Open Energy Info (EERE)

    NEPA Database The electrical grid in Arizona is part of the Western Interconnection power grid and the Western Electricity Coordinating Council (WECC) is the Regional Entity...

  2. Arizona Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona...

  3. CX-011203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Storm Damage Repairs to the Gila North Gila, Gila Knob, and Sonora San Luis Transmission Lines, near Yuma, Yuma County, Arizona CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  4. CX-010533: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Wells South of the Tuba City, Arizona, Uranium Mill Tailing Remedial Action Title I Site CX(s) Applied: B1.3, B3.3, B6.1 Date: 05282013 Location(s): Arizona Offices(s): Legacy...

  5. CX-010410: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oracle to Tucson 115 Kilovolt Transmission Line, Cross Arm Replacements at Structure 2/5 and 7/3 CX(s) Applied: B1.3 Date: 05/02/2013 Location(s): Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  6. CX-012340: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flagstaff Pinnacle Peak #1 & 2 Transmission Lines - Slid Static Damper Repair at Structures 134/3 & 139/2 CX(s) Applied: B1.3 Date: 06/11/2014 Location(s): Arizona, Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  7. Arizona - Natural Gas 2014 Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu. Feet Percent

  8. Arizona Geological Society Digest 22

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. Geographic Available for sale to2 |Arizona

  9. transmission Michael P. McGarry, Arizona State University

    E-Print Network [OSTI]

    Reisslein, Martin

    Tecnologic de Telecomunicacions de Catalunya Martin Reisslein ,Arizona State University ABSTRACT Optical

  10. Arizona

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing AnnualFoot)EnergyAnnual

  11. ARIZONA COOPERATIVE Climate Change and Wildfire

    E-Print Network [OSTI]

    Crimmins, Michael A.

    in precipitation acrossArizona and New Mexico associated with the El Nino-Southern Oscillation (ENSO) modulate wildfire events. El Nino events typically bring above-average winter precipitatio

  12. Energy Incentive Programs, Arizona | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy Incentive Programs, Arizona Updated

  13. SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA

    SciTech Connect (OSTI)

    Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning (David) Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz

    2005-09-30

    The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.

  14. CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA

    E-Print Network [OSTI]

    of Northern Arizona and Southern Nevada ARTICLE 7 TRILOBITE BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY#12;CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA THE 16TH FIELD STRATIGRAPHY FLAGSTAFF, ARIZONA, AND SOUTHERN NEVADA, UNITED STATES Edited by J. Stewart Hollingsworth

  15. CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA

    E-Print Network [OSTI]

    #12;CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA THE 16TH FIELD STRATIGRAPHY FLAGSTAFF, ARIZONA, AND SOUTHERN NEVADA, UNITED STATES Edited by J. Stewart Hollingsworth. A., and Foster, J. R., (editors), 2011, Cambrian Stratigraphy and Paleontology of Northern Arizona

  16. THE ARIZONA REPUBLIC April 11, 2009

    E-Print Network [OSTI]

    Fay, Noah

    of growing economic importance, and it will become more important still. As alternative forms of energy are explored, Arizona's geography will make it a focal point for solar- energy initiatives, and its expertise that opportunity is the best way to ensure that our state will rebound from the bursting of the housing bubble

  17. University of Arizona Code of Academic Integrity

    E-Print Network [OSTI]

    Watkins, Joseph C.

    University of Arizona Code of Academic Integrity Sanctions for Multiple Violations Instructions at 621-7057. 2. Determine if additional sanctions are to be imposed within 20 academic days of receipt of notice from the Dean of Students Office of multiple violations. 2. Indicate on this form the sanctions

  18. Master's in Development The Arizona MDP offers

    E-Print Network [OSTI]

    in international development Curriculum that integrates training in global health, natural sciences, social, Arizona, in the picturesque Sonoran Desert with close proximity to the US/Mexico border An affordable MDP students and faculty who have dedicated themselves to reducing the grinding impacts of global poverty

  19. CX-010681: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    "Herbicide Application at Two Substations: Kayenta and Long House Valley Located on the Navajo Nation During Fiscal Year 2014 CX(s) Applied: B1.3 Date: 07/01/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region"

  20. CX-010680: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Herbicide Application at One Substation: Lone Butte, located on the Gila River Indian Community During Fiscal Year 2014 CX(s) Applied: B1.3 Date: 07/01/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  1. Fredonia, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorth Carolina:Arizona: Energy Resources Jump

  2. Sawmill, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage ResourcesFlorida:Satcon JumpSawmill, Arizona: Energy

  3. Lukachukai, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:Lowell Point, Alaska:Vermont: Energy Resources Jump

  4. Mayer, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois:Martin,OpenMatthews,MaverickMayer, Arizona: Energy

  5. Lechee, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanon County, Pennsylvania: Energy

  6. Leupp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: Energy ResourcesLetcher

  7. Littletown, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy ResourcesGrove,LittleNew Hampshire:

  8. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  9. EIS-0474: Southline Transmission Line Project; Arizona and New...

    Broader source: Energy.gov (indexed) [DOE]

    consist of a new 225-mile transmission line between existing substations at Afton, New Mexico, and Apache, Arizona, and improvements to approximately 130 miles of existing...

  10. ,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  11. CX-011730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Phinix, LLC - Production of Primary Quality Magnesium and Al-Mg Alloys from Secondary Aluminum Scraps CX(s) Applied: B3.6 Date: 11/20/2013 Location(s): Kentucky, Arizona Offices(s): Advanced Research Projects Agency-Energy

  12. CX-010406: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis Dam to Kingman Tap 69 Kilovolt Transmission Line, Overhead Optical Power Ground Wire Installation CX(s) Applied: B4.7 Date: 05/16/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  13. CX-009894: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A1988 - Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage - Metal-Air Ionic Liquid CX(s) Applied: B3.6 Date: 12/16/2009 Location(s): Arizona Offices(s): Advanced Research Projects Agency-Energy

  14. CX-100051: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    One-Step Super Emitters for High Efficiency Solar Cells CX(s) Applied: A9, B3.6 Date: 12/13/2011 Location(s): Arizona Offices(s): Golden Field Office Technology Office: Solar Energy Technologies Award Number: DE-EE0006691

  15. CX-011566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mechanical Behavior of Uranium Oxide (UO2) at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Arizona Offices(s): Idaho Operations Office

  16. CX-011734: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pacific Northwest National Laboratory - Catalyzed Organo-Metathetical Process for Magnesium Production from Seawater CX(s) Applied: B3.6 Date: 12/17/2013 Location(s): Washington, Arizona, Utah Offices(s): Advanced Research Projects Agency-Energy

  17. CX-011202: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    COLORA - Cross-Arm Replacement, Structure Numbers 12-3, 12-6 CX(s) Applied: B1.3 Date: 09/23/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  18. CX-011718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electrical District 2 to Saguaro #2 115 Kilovolt Transmission Line, Marker Ball Installation at Structure 26-10. CX(s) Applied: B1.3 Date: 01/09/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  19. CX-010544: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Glen Canyon Switchyard - 230 Kilovolt Wavetrap Removal - TZ9A2 on the Navajo Line CX(s) Applied: B4.11 Date: 06/21/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  20. CX-007803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electrical District 2 - Saguaro No. 1 Pole Replacement CX(s) Applied: B1.3, B1.16, B1.19, B1.23 Date: 11/22/2011 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  1. CX-010883: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    PHX-LOB and LIB-LOB 230-Kilovolt Double-Circuit- Replace Insulators at Structure No. 28-2 With NCI Type Polymers CX(s) Applied: B1.3 Date: 08/12/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  2. CX-010881: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Glen Canyon to Flagstaff #2 345-Kilovolt Transmission Line, Access Road Maintenance from Structure 45/5 to 46/1 CX(s) Applied: B1.3 Date: 08/08/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  3. Tobacco Control in Transition: Public Support and Governmental Disarray in Arizona 1997-2007

    E-Print Network [OSTI]

    Hendlin M.Sc., Yogi H.; Barnes, Richard L JD; Glantz, Stanton A. Ph.D.

    2008-01-01

    2002. Morris D. "East & West Valley Voters Support Smokefreebecame the first city in the West Valley of the metropolitanTGen) Arizona Heart Institute West Valley Hospital Arizona

  4. Second International Workshop on Social Computing, Behavioral Modeling, and Prediction Phoenix, Arizona

    E-Print Network [OSTI]

    Liu, Huan

    Second International Workshop on Social Computing, Behavioral Modeling, and Prediction Phoenix, Arizona March 31 - April 1, 2009 Phoenix, Arizona Proceedings published by Springer Social computing

  5. Williams, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:MeadowWikiSysop'sOhio: EnergyWilliams, Arizona:

  6. Tombstone, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open EnergyTinoxOpenStatutes JumpTombstone, Arizona: Energy

  7. Florence, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to:Flanders, New York:EnergyFlixArizona: Energy

  8. Dennehotso, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments IncMississippi:Delta ElectricDenair,Dennehotso, Arizona:

  9. Eagar, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, search Name: ETEC GmbHUnitedOpen|Eagar, Arizona:

  10. Eloy, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York: Energy ResourcesEloy, Arizona: Energy

  11. Stanfield, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid,Energyby Europe JumpStanfield, Arizona:

  12. Maricopa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5TransportManitouChangeMarc M SiahMaribel,Arizona:

  13. Kearny, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:JustKandiyohiCounty,Kawar(CTI PFAN)Arizona:

  14. Kaibito, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just HotKahaluu, Hawaii:Kaibito, Arizona:

  15. Pisinemo, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehem Biomass FacilityPinto HotPisinemo, Arizona:

  16. Parks, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View NewParatek Microwave IncParkeParks, Arizona: Energy

  17. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014ResidentialRepressuring

  18. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas

  19. Prescott, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolar and WindPrayagMonitoring,Arizona:

  20. Somerton, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo Energy Jump to:Somerton, Arizona: Energy

  1. Surprise, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEuropeEnergy InformationSunrainSamplingSurprise, Arizona:

  2. Wickenburg, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What Is a Small CommunityWickenburg, Arizona: Energy

  3. Cameron, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(RedirectedEnterpriseCounty, Texas:toArizona:

  4. Cottonwood, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources Jump to: navigation, searchArizona:

  5. Chuichu, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas:Chittenango,Christine,Chuichu, Arizona:

  6. Arizona Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump| OpenExplorationArgentina: EnergyTexas:Arizona

  7. Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line Siting CommitteeInformationArizona:

  8. ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water

    E-Print Network [OSTI]

    Keller, Arturo A.

    ArizonaArizona''s Electricity Future:s Electricity Future: The Demand for WaterThe Demand for Water'' projected energy demandprojected energy demand 317 1,281 257 511 5,506 1,989 0 1,000 2,000 3,000 4,000 5

  9. Phylogeny of an undescribed Helobdella leech species found in Montezuna Well, Arizona Devin Elliott1, Rebecca Beresic-Perrins1, Fredric Govedich2, and Stephen Shuster1

    E-Print Network [OSTI]

    Shuster, Stephen M.

    from the Rio Del Flag ponds at the Rio de Flag Waste Water Facility outflow, and Oak Creek, all located in Northern Arizona. These samples were extracted, purified, amplified and sequenced using Siddall & Borda and 72°C for 30 sec and finally 72°C for 6 min. All products were purified through the use

  10. Plant-Wide Energy Efficiency Assessment at the Arizona Portland Cement Plant in Rillito, Arizona

    SciTech Connect (OSTI)

    Stephen J. Coppinger, P.E.; Bruce Colburn, Ph.D., P.E., CEM

    2007-05-17

    A Department of Energy Plant-wide Assessment was undertaken by Arizona Portland Cement (APC) beginning in May 2005. The assessment was performed at APC’s cement production facility in Rillito, Arizona. The assessment included a compressed air evaluation along with a detailed process audit of plant operations and equipment. The purpose of this Energy Survey was to identify a series of energy cost savings opportunities at the Plant, and provide preliminary cost and savings estimates for the work. The assessment was successful in identifying projects that could provide annual savings of over $2.7 million at an estimated capital cost of $4.3 million. If implemented, these projects could amount to a savings of over 4.9 million kWh/yr and 384,420 MMBtu/year.

  11. Water infrastructure : hybridized architecture along the Arizona canal

    E-Print Network [OSTI]

    Atwood, Alex (Wayne Alex)

    2012-01-01

    Due to budget issues, the Central Arizona Project (CAP) canal has been left exposed to the arid desert environment since its construction in the 1970s. As a result, 5% of the amount of water diverted from the Colorado River ...

  12. DOE - Office of Legacy Management -- University of Arizona Southwest...

    Office of Legacy Management (LM)

    of the University of Arizona under FUSRAP; October 13, 1987 AZ.01-4 - DOE Letter; Bauer to Liverman; Past Operations and a Survey by Messrs, Jascewsky, and Smith; February 7, 1978...

  13. EIS-0427: Grapevine Canyon Wind Project, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposed wind energy generation project in Coconino County, Arizona, on privately owned ranch lands and trust lands administered by the Arizona State Land Department. The proposed project includes a new transmission tie-line that would cross lands administered by Coconino National Forest and interconnect with DOE’s Western Area Power Administration’s existing Glen Canyon-Pinnacle Peak transmission lines.

  14. Latest News Browse Topics Encyclopedia Science Shop Green-winged macaws. (Photo courtesy of Arizona

    E-Print Network [OSTI]

    McGraw, Kevin J.

    Latest News Browse Topics Encyclopedia Science Shop Green-winged macaws. (Photo courtesy of Arizona & Energy > Computers & Math > Fossils & Ruins Science Topics > Agriculture > Astronomy > Biology > more topics Encyclopedia > Agriculture > Anthropology Source: Arizona State University Date: 2005

  15. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  16. Arizona – Sexual Orientation and Gender Identity Law and Documentation of Discrimination

    E-Print Network [OSTI]

    Sears, Brad

    2009-01-01

    Institute Employment Discrimination Report The City ofprotect city employees from discrimination based on sexualsexual orientation discrimination In 1965, Arizona passed

  17. Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station

    E-Print Network [OSTI]

    Fay, Noah

    , the Navajo Generating Station (NGS), that is among the dirtiest coal power plants in the country1 Pressures on Arizona Water and Energy Policy: Case Study of the Navajo Generating Station Sonya largest user of energy in the state of Arizona. It is powered by a coal plant in Northern Arizona

  18. Frequency Modes of Monsoon Precipitation in Arizona and New Mexico ANNE W. NOLIN

    E-Print Network [OSTI]

    Kurapov, Alexander

    Frequency Modes of Monsoon Precipitation in Arizona and New Mexico ANNE W. NOLIN Department proportion of the annual precipitation for Arizona and New Mexico arrives during the summer monsoon. Forty-one years of daily monsoon season precipitation data for Arizona and New Mexico were studied using wavelet

  19. GEOGRAPHY AND REGIONAL DEVELOPMENT AT THE UNIVERSITY OF ARIZONA: A HISTORY1

    E-Print Network [OSTI]

    1 GEOGRAPHY AND REGIONAL DEVELOPMENT AT THE UNIVERSITY OF ARIZONA: A HISTORY1 Leland R. Pederson, Professor Emeritus of Geography and Regional Development, The University of Arizona pederson@geog.arizona.edu January 2002 (edited September 2007) CONTENTS I INTRODUCTION II PREPARATORY GEOGRAPHY III THE NATURAL

  20. St. Michaels, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid, Arizona:LandryMartinMichaels, Arizona:

  1. February 3 Kimberly Ogden "Cultivation Strategies for Microalgae to Produce 1:15 pm University of Arizona Biofuels"

    E-Print Network [OSTI]

    Reisslein, Martin

    of Arizona Biofuels" SCOB 228 Department of Chemical and Environmental Engineering February 17 Daven Henze

  2. Water, Electric Power and Growth in Southern Arizona

    E-Print Network [OSTI]

    Scott, Christopher

    . #12;Growth City of Tucson: Department of Urban Planning and Design. 2008. Pima County Population and Regional Development University of Arizona #12;The Water-Energy Nexus Goldstein, Robert. 2006. Electric Power/Water Sustainability. Western Region Energy-Water Needs Assessment Workshop, Salt Lake City. #12

  3. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  4. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  5. MS in Water, Society, and Policy University of Arizona

    E-Print Network [OSTI]

    Fay, Noah

    MS in Water, Society, and Policy University of Arizona Biological Sciences East, Room 325 Phone of scholarship. The Water, Society and Policy Program draws on the expertise of scientists, social scientists and the Environment School of Geography and Development Water Resources Research Center Institute

  6. EA-1989: Cliffrose Solar Energy Interconnection Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) is preparing an EA that will assess the potential environmental impacts of interconnecting the proposed Cliffrose Solar Energy Project in Mohave County, Arizona, to Western’s transmission system at the existing Griffith Substation. Additional information is available at http://www.wapa.gov/dsw/environment/CliffroseSolarEnergyProject.html.

  7. Salt River (Rio Salado Oeste), Phoenix, Maricopa County, Arizona

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Salt River (Rio Salado Oeste), Phoenix, Maricopa County, Arizona 18 October 2006 Abstract: The Rio of Phoenix encompassing eight miles of the Salt River from 19th to 83rd Avenues on the southwest side is $164,950,000. The project cost will be shared between the Federal government and the city of Phoenix

  8. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 ............................................................2 Central Call Number Main Library Location Main Library Example: Main Library HQ1410 .U54 2009 See Center (ATC) Classroom 1575 Building Operations Main Entrance Map and Imagery Laboratory (MIL

  9. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 these from the library catalog: www.library.ucsb.edu/depts/access/howinprocess.html Main: Items located in the Main Library, Davidson Main Serials Reading Area: 2 North Map & Imagery Lab: 1 North Media Collection

  10. Locative Inversion In Cantonese

    E-Print Network [OSTI]

    Mok, Sui-Sang

    1992-01-01

    This paper proposes that locative inversion is a widespread syntactic process in Cantonese. The sentence-initial locative phrases in the Locative Inversion sentences are argued to be subjects which come from the postverbal complement position...

  11. The effects of indoor pollution on Arizona children

    SciTech Connect (OSTI)

    Dodge, R.

    1982-05-01

    The respiratory health of a large group of Arizona school children who have been exposed to indoor pollutants-tobacco smoke and home cooking fumes-is reported. A significant relationship was found between parental smoking and symptoms of cough, wheeze, and sputum production. Also, children in homes where gas cooking fuel was used had higher rates of cough than children in homes where electricity was used. No differences in pulmonary function or yearly lung growth rates occurred among subjects grouped by exposure to tobacco smoke or cooking fuel. Thus, parental smoking and home cooking fuel affected cross-sectional respiratory symptom rates in a large group of Arizona school children. Study of pulmonary function, however, revealed no lung function or lung growth effects during 4 yr of study.

  12. Accommodation Location(s) Cologne -Ehrenfeld.

    E-Print Network [OSTI]

    Molinari, Marc

    Accommodation Location(s) ­ Cologne - Ehrenfeld. Price of rent ­ Sub-let, cost roughly 300 euros a month inc bills. Organisation of accommodation/gas/electricity/internet/phones ­ Because I lived with Telekom for phone/internet as they just try to rip you off! Germany COLOGNE Language Assistantship Travel

  13. Gold Camp, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: Energy Resources Jump to:GodfreyCamp, Arizona:

  14. Rock Point, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: Energy Resources Jump to:RockPoint, Arizona: Energy

  15. St. David, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid, Arizona: Energy Resources Jump to:

  16. St. Johns, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid, Arizona: EnergyMissouri:Johns

  17. Mohave County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004) | OpenMohave County, Arizona: Energy

  18. Lake Montezuma, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to: navigation, search Equivalent URI

  19. Queen Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility DistrictQuailValley, Arizona: Energy

  20. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic UtilityQuintasNEPARAPID/BulkTransmission/Arizona

  1. Red Mesa, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy MarketingNewOpenRecycledMesa, Arizona: Energy

  2. From Barbies to Boycotts: How Immigration Raids in Arizona Created a Ten-Year Old Activist

    E-Print Network [OSTI]

    Rodriguez Vega, Silvia

    2015-01-01

    Policy Perspective. O'Leary, A. O. (2014). UndocumentedArizona on a daily basis (O'Leary, 2014). The state is also

  3. Could Gila Bend, Arizona, Become the Solar Capital of the World?

    Broader source: Energy.gov [DOE]

    Serving approximately 9,000 homes with clean renewable energy, the Paloma and Cotton Center solar plants highlight the rapidly rising solar corridor in Gila Bend, Arizona.

  4. 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination...

    Open Energy Info (EERE)

    System Program (2014). Retrieved from "http:en.openei.orgwindex.php?title49A.R.S.255etseq.:ArizonaPollutantDischargeEliminationSystemProgram&oldid793854" ...

  5. From Barbies to Boycotts: How Immigration Raids in Arizona Created a Ten-Year Old Activist

    E-Print Network [OSTI]

    Rodriguez Vega, Silvia

    2015-01-01

    2009). Puente Arizona, Phoenix. Dreby, J . (2012). TheFigueroa Quinceañera, Phoenix. Personal photograph by2009. Feet In Two Worlds, Phoenix. Retrieved from (http://

  6. MOBILE DEVICE LOCATION INFORMATION ACQUISITION FRAMEWORK FOR DEVELOPMENT OF LOCATION

    E-Print Network [OSTI]

    Dustdar, Schahram

    MOBILE DEVICE LOCATION INFORMATION ACQUISITION FRAMEWORK FOR DEVELOPMENT OF LOCATION INFORMATION, 1040 Vienna, Austria dustdar@infosys.tuwien.ac.at Keywords: Mobile device location information, location information based services, location information acquisition. Abstract: Mobile device location

  7. Optimal fault location 

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10

    sequence of events newly obtained recording belongs. Software prototype of the proposed automated fault location analysis is developed using Java programming language. Fault location analysis is automatically triggered by appearance of new event files in a...

  8. Arizona Geological Society Digest 22 e-mail: Dorsey: rdorsey@uoregon.edu; LaMaskin: tlamaski@uoregon.edu

    E-Print Network [OSTI]

    Dorsey, Becky

    Arizona Geological Society Digest 22 2008 325 e-mail: Dorsey: rdorsey@uoregon.edu; La evolution, and ore deposits: Arizona Geological Society Digest 22, p. 325-332. Mesozoic collision

  9. Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being con-

    E-Print Network [OSTI]

    Fay, Noah

    Reverse osmosis (RO) treatment of Tucson's share of Central Arizona Project (CAP) water is being for RO Treatment of CAP Water PROJECT TEAM This Arizona Water Institute PROJECT FACT SHEET is part to treat CAP water and to minimize the amount of concentrate produced. More research and significant

  10. Fellowships in Comparative Genomics Graduate education at the University of Arizona

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Fellowships in Comparative Genomics Graduate education at the University of Arizona Supported Traineeships (IGERT) The NSF-IGERT Program in Comparative Genomics is an interdisciplinary program designed genomics More information, application instructions, and deadlines at: www.genomics.arizona.edu Biosciences

  11. Estimating the Price Elasticity of Residential Water Demand: The Case of Phoenix, Arizona

    E-Print Network [OSTI]

    Article Estimating the Price Elasticity of Residential Water Demand: The Case of Phoenix, Arizona elasticity of residential water demand in Phoenix, Arizona, which is likely to be strongly impacted to such changes requires understanding the responsiveness of water demand to price changes. We estimate the price

  12. The University of Arizona College of Agriculture and Life Sciences12 Trace Minerals for Cattle

    E-Print Network [OSTI]

    Guerriero, Vince

    The University of Arizona College of Agriculture and Life Sciences12 Trace Minerals for Cattle that Arizona cattle held in feedlots seem to contract more diseases. Some scientists linked the increases extension agent, led the research team that learned not only how cattle health is affected when their diet

  13. Applying Remote Sensing to Paleontology Studies in the State of Arizona, USA. Alberto Jimnez1

    E-Print Network [OSTI]

    Gilbes, Fernando

    Applying Remote Sensing to Paleontology Studies in the State of Arizona, USA. Alberto Jiménez1 1 of remote sensing in the last decade have proven to be quite essential in its widespread use in geology: Remote sensing, paleontology, prospecting, Arizona, Landsat, ETM+ INTRODUCTION Improvements

  14. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    E-Print Network [OSTI]

    Zhu, Chen

    Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona Abstract Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at $105 times

  15. THE CONTRIBUTION OF ARIZONA STATE UNIVERSITY TO THE CITY OF PHOENIX ECONOMY,

    E-Print Network [OSTI]

    Zhang, Junshan

    THE CONTRIBUTION OF ARIZONA STATE UNIVERSITY TO THE CITY OF PHOENIX ECONOMY, FISCAL YEAR 2013 of Arizona State University (ASU) to the city of Phoenix. Estimates are presented for the jobs and incomes that are supported in the Phoenix economy by the spending of the university and its employees and students

  16. Debris flows from small catchments of the Ma Ha Tuak Range, metropolitan Phoenix, Arizona

    E-Print Network [OSTI]

    Dorn, Ron

    Debris flows from small catchments of the Ma Ha Tuak Range, metropolitan Phoenix, Arizona Ronald I from tiny but steep mountain catchments throughout metropolitan Phoenix, Arizona, USA. Urban growth downtown Phoenix, was selected to determine the feasibility of using the varnish microlaminations (VML

  17. Effects of Ambient Fine and Coarse Particles On Mortality in Phoenix, Arizona

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effects of Ambient Fine and Coarse Particles On Mortality in Phoenix, Arizona Merlise A. Clyde AND COARSE PARTICLES ON MORTALITY IN PHOENIX, ARIZONA1 Merlise A. Clyde Institute of Statistics and Decision of Washington Running Title: Particulate Pollution and Mortality in Phoenix, AZ Key Words: Bayesian Model

  18. Do Debris Flows Pose a Hazard to Mountain-Front Property in Metropolitan Phoenix, Arizona?

    E-Print Network [OSTI]

    Dorn, Ron

    Do Debris Flows Pose a Hazard to Mountain-Front Property in Metropolitan Phoenix, Arizona? Ronald I by growing suburbs of metropoli- tan Phoenix, Arizona, including on steep slopes above large single hazard in Phoenix and perhaps other grow- ing cities in the desert Southwest. Key Words: debris flow

  19. Valencia West, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNewPumatyUvalde County,VadeWest, Arizona: Energy

  20. Tucson Estates, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrailTrosky,Energy InformationEstates, Arizona:

  1. Sunshine Arizona Wind Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLan SolarKorea JumpSunselexSunshine Arizona

  2. East Sahuarita, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island: Energy ResourcesSahuarita, Arizona:

  3. Spring Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill Prevention andWell LogMount,Arizona: Energy

  4. EA-106 Arizona Public Service Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryofNotices | DepartmentDepartmentWesternAvista toArizona

  5. EA-134-APS Arizona Public Service Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryofNotices |Dynegy Power Marketing, IncArizona Public

  6. Arizona Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu. Feet

  7. Arizona Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu. FeetYear Jan

  8. Arizona Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu.% of Total

  9. Arizona Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu.% ofFeet)

  10. Arizona Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu.%

  11. Arizona Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu.%Feet)

  12. Arizona Natural Gas Industrial Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear JanYear

  13. Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear JanYearYear

  14. Arizona Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear

  15. Arizona Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYearDecade Year-0

  16. Arizona Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYearDecade

  17. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014Residential Consumers

  18. Arizona Natural Gas Residential Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr May Jun

  19. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr May

  20. Arizona Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr MayVented

  1. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar Apr

  2. Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar AprDecade

  3. Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar AprDecadeYear

  4. Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar

  5. Avra Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal RegionAvra Valley, Arizona: Energy

  6. Camp Verde, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: Energy Resources JumpVerde, Arizona: Energy

  7. Casas Adobes, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan:NorthCasas Adobes, Arizona: Energy

  8. Big Park, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan:Greece)Daddy s Biodiesel IncPark, Arizona:

  9. Yuma County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to:Sanming LianfaYoungstown,Yuma County, Arizona:

  10. City of Fredonia, Arizona (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCuba City, Wisconsin (UtilityCity of Fredonia, Arizona

  11. City of Williams - AZ, Arizona (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,Georgia (UtilityWilliams - AZ, Arizona

  12. Paradise Valley, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina: EnergyIncPanEnergyValley, Arizona:

  13. Pima County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPima County, Arizona:

  14. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizona Regions National Science Bowl®

  15. Arizona Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4OfficeArizona Regions National Science

  16. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  17. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  18. Location linked information

    E-Print Network [OSTI]

    Mankins, Matthew William David, 1975-

    2003-01-01

    This work builds an infrastructure called Location Linked Information that offers a means to associate digital information with public, physical places. This connection creates a hybrid virtual/physical space, called glean ...

  19. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  20. Builders Challenge High Performance Builder Spotlight: Yavapai College, Chino Valley, Arizona

    SciTech Connect (OSTI)

    2009-12-22

    Building America Builders Challenge fact sheet on Yavapai College of Chino Valley, Arizona. These college students built a Building America Builders Challenge house that achieved the remarkably low HERS score of -3 and achieved a tight building envelope.

  1. FIA-12-0059- In the Matter of California Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 31, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  2. FIA-12-0054- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    On September 14, 2012, California-Arizona-Nevada District Organization Contract Compliance (CANDO) filed an appeal from a final determination issued by the Loan Guarantee Program Office (LGPO) of...

  3. FIA-12-0053- In the Matter of Arizona Nevada District Organization

    Broader source: Energy.gov [DOE]

    On October 11, 2012, the Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) denied a Freedom of Information Act (FOIA) Appeal filed by the California Arizona Nevada District...

  4. Structural fabric of the Palisades Monocline: a study of positive inversion, Grand Canyon, Arizona 

    E-Print Network [OSTI]

    Orofino, James Cory

    2005-08-29

    A field study of positive inversion is conducted to describe associated structural fabrics and to infer kinematic development of the Palisades Monocline, Grand Canyon, Arizona. These features are then compared to sand, clay and solid rock models...

  5. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    SciTech Connect (OSTI)

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  6. Weatherization Assistance Program: Final monitoring report for: Arizona, California, Nevada

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. The first year of the contract began on October 1, 1985, and expired on September 30, 1986. The final report for that first year was submitted to DOE-SAN in August, 1986. The second year of the contract began on October 1, 1986, and expired on September 30, 1987. The final report for that second year was submitted to DOE-SAN in August, 1987. This report covers the monitoring of grantees and subgrantees for the second option year, or what is the third year of the contract. The first two (2) weeks of the third year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on November 16, 1987, and was completed on August 19, 1988. During this nine-month period, twenty-nine (29) agencies, both grantees and subgrantees, were visited and evaluated under this contract.

  7. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    SciTech Connect (OSTI)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  8. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  9. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse ...

  10. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse ...

  11. Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI-01-15486 Flow Dynamics and Inclusion Transport in Continuous Casting of Steel

    E-Print Network [OSTI]

    Thomas, Brian G.

    Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI- 01-15486 Flow;Proceedings of 2004 NSF DMII Grantees Conference, Scottsdale, Arizona Grant: #DMI- 01-15486 inclusion removal

  12. Location, location, location: utilizing pipelines and services to more effectively georeference the world's biodiversity data

    E-Print Network [OSTI]

    2009-01-01

    location, location: utilizing pipelines and services to morebut also to create pipelines integrated with humanbecome available [8]. These pipelines can be developed to

  13. Proceedings of ASME 2010 4th International Conference on Energy Sustainability May 17-22, 2010 Phoenix, Arizona, USA

    E-Print Network [OSTI]

    Agogino, Alice M.

    1 Proceedings of ASME 2010 4th International Conference on Energy Sustainability ES2010 May 17 International Conference on Energy Sustainability ES2010 May 17-22, 2010, Phoenix, Arizona, USA ES2010- 0 #12-22, 2010 Phoenix, Arizona, USA ES2010-90190 CO-DESIGN OF ENERGY-EFFICIENT HOUSING WITH THE PINOLEVILLE

  14. Intraseasonal Variability of Summer Storms over Central Arizona during 1997 and 1999 PAMELA L. HEINSELMAN* AND DAVID M. SCHULTZ*

    E-Print Network [OSTI]

    Schultz, David

    , downed power lines from high winds can result in loss of profits to power companies, disruption to lifeIntraseasonal Variability of Summer Storms over Central Arizona during 1997 and 1999 PAMELA L previous climatologies over central Arizona show a summer diurnal precipitation cycle, on any given day

  15. Urban Effects on Summer Monsoon Convection in Phoenix, Arizona (USA): A Model Case Study of Aug. 2-3, 2005

    E-Print Network [OSTI]

    Castro, Christopher L.

    Urban Effects on Summer Monsoon Convection in Phoenix, Arizona (USA): A Model Case Study of Aug. 2 American Monsoon thunderstorm event on 2-3 August 2005 in Phoenix, Arizona (USA). Using a factor effects led to a reduction of simulated rainfall over Phoenix and enhanced precipitation on the northern

  16. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  17. Search Text Based on Locations 

    E-Print Network [OSTI]

    Zhang, Weiwei

    2014-11-21

    locations, which contributes to the Geographical Information Retrieval (GIR) systems. In addition to the traditional applications of GIR systems, which are used for finding locations in documents, GIR can be applied to other fields as well. Firstly, it can...

  18. Elevated concentrations of U and co-occurring metals in abandoned mine wastes in a northeastern Arizona Native American community

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blake, Johanna M.; Avasarala, Sumant; Artyushkova, Kateryna; Ali, Abdul -Mehdi S.; Brearley, Adrian J.; Shuey, Christopher; Robinson, Wm. Paul; Nez, Christopher; Bill, Sadie; Lewis, Johnnye; et al

    2015-07-09

    The chemical interactions of U and co-occurring metals in abandoned mine wastes in a Native American community in northeastern Arizona were investigated using spectroscopy, microscopy and aqueous chemistry. The concentrations of U (67–169 ?g L–1) in spring water samples exceed the EPA maximum contaminant limit of 30 ?g L–1. Elevated U (6,614 mg kg–1), V (15,814 mg kg–1), and As (40 mg kg–1) concentrations were detected in mine waste solids. Spectroscopy (XPS and XANES) solid analyses identified U (VI), As (-I and III) and Fe (II, III). Linear correlations for the release of U vs V and As vs Femore »were observed for batch experiments when reacting mine waste solids with 10 mM ascorbic acid (~pH 3.8) after 264 h. The release of U, V, As, and Fe was at least 4-fold lower after reaction with 10 mM bicarbonate (~pH 8.3). These results suggest that U–V mineral phases similar to carnotite [K2(UO2)2V2O8] and As–Fe-bearing phases control the availability of U and As in these abandoned mine wastes. Elevated concentrations of metals are of concern due to human exposure pathways and exposure of livestock currently ingesting water in the area. This study contributes to understanding the occurrence and mobility of metals in communities located close to abandoned mine waste sites.« less

  19. Strategies for Developing Water-Conscious Communities: An Analysis of Water Conservation in Tucson, Arizona

    E-Print Network [OSTI]

    Fay, Noah

    conservation. Water conservation practices, such as rainwater harvesting, recycling gray-water and installation1 Strategies for Developing Water-Conscious Communities: An Analysis of Water Conservation was made possible by the University of Arizona, Technology and Research Initiative Fund 2009/2010, Water

  20. Gene Duplication and Adaptive Evolution of Digestive Proteases in Drosophila arizonae

    E-Print Network [OSTI]

    Markow, Therese

    Gene Duplication and Adaptive Evolution of Digestive Proteases in Drosophila arizonae Female with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate

  1. FIA-12-0004- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  2. FIA-12-0005- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals issued one Decision relating to two appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) from two determination letters issued by the Loan Guarantee Program Office (LGPO) of the Department of Energy (DOE) under the Freedom of Information Act (FOIA).

  3. FIA-12-0020- In the Matter of California-Arizona-Nevada District Organization Contract Compliance

    Broader source: Energy.gov [DOE]

    The Office of Hearings and Appeals granted a Motion for Reconsideration of part of a Decision we issued on March 23, 2012, relating to appeals filed by California-Arizona-Nevada District Organization Contract Compliance (CANDO) under the Freedom of Information Act (FOIA).

  4. Forward: Final Version 2007 January 31 Forward to the University of Arizona Kuiper Belt Book

    E-Print Network [OSTI]

    Jewitt, David C.

    Forward: Final Version 2007 January 31 Forward to the University of Arizona Kuiper Belt Book Only belt since 1992. Those of us whose research has "helped the tree grow", a group which includes most a privilege and what a thrill it is to be able to do science this way. The Kuiper belt is amazing in its

  5. 4.5 Rock Coatings RI Dorn, Arizona State University, Tempe, AZ, USA

    E-Print Network [OSTI]

    Dorn, Ron

    4.5 Rock Coatings RI Dorn, Arizona State University, Tempe, AZ, USA r 2013 Elsevier Inc. All rights reserved. 4.5.1 Introduction to Rock Coatings 70 4.5.2 Interpreting Rock Coatings through a Landscape: Subaerial Exposure of Subsurface Coatings 73 4.5.2.3 Third-Order Control: Competition from Lithobionts 78 4

  6. 4.4 Nanoscale: Mineral Weathering Boundary RI Dorn, Arizona State University, Tempe, AZ, USA

    E-Print Network [OSTI]

    Dorn, Ron

    4.4 Nanoscale: Mineral Weathering Boundary RI Dorn, Arizona State University, Tempe, AZ, USA SJ-scattered detector. Biotic weathering Mineral weathering caused by life, including bacteria, fungi, algae, plants of elements such as silica or iron. Etching of minerals Mineral dissolution is not an even produce; areas

  7. The Arizona Poison and Drug Information Center's toll-free line

    E-Print Network [OSTI]

    Arizona, University of

    The Arizona Poison and Drug Information Center's toll-free line is always open. Call us if: · You think someone has been poisoned. · You have questions about any type of poison. · You want information about poison prevention. Storing Safely · Lock up poisonous products and medicines out of reach and out

  8. The Arizona Poison and Drug Information Center's toll free line is

    E-Print Network [OSTI]

    Arizona, University of

    The Arizona Poison and Drug Information Center's toll free line is always open. Call us if: · You think someone has been poisoned. · You have questions about any type of poison. · You want information about poison prevention. Storing Safely · Lock up poisonous products and medicines out of reach and out

  9. University of Arizona Geography and Regional Development 696O Adaptation and Resilience in Water Resources Systems

    E-Print Network [OSTI]

    University of Arizona Geography and Regional Development 696O 1 Adaptation and Resilience in Water-4393) Office hours: by appointment Seminar summary [from course catalog] Climate change, urban growth, energy demand, and global food trade alter water in coupled human-natural systems. This seminar addresses

  10. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California.

  11. Ground Covers for northern ArizonA Above 6,000 foot elevAtions

    E-Print Network [OSTI]

    Sanderson, Mike

    or the use of fabric or plastic mulch may be required. Most Northern Arizona soils are limited in the amount to turf, bare ground, and rock mulches. Ground covers fill a number of important design needs. They can or even highway embankments. They can soften and add a touch of greenery to the large rock-mulched areas

  12. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    E-Print Network [OSTI]

    in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 105 m3 s-1 Canyon; Colorado river; Pleistocene floods; Lava dams; Hydraulic modeling; Paleoflood indicators; DamPeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

  13. University of Arizona Geography and Regional Development 696J Adaptive Water Management in Agriculture

    E-Print Network [OSTI]

    in Agriculture GEOG 696J (Water Resources Geography) Seminar, Fall Semester 2008 Thursdays, 2:00 ­ 4:30 pUniversity of Arizona Geography and Regional Development 696J 1 Adaptive Water Management implications. This Geography & Regional Development seminar addresses rapidly evolving agricultural water use

  14. Archived Reference Climate Zone: 2B Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  15. Archived Reference Climate Zone: 2B Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  16. Location, location, location: The variable value of renewable energy and demand-side efficiency resources

    E-Print Network [OSTI]

    Fowlie, Meredith

    and renewable energy resources. We eval- uate renewable energy (RE) and energy efficiency (EE) technologiesLocation, location, location: The variable value of renewable energy and demand-side efficiency mitigation efforts in the electricity sector emphasize accelerated deployment of energy efficiency measures

  17. Hiding Location Information from Location-Based Services

    E-Print Network [OSTI]

    Hengartner, Urs

    that the architecture is powerful enough to support existing location- based services. Our architecture exploits Trusted-specific information is being accessed. I. INTRODUCTION The ubiquity of cellphones has lead to the introduction of a cellphone user (e.g., directions to a target location or a list of interesting, nearby places). Another

  18. Commencement Ceremony Department Time Location Department and Major Time Location

    E-Print Network [OSTI]

    Kaji, Hajime

    Engineering 15:30 Bldg. 63 Classroom 01 (2nd Fl.) Industrial and Management Systems Engineering 15:30 Bldg. 63 and Management 15:30 Bldg. 63 Classroom 01 (2nd Fl.) Department Time Location Department and Major Time Location:30 Bldg. 57 202 Modern Mechanical Engineering 10:30 Bldg. 57 202 Industrial and Management Systems

  19. Constrained Parameterization of the Multichannel Analysis of Surface Waves Approach with Application at Yuma Proving Ground, Arizona

    E-Print Network [OSTI]

    Schwenk, Jacob Tyler

    2013-08-31

    Field data from Yuma Proving Ground, Arizona was used to test the feasibility of merging common multichannel analysis of surface waves (MASW) processing routines with mode- consistent shear-wave refraction traveltime ...

  20. While living in Phoenix, Arizona, several years ago, it was always a pleasure to take the four-

    E-Print Network [OSTI]

    Gorelick, Root

    While living in Phoenix, Arizona, several years ago, it was always a pleasure to take the four minutes from your car. Because almost no sane person visits Phoenix in summer, I never made

  1. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA

    E-Print Network [OSTI]

    Wu, Jianguo "Jingle"

    A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region the spatial pattern of urbanization in the Phoenix metropolitan area, Arizona, USA. Several landscape metrics

  2. Location Management for Mobile Devices

    E-Print Network [OSTI]

    Wilde, Erik

    2008-01-01

    general, and wireless and mobile devices in particular. Thelocation-enabled mobile devices and location-based services.information from mobile devices and making it available to

  3. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  4. Guide to the Library Locations

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Guide to the Libraries #12;Library Locations W.E.B. DU BOIS LIBRARY www.library.umass.edu 154 Hicks Way (413) 545-0150, (413) 545-2622 The Du Bois Library is the primary location for resources in education, geography, the humanities and fine arts, nursing, management, medicine, public health, and social

  5. www.engineering.arizona.edu Accredited by the Engineering Accreditation Commission of ABET,

    E-Print Network [OSTI]

    Wong, Pak Kin

    Consolidated 1 1 Abu Dhabi National Oil Company 1 1 ADNOC Oil CO. 1 1 Advanced Ceramics Research 2 2 Aero Container Controls 1 1 Aker Kvaerner 1 1 Aklapo 1 1 APS/Raytheon 1 1 ARAMCO Oil Company 1 1 Arizona Youth and Technology 1 1 1 3 Machine Solutions 1 1 Medical School 1 1 Mintec 1 1 NASA Jet Propulsion Laboratory 1 1 2

  6. EIS-0301: NRG Energy Services, Inc., Arizona-Baja California 500 kV Transmission Line

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve NRG Energy, Inc. (NRG) for a Presidential permit to construct a 500,000-volt transmission line originating at the switchyard of the Palo Verde Nuclear Generating Station near Phoenix, Arizona, and extending approximately 177 miles to the southwest, where it would cross the United States (U.S.) border with Mexico in the vicinity of Calexico, California.

  7. Phoenix, Arizona , Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1, CONDUCTCritical Materials UsePhasePhoenix, Arizona,

  8. Adoption, implementation and enforcement of commercial building energy codes in New Mexico and Arizona

    SciTech Connect (OSTI)

    Callaway, J W; Thurman, A G; Shankle, D L

    1991-07-01

    The US Department of Energy (DOE) is considering ways to encourage states to adopt energy efficiency standards for residential and commercial buildings in the private sector. Such standards are now mandatory for federal buildings, and for private buildings in 34 states; in the remaining 16 states, the standards serve as guidelines for voluntary compliance. In this study for DOE, Pacific Northwest Laboratory (PNL) assessed the process by which energy codes for commercial buildings were adopted and implemented in Arizona and New Mexico. Information was gathered primarily through a series of interviews with state officials, city building officials, architects and engineers, builders, and staff from utilities in the two states. Until other state processes are studied, the extent of the similarities and dissimilarities to the situation in New Mexico and Arizona are unknown. A more extensive study may show that at least some elements of the two state's experience have been paralleled in other parts of the country. General strategies to encourage the adoption of energy codes, assist implementation, and support enforcement were developed based on the research from Arizona and New Mexico and are presented in this report. 6 refs., 4 figs.

  9. If You Build it Together, They Will Come: How Three Different Agencies Learned to Work Together to Supply Adequate Water for Phoenix, Arizona

    E-Print Network [OSTI]

    Wolf, Isaac

    2014-01-01

    Study for the Phoenix Urban Area. Phoenix, Arizona: PlanningDepartment, City of Phoenix. May 1951. W.S. Gookin Papers. (Association Convention, Phoenix, September 30, 1961. Letter.

  10. Weatherization assistance program. Final monitoring report for Arizona, California, the Navajo Nation, and Nevada

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization programs for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. This final report summarizes both the findings and the recommendations that emerged from the forty (40) visits to grantees and subgrantees. The remarks are not intended to be detailed and exhaustive. Specific problems, achievements, and recommendations are to be found in the narrative reports. But some findings and traits are sufficiently general that they warrant being included in this final report. The recommendations reflect those general characteristics.

  11. Dimensions of service quality of the University of Arizona Sponsored Projects Services Office internal customers 

    E-Print Network [OSTI]

    Baca, David Ray

    2007-04-25

    of Arizona Sponsored Projects Services Office Internal Customers. (December 2006) David Ray Baca, B.S., Texas A&M University; M.L.I.S. The University of Texas at Austin Chair of Advisory Committee: Dr. Bryan Cole When a service transaction occurs..., confidant and dear friend. When I walked into your office and you announced that you had registered me in the MLIS program at the University of Texas I was dumbstruck by your nerve and foresight. I still am. You will live in my thoughts and heart forever...

  12. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu. FeetYear

  13. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu.

  14. Arizona Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu.% of

  15. Arizona Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million

  16. Arizona Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear Jan Feb Mar

  17. Arizona Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear Jan Feb

  18. Arizona Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear Jan FebYear

  19. Arizona Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear Jan

  20. Arizona Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 MillionYear JanYear Jan

  1. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014

  2. Arizona Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014Residential

  3. Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb MarThousand Cubic

  4. 49 A.R.S. 255 et seq.: Arizona Pollutant Discharge Elimination System

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | Open Energy Information 55 et seq.: Arizona

  5. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    WORKPLACE HAZARD ASSESSMENT Location: Task: Performed by: Date: This form may be used as an aid in performing hazard assessment. Review listed hazard classifications, identify all hazards, possible hazards and their sources. Hazard classification listing is not intended to be complete but is provided as a guide

  6. Joint microseismic event location with uncertain velocity

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01

    We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...

  7. Location and Hours | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location and Hours Location The ORNL Research Library is located off the central corridor of Bldg. 4500N on the main ORNL campus. Hours The library is open 24 hours, seven days a...

  8. RADIOCARBON, Vol 47, Nr 1, 2005, p 3137 2005 by the Arizona Board of Regents on behalf of the University of Arizona RECONSTRUCTION OF THE 14C PRODUCTION RATE FROM MEASURED

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    of the University of Arizona 31 RECONSTRUCTION OF THE 14C PRODUCTION RATE FROM MEASURED RELATIVE ABUNDANCE Ilya G method is presented for the reconstruction of the radiocarbon production rate from the measured relative), an inversion of this process (i.e. reconstruction of the production rate from the measured concentration

  9. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Optimized Fault Location Final Project Report Power Systems Engineering Research Center A National Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report

  10. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

  11. INHABITANTS OF LANDSCAPE SCARS: SUCCESSION OF WOODY PLANTS AFTER LARGE, SEVERE FOREST FIRES IN ARIZONA AND NEW MEXICO

    E-Print Network [OSTI]

    McGarigal, Kevin

    IN ARIZONA AND NEW MEXICO SANDRA L. HAIRE* AND KEVIN MCGARIGAL Department of Natural Resources Conservation years after the La Mesa fire in New Mexico. Species that reproduce from off-site seed, including Pinus los cambios de clima y de re´gimen de incendios en la sucesio´n de comunidades de plantas es crucial

  12. Design Study of the GNIRS Bracket Structure Optical Sciences Center, University of Arizona and Gemini 8m Telescopes

    E-Print Network [OSTI]

    Design Study of the GNIRS Bracket Structure Myung Cho Optical Sciences Center, University has often been overly conservative. As a classical design, Serrurier truss structures are widely and Engineering Mechanics, University of Arizona, Tucson, AZ 85719 Gemini Preprint # 29 #12;Design Study

  13. Design Study of the GNIRS Bracket Structure Optical Sciences Center, University of Arizona and Gemini 8m Telescopes

    E-Print Network [OSTI]

    Design Study of the GNIRS Bracket Structure Myung Cho Optical Sciences Center, University has often been overly conservative. As a classical design, Serrurier truss structures are widely and Engineering Mechanics, University of Arizona, Tucson, AZ 85719 Gemini Preprint # 29 #12; Design Study

  14. University of Arizona Geography and Development 596J Water Management & Policy: The Water-Energy-Environment Nexus

    E-Print Network [OSTI]

    University of Arizona Geography and Development 596J 1 Water Management & Policy: The Water-Energy participants with a global overview of water management & policy challenges. Emphasis is placed on the water-energy water and energy have moved water-energy nexus analysis beyond straightforward quantification of energy

  15. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientificOmbuds Office Location & Hours Ombuds

  16. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-31

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information. 5 figs.

  17. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  18. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  19. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  20. CX-007596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  1. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  2. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-010148: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Merritt Radio Station Upgrade CX(s) Applied: B1.19 Date: 04/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-008706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tunk Mountain Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-008543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office

  6. CX-012333: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  7. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-011634: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  9. CX-008146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC

  10. CX-008144: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC

  11. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  12. CX-011069: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  13. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  14. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  15. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  16. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  17. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  18. CX-012311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office

  19. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  20. CX-010763: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...

  1. CX-012254: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05/28/2014 Location(s): Tennessee Offices(s): Golden Field Office

  2. CX-012253: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05/27/2014 Location(s): Oregon Offices(s): Golden Field Office

  3. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  4. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  5. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  7. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  8. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  9. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  10. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  11. CX-012097: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  12. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  13. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  14. CX-012122: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  15. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-009698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  19. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-011401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minto Lodge Rehabilitation CX(s) Applied: B5.1 Date: 11/19/2013 Location(s): Alaska Offices(s): Golden Field Office

  1. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  2. CX-008973: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Petrography Laboratory CX(s) Applied: B3.6 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  3. CX-010730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Paisley Geothermal Integration CX(s) Applied: B1.7 Date: 08/09/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  4. CX-008161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  7. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  8. CX-010515: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency Public Service Campaign CX(s) Applied: A9 Date: 06/14/2013 Location(s): New York Offices(s): Golden Field Office

  9. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  10. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  11. CX-008250: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geotechnical Core Drilling for USGS 138 CX(s) Applied: B3.1 Date: 04/18/2012 Location(s): Idaho Offices(s): Nuclear Energy

  12. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-009398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Domestic Source Recovery CX(s) Applied: B2.6 Date: 11/01/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  14. CX-008535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office

  15. CX-011110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advancements in Algal Biomass Yield CX(s) Applied: A9 Date: 08/29/2013 Location(s): Hawaii Offices(s): Golden Field Office

  16. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-011630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  18. CX-011177: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hebo Substation Access Road Maintenance CX(s) Applied: B1.3 Date: 09/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  19. CX-011184: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Salmon Creek Pond Property Funding CX(s) Applied: B1.25 Date: 08/29/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-008698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Poorman Ponds Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-009630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ICP Routine Maintenance CX(s) Applied: B1.3 Date: 11/06/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  2. CX-009632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC – Suspect RH-TRU (AMWTP) CX(s) Applied: NO CX GIVEN Date: 11/23/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  3. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  4. CX-009753: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Propane Corridor Development Program CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  5. CX-008000: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location(s): Illinois Offices(s): Science, Chicago Office The project uses TEM, FIB, neutron scattering and synchrotron-based X-ray techniques to investigate uranium...

  6. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  8. CX-009295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Regional Innovation Cluster CX(s) Applied: B3.6 Date: 09/05/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  9. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  10. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  11. CX-010113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compression Stress Relaxometer CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-009587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Houston, Texas CX(s) Applied: B5.1 Date: 12/12/2012 Location(s): Texas Offices(s): Golden Field Office

  13. CX-010261: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nevada State Energy Program Formula CX(s) Applied: B5.16 Date: 04/26/2013 Location(s): Nevada Offices(s): Golden Field Office

  14. CX-009635: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC – U-233 Waste Stream Disposition CX(s) Applied: NO CX GIVEN Date: 12/15/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-011625: Categorical Exclusion Determinationc

    Broader source: Energy.gov [DOE]

    9103 Second Floor Refurbishment CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  16. CX-008609: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vermont State Energy Program CX(s) Applied: A9, A11 Date: 07/03/2012 Location(s): Vermont Offices(s): Golden Field Office

  17. CX-010398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration CX(s) Applied: B4.13 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  18. CX-010091: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration 2013-1 CX(s) Applied: B4.13 Date: 04/15/2012 Location(s): Idaho Offices(s): Nuclear Energy

  19. CX-010656: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Stormwater Drainage Repair CX(s) Applied: B1.3 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-012118: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  1. CX-010437: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rocky Ridge Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/31/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  2. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  3. CX-007418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sidewalks to School CX(s) Applied: B1.13 Date: 12/13/2011 Location(s): South Carolina Offices(s): Golden Field Office

  4. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  5. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  6. CX-009132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

  7. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  8. CX-007893: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 02/10/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  9. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  10. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  11. CX-007407: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Floating Turbine CX(s) Applied: A9 Date: 12/07/2011 Location(s): Ohio Offices(s): Golden Field Office

  12. CX-010768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  13. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  14. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  15. CX-007550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  16. CX-007417: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shift CX(s) Applied: B5.1 Date: 12/21/2011 Location(s): Pennsylvania Offices(s): Golden Field Office

  17. CX-010532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

  18. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. Summary of the engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    none,

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  20. Engineering assessment of inactive uranium mill tailings, Tuba City site, Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Tuba City site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Tuba City, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 0.8 million tons of tailings at the Tuba City site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

  1. Fossil vertebrate footprints in the Coconino Sandstone (Permian) of northern Arizona: Evidence for underwater origin

    SciTech Connect (OSTI)

    Brand, L.R.; Thu Tang (Loma Linda Univ., CA (United States))

    1991-12-01

    Numerous fossil vertebrate trackways in the Coconino Sandstone of northern Arizona exhibit several features that imply that these trackways were not made in subaerial conditions. Some trackways begin or end abruptly on undisturbed bedding planes, and in other trackways the individual prints are oriented in a different direction from that of the trackway. These features indicate buoyancy of the animals in water. The animals were swimming in the water part of the time and at other times walking on the substrate, and they were sometimes orienting upslope on the surface of the underwater dunes, while being drifted sideways by lateral currents. Observations on salamander locomotion in a sedimentation tank with flowing water support this model.

  2. Weatherization assistance program: Final monitoring report for Arizona; California; the Navajo Nation; Nevada

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    Stroud, Inc., was awarded a contract by the Department of Energy San Francisco Operations Office (DOE-SAN) to evaluate the weatherization program for selected grantees and subgrantees in Arizona, California, the Navajo Nation, and Nevada. The provisions of the contract specified an initial year and renewable optional periods of two (2) additional years. This report covers the monitoring of grantees and subgrantees for the first option year, or what is the second year of the contract. The first two (2) weeks of the second year's activities were devoted to scheduling the agencies to be monitored. The actual field monitoring began on October 14, 1986, and was completed on May 22, 1987. During this seven-month period, thirty-five (35) agencies were visited and evaluated under this contract.

  3. Limits to the potential distribution of light brown apple moth in Arizona–California based on climate suitability and host plant availability

    E-Print Network [OSTI]

    Gutierrez, Andrew Paul; Mills, Nicholas J.; Ponti, Luigi

    2010-01-01

    503–531 Dumbleton LJ (1932) The apple leaf roller (TortrixJW (1937) The light-brown apple moth (Tortrix post- vittana,distribution of light brown apple moth in Arizona–California

  4. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  5. Keeping Pace with Big Data Arizona State University Data Mining and Machine Learning Lab NSF Workshop on Big Data Analy6cs, Beijing 1

    E-Print Network [OSTI]

    Liu, Huan

    Keeping Pace with Big Data Arizona State University Data Mining and Machine Learning Lab NSF Workshop on Big Data Analy6cs, Beijing 1 Keeping Pace with Big Data - A Data Mining Perspec>ve Huan Liu Data

  6. Extracting Patterns from Location History Andrew Kirmse

    E-Print Network [OSTI]

    Cortes, Corinna

    " to infer the user's important locations. The "Place lab client" infers locations by listening to RF-emissions different modes of transportation (e.g. bus, on foot, car etc.). Both these papers use clean regularly-sampled

  7. PROBABILISTIC METHODS FOR LOCATION ESTIMATION IN

    E-Print Network [OSTI]

    Myllymäki, Petri

    PROBABILISTIC METHODS FOR LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym;PROBABILISTIC METHODS FOR LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym¨aki, Teemu Roos METHODS FOR LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllymäki, Teemu Roos, Henry

  8. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  9. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    SciTech Connect (OSTI)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  10. Community Detection from Location-Tagged Networks

    E-Print Network [OSTI]

    Liu, Zhi

    2015-01-01

    Many real world systems or web services can be represented as a network such as social networks and transportation networks. In the past decade, many algorithms have been developed to detect the communities in a network using connections between nodes. However in many real world networks, the locations of nodes have great influence on the community structure. For example, in a social network, more connections are established between geographically proximate users. The impact of locations on community has not been fully investigated by the research literature. In this paper, we propose a community detection method which takes locations of nodes into consideration. The goal is to detect communities with both geographic proximity and network closeness. We analyze the distribution of the distances between connected and unconnected nodes to measure the influence of location on the network structure on two real location-tagged social networks. We propose a method to determine if a location-based community detection...

  11. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  12. Earthquake locations and seismic velocity models for Southern California

    E-Print Network [OSTI]

    Lin, Guoqing

    2007-01-01

    Linearized EarthquakeChapter 4. The COMPLOC Earthquake Location3-D Simultaneous Earthquake Locations and

  13. Locating and tracking assets using RFID 

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15

    , this research presents a math¬ematical model of using RFID (both handheld readers and stationary readers) for e?cient asset location. We derive the expected cost of locating RFID¬tagged objects in a multi¬area environment where hand¬held RF readers are used. We...

  14. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    none,

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U/sub 3/O/sub 8/ by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive.

  15. Generator, mechanical, smoke: For dual-purpose unit, XM56, Yuma Proving Ground, Yuma, Arizona

    SciTech Connect (OSTI)

    Driver, C.J.; Ligotke, M.W.; Moore, E.B. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bowers, J.F. (Dugway Proving Ground, UT (United States))

    1991-10-01

    The US Army Chemical Research, Development and Engineering Center (CRDEC) is planning to perform a field test of the XM56 smoke generator at the US Army Yuma Proving Ground (YPG), Arizona. The XM56, enabling the use of fog oil in combination with other materials, such as graphite flakes, is part of an effort to improve the efficiency of smoke generation and to extend the effectiveness of the resulting obscurant cloud to include the infrared spectrum. The plan field operation includes a road test and concurrent smoke- generation trials. Three M1037 vehicles with operation XM56 generators will be road-tested for 100 h. Smoke will be generated for 30 min from a single stationary XM56 four times during the road test, resulting in a total of 120 min of smoke generation. The total aerial release of obscurant materials during this test is expected to be 556 kg (1,220 lb) of fog oil and 547 kg (1,200 lb) of graphite flakes. This environmental assessment has evaluated the consequences of the proposed action. Air concentrations and surface deposition levels were estimated using an atmospheric dispersion model. Degradation of fog oil and incorporation of graphite in the soil column will limit the residual impacts of the planned action. No significant impacts to air, water, and soil quality are anticipated. risks to the environment posed by the proposed action were determined to be minimal or below levels previously found to pose measurable impacts. Cultural resources are present on YPG and have been identified in adjacent areas; therefore, off-road activities should be preceded by a cultural resource survey. A Finding of No Significant Impact is recommended. 61 refs., 1 fig.

  16. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    SciTech Connect (OSTI)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  17. The Construction of Locative Situations: Locative Media and the Situationist International, Recuperation or Redux?

    E-Print Network [OSTI]

    McGarrigle, Conor

    2009-01-01

    closely aligned to the SI's construction of situations. ThisG (1957) Report on the Construction of Situations and on theThe Construction of Locative Situations: Locative Media and

  18. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  19. Earthquake Location, Direct, Global-Search Methods E 2449 Earthquake Location,

    E-Print Network [OSTI]

    Earthquake Location, Direct, Global-Search Methods E 2449 Earthquake Location, Direct, Global Kingdom Article Outline Glossary Definition of the Subject Introduction The Earthquake Location Problem or temporal av- erage of some characteristic of an earthquake, such as surface shaking intensity or moment

  20. Addressing endogeneity in residential location models

    E-Print Network [OSTI]

    Guevara-Cue, Cristián Angelo

    2005-01-01

    Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

  1. Techniques for Mobile Location Estimation in UMTS 

    E-Print Network [OSTI]

    Thomas, Nicholas J

    The subject area of this thesis is the locating of mobile users using the future 3rd generation spread spectrum communication system UMTS. The motivation behind this work is twofold: firstly the United States Federal ...

  2. A Survey on the Warehouse Location Problem

    E-Print Network [OSTI]

    Cohen, Joseph J.

    The warehouse location problem has assumed numerous formulations, and solutions have been devised using a variety of mathematical techniques. The development of this effort is examined and relevant models presented for evaluation.

  3. Developing a theory of nightclub location choice

    E-Print Network [OSTI]

    Crim, Stephen J. (Stephen Johnson)

    2008-01-01

    This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

  4. Alternative Fuel Infrastructure Associate Location: San Diego

    E-Print Network [OSTI]

    California at Davis, University of

    Alternative Fuel Infrastructure Associate Location: San Diego Basic Functions Center an Alternative Fuel Infrastructure Associate that has a passion for sustainability, the environment, and accelerating the transition to a sustainable world powered by clean energy! The Alternative Fuel Infrastructure

  5. Driver expectancy in locating automotive controls 

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  6. The U.S. Department of Energy Office of Indian Energy Policy and Programs Phoenix, Arizona, Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2011-04-05

    The Phoenix, Arizona, Roundtable on Tribal Energy Policy convened at 8:30 a.m., Tuesday, April 5th, at the downtown Phoenix Hyatt. The meeting was hosted by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (DOE Office of Indian Energy) and facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute). Approximately thirty-eight people attended the meeting, including representatives of ten different tribes, as well as representatives of the Colorado Indian Tribes, the All Indian Pueblo Council and the Inter-Tribal Council of Arizona. Interested state, federal, university, NGO and industry representatives also were present. A full list of attendees is at the end of this summary. DOE representatives were Tracey LeBeau, Directory of the DOE Office of Indian Energy, Pilar Thomas, Deputy Director-Policy of the DOE Office of Indian Energy, and David Conrad, Director of Tribal and Intergovernmental Affairs, DOE Office of Congressional and Intergovernmental Affairs.

  7. Assistant/Associate Professor, Early Childhood Special Education Literacy At Arizona State University's Mary Lou Fulton Teachers College we are dedicated to preparing the next

    E-Print Network [OSTI]

    Shumway, John

    Assistant/Associate Professor, Early Childhood Special Education Literacy Job #10834 At Arizona of research and scholarship in Early Childhood Special Education literacy, and will have opportunities in early childhood special education literacy education at the local, national, and international levels

  8. Open Rank, Early Childhood Special Education for Diverse Language Learners At Arizona State University's Mary Lou Fulton Teachers College we are dedicated to preparing the next

    E-Print Network [OSTI]

    Shumway, John

    Open Rank, Early Childhood Special Education for Diverse Language Learners Job #10840 At Arizona of research and scholarship in the field of early childhood/early childhood special education/early language education/early childhood special education research program development in a wide range of areas, including

  9. In Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000.

    E-Print Network [OSTI]

    Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000. HIGH-FIDELITY RAPID PROTOTYPING OF THE REAL manufacturing in- dustry has been driven by continuous technological advancement of the underlying production results in Dis- crete Event Systems theory. Furthermore, in addition to the development of the formal

  10. EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western’s Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona.

  11. Reference Buildings by Climate Zone and Representative City: 2B Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  12. Location theory and the location of industry along an interstate highway 

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01

    a greater gamble. This sect. ion has been devoted to s review of the fundamental factors underlying all plant location ss recognised in location theory. The next section will review some recent. empirical attempts to determine the actual... for this thesis was possible through the assistance provided )ointly by the Texas Highway Department and the Bureau of Public Roads. i. v TABLE OF CONTENTS Chapter Page INTRODUCTION Purpose Plan of Study REVIEW OF PLANT LOCATION CONCEPTS Introduction...

  13. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  14. Sustainable Transportation Fellowship Location: San Diego, CA

    E-Print Network [OSTI]

    California at Davis, University of

    Sustainable Transportation Fellowship Location: San Diego, CA Our clean energy future depends. · Regular web posts on other clean transportation topics. · Assist in other tasks, as assigned. The ideal and a clean, healthy environment. To bring about such a future, each of us must make wise choices now

  15. Secure Location Verification Using Radio Broadcast

    E-Print Network [OSTI]

    Nesterenko, Mikhail

    , exploits the difference between propagation speeds of radio and sound waves to estimate the position1 Secure Location Verification Using Radio Broadcast Adnan Vora and Mikhail Nesterenko Abstract of the prover. In this paper, we propose a solution that leverages the broadcast nature of the radio signal

  16. Secure Location Verification Using Radio Broadcast

    E-Print Network [OSTI]

    Nesterenko, Mikhail

    the difference between propagation speeds of radio and sound waves to estimate the position of the proverSecure Location Verification Using Radio Broadcast Adnan Vora and Mikhail Nesterenko Computer. In this paper, we propose a solution that leverages the broadcast nature of the radio signal emitted

  17. OPTIMAL LOCATION OF ISOLATION VALVES IN WATER

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 7 OPTIMAL LOCATION OF ISOLATION VALVES IN WATER DISTRIBUTION SYSTEMS: A RELIABILITY The cornerstone of any healthy population is access to safe drinking water. The goal of the United Nations International Drinking Water Supply and Sanitation Decade from 1981 to 1990 was safe drinking water for all

  18. Ontology-based Disambiguation of Spatiotemporal Locations

    E-Print Network [OSTI]

    Hyvönen, Eero

    , in the semantic portal MuseumFinland3 [7] a location parton- omy4 was used for annotating museum artifacts. #12;A problem when creating a semantic cultural heritage portal is that places, both modernFinland originate from regions that no longer exist and/or are not part of Finland but of Russia with new names

  19. Locating Secret Messages in Images Ian Davidson

    E-Print Network [OSTI]

    Davidson, Ian

    Locating Secret Messages in Images Ian Davidson Computer Science, SUNY Albany 1400 Washington in innocuous media such as images, while steganalysis is the field of detecting these secret messages contributing the most to the energy calculations of an image are deemed outliers. Typically, of the top third

  20. www.elsevier.com/locate/visres polarization

    E-Print Network [OSTI]

    Boal, Jean

    .elsevier.com/locate/visres Cuttlefish use polarization sensitivity in predation on silvery fish Nadav Shashar a,b, Roland Hagan c, Jean of cuttlefish, we examined the preference of Sepia officina/is when presented with fish whose polarization reflection was greatly reduced versus fish whose polarization reflection was not affected. Cuttlefish preyed

  1. Locating Climate Insecurity: Where Are the Most Vulnerable Places in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd, New York: EnergyLoan Program Jump

  2. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    SciTech Connect (OSTI)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.; Klise, Geoffrey Taylor

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between water resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.

  3. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    SciTech Connect (OSTI)

    Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, CO; Miller, D.E. [S.M. Stoller Corporation, Grand Junction, CO; Morris, S.A. [S.M. Stoller Corporation, Grand Junction, CO; Sheader, L.R. [S.M. Stoller Corporation, Grand Junction, CO; Glenn, E.P. [University of Arizona, Tucson, AZ; Moore, D. [University of Arizona, Tucson, AZ; Carroll, K.C. [University of Arizona, Tucson, AZ; Benally, L. [Navajo Nation, Window Rock, AZ; Roanhorse, M. [Navajo Nation, Window Rock, AZ; Bush, R.P. [U.S. Department of Energy, Grand Junction, CO; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  4. Mobile Homophily and Social Location Prediction

    E-Print Network [OSTI]

    Bapierre, Halgurt; Groh, Georg

    2015-01-01

    The mobility behavior of human beings is predictable to a varying degree e.g. depending on the traits of their personality such as the trait extraversion - introversion: the mobility of introvert users may be more dominated by routines and habitual movement patterns, resulting in a more predictable mobility behavior on the basis of their own location history while, in contrast, extrovert users get about a lot and are explorative by nature, which may hamper the prediction of their mobility. However, socially more active and extrovert users meet more people and share information, experiences, believes, thoughts etc. with others. which in turn leads to a high interdependency between their mobility and social lives. Using a large LBSN dataset, his paper investigates the interdependency between human mobility and social proximity, the influence of social networks on enhancing location prediction of an individual and the transmission of social trends/influences within social networks.

  5. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  6. Menstrual cycle effects on spatial location tasks 

    E-Print Network [OSTI]

    Andrew, Sarah

    2013-02-22

    abilities (Halpem, 1992; Voyer et al. , 1995). However, there is one spatial ability test where women demonstrate an advantage over men. This female advantage spatial ability is known as spaflal location memory (Eals & Silvermen, 1994; Silverman & Eals..., Mock & Erbaugh, 1961) and a brief daily diary, which recorded subjective moods (i. e. , anxiety, sadness, anger, happiness, and energy level). The participants recorded their daily moods in the daily diary by marking a spot on a 10 cm visual analogue...

  7. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor Designations in 11Alternative Fueling Station Locator

  8. Location of Narrowband Spikes in Solar Flares

    E-Print Network [OSTI]

    Arnold O. Benz; Pascal Saint-Hilaire; Nicole Vilmer

    2001-12-19

    Narrowband spikes of the decimeter type have been identified in dynamic spectrograms of Phoenix-2 of ETH Zurich and located in position with the Nancay Radioheliograph at the same frequency. The spike positions have been compared with the location of hard X-ray emission and the thermal flare plasma in soft X-rays and EUV lines. The decimetric spikes are found to be single sources located some 20" to 400" away from the flare site in hard or soft X-rays. In most cases there is no bright footpoint nearby. In at least two cases the spikes are near loop tops. These observations do not confirm the widely held view that the spike emission is produced by some loss-cone instability masering near the footpoints of flare loops. On the other hand, the large distance to the flare sites and the fact that these spikes are all observed in the flare decay phase make the analyzed spike sources questionable sites for the main flare electron acceleration. They possibly indicate coronal post-flare acceleration sites.

  9. Semantics of Functional and Locative Relations in Rongga

    E-Print Network [OSTI]

    Aryawibawa, I. Nyoman

    2010-01-01

    Many scholars have proposed a universal set of locative relations. Herskovits’s comprehensive study of English locative relations found that locative concepts such as inclusion, support and contiguity, and coincidence are basic in English. Her...

  10. Location Prediction in Social Media Based on Tie Strength 

    E-Print Network [OSTI]

    McGee, Jeffrey A

    2013-04-29

    We propose a novel network-based approach for location estimation in social media that integrates evidence of the social tie strength between users for improved location estimation. Concretely, we propose a location estimator – Friendly...

  11. The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) facilitates the involvement of the general public in nanoscale research and development, to build new capabilities for understanding and

    E-Print Network [OSTI]

    Hall, Sharon J.

    The Center for Nanotechnology in Society at Arizona State University (CNS-ASU) facilitates for understanding and governing the power of nanotechnology to transform society. CNS-ASU is affiliated

  12. Energy Department Announces Student Teams, Location for Solar...

    Office of Environmental Management (EM)

    Student Teams, Location for Solar Decathlon 2015 Energy Department Announces Student Teams, Location for Solar Decathlon 2015 February 13, 2014 - 1:00pm Addthis News Media Contact...

  13. Optimization Online - p-facility Huff location problem on networks

    E-Print Network [OSTI]

    Rafael Blanquero

    2014-10-30

    Oct 30, 2014 ... Abstract: The p-facility Huff location problem aims at locating facilities on a competitive environment so as to maximize the market share.

  14. Research Site Locations for Current and Former EERE Postdoctoral...

    Broader source: Energy.gov (indexed) [DOE]

    Research Site Locations for Current and Former EERE Postdoctoral Awards, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Facility Location...

  15. Open Location-Oriented Services for the Web

    E-Print Network [OSTI]

    Wilde, Erik

    2008-01-01

    Location Management for Mobile Devices. In Proceedings ofof wireless data services and mobile devices can take fullof location-awareness and mobile devices. Conclusions This

  16. Tel: Name: Rm. Tel: Location: Rm.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel: Name: Rm. Tel: Location: Rm. Oct 2, 2015 Amin,

  17. Sandia National Laboratories: Locations: Kauai Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing Education Recreation Locations LifeKauai Test

  18. Sandia National Laboratories: Locations: Livermore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing Education Recreation Locations LifeKauai

  19. Arizona Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Arizona homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Arizona homeowners will save $3,245 over 30 years under the 2009 IECC, with savings still higher at $6,550 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2009 and 2 years with the 2012 IECC. Average annual energy savings are $231 for the 2009 IECC and $486 for the 2012 IECC.

  20. CX-009798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  1. CX-009524: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  2. CX-011031: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 09/10/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory

  3. An Energy Efficient Location Service for Mobile Ad Hoc etworks

    E-Print Network [OSTI]

    Varela, Carlos

    the distance traveled by the location update and query packets and, thus, at reducing the overall energy cost by the location update and query packets and, thus, to reduce the overall energy cost. 2 Energy Efficient LocationAn Energy Efficient Location Service for Mobile Ad Hoc etworks Zijian Wang1 , Eyuphan Bulut1

  4. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  5. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  6. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  7. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-06-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  8. Air-conditioning electricity savings and demand reductions from exterior masonry wall insulation applied to Arizona residences

    SciTech Connect (OSTI)

    Ternes, M.P.; Wilkes, K.E.

    1993-01-01

    A field test involving eight single-family houses was performed during the summer of 1991 in Scottsdale, Arizona to evaluate the potential of reducing air-conditioning electricity consumption and demand by insulating their exterior masonry walls. Total per house costs to perform the installations ranged from $3610 to $4550. The average annual savings was estimated to be 491 kWh, or 9% of pre-retrofit consumption. Peak demands without and with insulation on the hottest day of an average weather year for Phoenix were estimated to be 4.26 and 3.61 kill, for a demand reduction of 0.65 kill (15%). We conclude that exterior masonry wall insulation reduces air-conditioning electricity consumption and peak demand in hot, dry climates similar to that of Phoenix. Peak demand reductions are a primary benefit, making the retrofit worthy of consideration in electric utility conservation programs. Economics can be attractive from a consumer viewpoint if considered within a renovation or home improvement program.

  9. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  10. ARIZONA COOPERATIVE ARIZONA AND THE NORTH AMERICAN

    E-Print Network [OSTI]

    Crimmins, Michael A.

    . This shift in winds, from onshore to offshore and then back again, happens each year with the changing systems that traverse the Southwest, drawing in moisture from the Pacific Ocean high pressure system anchored over the eastern Pacific Ocean (Figure 1b). The mechanism that produces

  11. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  12. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  13. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    SciTech Connect (OSTI)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  14. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect (OSTI)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  15. A unified Bayesian framework for relative microseismic location

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    We study the problem of determining an unknown microseismic event location relative to previously located events using a single monitoring array in a monitoring well. We show that using the available information about the ...

  16. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Office of Environmental Management (EM)

    Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

  17. A unified Bayesian framework for relative microseismic location

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01

    We study the problem of determining an unknown microseismic event location relative to previously located events using a single monitoring array in a monitoring well. We show that using the available information about the ...

  18. The Cricket Indoor Location System Nissanka Bodhi Priyantha

    E-Print Network [OSTI]

    applications. Cricket consists of location beacons that are attached to the ceiling of a building to compute their own locations. This active-beacon passive-listener architecture is scalable with respect

  19. Fire Alarm Control Panel is located in Switchgear

    E-Print Network [OSTI]

    KEY: NORTH CHDD-South Floor 1 Fire Alarm Control Panel is located in Switchgear Room #CD11A Panel is located in Switchgear Room #CD11A on Basement Level Evacuation Route Exit Restroom Fire

  20. Policy-aware sender anonymity in Location-based services

    E-Print Network [OSTI]

    Vyas, Avinash

    2011-01-01

    LBS Server Location Server CSP Sender Figure 1.1: LBS ModelService Provider, denoted as CSP, the Location Server,is either the MPC in the CSP’s network or an Over-The-Top (

  1. The ear as a location for wearable vital signs monitoring

    E-Print Network [OSTI]

    He, David Da

    Obtaining vital signs non-invasively and in a wearable manner is essential for personal health monitoring. We propose the site behind the ear as a location for an integrated wearable vital signs monitor. This location is ...

  2. A Look at Health Care Buildings - Where are they located

    U.S. Energy Information Administration (EIA) Indexed Site

    Location Return to: A Look at Health Care Buildings How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they...

  3. Dynamic resource location in peer-to-peer networks 

    E-Print Network [OSTI]

    Nathuji, Ripal Babubhai

    2004-09-30

    Resource location is a necessary operation for computer applications. In large scale peer-to-peer systems, random search is a scalable approach for locating dynamic resources. Current peer-to-peer systems can be partitioned into those which rely...

  4. Magnetic pulsing technique for tracking, locating pigs. [Locating pipeline servicing equipment using magnetic pulsing

    SciTech Connect (OSTI)

    Farque, J.A. (C.D.I., Broken Arrow, OK (United States))

    1994-01-01

    Magnetic transmission systems work well in conjunction with pipe line pigging. They have transmission characteristics that allow an operator to track a pig as it moves through the line with one antenna orientation, and locate a stationary pig and transmitter to within inches with another. Advanced systems offer pig run documentation features by recording the images of transmitter passages and their times and dates. These features will become increasingly important to pipe line owners and operators in the future as the EPA tightens its grip on the pipe line and gas industries. Additionally, pigging personnel with no real experience with the tracking or location of pigs can operate a magnetic system and be immediately productive. This lowers the overall cost to the service company, the pipe line owner, and ultimately the end user of the product.

  5. TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS

    E-Print Network [OSTI]

    Myllymäki, Petri

    TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym;TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym¨aki, Teemu, Spain, IEEE Press, 2004. TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS Petri

  6. COMBINING LOCATION AND EXPRESSION DATA FOR PRINCIPLED DISCOVERY OF

    E-Print Network [OSTI]

    Hartemink, Alexander

    location data to guide the model induction process. We combine these two data modalities by al- lowing combine genomic location and expression data to guide the model induction process by permitting the formerCOMBINING LOCATION AND EXPRESSION DATA FOR PRINCIPLED DISCOVERY OF GENETIC REGULATORY NETWORK

  7. Risks of using AP locations discovered through war driving

    E-Print Network [OSTI]

    Kotz, David

    Risks of using AP locations discovered through war driving Minkyong Kim, Jeffrey J. Fielding the actual locations are often unavailable, they use estimated locations from war driving estimated through war driving. War driving is the process of collecting Wi-Fi beacons by driving or walking

  8. Location-based Sponsored Search Advertising George Trimponias1

    E-Print Network [OSTI]

    Papadias, Dimitris

    Location-based Sponsored Search Advertising George Trimponias1 , Ilaria Bartolini2 , Dimitris unprecedented opportunities for location-based advertising. In this work, we provide models and investigate the market for location-based sponsored search, where advertisers pay the search engine to be displayed

  9. Static and Dynamic Location Management in Distributed Mobile Environments

    E-Print Network [OSTI]

    Vaidya, Nitin

    Static and Dynamic Location Management in Distributed Mobile Environments P. Krishna y N. H. Vaidya for search, update and search-update. Static location management uses one combination of search, update the performance of di erent static location management strategies for various communicationand mobilitypatterns

  10. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  11. Radiation damage in the LHCb Vertex Locator

    E-Print Network [OSTI]

    A. Affolder; K. Akiba; M. Alexander; S. Ali; M. Artuso; J. Benton; M. van Beuzekom; P. M. Bj\\ornstad; G. Bogdanova; S. Borghi; T. J. V. Bowcock; H. Brown; J. Buytaert; G. Casse; P. Collins; S. De Capua; D. Dossett; L. Eklund; C. Farinelli; J. Garofoli; M. Gersabeck; T. Gershon; H. Gordon; J. Harrison; V. Heijne; K. Hennessy; D. Hutchcroft; E. Jans; M. John; T. Ketel; G. Lafferty; T. Latham; A. Leflat; M. Liles; D. Moran; I. Mous; A. Oblakowska-Mucha; C. Parkes; G. D. Patel; S. Redford; M. M. Reid; K. Rinnert; E. Rodrigues; M. Schiller; T. Szumlak; C. Thomas; J. Velthuis; V. Volkov; A. D. Webber; M. Whitehead; E. Zverev

    2013-02-21

    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately $\\rm{45 \\times 10^{12}\\,1\\,MeV}$ neutron equivalent ($\\rm{1\\,MeV\\,n_{eq}}$). At the operational sensor temperature of approximately $-7\\,^{\\circ}\\rm{C}$, the average rate of sensor current increase is $18\\,\\upmu\\rm{A}$ per $\\rm{fb^{-1}}$, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of $E_{g}=1.16\\pm0.03\\pm0.04\\,\\rm{eV}$ obtained. The first observation of n-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around $15 \\times 10 ^{12}$ of $1\\,\\rm{MeV\\,n_{eq}}$. The only n-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately $\\rm{3 \\times 10^{12}\\,1\\,MeV\\,n_{eq}}$, a decrease in the Effective Depletion Voltage (EDV) of around 25\\,V is observed, attributed to oxygen induced removal of boron interstitial sites. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n-on-n type sensors, with rates of $(1.43\\pm 0.16) \\times 10 ^{-12}\\,\\rm{V} / \\, 1 \\, \\rm{MeV\\,n_{eq}}$ and $(1.35\\pm 0.25) \\times 10 ^{-12}\\,\\rm{V} / \\, 1 \\, \\rm{MeV\\,n_{eq}}$ measured for n-on-p and n-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed.

  12. J. Math. Anal. Appl. 319 (2006) 4860 www.elsevier.com/locate/jmaa

    E-Print Network [OSTI]

    De Leenheer, Patrick

    2006-01-01

    . The positive parameters Di are the sum of the (natural) death rates of species i and the dilution rate, while the positive parameters ai give rise to death rates aixi which are due to crowding effects. The Di was carried out when P. De Leenheer was at DIMACS/Rutgers University and Arizona State University and when D

  13. 110. Location efficiency Discovering the hidden transportation costs of where you live page 1 / 1 110. Location efficiency

    E-Print Network [OSTI]

    Machel, Hans

    110. Location efficiency Discovering the hidden transportation costs of where you live page 1 / 1 110. Location efficiency: Discovering the hidden transportation costs of where you live Live location efficiency and it's the amount of time, energy and greenhouse gas emissions you spend getting

  14. CX-011559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis CX(s) Applied: B3.6 Date: 11/20/2013 Location(s): Ohio Offices(s): Idaho Operations Office

  15. CX-009264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Controls on Methane Expulsion During Melting of Natural Gas Hydrate Systems CX(s) Applied: B3.6 Date: 09/12/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  16. CX-008978: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parking Garage Gutter Replacement and Installation of Roof Ice Melt System CX(s) Applied: B2.3, B2.5 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  17. CX-009266: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Controls on Methane Expulsion During Melting of Natural Gas Hydrate Systems CX(s) Applied: A9 Date: 09/11/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  18. CX-010749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery CX(s) Applied: A9, B5.15 Date: 08/15/2013 Location(s): Illinois Offices(s): Golden Field Office

  19. CX-010136: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Repair Sanitary Sewer Line South of 725-N CX(s) Applied: B1.3 Date: 03/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-008626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 607-6A Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-010722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 CX(s) Applied: B4.9 Date: 08/20/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-010145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Sherwood Sewer Line Replacement Land Use Review Request CX(s) Applied: B4.9 Date: 04/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-008721: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Longview Pump Stations and Force Main Project CX(s) Applied: B4.9 Date: 05/15/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-009096: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    U.S. Customs and Border Protection Non-Intrusive Inspection Tests CX(s) Applied: B3.10, B3.11 Date: 05/18/2012 Location(s): Washington Offices(s): Pacific Northwest Site Office

  5. CX-011483: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bioprocessing for Bioremediation and Energy Production CX(s) Applied: B3.6 Date: 11/06/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-010530: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy

  7. CX-010264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Synthetic Microorganisms to Enable Lignin to Fuel Conversion CX(s) Applied: A9, B3.6 Date: 04/15/2013 Location(s): Texas, Georgia, Washington Offices(s): Golden Field Office

  8. CX-007603: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra-Deepwater Resources to Reserves Development and Acceleration through Appraisal CX(s) Applied: A9 Date: 01/20/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  9. CX-009022: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Novel Flash lronmaking Process CX(s) Applied: A9, B1.31, B3.6 Date: 08/22/2012 Location(s): Utah Offices(s): Golden Field Office

  10. CX-008964: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership - Installation of Electric Vehicle Charging in Walgreens Parking Lot CX(s) Applied: B5.23 Date: 08/03/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  11. CX-010870: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New Advanced Photon Source Parking Lot on Kearney Road CX(s) Applied: B1.15 Date: 07/12/2013 Location(s): Illinois Offices(s): Argonne Site Office

  12. CX-008509: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership - Electrical Vehicle Supply Equipment Installation in Walgreens Parking Lot CX(s) Applied: B5.23 Date: 07/16/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  13. CX-008336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pad 90 Overflow Parking Lot Project CX(s) Applied: B1.15 Date: 05/01/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  14. CX-008457: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership - Electrical Vehicle Supply Equipment Installation in Walgreens Parking Lot CX(s) Applied: B5.23 Date: 06/15/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  15. CX-009246: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility Parking Lot Expansion General Plant Project CX(s) Applied: B1.15 Date: 06/20/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program, NRF

  16. CX-008819: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility Parking Lot Expansion General Plant Project CX(s) Applied: B1.15 Date: 06/20/2012 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program, Naval Reactors

  17. CX-009919: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Borough of Fort Lee, New Jersey Energy Efficiency and Conservation Block Grant CX(s) Applied: B5.1 Date: 01/31/2013 Location(s): New Jersey Offices(s): Golden Field Office

  18. CX-009842: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Demonstration of Multipollutant Reduction using a Lextran 3-in-1 Wet Scrubber CX(s) Applied: A9, B3.6 Date: 01/30/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

  19. CX-009628: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bronze Preparation for Zinc Sequestration CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  20. CX-008665: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zinc Traping Efficiency Testing CX(s) Applied: B3.6 Date: 05/02/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office