National Library of Energy BETA

Sample records for locations alabama officess

  1. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &*GinaSpringU.S.Alabama

  2. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  3. University of Alabama Biochemistry recommended University of South Alabama Biochemistry recommended

    E-Print Network [OSTI]

    Hone, James

    Alabama University of Alabama Biochemistry recommended University of South Alabama Biochemistry recommended Arkansas University of Arkansas Biochemistry, genetics, Biology/Zoology are recommended California Loma Linda Biochemistry is recommended Stanford Biochemistry, genetics recommended UC Davis genetics

  4. CX-008908: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells CX(s) Applied: B3.6, B3.11 Date: 08/29/2012 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  5. CX-010203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal and Injection Well Tool for Enhancing Production CX(s) Applied: B3.7 Date: 04/03/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  6. CX-010440: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reduced Cost Bond Layers for Multi-Layer Thermal/Environmental Barrier Coatings CX(s) Applied: B3.6 Date: 06/21/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  7. CX-010441: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reduced Cost Bond Layers for Multi-Layer Thermal/Environmental Barrier Coatings CX(s) Applied: B3.6 Date: 06/20/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  8. CX-011026: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Injecting Carbon Dioxide into Unconventional Storage Reservoirs in the Central Appalachian Basin… CX(s) Applied: A1, A9 Date: 09/11/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  9. CX-007465: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Energy Revolving Loan Fund CX(s) Applied: A1, B5.1 Date: 12/16/2011 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  10. CX-007464: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - State Energy Efficient Appliance Rebate Program CX(s) Applied: A1, B5.1 Date: 12/16/2011 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  11. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  12. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. Alabama Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  15. Alabama Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona...

  16. Clean Cities: Alabama Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  17. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and

  18. Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &*GinaSpring

  19. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOEDixmont, Maine:Doraville,Alabama: Energy Resources

  20. Cottonwood, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources Jump to: navigation, search

  1. THE UNIVERSITY OF ALABAMA Department of Chemical and Biological Engineering

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    THE UNIVERSITY OF ALABAMA Department of Chemical and Biological Engineering Laboratory Manager chemical engineering laboratory courses, working alongside faculty, including teaching Position A laboratory manager is sought at The University of Alabama's Department of Chemical

  2. Alabama Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Alabama Water Resources Research Institute Annual Technical Report FY 2011 Alabama Water Resources Research Institute Annual Technical Report FY 2011 1 #12;Introduction The Alabama Water Resources Research with the newly created Auburn University Water Resources Center (AU-WRC), and in 2008 it was designated as part

  3. Cowarts, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources JumpCoveOhio: EnergyCowarts,

  4. Alabaster, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir QualityTuriAlabama/WindAlabaster, Alabama:

  5. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  6. Webb, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarrensourceCentreCounty,InformationWebb, Alabama:

  7. The Corporate Headquarters for Alabama Power Company 

    E-Print Network [OSTI]

    Reardon, J. G.; Penuel, K. M.

    1987-01-01

    management systems are a prime objective f the company. Considerable attention has been give to the public information aspects during the desi n phase. The original equipment room layout and floor 478 ESL-IE-87-09-75 Proceedings from the Ninth Annual... tech nologies which are of mutual benefit to customer and utility. INTRODUCTION In order to consolidate all corporate head quarters personnel into a single facility, Alabama Power Company management initiated the design and construction of a...

  8. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment of EnergyDepartmentEfficientDepartmentEscalationAlabama

  9. Columbia, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColorado Parks

  10. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  11. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  12. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  14. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  15. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  16. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Energy Savers [EERE]

    to reduced their energy consumption by at least 20% were also eligible for a 3,000 rebate for solar photovoltaic system installations. Workforce Development: AlabamaWISE...

  17. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  18. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  19. Grimes, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggs County, North Dakota:Alabama:

  20. Daleville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to:67-2006-12DabbrookAssociation

  1. Enterprise, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtdEnergypediaEntaban Ecoenergeticas

  2. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy Resources Jump to:Newville, Alabama: Energy

  3. Central Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation,Cauvery HydroCentinela JumpCentral Alabama

  4. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableInc Jump to:AkrongAlabama Power

  5. Avon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal Region JumpFacility |Alabama: Energy

  6. Coaling, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy ResourcesCreek, Colorado: EnergyCoal

  7. Coker, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: EnergyEnergyCoherent Inc Jump to:Coke County,Coker,

  8. Clayhatchee, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:Clay County,North Carolina:ClayClayhatchee,

  9. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir QualityTuriAlabama/Wind

  10. Adamsville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources Jump to: navigation, searchAdamstown,Alabama:

  11. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  12. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  13. Alabama Project Testing Potential for Combining CO2 Storage with...

    Broader source: Energy.gov (indexed) [DOE]

    to sequester 1.1 gigatons to 2.3 gigatons of CO2--approximately the amount that Alabama's coal-fired power plants emit in two decades. Enhanced coalbed methane recovery combined...

  14. Crenshaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: EnergyPennsylvania: EnergyCounty, Oklahoma:

  15. Cullman County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton,Developing and Transition CountriesCounty,

  16. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009 |Information Alabama Power Co

  17. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009 |Information Alabama Power

  18. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009 |Information Alabama

  19. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009 |Information AlabamaEnergy

  20. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009Information Alabama Power Co

  1. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009Information Alabama Power

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen EnergyFebruary 2009Information Alabama

  3. CX-008491: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: B3.6 Date: 07/23/2012 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  4. CX-011575: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Using Ionic Liquids for the Development of Renewable Biopolymer-Based Adsorbents for the Extraction of Uranium from Seawater and Testing Under Marine Conditions CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Alabama Offices(s): Idaho Operations Office

  5. Impacts of House Bill 56 on the Construction Economy in Alabama 

    E-Print Network [OSTI]

    Bilbo, David; Escamilla, Edelmiro; Bigelow, Ben F.; Garcia, Jose

    2014-01-01

    bill, and its impact on the construction economy in Alabama. The study utilized construction employment rates, construction GDP, and construction spending as the major indices detailing the “health” of the construction economy in Alabama. This research...

  6. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  7. The Impact of Legislation House Bill 56 on Immigration Laws and Construction in Alabama 

    E-Print Network [OSTI]

    Garcia, Jose

    2013-08-02

    ........................................................................... 27 Figure 4: Construction Employment Rates, Alabama: July 2010 to June 2012. aaaaaaaa.Source: U.S. Department of Labor Statistics .................................................... 36 Figure 5 : Construction GDP in Alabama: 2010, and 2011 Source...: U.S Bureau aaaaaaaa..of Economic Analysis ...................................................................................... 41 Figure 6: Construction Spending Alabama 2010 and 2011. Source: U.S. Census aaaaaaaaa...

  8. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  9. A study of oyster production in Alabama waters 

    E-Print Network [OSTI]

    Bell, Joe O

    1952-01-01

    in the fact that duration of the hinge ligament is variable with both environment and the oyster. Robbed of the time element, rates of death are not poss1ble to establ1sh, and the number of boxes present at any given point of time is of lesser significance...A STUDY OF OYSTER PRODUCTION IN ALABAMA WATERS A Thesis By JOE O. BELL Approved as to style and content by: 0. ac in, hairman o omm ttee Dale F. Leipper, He o epartment August 1952 A STUDY OF OYSTER PRODUCTION IN ALABAMA WATERS JOE O...

  10. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  11. Dallas County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc Jump to:67-2006-12DabbrookAssociationDalianAlabama:

  12. City of Fairhope, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, Iowa (Utility Company) JumpAlabamaFairhope, Alabama

  13. Conecuh County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al., 2002)ConchoConecuh County, Alabama:

  14. Covington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources JumpCove FortCovedale,

  15. Clay County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York: EnergySouthClarkstown,Clawson,Alabama:

  16. Portland Cement Concrete Pavement Shannon Golden, Alabama DOT

    E-Print Network [OSTI]

    Portland Cement Concrete Pavement Shannon Golden, Alabama DOT PORTLAND CEMENT CONCRETE PAVEMENT may be substituted for part of the required Portland cement. Substitution of mineral admixtures shall Cement shall not exceed the percentages shown in the following table: MAXIMUM ALLOWABLE SUBSTITUTION

  17. A University of Alabama Fuel Cell Electronic Integration

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    CAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respond to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

  18. The University of Alabama 1 Department of Computer Science

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    The University of Alabama 1 Department of Computer Science Computer science is a multifaceted discipline that encompasses a broad range of topics. At one end of the spectrum, computer science focuses. At the other applications-oriented end of the spectrum, computer science deals with techniques for the design

  19. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium Marketing Annual ReportAMERICANmacroeconomicAlabama

  20. Tuscaloosa County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: Energy Resources JumpTuscaloosa County, Alabama:

  1. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity for Low EmissionTianhongKansas: EnergyShelby County, Alabama:

  2. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation Montana Watershed ProtectionMontauk,MonteverdiAlabama:

  3. Marshall County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: EnergyWisconsin: Energy Resources JumpAlabama:

  4. Randolph County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing Corp JumpRamRandolph County, Alabama:

  5. Cleburne County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:NewMinnesota: Energy Resources Jump

  6. Coffee County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: EnergyEnergy Information

  7. Coosa County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: Energy Resources Jump to:

  8. City of Robertsdale, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to: navigation, search Name: City of Robertsdale Place:

  9. The Corporate Headquarters for Alabama Power Company--How One Utility is Promoting Cool Storage in a Big Way 

    E-Print Network [OSTI]

    Reardon, J. G.; Penuel, K. M.

    1986-01-01

    HEADQUARTERS FOR ALABAMA POWER COMPANY How One Utility is Promoting Cool Storage in a Big Way J.. Grego ry Reardon, P. E.. Kenneth M. Penuel Alabama Power Company Birmingham, Alabama ABSTRACT facilities. In addition to the obvious benefits of owning... side of the nologies which benefit the utility as well as meter" in order to better match the supply and the customer. For Alabama Power, a summer demand of electricity and hold costs down. The peaking utility, commercial cooling storage has...

  10. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:MeadowWikiSysop's blog Home >Alabama: Energy

  11. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana:Open EnergyAlabama: Energy Resources

  12. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect (OSTI)

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  13. DOE - Office of Legacy Management -- Alabama Ordnance Works - AL 02

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont, South Dakota,You are here HomeAlabama Ordnance

  14. Greene County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon:CorpGreenburgh, New York: EnergyAlabama:

  15. Hale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERCInformation 3.1Resilience Framework |Alabama:

  16. DeKalb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstruments Inc JumpIowa:Minnesota:DaylightingDeFrees Flume 1Small

  17. Elmore County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, New York: Energy Resources JumpNewElmore County,

  18. Escambia County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power Corp Jump to:SIBRErwin, New York:Escalon,Escambia

  19. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power CorpEnergy InformationMaine: EnergyEtowah

  20. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal Power Station JumpFaroeFaulkFauquier

  1. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill PreventionJumpPapersParish,Alabama: Energy

  2. Marion County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5TransportManitouChangeMarcMarineAlabama: Energy

  3. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to:Village,OpenLakeway,New Jersey:Alabama:

  4. Pike County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open EnergyPhoenicia,Creek, Ohio: Energy ResourcesAlabama:

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama (Million

  6. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama (MillionProved Reserves

  7. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabamaNatural Gas, Wet After

  8. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, AugustProductionAlabama (with

  9. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, AugustProductionAlabama

  10. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, AugustProductionAlabamaProved

  11. City of Athens, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgia (Utility Company)Arlington, SouthAthens, Alabama

  12. City of Dothan, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley,Columbus Place:Cuero,Dike, IowaAlabama

  13. City of Elba, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd JumpGeorgiaBurley,ColumbusDurant,Rapids,Elba, Alabama (Utility

  14. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, Iowa (Utility Company) JumpAlabama (Utility Company)

  15. City of Piedmont, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowaIowa (UtilityCity ofPeru,Piedmont, Alabama

  16. City of Scottsboro, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, IowaScottsboro, Alabama (Utility Company) Jump to: navigation,

  17. City of Tarrant, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, IowaScottsboro,Kansas (Utility Company)NebraskaTarrant, Alabama

  18. Pioneer Electric Coop, Inc (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMauna LoaGuangyaoAlabama) Jump

  19. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil JumpGeorgia:BalchAlabama: Energy

  20. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen EnergyBanksSolarStrategyAlabama: Energy

  1. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhoun County, Alabama: Energy Resources Jump

  2. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergyOhio:InformationBurnham,Burton,Bushyhead,Alabama:

  3. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: EnergyEnergyCoherent Inc Jump to:CokeColbert

  4. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:WestTexas:Chittenango, New York:Alabama: Energy

  5. Clarke County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York: EnergySouth Dakota: EnergyElectricClarke

  6. Alabama/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir QualityTuriAlabama/Wind Resources/Full

  7. City of Hartford, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCuba City, WisconsinHartford, Alabama (Utility Company)

  8. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4Office ofViable2 LaboratoryAccelerator1245Alabama

  9. Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiencyCOP 21: The06(201) |13,Office revisedAlabama|

  10. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAbout EIA.gov Screen captureDecade Year-0

  11. Alabama Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabamaAbout EIA.gov Screen captureDecade

  12. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  13. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Broader source: Energy.gov (indexed) [DOE]

    and Blind The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade...

  14. 9th Real-Time Systems Symposium Huntsville, Alabama, pp. 191-200, December 1988.

    E-Print Network [OSTI]

    Tamir, Yuval

    9th Real-Time Systems Symposium Huntsville, Alabama, pp. 191-200, December 1988. SUPPORT FOR HIGH; in a large network some This research is supported by Rockwell International and the State of California

  15. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  16. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  17. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 ............................................................2 Central Call Number Main Library Location Main Library Example: Main Library HQ1410 .U54 2009 See Center (ATC) Classroom 1575 Building Operations Main Entrance Map and Imagery Laboratory (MIL

  18. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 these from the library catalog: www.library.ucsb.edu/depts/access/howinprocess.html Main: Items located in the Main Library, Davidson Main Serials Reading Area: 2 North Map & Imagery Lab: 1 North Media Collection

  19. Locative Inversion In Cantonese

    E-Print Network [OSTI]

    Mok, Sui-Sang

    1992-01-01

    This paper proposes that locative inversion is a widespread syntactic process in Cantonese. The sentence-initial locative phrases in the Locative Inversion sentences are argued to be subjects which come from the postverbal complement position...

  20. Accommodation Location(s) Cologne -Ehrenfeld.

    E-Print Network [OSTI]

    Molinari, Marc

    Accommodation Location(s) ­ Cologne - Ehrenfeld. Price of rent ­ Sub-let, cost roughly 300 euros a month inc bills. Organisation of accommodation/gas/electricity/internet/phones ­ Because I lived with Telekom for phone/internet as they just try to rip you off! Germany COLOGNE Language Assistantship Travel

  1. MOBILE DEVICE LOCATION INFORMATION ACQUISITION FRAMEWORK FOR DEVELOPMENT OF LOCATION

    E-Print Network [OSTI]

    Dustdar, Schahram

    MOBILE DEVICE LOCATION INFORMATION ACQUISITION FRAMEWORK FOR DEVELOPMENT OF LOCATION INFORMATION, 1040 Vienna, Austria dustdar@infosys.tuwien.ac.at Keywords: Mobile device location information, location information based services, location information acquisition. Abstract: Mobile device location

  2. Optimal fault location 

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10

    sequence of events newly obtained recording belongs. Software prototype of the proposed automated fault location analysis is developed using Java programming language. Fault location analysis is automatically triggered by appearance of new event files in a...

  3. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  4. nh gi Tn hi Ti nguyn Thin nhin do Trn du Deep Horizon Khi phc loi chim ng bin ti vng b bin Alabama

    E-Print Network [OSTI]

    ánh giá Tn hi Tài nguyên Thiên nhiên do Tràn du Deep Horizon Khôi phc loài chim ng bin ti vùng b Alabama s hình thành 5 nn làm t ca chim ng dc theo vùng b bin Mobile và Baldwin, Alabama tng c hi làm có th c tìm thy quanh nm ti khu vc b bin Alabama. Chim ng bin òi hi nhng khu vc làm t rng rãi vi

  5. Location linked information

    E-Print Network [OSTI]

    Mankins, Matthew William David, 1975-

    2003-01-01

    This work builds an infrastructure called Location Linked Information that offers a means to associate digital information with public, physical places. This connection creates a hybrid virtual/physical space, called glean ...

  6. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  7. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama (Million Cubic Feet) Gulf

  8. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama (MillionProved

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama (MillionProvedExpected

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved% ofAlabama

  11. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  12. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse ...

  13. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse ...

  14. Location, location, location: utilizing pipelines and services to more effectively georeference the world's biodiversity data

    E-Print Network [OSTI]

    2009-01-01

    location, location: utilizing pipelines and services to morebut also to create pipelines integrated with humanbecome available [8]. These pipelines can be developed to

  15. Three-Year Non-Tenure Track Visiting Assistant Professor Position Geophysics -The University of Alabama Department of Geological

    E-Print Network [OSTI]

    Zheng, Chunmiao

    Three-Year Non-Tenure Track Visiting Assistant Professor Position ­ Geophysics - The University of Alabama invites applications for a three-year, non-tenure track visiting faculty position in geophysics geophysical sub-disciplines, preference will be given to candidates who will enhance our existing geophysics

  16. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama 

    E-Print Network [OSTI]

    He, Ting

    2011-02-22

    and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants...

  17. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  18. Search Text Based on Locations 

    E-Print Network [OSTI]

    Zhang, Weiwei

    2014-11-21

    locations, which contributes to the Geographical Information Retrieval (GIR) systems. In addition to the traditional applications of GIR systems, which are used for finding locations in documents, GIR can be applied to other fields as well. Firstly, it can...

  19. Regional characteristics, timing, and significance of dissolution and collapse features in Lower Cretaceous carbonate platform strata, Desoto Canyon area, offshore Alabama-Florida 

    E-Print Network [OSTI]

    Iannello, Christine

    2001-01-01

    flowed from recharge areas to the north in central Alabama and discharged along the western erosional escarpment of the Lower Cretaceous platform. This meteoric groundwater may have mixed either with seawater that infiltrated the platform from...

  20. Location, location, location: The variable value of renewable energy and demand-side efficiency resources

    E-Print Network [OSTI]

    Fowlie, Meredith

    and renewable energy resources. We eval- uate renewable energy (RE) and energy efficiency (EE) technologiesLocation, location, location: The variable value of renewable energy and demand-side efficiency mitigation efforts in the electricity sector emphasize accelerated deployment of energy efficiency measures

  1. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  2. Hiding Location Information from Location-Based Services

    E-Print Network [OSTI]

    Hengartner, Urs

    that the architecture is powerful enough to support existing location- based services. Our architecture exploits Trusted-specific information is being accessed. I. INTRODUCTION The ubiquity of cellphones has lead to the introduction of a cellphone user (e.g., directions to a target location or a list of interesting, nearby places). Another

  3. Commencement Ceremony Department Time Location Department and Major Time Location

    E-Print Network [OSTI]

    Kaji, Hajime

    Engineering 15:30 Bldg. 63 Classroom 01 (2nd Fl.) Industrial and Management Systems Engineering 15:30 Bldg. 63 and Management 15:30 Bldg. 63 Classroom 01 (2nd Fl.) Department Time Location Department and Major Time Location:30 Bldg. 57 202 Modern Mechanical Engineering 10:30 Bldg. 57 202 Industrial and Management Systems

  4. Location Management for Mobile Devices

    E-Print Network [OSTI]

    Wilde, Erik

    2008-01-01

    general, and wireless and mobile devices in particular. Thelocation-enabled mobile devices and location-based services.information from mobile devices and making it available to

  5. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  6. Guide to the Library Locations

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Guide to the Libraries #12;Library Locations W.E.B. DU BOIS LIBRARY www.library.umass.edu 154 Hicks Way (413) 545-0150, (413) 545-2622 The Du Bois Library is the primary location for resources in education, geography, the humanities and fine arts, nursing, management, medicine, public health, and social

  7. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  8. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    WORKPLACE HAZARD ASSESSMENT Location: Task: Performed by: Date: This form may be used as an aid in performing hazard assessment. Review listed hazard classifications, identify all hazards, possible hazards and their sources. Hazard classification listing is not intended to be complete but is provided as a guide

  9. Articles published in the University of Alabama Research Magazine with vehicle or transportation relevance (press "ctrl+click" on link to access articles)

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    to make hydrogen-powered cars and trucks a reality. Truck with Prototype Fuel Cell Visits UA - May 26, 2003 - A heavy-duty highway tractor truck equipped with a first-of-its-kind fuel-cell auxiliary power on hydrogen fuel cells. Research at The University of Alabama is helping move this scenario toward reality

  10. Joint microseismic event location with uncertain velocity

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01

    We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...

  11. Location and Hours | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location and Hours Location The ORNL Research Library is located off the central corridor of Bldg. 4500N on the main ORNL campus. Hours The library is open 24 hours, seven days a...

  12. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Optimized Fault Location Final Project Report Power Systems Engineering Research Center A National Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report

  13. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

  14. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientificOmbuds Office Location & Hours Ombuds

  15. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-31

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information. 5 figs.

  16. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  17. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  18. CX-007571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office

  19. CX-007596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  20. CX-008588: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office

  1. CX-008684: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-010148: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Merritt Radio Station Upgrade CX(s) Applied: B1.19 Date: 04/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  3. CX-008706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tunk Mountain Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-008543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office

  5. CX-012333: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  6. CX-011165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-011634: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office

  8. CX-008146: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC

  9. CX-008144: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC

  10. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  11. CX-011069: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  12. CX-010057: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  13. CX-011214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office

  14. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  15. CX-008438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  16. CX-008282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  17. CX-012311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office

  18. CX-008799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  19. CX-010763: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...

  20. CX-012254: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05/28/2014 Location(s): Tennessee Offices(s): Golden Field Office

  1. CX-012253: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05/27/2014 Location(s): Oregon Offices(s): Golden Field Office

  2. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  3. CX-008534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  4. CX-008204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  5. CX-008203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  6. CX-009442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office

  7. CX-007836: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy

  8. CX-008241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office

  9. CX-008205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office

  10. CX-012097: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  11. CX-008545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office

  12. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  13. CX-012122: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office

  14. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  15. CX-009698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  17. CX-011190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  18. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-011401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minto Lodge Rehabilitation CX(s) Applied: B5.1 Date: 11/19/2013 Location(s): Alaska Offices(s): Golden Field Office

  20. CX-010237: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office

  1. CX-008973: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Petrography Laboratory CX(s) Applied: B3.6 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  2. CX-010730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Paisley Geothermal Integration CX(s) Applied: B1.7 Date: 08/09/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-008161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  4. CX-008700: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  6. CX-012317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

  7. CX-010515: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency Public Service Campaign CX(s) Applied: A9 Date: 06/14/2013 Location(s): New York Offices(s): Golden Field Office

  8. CX-007856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  9. CX-007858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office

  10. CX-008250: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geotechnical Core Drilling for USGS 138 CX(s) Applied: B3.1 Date: 04/18/2012 Location(s): Idaho Offices(s): Nuclear Energy

  11. CX-012110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-009398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Domestic Source Recovery CX(s) Applied: B2.6 Date: 11/01/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  13. CX-008535: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office

  14. CX-011110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advancements in Algal Biomass Yield CX(s) Applied: A9 Date: 08/29/2013 Location(s): Hawaii Offices(s): Golden Field Office

  15. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-011630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  17. CX-011177: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hebo Substation Access Road Maintenance CX(s) Applied: B1.3 Date: 09/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  18. CX-011184: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Salmon Creek Pond Property Funding CX(s) Applied: B1.25 Date: 08/29/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-008698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Poorman Ponds Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-009630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ICP Routine Maintenance CX(s) Applied: B1.3 Date: 11/06/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  1. CX-009632: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC – Suspect RH-TRU (AMWTP) CX(s) Applied: NO CX GIVEN Date: 11/23/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  2. CX-011564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  3. CX-009753: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Propane Corridor Development Program CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  4. CX-008000: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location(s): Illinois Offices(s): Science, Chicago Office The project uses TEM, FIB, neutron scattering and synchrotron-based X-ray techniques to investigate uranium...

  5. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-010772: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy

  7. CX-009295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Regional Innovation Cluster CX(s) Applied: B3.6 Date: 09/05/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  8. CX-010258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office

  9. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  10. CX-010113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compression Stress Relaxometer CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-009587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Houston, Texas CX(s) Applied: B5.1 Date: 12/12/2012 Location(s): Texas Offices(s): Golden Field Office

  12. CX-010261: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nevada State Energy Program Formula CX(s) Applied: B5.16 Date: 04/26/2013 Location(s): Nevada Offices(s): Golden Field Office

  13. CX-009635: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    INTEC – U-233 Waste Stream Disposition CX(s) Applied: NO CX GIVEN Date: 12/15/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  14. CX-011625: Categorical Exclusion Determinationc

    Broader source: Energy.gov [DOE]

    9103 Second Floor Refurbishment CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  15. CX-008609: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vermont State Energy Program CX(s) Applied: A9, A11 Date: 07/03/2012 Location(s): Vermont Offices(s): Golden Field Office

  16. CX-010398: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration CX(s) Applied: B4.13 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  17. CX-010091: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Line Configuration 2013-1 CX(s) Applied: B4.13 Date: 04/15/2012 Location(s): Idaho Offices(s): Nuclear Energy

  18. CX-010656: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Stormwater Drainage Repair CX(s) Applied: B1.3 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  19. CX-012118: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  20. CX-010437: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rocky Ridge Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/31/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  1. CX-011239: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

  2. CX-007418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sidewalks to School CX(s) Applied: B1.13 Date: 12/13/2011 Location(s): South Carolina Offices(s): Golden Field Office

  3. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  4. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  5. CX-009132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office

  6. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  7. CX-007893: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SunShot Massachusetts CX(s) Applied: A9, A11 Date: 02/10/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  8. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  9. CX-010869: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office

  10. CX-007407: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Floating Turbine CX(s) Applied: A9 Date: 12/07/2011 Location(s): Ohio Offices(s): Golden Field Office

  11. CX-010768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  12. CX-009513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration

  13. CX-007549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  14. CX-007550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office

  15. CX-007417: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shift CX(s) Applied: B5.1 Date: 12/21/2011 Location(s): Pennsylvania Offices(s): Golden Field Office

  16. CX-010532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office

  17. CX-011534: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  18. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    SciTech Connect (OSTI)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  19. Alabama Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Alabama homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Alabama homeowners will save $2,117 over 30 years under the 2009 IECC, with savings still higher at $6,182 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for both the 2009 and 2012 IECC. Average annual energy savings are $168 for the 2009 IECC and $462 for the 2012 IECC.

  20. Extracting Patterns from Location History Andrew Kirmse

    E-Print Network [OSTI]

    Cortes, Corinna

    " to infer the user's important locations. The "Place lab client" infers locations by listening to RF-emissions different modes of transportation (e.g. bus, on foot, car etc.). Both these papers use clean regularly-sampled

  1. PROBABILISTIC METHODS FOR LOCATION ESTIMATION IN

    E-Print Network [OSTI]

    Myllymäki, Petri

    PROBABILISTIC METHODS FOR LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym;PROBABILISTIC METHODS FOR LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym¨aki, Teemu Roos METHODS FOR LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllymäki, Teemu Roos, Henry

  2. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  3. Community Detection from Location-Tagged Networks

    E-Print Network [OSTI]

    Liu, Zhi

    2015-01-01

    Many real world systems or web services can be represented as a network such as social networks and transportation networks. In the past decade, many algorithms have been developed to detect the communities in a network using connections between nodes. However in many real world networks, the locations of nodes have great influence on the community structure. For example, in a social network, more connections are established between geographically proximate users. The impact of locations on community has not been fully investigated by the research literature. In this paper, we propose a community detection method which takes locations of nodes into consideration. The goal is to detect communities with both geographic proximity and network closeness. We analyze the distribution of the distances between connected and unconnected nodes to measure the influence of location on the network structure on two real location-tagged social networks. We propose a method to determine if a location-based community detection...

  4. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  5. Earthquake locations and seismic velocity models for Southern California

    E-Print Network [OSTI]

    Lin, Guoqing

    2007-01-01

    Linearized EarthquakeChapter 4. The COMPLOC Earthquake Location3-D Simultaneous Earthquake Locations and

  6. Locating and tracking assets using RFID 

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15

    , this research presents a math¬ematical model of using RFID (both handheld readers and stationary readers) for e?cient asset location. We derive the expected cost of locating RFID¬tagged objects in a multi¬area environment where hand¬held RF readers are used. We...

  7. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  8. The Construction of Locative Situations: Locative Media and the Situationist International, Recuperation or Redux?

    E-Print Network [OSTI]

    McGarrigle, Conor

    2009-01-01

    closely aligned to the SI's construction of situations. ThisG (1957) Report on the Construction of Situations and on theThe Construction of Locative Situations: Locative Media and

  9. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  10. Earthquake Location, Direct, Global-Search Methods E 2449 Earthquake Location,

    E-Print Network [OSTI]

    Earthquake Location, Direct, Global-Search Methods E 2449 Earthquake Location, Direct, Global Kingdom Article Outline Glossary Definition of the Subject Introduction The Earthquake Location Problem or temporal av- erage of some characteristic of an earthquake, such as surface shaking intensity or moment

  11. Addressing endogeneity in residential location models

    E-Print Network [OSTI]

    Guevara-Cue, Cristián Angelo

    2005-01-01

    Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

  12. Techniques for Mobile Location Estimation in UMTS 

    E-Print Network [OSTI]

    Thomas, Nicholas J

    The subject area of this thesis is the locating of mobile users using the future 3rd generation spread spectrum communication system UMTS. The motivation behind this work is twofold: firstly the United States Federal ...

  13. A Survey on the Warehouse Location Problem

    E-Print Network [OSTI]

    Cohen, Joseph J.

    The warehouse location problem has assumed numerous formulations, and solutions have been devised using a variety of mathematical techniques. The development of this effort is examined and relevant models presented for evaluation.

  14. Developing a theory of nightclub location choice

    E-Print Network [OSTI]

    Crim, Stephen J. (Stephen Johnson)

    2008-01-01

    This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

  15. Alternative Fuel Infrastructure Associate Location: San Diego

    E-Print Network [OSTI]

    California at Davis, University of

    Alternative Fuel Infrastructure Associate Location: San Diego Basic Functions Center an Alternative Fuel Infrastructure Associate that has a passion for sustainability, the environment, and accelerating the transition to a sustainable world powered by clean energy! The Alternative Fuel Infrastructure

  16. Driver expectancy in locating automotive controls 

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  17. Location theory and the location of industry along an interstate highway 

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01

    a greater gamble. This sect. ion has been devoted to s review of the fundamental factors underlying all plant location ss recognised in location theory. The next section will review some recent. empirical attempts to determine the actual... for this thesis was possible through the assistance provided )ointly by the Texas Highway Department and the Bureau of Public Roads. i. v TABLE OF CONTENTS Chapter Page INTRODUCTION Purpose Plan of Study REVIEW OF PLANT LOCATION CONCEPTS Introduction...

  18. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  19. Gadsden folio, Alabama 

    E-Print Network [OSTI]

    Hayes, C. W. (Charles Willard), 1859-1916.

    1896-01-01

    Hydrocarbon production from organic-rich shale formations has significantly increased since the advent of sophisticated recovery techniques which allow for economical production from such formations. The primary formation properties that operators...

  20. Birmingham folio, Alabama 

    E-Print Network [OSTI]

    Butts, Charles, 1863-1946.

    1910-01-01

    is deposited moderately even and is quite concentrated throughout the exposure. The middle fan outcrops contain approximately 72.6% sandstone and show similar patterns, except that the amalgamated sandstone beds are not as thick, 5-15m and contain more shale...

  1. Alabama Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46 1967-2010 Pipeline and

  2. Alabama Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(MillionDecadeIndustrialLiquids,Thousand2009

  3. Alabama Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade

  4. Alabama Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0 1 2 2 15 1996-2014

  5. Domestic* Foreign* Total Alabama

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown2008 Final May1.3.1.4. of/

  6. Sustainable Transportation Fellowship Location: San Diego, CA

    E-Print Network [OSTI]

    California at Davis, University of

    Sustainable Transportation Fellowship Location: San Diego, CA Our clean energy future depends. · Regular web posts on other clean transportation topics. · Assist in other tasks, as assigned. The ideal and a clean, healthy environment. To bring about such a future, each of us must make wise choices now

  7. Secure Location Verification Using Radio Broadcast

    E-Print Network [OSTI]

    Nesterenko, Mikhail

    , exploits the difference between propagation speeds of radio and sound waves to estimate the position1 Secure Location Verification Using Radio Broadcast Adnan Vora and Mikhail Nesterenko Abstract of the prover. In this paper, we propose a solution that leverages the broadcast nature of the radio signal

  8. Secure Location Verification Using Radio Broadcast

    E-Print Network [OSTI]

    Nesterenko, Mikhail

    the difference between propagation speeds of radio and sound waves to estimate the position of the proverSecure Location Verification Using Radio Broadcast Adnan Vora and Mikhail Nesterenko Computer. In this paper, we propose a solution that leverages the broadcast nature of the radio signal emitted

  9. OPTIMAL LOCATION OF ISOLATION VALVES IN WATER

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 7 OPTIMAL LOCATION OF ISOLATION VALVES IN WATER DISTRIBUTION SYSTEMS: A RELIABILITY The cornerstone of any healthy population is access to safe drinking water. The goal of the United Nations International Drinking Water Supply and Sanitation Decade from 1981 to 1990 was safe drinking water for all

  10. Ontology-based Disambiguation of Spatiotemporal Locations

    E-Print Network [OSTI]

    Hyvönen, Eero

    , in the semantic portal MuseumFinland3 [7] a location parton- omy4 was used for annotating museum artifacts. #12;A problem when creating a semantic cultural heritage portal is that places, both modernFinland originate from regions that no longer exist and/or are not part of Finland but of Russia with new names

  11. Locating Secret Messages in Images Ian Davidson

    E-Print Network [OSTI]

    Davidson, Ian

    Locating Secret Messages in Images Ian Davidson Computer Science, SUNY Albany 1400 Washington in innocuous media such as images, while steganalysis is the field of detecting these secret messages contributing the most to the energy calculations of an image are deemed outliers. Typically, of the top third

  12. www.elsevier.com/locate/visres polarization

    E-Print Network [OSTI]

    Boal, Jean

    .elsevier.com/locate/visres Cuttlefish use polarization sensitivity in predation on silvery fish Nadav Shashar a,b, Roland Hagan c, Jean of cuttlefish, we examined the preference of Sepia officina/is when presented with fish whose polarization reflection was greatly reduced versus fish whose polarization reflection was not affected. Cuttlefish preyed

  13. Mobile Homophily and Social Location Prediction

    E-Print Network [OSTI]

    Bapierre, Halgurt; Groh, Georg

    2015-01-01

    The mobility behavior of human beings is predictable to a varying degree e.g. depending on the traits of their personality such as the trait extraversion - introversion: the mobility of introvert users may be more dominated by routines and habitual movement patterns, resulting in a more predictable mobility behavior on the basis of their own location history while, in contrast, extrovert users get about a lot and are explorative by nature, which may hamper the prediction of their mobility. However, socially more active and extrovert users meet more people and share information, experiences, believes, thoughts etc. with others. which in turn leads to a high interdependency between their mobility and social lives. Using a large LBSN dataset, his paper investigates the interdependency between human mobility and social proximity, the influence of social networks on enhancing location prediction of an individual and the transmission of social trends/influences within social networks.

  14. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  15. Menstrual cycle effects on spatial location tasks 

    E-Print Network [OSTI]

    Andrew, Sarah

    2013-02-22

    abilities (Halpem, 1992; Voyer et al. , 1995). However, there is one spatial ability test where women demonstrate an advantage over men. This female advantage spatial ability is known as spaflal location memory (Eals & Silvermen, 1994; Silverman & Eals..., Mock & Erbaugh, 1961) and a brief daily diary, which recorded subjective moods (i. e. , anxiety, sadness, anger, happiness, and energy level). The participants recorded their daily moods in the daily diary by marking a spot on a 10 cm visual analogue...

  16. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor Designations in 11Alternative Fueling Station Locator

  17. Location of Narrowband Spikes in Solar Flares

    E-Print Network [OSTI]

    Arnold O. Benz; Pascal Saint-Hilaire; Nicole Vilmer

    2001-12-19

    Narrowband spikes of the decimeter type have been identified in dynamic spectrograms of Phoenix-2 of ETH Zurich and located in position with the Nancay Radioheliograph at the same frequency. The spike positions have been compared with the location of hard X-ray emission and the thermal flare plasma in soft X-rays and EUV lines. The decimetric spikes are found to be single sources located some 20" to 400" away from the flare site in hard or soft X-rays. In most cases there is no bright footpoint nearby. In at least two cases the spikes are near loop tops. These observations do not confirm the widely held view that the spike emission is produced by some loss-cone instability masering near the footpoints of flare loops. On the other hand, the large distance to the flare sites and the fact that these spikes are all observed in the flare decay phase make the analyzed spike sources questionable sites for the main flare electron acceleration. They possibly indicate coronal post-flare acceleration sites.

  18. Semantics of Functional and Locative Relations in Rongga

    E-Print Network [OSTI]

    Aryawibawa, I. Nyoman

    2010-01-01

    Many scholars have proposed a universal set of locative relations. Herskovits’s comprehensive study of English locative relations found that locative concepts such as inclusion, support and contiguity, and coincidence are basic in English. Her...

  19. Location Prediction in Social Media Based on Tie Strength 

    E-Print Network [OSTI]

    McGee, Jeffrey A

    2013-04-29

    We propose a novel network-based approach for location estimation in social media that integrates evidence of the social tie strength between users for improved location estimation. Concretely, we propose a location estimator – Friendly...

  20. Energy Department Announces Student Teams, Location for Solar...

    Office of Environmental Management (EM)

    Student Teams, Location for Solar Decathlon 2015 Energy Department Announces Student Teams, Location for Solar Decathlon 2015 February 13, 2014 - 1:00pm Addthis News Media Contact...

  1. Optimization Online - p-facility Huff location problem on networks

    E-Print Network [OSTI]

    Rafael Blanquero

    2014-10-30

    Oct 30, 2014 ... Abstract: The p-facility Huff location problem aims at locating facilities on a competitive environment so as to maximize the market share.

  2. Research Site Locations for Current and Former EERE Postdoctoral...

    Broader source: Energy.gov (indexed) [DOE]

    Research Site Locations for Current and Former EERE Postdoctoral Awards, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Facility Location...

  3. Open Location-Oriented Services for the Web

    E-Print Network [OSTI]

    Wilde, Erik

    2008-01-01

    Location Management for Mobile Devices. In Proceedings ofof wireless data services and mobile devices can take fullof location-awareness and mobile devices. Conclusions This

  4. Tel: Name: Rm. Tel: Location: Rm.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel: Name: Rm. Tel: Location: Rm. Oct 2, 2015 Amin,

  5. Sandia National Laboratories: Locations: Kauai Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing Education Recreation Locations LifeKauai Test

  6. Sandia National Laboratories: Locations: Livermore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque Albuquerque Housing Education Recreation Locations LifeKauai

  7. CX-009798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  8. CX-009524: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Foreign Location Source Recovery - Fiscal Year 2013 CX(s) Applied: B2.6 Date: 11/30/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  9. CX-011031: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 09/10/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory

  10. An Energy Efficient Location Service for Mobile Ad Hoc etworks

    E-Print Network [OSTI]

    Varela, Carlos

    the distance traveled by the location update and query packets and, thus, at reducing the overall energy cost by the location update and query packets and, thus, to reduce the overall energy cost. 2 Energy Efficient LocationAn Energy Efficient Location Service for Mobile Ad Hoc etworks Zijian Wang1 , Eyuphan Bulut1

  11. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  12. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  13. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  14. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  15. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  16. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    SciTech Connect (OSTI)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  17. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect (OSTI)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  18. Adsorption Kinetics of CO2, CH4, and their Equimolar Mixture on Coal from the Black Warrior Basin, West-Central Alabama

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Naney, Michael {Mike} T [ORNL; Blencoe, James {Jim} G [ORNL; Cole, David R [ORNL; Pashin, Jack C. [Geological Survey of Alabama; Carroll, Richard E. [Geological Survey of Alabama

    2009-01-01

    Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45-150 m, 1-2 mm, and 5-10 mm) of crushed coal were performed at 40 C and 35 C over a pressure range of 1.4 6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45-150 m size fraction compared to the two coarser fractions.

  19. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  20. A unified Bayesian framework for relative microseismic location

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    We study the problem of determining an unknown microseismic event location relative to previously located events using a single monitoring array in a monitoring well. We show that using the available information about the ...

  1. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Office of Environmental Management (EM)

    Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Locations of Smart Grid Demonstration and Large-Scale Energy Storage Projects Map of the United States...

  2. A unified Bayesian framework for relative microseismic location

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01

    We study the problem of determining an unknown microseismic event location relative to previously located events using a single monitoring array in a monitoring well. We show that using the available information about the ...

  3. The Cricket Indoor Location System Nissanka Bodhi Priyantha

    E-Print Network [OSTI]

    applications. Cricket consists of location beacons that are attached to the ceiling of a building to compute their own locations. This active-beacon passive-listener architecture is scalable with respect

  4. Fire Alarm Control Panel is located in Switchgear

    E-Print Network [OSTI]

    KEY: NORTH CHDD-South Floor 1 Fire Alarm Control Panel is located in Switchgear Room #CD11A Panel is located in Switchgear Room #CD11A on Basement Level Evacuation Route Exit Restroom Fire

  5. Policy-aware sender anonymity in Location-based services

    E-Print Network [OSTI]

    Vyas, Avinash

    2011-01-01

    LBS Server Location Server CSP Sender Figure 1.1: LBS ModelService Provider, denoted as CSP, the Location Server,is either the MPC in the CSP’s network or an Over-The-Top (

  6. The ear as a location for wearable vital signs monitoring

    E-Print Network [OSTI]

    He, David Da

    Obtaining vital signs non-invasively and in a wearable manner is essential for personal health monitoring. We propose the site behind the ear as a location for an integrated wearable vital signs monitor. This location is ...

  7. A Look at Health Care Buildings - Where are they located

    U.S. Energy Information Administration (EIA) Indexed Site

    Location Return to: A Look at Health Care Buildings How large are they? How many employees are there? Where are they located? How old are they? Who owns and occupies them? Are they...

  8. Dynamic resource location in peer-to-peer networks 

    E-Print Network [OSTI]

    Nathuji, Ripal Babubhai

    2004-09-30

    Resource location is a necessary operation for computer applications. In large scale peer-to-peer systems, random search is a scalable approach for locating dynamic resources. Current peer-to-peer systems can be partitioned into those which rely...

  9. Magnetic pulsing technique for tracking, locating pigs. [Locating pipeline servicing equipment using magnetic pulsing

    SciTech Connect (OSTI)

    Farque, J.A. (C.D.I., Broken Arrow, OK (United States))

    1994-01-01

    Magnetic transmission systems work well in conjunction with pipe line pigging. They have transmission characteristics that allow an operator to track a pig as it moves through the line with one antenna orientation, and locate a stationary pig and transmitter to within inches with another. Advanced systems offer pig run documentation features by recording the images of transmitter passages and their times and dates. These features will become increasingly important to pipe line owners and operators in the future as the EPA tightens its grip on the pipe line and gas industries. Additionally, pigging personnel with no real experience with the tracking or location of pigs can operate a magnetic system and be immediately productive. This lowers the overall cost to the service company, the pipe line owner, and ultimately the end user of the product.

  10. TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS

    E-Print Network [OSTI]

    Myllymäki, Petri

    TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym;TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS Petri Kontkanen, Petri Myllym¨aki, Teemu, Spain, IEEE Press, 2004. TOPICS IN PROBABILISTIC LOCATION ESTIMATION IN WIRELESS NETWORKS Petri

  11. COMBINING LOCATION AND EXPRESSION DATA FOR PRINCIPLED DISCOVERY OF

    E-Print Network [OSTI]

    Hartemink, Alexander

    location data to guide the model induction process. We combine these two data modalities by al- lowing combine genomic location and expression data to guide the model induction process by permitting the formerCOMBINING LOCATION AND EXPRESSION DATA FOR PRINCIPLED DISCOVERY OF GENETIC REGULATORY NETWORK

  12. Risks of using AP locations discovered through war driving

    E-Print Network [OSTI]

    Kotz, David

    Risks of using AP locations discovered through war driving Minkyong Kim, Jeffrey J. Fielding the actual locations are often unavailable, they use estimated locations from war driving estimated through war driving. War driving is the process of collecting Wi-Fi beacons by driving or walking

  13. Location-based Sponsored Search Advertising George Trimponias1

    E-Print Network [OSTI]

    Papadias, Dimitris

    Location-based Sponsored Search Advertising George Trimponias1 , Ilaria Bartolini2 , Dimitris unprecedented opportunities for location-based advertising. In this work, we provide models and investigate the market for location-based sponsored search, where advertisers pay the search engine to be displayed

  14. Static and Dynamic Location Management in Distributed Mobile Environments

    E-Print Network [OSTI]

    Vaidya, Nitin

    Static and Dynamic Location Management in Distributed Mobile Environments P. Krishna y N. H. Vaidya for search, update and search-update. Static location management uses one combination of search, update the performance of di erent static location management strategies for various communicationand mobilitypatterns

  15. Radiation damage in the LHCb Vertex Locator

    E-Print Network [OSTI]

    A. Affolder; K. Akiba; M. Alexander; S. Ali; M. Artuso; J. Benton; M. van Beuzekom; P. M. Bj\\ornstad; G. Bogdanova; S. Borghi; T. J. V. Bowcock; H. Brown; J. Buytaert; G. Casse; P. Collins; S. De Capua; D. Dossett; L. Eklund; C. Farinelli; J. Garofoli; M. Gersabeck; T. Gershon; H. Gordon; J. Harrison; V. Heijne; K. Hennessy; D. Hutchcroft; E. Jans; M. John; T. Ketel; G. Lafferty; T. Latham; A. Leflat; M. Liles; D. Moran; I. Mous; A. Oblakowska-Mucha; C. Parkes; G. D. Patel; S. Redford; M. M. Reid; K. Rinnert; E. Rodrigues; M. Schiller; T. Szumlak; C. Thomas; J. Velthuis; V. Volkov; A. D. Webber; M. Whitehead; E. Zverev

    2013-02-21

    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately $\\rm{45 \\times 10^{12}\\,1\\,MeV}$ neutron equivalent ($\\rm{1\\,MeV\\,n_{eq}}$). At the operational sensor temperature of approximately $-7\\,^{\\circ}\\rm{C}$, the average rate of sensor current increase is $18\\,\\upmu\\rm{A}$ per $\\rm{fb^{-1}}$, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of $E_{g}=1.16\\pm0.03\\pm0.04\\,\\rm{eV}$ obtained. The first observation of n-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around $15 \\times 10 ^{12}$ of $1\\,\\rm{MeV\\,n_{eq}}$. The only n-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately $\\rm{3 \\times 10^{12}\\,1\\,MeV\\,n_{eq}}$, a decrease in the Effective Depletion Voltage (EDV) of around 25\\,V is observed, attributed to oxygen induced removal of boron interstitial sites. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n-on-n type sensors, with rates of $(1.43\\pm 0.16) \\times 10 ^{-12}\\,\\rm{V} / \\, 1 \\, \\rm{MeV\\,n_{eq}}$ and $(1.35\\pm 0.25) \\times 10 ^{-12}\\,\\rm{V} / \\, 1 \\, \\rm{MeV\\,n_{eq}}$ measured for n-on-p and n-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed.

  16. 110. Location efficiency Discovering the hidden transportation costs of where you live page 1 / 1 110. Location efficiency

    E-Print Network [OSTI]

    Machel, Hans

    110. Location efficiency Discovering the hidden transportation costs of where you live page 1 / 1 110. Location efficiency: Discovering the hidden transportation costs of where you live Live location efficiency and it's the amount of time, energy and greenhouse gas emissions you spend getting

  17. CX-011559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis CX(s) Applied: B3.6 Date: 11/20/2013 Location(s): Ohio Offices(s): Idaho Operations Office

  18. CX-009264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Controls on Methane Expulsion During Melting of Natural Gas Hydrate Systems CX(s) Applied: B3.6 Date: 09/12/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  19. CX-008978: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parking Garage Gutter Replacement and Installation of Roof Ice Melt System CX(s) Applied: B2.3, B2.5 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  20. CX-009266: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Controls on Methane Expulsion During Melting of Natural Gas Hydrate Systems CX(s) Applied: A9 Date: 09/11/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. CX-010749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery CX(s) Applied: A9, B5.15 Date: 08/15/2013 Location(s): Illinois Offices(s): Golden Field Office

  2. CX-010136: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Repair Sanitary Sewer Line South of 725-N CX(s) Applied: B1.3 Date: 03/11/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-008626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 607-6A Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. CX-010722: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 CX(s) Applied: B4.9 Date: 08/20/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-010145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Sherwood Sewer Line Replacement Land Use Review Request CX(s) Applied: B4.9 Date: 04/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  6. CX-008721: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Longview Pump Stations and Force Main Project CX(s) Applied: B4.9 Date: 05/15/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-009096: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    U.S. Customs and Border Protection Non-Intrusive Inspection Tests CX(s) Applied: B3.10, B3.11 Date: 05/18/2012 Location(s): Washington Offices(s): Pacific Northwest Site Office

  8. CX-011483: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bioprocessing for Bioremediation and Energy Production CX(s) Applied: B3.6 Date: 11/06/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-010530: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy

  10. CX-010264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Synthetic Microorganisms to Enable Lignin to Fuel Conversion CX(s) Applied: A9, B3.6 Date: 04/15/2013 Location(s): Texas, Georgia, Washington Offices(s): Golden Field Office

  11. CX-007603: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra-Deepwater Resources to Reserves Development and Acceleration through Appraisal CX(s) Applied: A9 Date: 01/20/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  12. CX-009022: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Novel Flash lronmaking Process CX(s) Applied: A9, B1.31, B3.6 Date: 08/22/2012 Location(s): Utah Offices(s): Golden Field Office

  13. CX-008964: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership - Installation of Electric Vehicle Charging in Walgreens Parking Lot CX(s) Applied: B5.23 Date: 08/03/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  14. CX-010870: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New Advanced Photon Source Parking Lot on Kearney Road CX(s) Applied: B1.15 Date: 07/12/2013 Location(s): Illinois Offices(s): Argonne Site Office

  15. CX-008509: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership - Electrical Vehicle Supply Equipment Installation in Walgreens Parking Lot CX(s) Applied: B5.23 Date: 07/16/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  16. CX-008336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pad 90 Overflow Parking Lot Project CX(s) Applied: B1.15 Date: 05/01/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  17. CX-008457: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership - Electrical Vehicle Supply Equipment Installation in Walgreens Parking Lot CX(s) Applied: B5.23 Date: 06/15/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  18. CX-009246: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility Parking Lot Expansion General Plant Project CX(s) Applied: B1.15 Date: 06/20/2012 Location(s): Pennsylvania Offices(s): Naval Nuclear Propulsion Program, NRF

  19. CX-008819: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility Parking Lot Expansion General Plant Project CX(s) Applied: B1.15 Date: 06/20/2012 Location(s): Idaho Offices(s): Naval Nuclear Propulsion Program, Naval Reactors

  20. CX-009919: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Borough of Fort Lee, New Jersey Energy Efficiency and Conservation Block Grant CX(s) Applied: B5.1 Date: 01/31/2013 Location(s): New Jersey Offices(s): Golden Field Office

  1. CX-009842: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Demonstration of Multipollutant Reduction using a Lextran 3-in-1 Wet Scrubber CX(s) Applied: A9, B3.6 Date: 01/30/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

  2. CX-009628: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bronze Preparation for Zinc Sequestration CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-008665: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zinc Traping Efficiency Testing CX(s) Applied: B3.6 Date: 05/02/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  4. CX-010304: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zinc Trapping Efficiency Testing CX(s) Applied: B3.6 Date: 04/30/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-009912: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refinery Upgrading of Hydropyrolysis Oil from Biomass CX(s) Applied: A9, B3.6 Date: 01/07/2013 Location(s): Illinois Offices(s): Golden Field Office

  6. CX-011128: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Novel Electro-Deoxygenation Process for Bio-oil Upgrading CX(s) Applied: A9, B5.15 Date: 08/26/2013 Location(s): Utah Offices(s): Golden Field Office

  7. CX-011737: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Technology Institute - Dual Electrolyte Extraction Electro-Refinery for Aluminum Production CX(s) Applied: B3.6 Date: 10/23/2013 Location(s): Illinois Offices(s): Advanced Research Projects Agency-Energy

  8. CX-007463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ohio Advanced Transportation Partnership/City of Columbus Electric Vehicle Charging Equipment Installation CX(s) Applied: B5.23 Date: 12/20/2011 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  9. CX-008235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Harnessing the Hydro-Electric Potential of Engineered Drops in the Columbia Basin Project: Phase 1 CX(s) Applied: A9 Date: 04/18/2012 Location(s): Washington Offices(s): Golden Field Office

  10. CX-011410: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scalable Low-head Axial-type Venturi-flow Energy Scavenger CX(s) Applied: B5.24 Date: 11/05/2013 Location(s): New Mexico Offices(s): Golden Field Office

  11. CX-007543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine CX(s) Applied: B3.6 Date: 01/17/2012 Location(s): Illinois Offices(s): Golden Field Office

  12. CX-011553: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery of Uranium from Seawater: Polymer-Supported Aminophosphinates as Selective CX(s) Applied: B3.6 Date: 11/25/2013 Location(s): New York Offices(s): Idaho Operations Office

  13. CX-008817: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Indoor Bench Scale Research Projects and Conventional Laboratory Operations CX(s) Applied: B3.6 Date: 06/08/2012 Location(s): Illinois Offices(s): New Brunswick Laboratory

  14. CX-011571: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Novel Porous Sorbents for Extraction of Uranium from Seawater CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Illinois Offices(s): Idaho Operations Office

  15. CX-008809: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wind Energy Installations- Wind Turbine Project (ASO-CX-293) CX(s) Applied: B5.18 Date: 05/22/2012 Location(s): Illinois Offices(s): Argonne Site Office

  16. CX-011702: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Novel Geothermal Development of Deep Sedimentary Systems in the United States CX(s) Applied: A9, B3.6 Date: 01/02/2014 Location(s): Utah Offices(s): Golden Field Office

  17. CX-010562: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pratt and Whitney Rocketdyne - Continuous Detonation Engine Combustor for Natural Gas Turbine CX(s) Applied: B3.6 Date: 05/09/2013 Location(s): California, Connecticut Offices(s): Advanced Research Projects Agency-Energy

  18. CX-011272: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    “Nanite” For Better Well-Bore Integrity and Zonal Isolation CX(s) Applied: B3.6 Date: 09/27/2013 Location(s): Hawaii Offices(s): National Energy Technology Laboratory

  19. CX-011616: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Kremmling 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-011618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kremmling-Windy Gap 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-011619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Muddy Pass-Walden 69-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-009172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California-City-Buena Park CX(s) Applied: A1, A9, B2.5, B5.1 Date: 09/04/2012 Location(s): California Offices(s): Energy Efficiency and Renewable Energy

  3. CX-012020: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Connectivity Between Fractures and Pores in Hydrocarbon-Rich Mudrocks CX(s) Applied: A9, B3.6 Date: 04/29/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  4. CX-010698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems CX(s) Applied: B3.6 Date: 07/11/2013 Location(s): Illinois Offices(s): Idaho Operations Office

  5. CX-011546: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Optical Fiber A Pebble-Bed Breed and Burn Reactor Temperatures CX(s) Applied: B3.6 Date: 11/27/2013 Location(s): California Offices(s): Idaho Operations Office

  6. CX-008858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Siting, Modifying and Operating Support Buildings CX(s) Applied: B1.15 Date: 08/01/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  7. CX-010018: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2H Evaporator Scale Sample Analysis CX(s) Applied: B3.6 Date: 01/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-008678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hot Springs Substation Gravity Drain Install CX(s) Applied: B4.6 Date: 07/19/2012 Location(s): Montana Offices(s): Bonneville Power Administration

  9. CX-010522: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gravity head Energy System (GHES) CX(s) Applied: A9, B3.6 Date: 06/14/2013 Location(s): Vermont, Texas Offices(s): Golden Field Office

  10. CX-009061: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Development Wet Chemistry Methods CX(s) Applied: B3.6 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-010650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raman Spectroscopy to Analyze Sludge, Saltcake, Supernate, Organics, and Inorganics CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-010214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Maximizing Multi-enzyme Synergy in Biomass Degradation in Yeast CX(s) Applied: A9, B3.6 Date: 02/28/2013 Location(s): California Offices(s): Golden Field Office

  13. CX-009105: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    284-H Track Coal Hopper Pit Modifications CX(s) Applied: B1.28 Date: 08/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-009093: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Knolls Laboratory Q14 Sprinkler System Upgrade Project CX(s) Applied: B1.15, B2.2 Date: 08/03/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  15. CX-008620: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    F-Tank Farm Sump Pump and Discharge Piping CX(s) Applied: B1.3 Date: 06/22/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-011512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    108-1K Basement Sump Pump Replacement CX(s) Applied: B1.3 Date: 10/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-008863: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dredging of the West Hackberry Raw Water Intake Structure CX(s) Applied: B1.3 Date: 08/14/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  18. CX-009893: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A2034 - Lightweight Thermal Energy Recovery (LighTER) System CX(s) Applied: B3.6 Date: 12/15/2009 Location(s): Michigan, California Offices(s): Advanced Research Projects Agency-Energy

  19. CX-010278: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Collaborative Industry-Academic Synchrophasor Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  20. CX-010279: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clemson University's Synchrophasor Education Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): South Carolina Offices(s): National Energy Technology Laboratory

  1. CX-010735: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grand Coulee-Bell No.5 Dead End Insulator Replacement Project CX(s) Applied: B1.3 Date: 07/19/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  2. CX-011295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Material Dynamics and Kinetics Lab CX(s) Applied: B3.6 Date: 10/17/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  3. CX-009345: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  4. CX-010891: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Stegall 230-Kilovolt Fiber Optic Ground Wire Addition CX(s) Applied: B4.7 Date: 08/20/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-009344: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  6. CX-009343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  7. CX-008981: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Small Particle Solar Receiver for High Temperature Brayton Power Cycles CX(s) Applied: B3.6 Date: 08/21/2012 Location(s): California Offices(s): Golden Field Office

  8. CX-008947: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction… CX(s) Applied: A9 Date: 08/15/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  9. CX-008946: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-Combustion in Conjunction… CX(s) Applied: A9 Date: 08/15/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  10. CX-010517: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program- Lime Lakes Energy, LLC CX(s) Applied: B5.20 Date: 06/14/2013 Location(s): Ohio Offices(s): Golden Field Office

  11. CX-009597: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    288-F Ash Basin Landfill Closure CX(s) Applied: B6.1 Date: 12/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-010356: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Site Characterization Investigation and Environmental Monitoring Activities CX(s) Applied: B3.1 Date: 11/19/2012 Location(s): Tennessee, California, Virginia Offices(s): Berkeley Site Office

  13. CX-007540: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spectral Signal Processing: A New Approach to Mapping Reservoir Flow and Permeability CX(s) Applied: A9, B3.1 Date: 01/19/2012 Location(s): Hawaii Offices(s): Golden Field Office

  14. CX-011255: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Time-lapse Joint Inversion of Geophysical Data and its Application to Geothermal Prospecting CX(s) Applied: A9, B3.1 Date: 09/30/2013 Location(s): Colorado Offices(s): Golden Field Office

  15. CX-007814: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Hill Vacuum Truck CX(s) Applied: B1.3 Date: 01/17/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  16. CX-011343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vacuum System Testing for 235-F Risk Reduction Project CX(s) Applied: B3.6 Date: 09/17/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  17. CX-007934: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra High Vacuum Materials Chemistry Laboratory CX(s) Applied: B3.6 Date: 02/22/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  18. CX-012315: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor Primary Coolant Pump Motor Starters Replacement CX(s) Applied: B1.31 Date: 06/24/2014 Location(s): Idaho Offices(s): Nuclear Energy

  19. CX-012263: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanics Investigation of Carbon Dioxide Reservoir Seals CX(s) Applied: B3.1 Date: 07/02/2014 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

  20. CX-012260: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanics investigation of Carbon Dioxide Reservoir Seals CX(s) Applied: B3.6 Date: 07/02/2014 Location(s): Utah Offices(s): National Energy Technology Laboratory

  1. CX-012264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanics Investigation of Carbon Dioxide Reservoir Seals CX(s) Applied: B3.6 Date: 07/02/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  2. CX-012271: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Quantitative Characterization of Impacts of Couple Geomechanics and Flow - Lab Experiments/Modeling CX(s) Applied: B3.6 Date: 06/25/2014 Location(s): California Offices(s): National Energy Technology Laboratory

  3. CX-012270: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Quantitative Characterization of Impacts of Couple Geomechanics and Flow - Lab Experiments/Modeling CX(s) Applied: B3.6 Date: 06/25/2014 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  4. CX-011455: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vortex Induced Vibration Study for Deep Draft Column Stabilized Floaters CX(s) Applied: A9, A11 Date: 11/05/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  5. CX-011457: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vortex Induced Vibration Study for Deep Draft Column Stabilized Floaters CX(s) Applied: A9, A11 Date: 11/05/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  6. CX-010022: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Stiffen Canyon Exhaust Fan 3 Motor Pedestal CX(s) Applied: B2.5 Date: 01/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-010542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters CX(s) Applied: B5.2 Date: 06/24/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  8. CX-012286: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Marine Vibrator Prototype Demonstration Test CX(s) Applied: A1, A8, A9, A11, B3.11 Date: 06/12/2014 Location(s): CX: none Offices(s): National Energy Technology Laboratory

  9. CX-011454: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vortex Induced Vibration Study for Deep Draft Column Stabilized Floaters CX(s) Applied: A9, A11 Date: 11/05/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  10. CX-011456: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vortex Induced Vibration Study for Deep Draft Column Stabilized Floaters CX(s) Applied: A9, A11 Date: 11/05/2013 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

  11. CX-011201: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Adams Tap Motor-Operator Interrupters and Control Building Replacement CX(s) Applied: B4.6 Date: 09/11/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  12. CX-007433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Washington State Ferries Biodiesel Project· Phase II CX(s) Applied: B5.22 Date: 12/07/2011 Location(s): Washington Offices(s): Golden Field Office

  13. CX-012207: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design of SC Walls and Slabs for Impulsive Loading - Purdue University CX(s) Applied: B3.6 Date: 05/05/2014 Location(s): Idaho Offices(s): Nuclear Energy

  14. CX-011540: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Crooked Creek 3 and Deep River Mouth 2 Property Funding CX(s) Applied: B1.25 Date: 12/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  15. CX-008172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High-Pressure Crogenic Pump and Hydrogen Filling Station CX(s) Applied: B5.15 Date: 05/14/2012 Location(s): California Offices(s): Lawrence Livermore Site Office

  16. CX-010216: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design and Optimization of a Biochemical Production Platform with Biosensor-guided Synthetic Evolution CX(s) Applied: A9, B3.6 Date: 02/28/2013 Location(s): California Offices(s): Golden Field Office

  17. CX-008979: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flexible Assembly Solar Technology CX(s) Applied: A9, B3.6, B5.17 Date: 08/22/2012 Location(s): California Offices(s): Golden Field Office

  18. CX-008218: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A System Design Study for Wilmington Canyon Offshore Wind Farm CX(s) Applied: A9 Date: 04/02/2012 Location(s): Delaware Offices(s): Golden Field Office

  19. CX-008145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reclamation of Decommissioned Batteries, Test Satellites, and Facilities CX(s) Applied: B1.3, B6.1 Date: 08/06/2011 Location(s): Wyoming Offices(s): RMOTC

  20. CX-011088: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Power Laser Tool and System for Unique Geothermal Well Completions CX(s) Applied: A9, B3.6 Date: 09/04/2013 Location(s): Colorado, Texas Offices(s): Golden Field Office

  1. CX-011143: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace River Water Pelton Valves and Remove Existing Valve Houses CX(s) Applied: B1.3. Date: 08/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-011225: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    West Hackberry RWIS Recycle Valve Upgrade CX(s) Applied: B1.3 Date: 10/15/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  3. CX-008513: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrate Growth Modeling in the Laboratory CX(s) Applied: A9, A11, B3.6 Date: 07/13/2012 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  4. CX-008512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrate Growth Modeling in the Laboratory CX(s) Applied: A9, B3.6 Date: 07/13/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  5. CX-008493: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liquid Carbon Dioxide Slurry for Feeding Low Rank Coal (LRC) Gasifiers CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas, Oklahoma Offices(s): National Energy Technology Laboratory

  6. CX-009392: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean Cities Refueling Infrastructure for Alternative Fuels - Phase Three CX(s) Applied: B5.22 Date: 09/12/2012 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  7. CX-009391: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean Cities Refueling Infrastructure for Alternative Fuels (Revised Phase 2) CX(s) Applied: B5.22 Date: 09/12/2012 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  8. CX-012125: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pressure Prediction and Hazard Avoidance Through Improved Seismic Imaging CX(s) Applied: A1, A9, A11 Date: 05/29/2014 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  9. CX-012147: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ion Advanced Solvent Carbon Dioxide Capture Pilot Project (Budget Period 1) CX(s) Applied: A9, A11 Date: 05/21/2014 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  10. CX-010281: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: A9, B3.6 Date: 05/14/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory

  11. CX-012190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Murray, Snohomish, and Sno-King Substations Equipment Acquisition CX(s) Applied: B1.24 Date: 05/21/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  12. CX-009609: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Push Pole Replacement in D-Area CX(s) Applied: B1.3 Date: 11/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-011039: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Friction Stir Scribe Joining of Al to AHSS CX(s) Applied: B3.6 Date: 09/10/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  14. CX-011040: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Friction Stir Scribe Joining of Al to AHSS CX(s) Applied: A9, B3.6 Date: 09/10/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  15. CX-011038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Friction Stir Scribe Joining of Al to AHSS CX(s) Applied: B3.6 Date: 09/10/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  16. CX-010282: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory

  17. CX-011795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra Efficient CHHP using High Temperature Fuel Cell CX(s) Applied: B3.6 Date: 02/06/2014 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  18. CX-009143: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation CX(s) Applied: A9, B3.6 Date: 09/07/2012 Location(s): California Offices(s): Golden Field Office

  19. CX-008492: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  20. CX-007678: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Construction of Interagency Fire Center at TA-49 CX(s) Applied: B1.15 Date: 01/17/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office

  1. CX-008381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Thompson to Flatiron 13.8 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-010105: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 03/26/2013 Location(s): Colorado, Colorado, Colorado, Colorado, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-008377: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcova-Casper North 115 Kilovolt Transmission Line Pole Replacements CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-008289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes CX(s) Applied: A9 Date: 05/01/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  5. CX-008311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes CX(s) Applied: B3.6 Date: 04/24/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  6. CX-008944: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mechanistic Enhancement of SOFC Cathode Durability CX(s) Applied: B3.6 Date: 08/16/2012 Location(s): Maryland Offices(s): National Energy Technology Laboratory

  7. CX-011063: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SOFC Systems with Improved Reliability and Endurance CX(s) Applied: A1, A9, B3.6 Date: 08/29/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory

  8. CX-011062: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SOFC Systems with Improved Reliability and Endurance CX(s) Applied: A1, A9 Date: 08/29/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  9. CX-008359: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dismantling of 735-A and 735-11A Chillers and Condensers CX(s) Applied: B1.23 Date: 04/17/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-009106: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dismantle/Remove Vacuum System and Related Equipment in 772-F CX(s) Applied: B1.3 Date: 08/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-010854: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    906-T Air Stripper Dismantle and Removal CX(s) Applied: B1.23 Date: 07/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-009114: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dismantle and Remove Area Radiation Monitors (General) CX(s) Applied: B3.1 Date: 08/23/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-009078: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dismantle and removal (D&R) of Domestic Water (DW) & Process Water (PWS) heater tanks CX(s) Applied: B1.3 Date: 07/11/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-010318: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tank 13 Dismantle and Remove (D&R) Equipment - General CX(s) Applied: B1.31 Date: 04/22/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-009062: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dismantle and Remove Low Level Waste Loading Station, Building 735-A CX(s) Applied: B1.23 Date: 07/24/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-008195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minnesota City-Apple Valley CX(s) Applied: B1.32, B2.5, B5.1 Date: 04/10/2012 Location(s): Minnesota Offices(s): Energy Efficiency and Renewable Energy

  17. CX-008467: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Smart Grid Data Access Utilizing Science, Technology, Engineering, and Mathematics Education as a Catalyst - Phase 1 CX(s) Applied: A9, A11 Date: 06/12/2012 Location(s): Maine Offices(s): National Energy Technology Laboratory

  18. CX-009901: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A1152 - 1366 Direct Water: Enabling Terawatt Photovoltaics CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy

  19. CX-011109: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Overcoming the Fundamental Bottlenecks to a New World-Record Silicon Solar Cell CX(s) Applied: B3.6 Date: 08/09/2013 Location(s): Georgia Offices(s): Golden Field Office

  20. CX-011563: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel CX(s) Applied: B3.15 Date: 11/19/2013 Location(s): California Offices(s): Idaho Operations Office