Sample records for location raft river

  1. Schlumberger soundings in the Upper Raft River and Raft River...

    Open Energy Info (EERE)

    Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

  2. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  3. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

  4. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The investigation of anomalous magnetization in the Raft River...

  5. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector Geothermal energy

  6. Hydrochemistry of selected parameters at the Raft River KGRA...

    Open Energy Info (EERE)

    KGRA, Cassia County, Idaho Abstract Low to moderate temperature (< 150 0C) geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal...

  7. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Raft River Geothermal Field, Idaho The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs Economic Impact Analysis for EGS...

  8. Two-dimensional simulation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    of the Raft River geothermal reservoir and wells. (SINDA-3G program) Abstract Computer models describing both the transient reservoir pressure behavior and the time...

  9. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

  10. Concept Testing and Development at the Raft River Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 4.1.2 Concept Testing and Development at the Raft River Geothermal Field, Idaho Presentation Number: 007 Investigator: Moore, Joseph (University of Utah) Objectives: Develop and...

  11. Light Company Vigilante Electric Cooperative, Inc. Raft River...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inland Power & Light Company Vigilante Electric Cooperative, Inc. Raft River Rural Electric Cooperative, Inc. Northern Lights, Inc. Lower Valley Energy, Inc. Clearwater Power...

  12. Raft river geothermal pump disassembly and inspection

    SciTech Connect (OSTI)

    Van Treeck, R.

    1983-02-01T23:59:59.000Z

    The disassembly and postoperation inspection of the Peerless geothermal water pump used in teh RRGE-1 well at the Raft River Geothermal Test Site are summarized. Disassembly was hampered by scale that froze some of the pump bearings onto the impeller shaft after operation ceased. The pump appeared otherwise in generally excellent condition after more than 1600 h running time in a geothermal environment. Most postoperation diameters of rotating parts were still within factory tolerance. The few out-of-tolerance bearing diameters could not be attributed to wear and could have been out of tolerance when received. This possibility points to a need for preoperation quality-control inspection of the bearings.

  13. Geophysical logging case history of the Raft River geothermal...

    Open Energy Info (EERE)

    logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical logging case history of the...

  14. Simulation analysis of the unconfined aquifer, Raft River Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Abstract This study...

  15. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  16. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Shaber, C.R.; Thurow, T.L.

    1981-11-17T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  17. Raft River III Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector Geothermal energyProject

  18. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cuyler, David

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  19. Overview of engineering and agricultural design considerations of the Raft River soil-warming and heat-dissipation experiment

    SciTech Connect (OSTI)

    Stanley, N.E.; Engen, I.A.; Yrene, C.S.

    1982-04-01T23:59:59.000Z

    The engineering and agricultural considerations of the Raft River soil-warming and heat-dissipation experiment are presented. The experiment is designed to investigate the thermal characteristics of a subsurface pipe network for cooling power-plant condenser effluent, and crop responses to soil warming in an open-field plot. The subsurface soil-warming system is designed to dissipate approximately 100 kW of heat from circulating, 38/sup 0/C geothermal water. Summer operating conditions in the Raft River area, located on the Intermountain Plateau are emphasized. Design is based on the thermal characteristics of the local soil, the climate of the Raft River Valley, management practices for normal agriculture, and the need for an unheated control plot. The resultant design calls for 38-mm polyvinyl chloride (PVC) pipe in a grid composed of parallel loops, for dissipating heat into a 0.8-hectare experimental plot.

  20. Raft River Rural Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot SpringsOpenRaft River

  1. Field Mapping At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4)OpenInformation Raft River

  2. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    SciTech Connect (OSTI)

    Glaspey, Douglas J.

    2008-01-30T23:59:59.000Z

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  3. Raft River Rural Electric Coop. Vigilante Electric Coop. Northern

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farmers Electric Riverside Electric Minidoka Soda Springs Idaho Falls Lower Valley Energy Lost River Electric Coop. Fall River Rural Electric Coop. Salmon River Electric...

  4. Raft River geoscience case study | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot SpringsOpenRaft

  5. Field Mapping At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4)OpenInformation Raft

  6. Raft River monitor well potentiometric head responses and water quality as

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector Geothermal

  7. Hydrochemistry of selected parameters at the Raft River KGRA, Cassia County, Idaho

    SciTech Connect (OSTI)

    Graham, D.L.; Ralston, D.R.; Allman, D.W.

    1981-01-01T23:59:59.000Z

    Low to moderate temperature (< 150/sup 0/C) geothermal fluids are being developed in the southern Raft River Valley of Idaho. Five deep geothermal wells ranging in depth from 4911 feet to 6543 feet (1490 to 1980 meters) and two intermediate depth (3858 feet or 1170 meters) injection wells have been drilled within the Raft River KGRA. Several shallower (1423-500 feet or 430-150 meters) wells have also been constructed to monitor the environmental effects of geothermal development of the shallower aquifer systems. Sampling of water from wells within the KGRA has been conducted since the onset of the project in 1974. Five analytical laboratories have conducted analyses on waters from the KGRA. Charge-balance error calculations conducted on the data produced from these laboratories indicated that data from three laboratories were reliable while two were not. A method of equating all data was established by using linear regression analyses on sets of paired data from various laboratories. The chemical data collected from the deep geothermal wells indicates that a two reservoir system exists within the Raft River KGRA. Each reservoir is associated with a major structural feature. These features are known as the Bridge Fault System (BFS) and the Narrows Structure (NS).

  8. Self Potential Measurements At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, Idaho | OpenSelawik

  9. Cuttings Analysis At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings Analysis At New River Area

  10. Internal Technical Report, Summary of Raft River Supply and Injection System Operational History

    SciTech Connect (OSTI)

    Walrath, L.F.

    1980-01-01T23:59:59.000Z

    Asbestos-cement (Transite) pipe was installed at the Raft River Geothermal Area in the fall of 1975 and has been used extensively since. The pipe is used to transfer water from the well sites to the testing areas, reserve pits, and reinjection wells. The pipeline was designed to transport approximately 300 F water at 150 psi over a period of time for the present testing program and later, for the 5 MW(e) Raft River Pilot Plant. Numerous line failures have occurred since the original lines were installed. Due to the various causes of the line failures and the extensive downtime which has occurred because of them, further examination of Transite pipe is necessary to determine its future use as completion of the 5 MW(e) pilot plant approaches. The Conversion Technology and Engineering Branch has completed a preliminary study of the effects of S&I system transients on Transite pipe (re: OJD-7-79). Recommendations are proposed to conduct further studies and tests; however, no funding is presently available due to limitations in the budget for the 5 MW(e) pilot plant project. The Mechanical Design Branch is continuing design analysis in an effort to gather information to determine maximum warmup rates for the S&I system.

  11. E-Print Network 3.0 - assessment raft river Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University - Department of Energy Resources Engineering, Reservoir Simulation Research Collection: Fossil Fuels 7 The challenge of lipid rafts Linda J. Pike1 Summary: The...

  12. Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant

    SciTech Connect (OSTI)

    Bamberger, J.A.; Allemann, R.T.

    1982-07-01T23:59:59.000Z

    A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

  13. COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE

    SciTech Connect (OSTI)

    Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

    2011-02-01T23:59:59.000Z

    Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

  14. Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells

    SciTech Connect (OSTI)

    Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

    1982-04-01T23:59:59.000Z

    A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

  15. Idaho_RaftRiver301

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch204Peak Site1 Site

  16. Idaho_RaftRiver302

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch204Peak Site1 Site2 Site

  17. Idaho_RaftRiver303

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustryMitch204Peak Site1 Site2 Site3

  18. The insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) alters the membrane raft location of the TSH receptor stably expressed in Chinese hamster ovary cells

    SciTech Connect (OSTI)

    De Gregorio, Francesca; Pellegrino, Mario [Department of Physiological Sciences, University of Pisa (Italy); Picchietti, Simona; Belardinelli, Maria C. [Department of Environmental Sciences, Tuscia University, Viterbo (Italy); Taddei, Anna Rita [Interdepartmental Centre for Electron Microscopy, Tuscia University, Viterbo (Italy); Fausto, Anna Maria [Department of Environmental Sciences, Tuscia University, Viterbo (Italy); Rossi, Mario [Department of Experimental Medicine, University of L'Aquila, L'Aquila (Italy); Maggio, Roberto, E-mail: roberto.maggio@univaq.it [Department of Experimental Medicine, University of L'Aquila, L'Aquila (Italy); Giorgi, Franco [Department of Neuroscience, University of Pisa, Pisa (Italy)

    2011-06-01T23:59:59.000Z

    DDT is a highly lipophilic molecule known to deplete membrane rafts of their phosphoglycolipid and cholesterol contents. However, we have recently shown that DDT can also alter the thyroid homeostasis by inhibiting TSH receptor (TSHr) internalization. The present study was undertaken to verify whether DDT goitrogenic effects are due to the insecticide acting directly on TSHr or via alteration of the membrane rafts hosting the receptor itself. Our results demonstrate that, in CHO-TSHr transfected cells, TSHr is activated in the presence of TSH, while it is inhibited following DDT exposure. DDT can also reduce the endocytic vesicular traffic, alter the extension of multi-branched microvilli along their plasma membranes and induce TSHr shedding in vesicular forms. To verify whether TSHr displacement might depend on DDT altering the raft constitution of CHO-TSHr cell membranes the extent of TSHr and lipid raft co-localization was examined by confocal microscopy. Evidence shows that receptor/raft co-localization increased significantly upon exposure to TSH, while receptors and lipid rafts become dislodged on opposite cell poles in DDT-exposed CHO-TSHr cells. As a control, under similar culturing conditions, diphenylethylene, which is known to be a lipophilic substance that is structurally related to DDT, did not affect the extent of TSHr and lipid raft co-localization in CHO-TSHr cells treated with TSH. These findings corroborate and extend our view that, in CHO cells, the DDT disrupting action on TSHr is primarily due to the insecticide acting on membranes to deplete their raft cholesterol content, and that the resulting inhibition on TSHr internalization is due to receptor dislodgement from altered raft microdomains of the plasma membrane. - Highlights: >DDT is a pesticide with a severe environmental impact >Epidemiologic correlation exists between exposition to DDT and thyroid dysfunction >DDT is a lipophilic molecule that has been shown to inhibit TSH receptor function >DDT depletes membrane raft cholesterol content and by this way inhibits TSH receptor

  19. An early history of pure shear in the upper plate of the raft...

    Open Energy Info (EERE)

    early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search OpenEI Reference...

  20. RAFT Regional Algal Feedstock Testbed

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  1. Dates Days Activity Location Deadline Cost June 9 Sun. Kayaking Harpeth River, TN (KS to GT) 5/31 $33

    E-Print Network [OSTI]

    Bordenstein, Seth

    Dates Days Activity Location Deadline Cost June 9 Sun. Kayaking Harpeth River, TN (KS to GT) 5/31 $33 15 Sat. Canoeing * Families welcome * Harpeth River, TN (The Narrows) 6/7 $22 16 Sun. Hike, TN 6/14 $22 21-23 Fri. - Sun. Backpacking Great Smoky Mountain National Park, TN 6/14 $97 30 Sun

  2. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14T23:59:59.000Z

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  3. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource History

  4. An experimental study of the impact of location on the effectiveness of recruitment clusters for Red-cockaded Woodpeckers at the Savannah River Site.

    SciTech Connect (OSTI)

    Walters, Jeffrey, R.; Johnston, Peter, A.; Crowder, Larry, B.; Priddy, Jeffrey, A.

    2008-05-31T23:59:59.000Z

    An experimental study of the impact of location on the effectiveness of recruitment clusters for Red-Cockaded Woodpeckers at the Savannah River Site.

  5. Effects of sublethal methoprene dosages on egg rafts and reproductive tracts of female Culex quinquefasciatus say (Diptera: Culicidae)

    E-Print Network [OSTI]

    Hausser, Nicole Lynne

    1995-01-01T23:59:59.000Z

    together by an extrachorionic secretion located between the tubercles and by mechanical interdigitation of tubercles. Mosquitoes exposed to sublethal doses of the insect growth regulator, methoprene, laid egg rafts that were less organized and more loosely...

  6. Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618b NoIllinois: Energy ResourcesDedini Sexploration

  7. Schlumberger soundings in the Upper Raft River and Raft River Valleys,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA Jump to:Schering Plough Corporation

  8. The Structure of Cholesterol in Lipid Rafts

    E-Print Network [OSTI]

    Laura Toppozini; Sebastian Meinhardt; Clare L. Armstrong; Zahra Yamani; Norbert Kucerka; Friederike Schmid; Maikel C. Rheinstaedter

    2014-12-16T23:59:59.000Z

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules we observe raft-like structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raft-like structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  9. Rheological control on the initial geometry of the Raft River...

    Open Energy Info (EERE)

    mylonite during progressive displacement and footwall unroofing may use an inherited mechanical anisotropy from the mylonite, and their orientations may not reflect the predicted...

  10. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. Authors...

  11. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published Journal Geophysics, 21...

  12. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    deep structural controls on fluid pathways in the field, which has compartmentalized the fluids and limited the degree of mixing between them. Authors Ayling, B.; Molling, P.;...

  13. Preservation of an extreme transient geotherm in the Raft River...

    Open Energy Info (EERE)

    (DFluid -85) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large...

  14. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    over the nearest DC layer solution. Authors Anderson and W. L. Published DOE Information Bridge, 111977 DOI 10.21726804958 Citation Anderson, W. L. . 111977....

  15. Final Technical Resource Confirmation Testing at the Raft River...

    Open Energy Info (EERE)

    accomplished across the wellfield. Authors Glaspey and Douglas J. Published DOE Information Bridge, 1302008 DOI 10.2172922630 Citation Glaspey, Douglas J. . 1302008. Final...

  16. Total field aeromagnetic map of the Raft River known Geothermal...

    Open Energy Info (EERE)

    SURVEYS; USA Authors Geological Survey, Denver and CO (USA) Published DOE Information Bridge, 111981 DOI 10.21725456508 Citation Geological Survey, Denver, CO (USA). 11...

  17. Raft River monitor well potentiometric head responses and water...

    Open Energy Info (EERE)

    W.; Tullis, J. A.; Dolenc, M. R.; Thurow, T. L.; Skiba and P. A. Published DOE Information Bridge, 911982 DOI 10.21727034615 Citation Allman, D. W.; Tullis, J. A.; Dolenc, M....

  18. Numerical Modeling At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy ResourcesInformation 3)

  19. Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee Mountain Area

  20. Conceptual Model At Raft River Geothermal Area (1988) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open Energy Information Conceptual Model

  1. Conceptual Model At Raft River Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open Energy Information Conceptual

  2. Core Analysis At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to:1983)

  3. DC Resistivity Survey (Schlumberger Array) At Raft River Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergyMasse) Jump to: navigation, search

  4. Development Wells At Raft River Geothermal Area (2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area

  5. Borehole geophysics evaluation of the Raft River geothermal reservoir |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder BiofuelsOpen Energy

  6. Borehole geophysics evaluation of the Raft River geothermal reservoir,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,BonnerBorder BiofuelsOpen

  7. Telluric Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,

  8. The investigation of anomalous magnetization in the Raft River valley,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpen Energy|

  9. Tracer Testing At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KK Jump to:Springs)2012) |

  10. Tracer Testing At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KK Jump to:Springs)2012)

  11. Update on the Raft River Geothermal Reservoir | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:Delaware JumpNewforLP

  12. Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaftPadomaSierraSilver

  13. Conceptual Model At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al.,Conception5)

  14. Conceptual Model At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et

  15. Conceptual Model At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, EtInformation

  16. Conceptual Model At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,

  17. Conceptual Model At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information 1) Jump to:

  18. Conceptual Model At Raft River Geothermal Area (1983) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information 1) Jump

  19. Conceptual Model At Raft River Geothermal Area (1987) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information 1)

  20. Conceptual Model At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith,Information

  1. Core Analysis At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:Information NewAdvisors Jump|2003) |Information

  2. Core Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to:Information NewAdvisors Jump|2003)

  3. Petrography of late cenozoic sediments, Raft River geothermal field, Idaho

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: Energy Resources Jump to:| Open Energy

  4. Acoustic Logs At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergy InformationAclara Jump

  5. Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (Cunniff &

  6. Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAiken Electric CoopCooling:AirShares

  7. Raft River II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot SpringsOpen

  8. Raft River geoscience case study- appendixes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot

  9. Geophysical Method At Raft River Geothermal Area (1975) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector:2008)theVolcano JumpResource

  10. Geophysical Method At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector:2008)theVolcano

  11. Reconnaissance geothermal exploration at Raft River, Idaho from thermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRaus PowerLouisiana:CampbellOpenHome Nameinfrared

  12. Deep drilling data Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been approved forDaytonCounty,

  13. Exploratory Well At Raft River Geothermal Area (1975) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law andEnergyEvogy IncEnergy|Open

  14. FLOWMETER ANALYSIS AT RAFT RIVER, IDAHO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA - National Flood

  15. Petrography Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) | Open Energy

  16. Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) | Open EnergyInformation Jump to:

  17. Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini,Information 8) Exploration

  18. Final Technical Resource Confirmation Testing at the Raft River Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdf Jump to:Notice ofWillametteby

  19. Fault Mapping At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProject JumpTechnologies FST

  20. Field Mapping At Raft River Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information 4)OpenInformation

  1. Field Mapping At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy Information

  2. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGS DEVELOPMENT | OpenIDAHO

  3. Geochemical modeling of the Raft River geothermal field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssetsof Thermal Waters

  4. Geothermal Modeling of the Raft River Geothermal Field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, search OpenEIOpen Energy Information Jump

  5. Geothermometry At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, searchTo encourageInformation Desert

  6. Ground Magnetics At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:Energy Information -Open2007) |

  7. Chemical Logging At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009Information17.3180919°,Faults

  8. Thermochronometry At Raft River Geothermal Area (1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHot SpringsInformation 93)

  9. Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) | Open Energy

  10. Exploratory Well At Raft River Geothermal Area (1950) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, -EnergySonarOpen|

  11. Exploratory Well At Raft River Geothermal Area (1976) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, -EnergySonarOpen|Information

  12. Exploratory Well At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale,

  13. Hydrochemistry of selected parameters at the Raft River KGRA, Cassia

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybrids PlusHydroVolts JumpCounty,

  14. Injectivity Test At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,Infield Capital JumpInghamInformation

  15. Interpretation of electromagnetic soundings in the Raft River geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data,associationOilGunnisonOpen

  16. AREAS OF GROUND SUBSIDENCE DUE TO GEO-FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Grimsrud, G. Paul

    2011-01-01T23:59:59.000Z

    here, and the Raft River geothermal wells a r e located t oPROPERTIES OF RAFT RIVER GEOTHERMAL WELL CORES (from Stokerin the area of Geothermal wells rs a 9 square mile area with

  17. E-Print Network 3.0 - area idaho raft Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area idaho raft Page: << < 1 2 3 4 5 > >> 1 PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31...

  18. A model for the consolidation of rafted sea ice , D. L. Feltham2,3

    E-Print Network [OSTI]

    Feltham, Daniel

    . This process is widespread in the North Caspian Sea where multiple rafting produces thick sea ice features floes override one another multiple times to produce thick sea ice features [Babko et al., 2002A model for the consolidation of rafted sea ice E. Bailey1 , D. L. Feltham2,3 , and P. R. Sammonds1

  19. A model for the consolidation of rafted sea ice E. Bailey,1

    E-Print Network [OSTI]

    Feltham, Daniel

    ice. This process is widespread in the north Caspian Sea, where multiple rafting produces thick sea override one another multiple times to produce thick sea ice features [Babko et al., 2002]. This process observed that as many as four layers of ice were rafted in the southeastern Beaufort Sea to produce a total

  20. Impact of boundaries on velocity profiles in bubble rafts

    E-Print Network [OSTI]

    Yuhong Wang; Kapilanjan Krishan; Michael Dennin

    2006-01-31T23:59:59.000Z

    Under conditions of sufficiently slow flow, foams, colloids, granular matter, and various pastes have been observed to exhibit shear localization, i.e. regions of flow coexisting with regions of solid-like behavior. The details of such shear localization can vary depending on the system being studied. A number of the systems of interest are confined so as to be quasi-two dimensional, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems have been studied with very different boundary conditions: Hele-Shaw cells (bubbles confined between two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often, it is assumed that the impact of the boundaries is not significant in the ``quasi-static limit'', i.e. when externally imposed rates of strain are sufficiently smaller than internal kinematic relaxation times. In this paper, we directly test this assumption for rates of strain ranging from $10^{-3}$ to $10^{-2} {\\rm s^{-1}}$. This corresponds to the quoted quasi-static limit in a number of previous experiments. It is found that the top plate dramatically alters both the velocity profile and the distribution of nonlinear rearrangements, even at these slow rates of strain.

  1. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    SciTech Connect (OSTI)

    Chilakapati, A.

    1995-07-01T23:59:59.000Z

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  2. Sedimentary processes of the Red River between Denison Dam, TX and Alexandria, LA

    E-Print Network [OSTI]

    Weirich, Thomas Moody - Kenyon

    2012-06-07T23:59:59.000Z

    base level. It was concluded that the suspended sediment concentration of the Red River between Index, AR and Shreveport, LA is caused by two processes: 1. ) the erosion of sediment accumulated behind the raft as the river grades to original base... Marine Regiment, Iwo Jima Col. A. F. Weirich, U. S. Army (ret. ) 1 909 - 1988 Executive Officer - Rocky Mountain Arsenal, Denver CO TABLE OF CONTENTS ABSTRACT. ACKNOWLEDGEMENTS DED ICATION . . TABLE OF CONTENTS LIST OF F IG U RES . . . . . LIST...

  3. Location Map

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  4. Location Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map file package containing shaded relief base with Hot Pot project area, major roads, railroads, and rivers. The inset map shows regional Paleozoic structural elements.

  5. Non-equilibrium raft-like membrane domains under continuous recycling

    E-Print Network [OSTI]

    Matthew S. Turner; Pierre Sens; Nicholas D. Socci

    2005-03-30T23:59:59.000Z

    We present a model for the kinetics of spontaneous membrane domain (raft) assembly that includes the effect of membrane recycling ubiquitous in living cells. We show that the domains have a broad power-law distribution with an average radius that scales with the 1/4 power of the domain lifetime when the line tension at the domain edges is large. For biologically reasonable recycling and diffusion rates the average domain radius is in the tens of nm range, consistent with observations. This represents one possible link between signaling (involving rafts) and traffic (recycling) in cells. Finally, we present evidence that suggests that the average raft size may be the same for all scale-free recycling schemes.

  6. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect (OSTI)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01T23:59:59.000Z

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  7. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...

    Open Energy Info (EERE)

    response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir...

  8. The effect of raft removal and dam construction on the lower Colorado River, Texas

    E-Print Network [OSTI]

    Hartopo

    1991-01-01T23:59:59.000Z

    and development of the volume storage. Solid line is approximate cumulative volume of storage of major reservoir upstream of Austin. Dashed line is curve fit of Qs/Q. . . . . . . . . 46 20 Ratio of suspended load (Qs) to water discharge (Q) at Columbus... and development of the volume storage. Solid line is approximate cumulative volume of storage of major reservoir upstream of Austin. Dashed line is curve fit of Qs/Q. 47 Austin suspended load/discharge and volume of storage vs Year e 2 O e e 0 O O 1...

  9. Temperature, thermal-conductivity, and heat-flux data,Raft River...

    Open Energy Info (EERE)

    conductivity; United States; USGS Authors Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer and M.H. Published Open-File Report - U. S. Geological...

  10. Concept Testing and Development at the Raft River Geothermal Field, Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *Concentrating Solar 2013

  11. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 *Concentrating Solar

  12. Compound and Elemental Analysis At Raft River Geothermal Area (1981) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeat Ltd2002) |Al.,(Evans,

  13. Direct-Current Resistivity Survey At Raft River Geothermal Area (1983) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie(FURUMOTO,Open Energy

  14. Earth Tidal Analysis At Raft River Geothermal Area (1980) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. You canAdvantageOregon

  15. Earth Tidal Analysis At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. You

  16. Earth Tidal Analysis At Raft River Geothermal Area (1984) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThis article is a stub. YouInformation 4) Jump to:

  17. Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) | OpenGround Gravity

  18. Groundwater Sampling At Raft River Geothermal Area (2004-2011) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county inAl., 1979) |Haar,ManagementClimateEnergy

  19. Temperature, thermal-conductivity, and heat-flux data,Raft River area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,Telluric Survey DetailsCassia County,

  20. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpenOpen Energy

  1. Total field aeromagnetic map of the Raft River known Geothermal Resource

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: TerminologyTolerableTop CropTopazTorayJump

  2. Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformationDecker, 1983)Et

  3. Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpenInformation )

  4. Micro-Earthquake At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc JumpOpenInformation

  5. Micro-Earthquake At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrel Inc

  6. Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, searchGritto(Tempel, Et

  7. Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, searchGritto(Tempel, EtEnergy

  8. Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, searchGritto(Tempel,

  9. Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(CaliforniaProduction (RECP) in DevelopingHill,

  10. Resistivity measurements before and after injection Test 5 at Raft River

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(CaliforniaProductionKGRA, Idaho. Final report | Open

  11. Rheological control on the initial geometry of the Raft River detachment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(CaliforniaProductionKGRA, Idaho. FinalReykjavíkfault

  12. Subsurface geology of the Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen EnergyInsulated PanelStuartInformation

  13. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment ofFresnoEnergyServicesDepartment of

  14. Seismic refraction study of the Raft River geothermal area, Idaho | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name: SeadovSedgwick,Hawaii | Open

  15. Preservation of an extreme transient geotherm in the Raft River detachment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerdeGeodetically Constrained

  16. An early history of pure shear in the upper plate of the raft river

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:Operations at the Cosoappraisal

  17. Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior, Ontario:

  18. Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & Associates Jump to:ProjectInformation

  19. 10 Million U.S. Department of Energy Grant Program Begins at Raft River |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR SolarZe-geniotOpen Energy

  20. Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot SpringsOpen Energy

  1. Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium Hot SpringsOpen EnergyOpen

  2. Direct-Current Resistivity Survey At Raft River Geothermal Area (1975) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type TermOpen EnergyEnergy2002)Open Energy

  3. Exploring the Raft River geothermal area, Idaho, with the dc resistivity

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law andEnergyEvogyMore Steam for

  4. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA - National FloodHYDROGEOLOGICAL

  5. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy2005) | Open Energy(Musgrave,

  6. Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior

  7. Fault and joint geometry at Raft River geothermal area, Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMAProject JumpTechnologies

  8. Flow Test At Raft River Geothermal Area (1979) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow Test

  9. Flow Test At Raft River Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow

  10. Flow Test At Raft River Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow6

  11. Flow Test At Raft River Geothermal Area (2008) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE

  12. Geology and alteration of the Raft River geothermal system, Idaho | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssetsofLane:Discovery,|

  13. Geophysical logging case history of the Raft River geothermal system, Idaho

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGeminiEnergy InformationNevada Jump|

  14. Ground Gravity Survey At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation,2004) |Information 8

  15. Groundwater Sampling At Raft River Geothermal Area (1974-1982) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:EnergyEnergy Information 4-1982)

  16. Surface Water Sampling At Raft River Geothermal Area (1973) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota:36052°,Sunfield,FarmsSupport Resources,| OpenZones

  17. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformation 9) JumpEnergy

  18. Two-dimensional simulation of the Raft River geothermal reservoir and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformationTulsa,TuscarawasFallon | Open Energy

  19. Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth DivisionHelio MicroHeliotronics Jump

  20. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to: navigation, search JumpOpen

  1. River Thames River Thames

    E-Print Network [OSTI]

    Delmotte, Nausicaa

    West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

  2. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    SciTech Connect (OSTI)

    Kosicek, Marko, E-mail: marko.kosicek@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)] [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Malnar, Martina, E-mail: martina.malnar@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)] [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Goate, Alison, E-mail: goate@icarus.wustl.edu [Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 (United States)] [Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 (United States); Hecimovic, Silva, E-mail: silva.hecimovic@irb.hr [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)] [Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2010-03-12T23:59:59.000Z

    It has been suggested that cholesterol may modulate amyloid-{beta} (A{beta}) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD ({beta}-amyloid precursor protein (APP), {beta}-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/A{beta} formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1{sup -/-} cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, {gamma}-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards A{beta} occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  3. The consolidation and bond strength of rafted sea ice Eleanor Bailey a,

    E-Print Network [OSTI]

    Feltham, Daniel

    override one an- other multiple times to produce thick sea ice features (Babko et al., 2002). This processThe consolidation and bond strength of rafted sea ice Eleanor Bailey a, , P.R. Sammonds a,b , D.L. Feltham b,c a Rock & Ice Physics Laboratory, Department of Earth Sciences, University College London

  4. Impact of boundaries on velocity profiles in bubble rafts Yuhong Wang, Kapilanjan Krishan, and Michael Dennin

    E-Print Network [OSTI]

    Dennin, Michael

    92697-4575 (Dated: November 7, 2005) Under conditions of sufficiently slow flow, foams, colloids, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often

  5. Preparation of transition metal nanoparticles and surfaces modified with (CO) polymers synthesized by RAFT

    DOE Patents [OSTI]

    McCormick, III, Charles L. (Hattiesburg, MS); Lowe, Andrew B. (Hattiesburg, MS); Sumerlin, Brent S. (Pittsburgh, PA)

    2006-10-25T23:59:59.000Z

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surface modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a collidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as fuctionalization with a variety of different chemical groups, expanding their utility and application.

  6. Jocko River Watershed conservation easement protects trout habitat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.25 acre habitat acquisition in Montana's Jocko River Watershed for fish habitat mitigation (see map). Located in Lake County in northwestern Montana, this property was selected...

  7. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  8. Kentucky River Pleasant Hill/ S.R.33 Burgin

    E-Print Network [OSTI]

    Finkel, Raphael

    Lexington U.S.68 S.R.1268 Wilmore S.R. 33 Kentucky River Mt. Zion Church Pleasant Hill/ S.R.33 Lexington on US 68 heading SSW. Drive across the Kentucky River ­ down palisades and up the other side, Mercer Co. Ky The church is located between the Kentucky River and Shaker Village. There is no indoor

  9. Pennsylvania Scenic Rivers Program

    Broader source: Energy.gov [DOE]

    Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

  10. Savannah River Site 1991 Road Erosion Inventory.

    SciTech Connect (OSTI)

    Jones, Cliff.

    2007-06-22T23:59:59.000Z

    Final Report. USDA Forest Service, Savannah River, Aiken, SC. 28 pp. Abstract - This paper explains the rationale and results of a 1991 road erosion inventory conducted by members of the USDA Forest Service – Savannah River (FS-SR) and USDA Natural Resources Conservation Service (NRCS). The inventory provided information for the Department of Energy - Savannah River (DOE-SR) to justify the need for developing an erosion and sediment control program with appropriate funding, personnel, and equipment. Federally managed since the early 1950’s, the SRS is located on 198,344 acres (80,301 hectares) in the South Carolina counties of Aiken, Barnwell, and Allendale. Located along the eastern border of the Savannah River, the SRS is located within the Upper and Lower Coastal Plains of South Carolina.

  11. Bosque River Environmental Infrastructure Improvement Plan: Phase II BMP Modeling Report

    E-Print Network [OSTI]

    Tuppad, Pushpa; Srinivasan, Raghavan

    The Bosque River Watershed is located in the Brazos River Basin in central Texas and is facing a suite of water quality issues resulting in sediment, nutrient and bacteria loading. These loadings are potentially derived from improperly managed...

  12. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

  13. STANDARD OPERATING PROCEDURE Location(s): ___________________________________________________

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    of as hazardous waste. 8. Decontamination: Specific instructions: For light contamination of small areas or items12.1 STANDARD OPERATING PROCEDURE for PHENOL Location(s): ___________________________________________________ Chemical(s): Phenol Specific Hazards: May be fatal if inhaled. Harmful if absorbed through skin. Harmful

  14. Red River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

  15. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

  16. Maine Rivers Policy (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

  17. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  18. Wabash River Heritage Corridor (Indiana)

    Broader source: Energy.gov [DOE]

    The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

  19. Geothermal alteration of basaltic core from the Snake River Plain, Idaho.

    E-Print Network [OSTI]

    Sant, Christopher J.

    2013-01-01T23:59:59.000Z

    ?? The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is… (more)

  20. Reconnaissance geophysical studies of the geothermal system in...

    Open Energy Info (EERE)

    studies of the geothermal system in southern Raft River Valley, Idaho Abstract Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used...

  1. New River Geothermal Research Project, Imperial Valley, California...

    Open Energy Info (EERE)

    Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

  2. Net Benefits to Agriculture from the Trinity River Project, Texas

    E-Print Network [OSTI]

    Fish, B.; Williford, G.; Elling, H.; Lacewell, R. D.; Hosch, P.; Griffin, W.; Reddell, D. L.; Hiler, E. A.; Bausch, W.

    The purpose of this study was to estimate the agricultural benefits due to flood protection provided by the proposed Trinity River Project. The area examined was the land located between the 100-year flood plain with the project and without...

  3. Subsurface characterization of the San Jacinto River Research site

    E-Print Network [OSTI]

    Leik, Jason Allan

    1998-01-01T23:59:59.000Z

    In order to develop an effective petroleum repudiation ics. strategy, the interaction between surface and shallow subsurface water was determined for the San Jacinto River Oi1 Spill Remediation Research site. The ten-acre wetland is located...

  4. Chemical and light-stable isotope characteristics of waters from the raft

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse,CER.pngGreatChateaufluids:river

  5. FOOD AND FEEDING HABITS OF JUVENILE ATLANTIC TOMCOD, MICROGADUS TOMCOD, FROM HAVERSTRAW BAY, HUDSON RIVER

    E-Print Network [OSTI]

    -water quality analysis: Hudson River. National Comm. on Water Quality. NTIS PB-251099. Manuscript accepted June biological monitoring program for a fossil fuel steam electric generating station located at Hudson River mile- point 37.5. The study area (Figure 1) encompassed Hudson River milepoints 37.5-41.5, as measured

  6. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  7. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  8. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  9. Evaluation of testing and reservoir parameters in geothermal wells at Raft

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law andEnergy Information BaltazorRiver

  10. Temperatures, heat flow, and water chemistry from drill holes in the Raft

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,Tees Valley(Newman,TelluricScientificRiver

  11. Optimal Location of a Mobile Sensor Continuum for Environmental Monitoring

    E-Print Network [OSTI]

    Boyer, Edmond

    air pollution monitoring, seismic monitoring, or monitoring of large infrastructures in civil is proposed for the goal of optimal location of a mobile sensor continuum. The monitoring of pollution on a 2D or track distributed environmental phenomena (weather, seismic events, wildfires, air, soil or river

  12. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  13. International land rig locator

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by the more than 700 independent drilling contractors throughout the Free World.

  14. International land rig locator

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by more than 700 independent drilling contractors throughout the Free World.

  15. Location linked information

    E-Print Network [OSTI]

    Mankins, Matthew William David, 1975-

    2003-01-01T23:59:59.000Z

    This work builds an infrastructure called Location Linked Information that offers a means to associate digital information with public, physical places. This connection creates a hybrid virtual/physical space, called glean ...

  16. Canadian River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

  17. Pecos River Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

  18. a r r i o r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Admissions Parking Palmer Lake B l a c k W a r r i o r R i v e r BUILDING# NAME LOCATION BUILDING# NAME LOCATION OTHER BUILDINGS LOCATION SORORITIES LOCATION 7046 70127012 1155 10331033 1150 1039 1038

  19. Computer Lab Information Location

    E-Print Network [OSTI]

    Dangelmayr, Gerhard

    M340 Computer Lab Information · Location: The computer labs accessible to you are Weber 205 it is recommended that you save your files on a floppy when you are finished. · There is another directory, g:\\m340 to the saved files you have to add the directory to the Matlab path. To do this type addpath g:\\m340

  20. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  1. Columbia River Treaty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

  2. Saving a Dwindling River

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

  3. Sabine River Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

  4. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  5. New River Geothermal Exploration (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2013-11-15T23:59:59.000Z

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  6. ARM - Instrument Location Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation Table

  7. Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an

    E-Print Network [OSTI]

    Hansen, James E.

    Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

  8. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

  9. Inland out: Midwestern river coal transloaders deal with increased pressures

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-06-15T23:59:59.000Z

    As greater amounts of US western coal is burned by many eastern and south-eastern power plants located along the Ohio River and its tributaries, Midwestern coal transload facilities are playing an ever growing role in the nation's coal transportation system by moving traffic off clogged rail lines onto barges on inland rivers. The article describes operations by three mid-western ports - American Electric Power's (AEP) Cook Terminal in Metropolis, IL; Kinder-Morgan's Cora Terminal in Cora, IL; and Kinder-Morgan's Grand Rivers Terminal near Paducah, KY. Together these terminals transferred more than 30 m tons onto barges in 2006. 5 figs.

  10. Bacterial Source Tracking to Support the Development and Implementation of Watershed Protection Plans for the Lampasas and Leon Rivers: Lampasas River Watershed Final Report

    E-Print Network [OSTI]

    Gregory, L.; Casarez, E.; Truesdale, J.; Di Giovanni, G.; Owen, T; Wolfe, J.

    2013-04-25T23:59:59.000Z

    ..................................................................................................... 14 Laboratory Procedures ........................................................................................ 14 Results ................................................................................................................. 15 Known... forming units (CFU) per 100 mL .................................................................................... 15 Table 6 Known source fecal samples collected in the Lampasas River Watershed . 17 Table 7 City, volume, and discharge location...

  11. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  12. 100 Area Columbia River sediment sampling

    SciTech Connect (OSTI)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08T23:59:59.000Z

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  13. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect (OSTI)

    None

    2009-02-01T23:59:59.000Z

    The Columbia River, the fourth largest river on the continent as measured by average annual ?ow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak ?ood waters, that ?ow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, of?cials from the United States and Canada began a long process to seek a joint solution to the ?ooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  14. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

    SciTech Connect (OSTI)

    Columbia River System Operation Review (U.S.)

    1995-11-01T23:59:59.000Z

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.

  15. Urbanizing Watersheds and Changing River Flood Dynamics: Implications for Urban Wetland Restoration

    E-Print Network [OSTI]

    Simmons, M.

    2003-01-01T23:59:59.000Z

    Urbanization alters river hydrology, morphology, water quality, and habitat and ecology. Most of these associated changes are due to an increase in impervious surface cover (ISC) throughout the watershed. But the spatial location of urban areas...

  16. EA-1969: Clark Fork River Delta Restoration Project, Bonner County, Idaho

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration prepared an environmental assessment to analyze the potential effects of a proposal to restore wetland and riparian (riverbank) habitat and to reduce erosion in the Clark Fork River delta located in Bonner County, Idaho.

  17. Charles River City : an educational augmented reality simulation pocket PC game

    E-Print Network [OSTI]

    Cheung, Priscilla, 1980-

    2004-01-01T23:59:59.000Z

    This thesis has designed and implemented Charles River City, an educational, location-based augmented reality simulation game that uses Pocket PC devices and GPS technology. As mobile devices and processing power become ...

  18. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect (OSTI)

    Eum, Sung Yong [Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States)], E-mail: sungyong.eum@uky.edu; Andras, Ibolya [Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States); Hennig, Bernhard [College of Agriculture, University of Kentucky, Lexington, KY 40536 (United States); Toborek, Michal [Molecular Neuroscience and Vascular Biology Laboratory, Department of Neurosurgery, University of Kentucky, Lexington, KY 40536 (United States)

    2009-10-15T23:59:59.000Z

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  19. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

    1998-01-01T23:59:59.000Z

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  20. Spring loaded locator pin assembly

    DOE Patents [OSTI]

    Groll, T.A.; White, J.P.

    1998-03-03T23:59:59.000Z

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  1. EIS-0184: South Fork Tolt River Hydroelectric Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

  2. CX-006235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhanced Geothermal Systems - Concept Testing and Development at the Raft River Geothermal Field, IdahoCX(s) Applied: A9, B3.1, B5.12Date: 07/05/2011Location(s): Cassia County, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  4. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  5. Yellowstone River Compact (North Dakota)

    Broader source: Energy.gov [DOE]

    The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

  6. P. Julien S. Ikeda River Engineering and

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

  7. Pecos River Ecosystem Monitoring Project

    E-Print Network [OSTI]

    McDonald, A.; Hart, C.

    2004-01-01T23:59:59.000Z

    TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant – Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

  8. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  9. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  10. Savannah River Site environmental report for 1988

    SciTech Connect (OSTI)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    This volume of Savannah River Site Environmental report for 1988 (WSRC-RP-89-59-1) contains the figures and tables referenced in Volume 1. The figures contain graphic illustrations of sample locations and/or data. The tables contain summaries of the following types of data: Federal and State standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation dose commitments from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results.

  11. Meteorological Support at the Savanna River Site

    SciTech Connect (OSTI)

    Addis, Robert P.

    2005-10-14T23:59:59.000Z

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located in South Carolina.

  12. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  13. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  14. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    SciTech Connect (OSTI)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  15. Location-aware active signage

    E-Print Network [OSTI]

    Nichols, Patrick James, 1981-

    2004-01-01T23:59:59.000Z

    Three-dimensional route maps, which depict a path from one location to another, can be powerful tools for visualizing and communicating directions. This thesis presents a client-server architecture for generating and ...

  16. Savannah River Site environmental report for 1989

    SciTech Connect (OSTI)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs.

  17. Unsteady flow model of Priest Rapids Dam releases at Hanford Reach, Columbia River, Washington

    SciTech Connect (OSTI)

    Sneider, S.C.; Skaggs, R.L.

    1983-02-01T23:59:59.000Z

    A model was developed to simulate water levels at three locations on the Columbia River between Priest Rapids Dam River Mile 396.1 (River Kilometer 639.0) and River Mile 361.50 (River Kilometer 581.7). The model was calibrated and verified over a range of flows. The results of calibration and verification indicate that the model, with reasonable accuracy, simulates stages to within +-0.08 m (+- 0.25 ft) and surface wave timing to within +-20 min. The model can be used by researchers, river system managers, planners, and decision makers as a tool to predict fluctuating water levels at locations downstream of dams. Data produced by the model can be used to evaluate and quantify possible impacts on aquatic organisms, water supply, navigation, irrigation, recreation, and additional hydropower enhancement. Although the results of this model calibrationand the model simulations presented are site-specific, the methodology is generic. Therefore, the model can be adapted to reflect dam discharges and resulting river flows at other river systems affected by water-level fluctuations.

  18. Spatial and temporal dynamics of biogeochemical processes in the Fraser River, Canada : a coupled organic-inorganic perspective

    E-Print Network [OSTI]

    Voss, Britta Marie

    2014-01-01T23:59:59.000Z

    The great geologic and climatic diversity of the Fraser River basin in southwestern Canada render it an excellent location for understanding biogeochemical cycling of sediments and terrigenous organic carbon in a relatively ...

  19. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  20. Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.

    SciTech Connect (OSTI)

    Fast, David E.

    1986-02-01T23:59:59.000Z

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

  1. Synchronized sampling improves fault location

    SciTech Connect (OSTI)

    Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-04-01T23:59:59.000Z

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  2. Location logistics of industrial facilities

    E-Print Network [OSTI]

    Hammack, William Eugene

    1981-01-01T23:59:59.000Z

    of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

  3. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28T23:59:59.000Z

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  4. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  6. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    .7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

  7. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  8. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  9. Boston, Massachusetts Location: Boston, MA

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -recovery ventilation and water-source heat pumps Each unit has fresh air ducted independently. Each residence is warmed by a heat pump that taps the Trigen Energy Corporation steam lines that run underneath the street. #12;WallsBoston, Massachusetts #12;Location: Boston, MA Building type(s): Multi-unit residential, Retail 350

  10. Building Address Locations -Assumes entire

    E-Print Network [OSTI]

    Guenther, Frank

    Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

  11. EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

  12. South Carolina Scenic Rivers Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

  13. Ohio River Greenway Development Commission (Indiana)

    Broader source: Energy.gov [DOE]

    The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

  14. Natural, Scenic, and Recreational River System (Indiana)

    Broader source: Energy.gov [DOE]

    Rivers may fall under the categories of natural, scenic, or recreational. These rivers are designated, acquired, and preserved by the state, and development on or adjacent to these rivers is...

  15. RIVER RESEARCH AND APPLICATIONS River Res. Applic. 21: 849864 (2005)

    E-Print Network [OSTI]

    Poff, N. LeRoy

    to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We under future climate scenarios to describe the extent and type of changes predicted to occur. Daily

  16. Flathead River Watershed conservation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposing to fund the acquisition of several parcels of land in northwest Montana for fish habitat mitigation (see map). These parcels total about 95 acres and are located within...

  17. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    SciTech Connect (OSTI)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01T23:59:59.000Z

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  18. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  19. Independent Oversight Review, Savannah River Operations Office...

    Energy Savers [EERE]

    Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

  20. Independent Activity Report, Savannah River Operation - June...

    Broader source: Energy.gov (indexed) [DOE]

    Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification...

  1. Independent Activity Report, Savannah River Site - September...

    Office of Environmental Management (EM)

    September 2010 Independent Activity Report, Savannah River Site - September 2010 Savannah River Site Salt Waste Processing Facility Effectiveness Review The U.S. Department of...

  2. New Savannah River Site Deputy Manager Named

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – DOE’s Savannah River Operations Office selected Terrel “Terry” J. Spears as the deputy manager of the Savannah River Site (SRS) this month.

  3. Independent Oversight Activity Report, Savannah River Site -...

    Office of Environmental Management (EM)

    Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

  4. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions...

  5. Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.

    2005-06-15T23:59:59.000Z

    Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all years with data was high in the primary calibration and indicated little bias caused by selecting 1999. The alternative calibrations led to improved goodness-of-fit for their limited time and locations, but degraded goodness-of-fit overall. Overall, the simulations were very accurate and even highlighted some probable data problems, as evidenced by systematic shifts in the data. Further improvements in simulating the historic period would depend on correcting these inferred data problems. For all years and locations, the mean absolute error in the primary calibration was 14.8 cm, the mean error was 1 mm, and model efficiency was 0.988. The MASS1 output for 1940--2004 can be used to reconstruct historical river elevations at Hanford or to build scenarios of future river elevations for solving environmental problems such as groundwater-river interaction or fish habitat inventories. Model output and additional processing services are available from the authors. Longer-term scenarios extending more than a few decades from now should also consider the impacts of climate change and reservoir operation change. Once defined, these impacts could be used to drive new simulations with MASS1.

  6. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  7. Site Location of Development Act (Maine)

    Broader source: Energy.gov [DOE]

    The Site Location of Development Act regulates the locations chosen for state, municipal, quasi-municipal, educational, charitable, commercial and industrial developments with respect to the...

  8. Persistent Uniform Resource Locators (PURLs) | Scientific and...

    Office of Scientific and Technical Information (OSTI)

    Locators (PURLs) Print page Print page PURLs (Persistent Uniform Resource Locators) are Web addresses that act as permanent identifiers in the face of a dynamic and changing Web...

  9. Energy Department Launches Alternative Fueling Station Locator...

    Broader source: Energy.gov (indexed) [DOE]

    Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

  10. LOCATION: Johnson County Sheriff's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &JeffIntensitySurfaceLOCATION: Johnson County

  11. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventories inOmbuds Office Location

  12. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09T23:59:59.000Z

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Project for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.

  13. Wood River Levee Reconstruction, Madison County, IL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

  14. RiverFalls,Wisconsin SolarinSmall

    E-Print Network [OSTI]

    , the local government, and the citizens of River Falls have made energy conservation and renewable energy. Inspiring Interest in Renewables River Falls' energy conservation efforts benefit from RFMU's membership energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

  15. SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY

    E-Print Network [OSTI]

    Georgia, University of

    OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

  16. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    " fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

  17. EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located...

  18. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    SciTech Connect (OSTI)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States) [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States)] [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States)] [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States)] [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States) [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01T23:59:59.000Z

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  19. Massachusetts Rivers Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

  20. Case Studies in River Management

    E-Print Network [OSTI]

    Julien, Pierre Y.

    of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

  1. Star Lakes and Rivers (Minnesota)

    Broader source: Energy.gov [DOE]

    An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district may apply to the Star Lake Board for...

  2. NAME: Port Susan Bay Estuary Restoration LOCATION: Snohomish County, Washington

    E-Print Network [OSTI]

    US Army Corps of Engineers

    farmland in the Stillaguamish River estuary in Puget Sound. In doing this, self sustaining native tidal

  3. Savannah River | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah RiverSite

  4. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-04-01T23:59:59.000Z

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  5. FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473

    SciTech Connect (OSTI)

    Driscoll, F.

    2013-04-01T23:59:59.000Z

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

  6. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Broader source: Energy.gov (indexed) [DOE]

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  7. Enforcement Documents - Savannah River Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the Savannah River Site (EA-2000-08) June 7, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 Issued to Savannah River Ecology Laboratory related to...

  8. Response of winter birds to soil remediation along the Columbia River at the Hanford Site

    SciTech Connect (OSTI)

    Becker, James M.; McKinstry, Craig A.

    2004-04-01T23:59:59.000Z

    The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

  9. 05-32utils.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOUTH SIDE ELECTRIC EAST END MUTUAL FARMERS ELECTRIC CO RIVERSIDE ELECTRIC CO. RAFT RIVER RURAL ELECTRIC COOP. LOWER VALLEY ENERGY FALL RIVER RURAL ELECTRIC COOP. RAVALLI COUNTY...

  10. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  11. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  12. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  13. Automated Fault Location In Smart Distribution Systems

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs...

  14. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01T23:59:59.000Z

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  15. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  16. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect (OSTI)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12T23:59:59.000Z

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

  17. Influences on Mercury Bioaccumulation Factors for the Savannah River

    SciTech Connect (OSTI)

    Paller, M.H.

    2003-05-06T23:59:59.000Z

    Mercury TMDLs (Total Maximum Daily Loads) are a regulatory instrument designed to reduce the amount of mercury entering a water body and ultimately to control the bioaccumulation of mercury in fish. TMDLs are based on a BAF (bioaccumulation factor), which is the ratio of methyl mercury in fish to dissolved methyl mercury in water. Analysis of fish tissue and aqueous methyl mercury samples collected at a number of locations and over several seasons in a 118 km reach of the Savannah River demonstrated that species specific BAFs varied by factors of three to eight. Factors contributing to BAF variability were location, habitat and season related differences in fish muscle tissue mercury levels and seasonal differences in dissolved methyl mercury levels. Overall (all locations, habitats, and seasons) average BAFs were 3.7 x 106 for largemouth bass, 1.4 x 106 for sunfishes, and 2.5 x 106 for white catfish. Inaccurate and imprecise BAFs can result in unnecessary economic impact or insufficient protection of human health. Determination of representative and precise BAFs for mercury in fish from large rivers necessitates collecting large and approximately equal numbers of fish and aqueous methyl mercury samples over a seasonal cycle from the entire area and all habitats to be represented by the TMDL.

  18. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

  19. Snake River Geothermal Project - Innovative Approaches to Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

  20. Interim activities report. [Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Majzlik, E.H. Jr.

    1992-01-01T23:59:59.000Z

    Several developments have occurred since the 32nd WANTO Meeting that effect the status of the Savannah River Site. A request to restart K-Reactor was issued after nearly three years of intensive engineering analysis, procedure revisions and enhanced operator training to upgrade all aspects of reactor operation. In early December 1991, the Westinghouse Savannah River Company requested permission from DOE to start the K-Reactor. In mid-December the DOE and the Defense Nuclear Facility Safety Board concurred with readiness to operate and a Federal Circuit Court of Appeals ruled against a lawsuit to delay restart until a cooling tower is completed. The K-Reactor was restarted and has been in an evaluation and testing mode. Full power operation at thirty percent of maximum capacity is projected for March 1992 after which actual tritium generation will begin. Operation will continue until October when the cooling tower will be tied into the reactor cooling system. In conjunction with the restart of K-Reactor, the P-Reactor has been placed in permanent shutdown status and the L-Reactor has been placed in warm stand-by. In another reactor related situation, the DOE will delay the decision on construction of the New Production Reactor (NPR) until 1993. The choice of reactor type and location of the NPR will be integrated into the overall programmatic decision on Reconfiguration of the Weapons Complex. Finally, construction of the Replacement Tritium Facility (RTF) was resumed in December 1991 after several months stoppage for evaluation and revision of project funding procedures.

  1. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30T23:59:59.000Z

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  2. River System Hydrology in Texas

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01T23:59:59.000Z

    ,700 86,700 Proctor Leon River USACE 1963 59,400 54,702 310,100 Belton Leon River USACE 1954 457,600 432,978 640,000 Stillhouse Hollow Lampasas River USACE 1968 235,700 224,279 390,660 Georgetown San Gabriel R USACE 1980 37,100 36,980 87,600 Granger... San Gabriel R USACE 1980 65,500 50,540 162,200 Somerville Yequa Creek USACE 1967 160,110 154,254 337,700 Hubbard Creek Hubbard Creek WCTMWD 1962 317,750 317,750 í Post NF Double Mt WRMWD proposed 57,420 í í Alan Henry SF Double Mt Lubbock 1993 115...

  3. An Inside Look at River Corridor

    Broader source: Energy.gov [DOE]

    In the seventh chapter of The Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

  4. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

  5. Lakes and Rivers Improvement Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

  6. Youghiogheny Wild and Scenic River (Maryland)

    Broader source: Energy.gov [DOE]

    Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

  7. Belle Fourche River Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

  8. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

  9. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect (OSTI)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  10. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect (OSTI)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  11. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02T23:59:59.000Z

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  12. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  13. SRO -NERP-1 THE SAVANNAH RIVER PLANT

    E-Print Network [OSTI]

    Georgia, University of

    AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

  14. Atlas of the Columbia River Basin

    E-Print Network [OSTI]

    Jenny, Bernhard

    #12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

  15. Environmental Survey preliminary report, Savannah River Plant, Aiken, South Carolina

    SciTech Connect (OSTI)

    Not Available

    1987-08-01T23:59:59.000Z

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Savannah River Plant (SRP), located at Aiken, South Carolina. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The following topics are discussed: general site information; air, soil, surface water and ground water; hydrogeology; waste management; toxic and chemical materials; release of tritium oxides; radioactivity in milk; contamination of ground water and wildlife; pesticide use; and release of radionuclides into seepage basins. 149 refs., 44 figs., 53 tabs.

  16. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  17. Community Detection from Location-Tagged Networks

    E-Print Network [OSTI]

    Liu, Zhi

    2015-01-01T23:59:59.000Z

    Many real world systems or web services can be represented as a network such as social networks and transportation networks. In the past decade, many algorithms have been developed to detect the communities in a network using connections between nodes. However in many real world networks, the locations of nodes have great influence on the community structure. For example, in a social network, more connections are established between geographically proximate users. The impact of locations on community has not been fully investigated by the research literature. In this paper, we propose a community detection method which takes locations of nodes into consideration. The goal is to detect communities with both geographic proximity and network closeness. We analyze the distribution of the distances between connected and unconnected nodes to measure the influence of location on the network structure on two real location-tagged social networks. We propose a method to determine if a location-based community detection...

  18. Location theory and the location of industry along an interstate highway

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    to determine the significance of these locational factors among plants with different characteristics that have located in certain localities should provide pertinent information with both practical and theoretical implications. Since 1956, approximately 64... Summary of Plant Location Theory Cost Fac'tots . . . . . . . . . . . . . ~ The Importance of 'the Demand Factor Greenhut's General Theory of Plant Location and the Intangible Factor Location Factors as Revealed by Empirical Study Greenhut's Case...

  19. Regenerator Location Problem in Flexible Optical Networks

    E-Print Network [OSTI]

    BARIS YILDIZ

    2014-11-22T23:59:59.000Z

    Nov 22, 2014 ... Abstract: In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand, ...

  20. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  1. Geology of the Big Bend of the Llano River area, Mason County, Texas

    E-Print Network [OSTI]

    Wilson, Guilford James

    1957-01-01T23:59:59.000Z

    of the Llano River Area, Texas, fo1. "'"l1 cg i:&r"e 10$ II, Exposures of Precar brian gneiss. . . . . , . . . . . . . . ~ 18 Figure 1 ? Large rugged exposure of Precambrian gneiss, Figure 2-Pointing within the Preoambrian gneiss unit, III, Aplite... in tbo thesis area is exposed along the Lines River on tho Jaeb Walker renoh aad also on tbo Jhey Roach ransb east of the Sinonvtllo Road, The granite naos located on tho Reach ranch invaded the gaeiss unit but tbe contest is obsearad Ln ~st plaoes...

  2. Wabash River coal gasification repowering project: Public design report

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  3. 1997 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect (OSTI)

    None

    2000-06-01T23:59:59.000Z

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  4. 1996 Savannah River Site annual epidemiologic surveillance report

    SciTech Connect (OSTI)

    None

    2000-03-01T23:59:59.000Z

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  5. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.

    SciTech Connect (OSTI)

    Cope, R.S.; Morris, K.J.

    2001-03-01T23:59:59.000Z

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  6. Locating and tracking assets using RFID

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    . In this research, we will focus on how to ?nd the location of an item by using RFID in real time indoors to track equipment. When an item needs to be located, the purpose of using RFID is to minimize the searching time, e?ort, and investment cost. Thus...

  7. RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED

    E-Print Network [OSTI]

    Miami, University of

    RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

  8. Location Privacy and the Personal Distributed Environment

    E-Print Network [OSTI]

    Atkinson, Robert C

    Location Privacy and the Personal Distributed Environment Robert C Atkinson, Swee Keow Goo, James-- The Personal Distributed Environment is a new concept being developed within the Mobile VCE Core 3 research, wherever their location: ubiquitous access. Devices are co-ordinated by Device Management Entities (DMEs

  9. Savannah River Site environmental report for 1988

    SciTech Connect (OSTI)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01T23:59:59.000Z

    During 1988, as in previous years, Savannah River Site operations had no adverse impact on the general public or the environment. Based on the SRS site-specific code, the maximum radiation dose commitment to a hypothetical individual at the SRS boundary from 1988 SRS atmospheric releases of radioactive materials was 0.46 millirem (mrem) (0.0046 millisievert (mSv)). To obtain the maximum dose, an individual would have had to reside on the SRS boundary at the location of highest dose for 24 hours per day, 365 days per year, consume a maximum amount of foliage and meat which originated from the general vicinity of the plant boundary, and drink a maximum amount of milk from cows grazing at the plant boundary. The average radiation dose commitment from atmospheric releases to the hypothetical individual on the SRS boundary in 1988 was 0.18 mrem (0. 0018 mSv). This person, unlike the maximumly exposed individual, consumes an average amount of foliage, meat, and milk which originated from the foliage and animals living at the plant boundary.

  10. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-05-06T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  11. Savannah River Site Environmental Report for 2003

    SciTech Connect (OSTI)

    A. MAMATEY

    2003-01-01T23:59:59.000Z

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  12. Waste certification review program at the Savannah River Site

    SciTech Connect (OSTI)

    Faulk, G.W.; Kinney, J.C. [Westinghouse Savannah River Co., Aiken, SC (United States); Knapp, D.C. [Bechtel Savannah River Inc., Aiken, SC (United States); Burdette, T.E. [Science Applications International Corp., Oak Ridge, TN (United States)

    1996-02-01T23:59:59.000Z

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators` waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988).

  13. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    SciTech Connect (OSTI)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17T23:59:59.000Z

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

  14. Ecological interactions between hatchery summer steelhead and wild Oncorhynchus mykiss in the Willamette River basin, 2014

    SciTech Connect (OSTI)

    Harnish, Ryan A.; Green, Ethan D.; Vernon, Christopher R.; Mcmichael, Geoffrey A.

    2014-12-23T23:59:59.000Z

    The purpose of this study was to determine the extent to which juvenile hatchery summer steelhead and wild winter steelhead overlap in space and time, to evaluate the extent of residualism among hatchery summer steelhead in the South Santiam River, and to evaluate the potential for negative ecological interactions among hatchery summer steelhead and wild winter steelhead. Because it is not possible to visually discern juvenile winter steelhead from resident rainbow trout, we treated all adipose-intact juvenile O. mykiss as one group that represented juvenile wild winter steelhead. The 2014 study objectives were to 1) estimate the proportion of hatchery summer steelhead that residualized in the South Santiam River in 2014, 2) determine the extent to which hatchery and naturally produced O. mykiss overlapped in space and time in the South Santiam River, and 3) characterize the behavioral interactions between hatchery-origin juvenile summer steelhead and naturally produced O. mykiss. We used a combination of radio telemetry and direct observations (i.e., snorkeling) to determine the potential for negative interactions between hatchery summer and wild winter steelhead juveniles in the South Santiam River. Data collected from these two independent methods indicated that a significant portion of the hatchery summer steelhead released as smolts did not rapidly emigrate from the South Santiam River in 2014. Of the 164 radio-tagged steelhead that volitionally left the hatchery, only 66 (40.2%) were detected outside of the South Santiam River. Forty-four (26.8% of 164) of the radio-tagged hatchery summer steelhead successfully emigrated to Willamette Falls. Thus, the last known location of the majority of the tagged fish (98 of 164 = 59.8%) was in the South Santiam River. Thirty-three of the tagged hatchery steelhead were detected in the South Santiam River during mobile-tracking surveys. Of those, 21 were found to be alive in the South Santiam River over three months after their release, representing a residualization rate of 12.8% (21 of 164). Snorkeling revealed considerable overlap of habitat use (in space and time) by residual hatchery steelhead and naturally produced O. mykiss in the South Santiam River. Results from our study (and others) also indicated that hatchery steelhead juveniles typically dominate interactions with naturally produced O. mykiss juveniles. The overlap in space and time, combined with the competitive advantage that residual hatchery steelhead appear to have over naturally produced O. mykiss, increases the potential for negative ecological interactions that could have population-level effects on the wild winter steelhead population of the South Santiam River.

  15. SFSU Building Coordinators List College or Administrative Unit Location(s)

    E-Print Network [OSTI]

    SFSU Building Coordinators List College or Administrative Unit Location(s) Building Coordinator81193 cathym@sfsu.edu GYM 102B Student Services Building SSB Mirel Tikkanen x53566 mtikkane@sfsu.edu SSB

  16. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  17. The Value of Flexibility in Robust Location-Transportation Problem

    E-Print Network [OSTI]

    2014-11-24T23:59:59.000Z

    production and distribution of products can be delayed until actual orders are ... such as hub locations, supplier locations, air freight hub locations, railway station

  18. The Columbia River System : the Inside Story.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01T23:59:59.000Z

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  19. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01T23:59:59.000Z

    Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the river’s basin. Ina median level of runoff water shortages in the basin would

  20. E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)

    E-Print Network [OSTI]

    1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210, but improvements at pulp mills and waste water treatment plant upgrades are thought to have improved water quality

  1. SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH

    SciTech Connect (OSTI)

    Danko, E

    2008-02-08T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

  2. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Hunter, C.

    2012-03-28T23:59:59.000Z

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended area-specific values range from 0.3 m for E Area to 0.7 m for A Area at the Savannah River National Laboratory. These area-specific values, summarized in Table 4-1, were determined using the Environmental Protection Agency's AERSURFACE computer algorithm.

  3. Addressing endogeneity in residential location models

    E-Print Network [OSTI]

    Guevara-Cue, Cristián Angelo

    2005-01-01T23:59:59.000Z

    Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

  4. Developing a theory of nightclub location choice

    E-Print Network [OSTI]

    Crim, Stephen J. (Stephen Johnson)

    2008-01-01T23:59:59.000Z

    This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

  5. THE PLANAR HUB LOCATION PROBLEM: A PROBABILISTIC ...

    E-Print Network [OSTI]

    2012-11-21T23:59:59.000Z

    Nov 5, 2012 ... Aykin and Brown, [4]. ...... [8] J.F. Campbell, Integer programming formulations of discrete hub location problems, European J. of O.R.. 72(1994) ...

  6. Personal Digital Assistant PDA ----Location Based

    E-Print Network [OSTI]

    , xur],[ ybl, yur ]) k k=100 K k k- AminAmin kLk k Amax TmaxTmax kAminLocation Anonymization ConstraintsAmax TmaxLocation Service Quality Constraints 3.3 3.3.1 id, loc, query id loc (x,y)query GPS / l- l- k- l- k l- l l- l- m-invariant 2 29 #12;[22] A B C D E F R1 R2 R3 6 Outlier 6

  7. Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

  8. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-11-10T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  9. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect (OSTI)

    L.C. Hulstrom

    2010-08-11T23:59:59.000Z

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  10. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01T23:59:59.000Z

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  11. Savannah River Remediation (SRR) Expanded Staff Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

  12. Methow River Conservation Easement - May 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Yakama Nation to fund the Methow Conservancy's acquisition of a 44-acre conservation easement in the Methow River watershed in Okanogan County, Wash., for fi sh habitat...

  13. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  14. Savannah River Laboratory monthly report, November 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  15. Wild and Scenic Rivers Act (Maryland)

    Broader source: Energy.gov [DOE]

    It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

  16. South River EMC- Energy Efficient Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

  17. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  18. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  19. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  20. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  1. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    SciTech Connect (OSTI)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01T23:59:59.000Z

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of Idaho as a long-term archive, half of the total samples. A total of 2,420 cryopreserved samples from Snake River basin steelhead and spring and summer chinook salmon, from 1992 through 2000, are stored in two independent locations at the University of Idaho and Washington State University. Two large freezer tanks are located at each university, each of which holds approximately 25% of the cryopreserved sperm. One tank at each university is considered long-term archival storage, while the other is short-term. Fertility trials were conducted at each university to test the viability of the cryopreserved chinook salmon sperm. The experiments on the 2000 frozen and thawed sperm at both universities found a fertility rate of 60-70%. This document also summarizes 1999-2000 steelhead genetic analysis report. The results of mitochondrial, nuclear DNA and microsatellite analysis found differences and shared haplotypes between the stocks of fish sampled for cryopreservation. Recommendations for future gene banking efforts include the need for establishment of a regional genome resource bank, a greater emphasis on cryopreserving wild fish, continued fertility trials, exploring field cryopreservation and genetic analysis on all fish represented in the germplasm repository.

  2. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect (OSTI)

    Olsen, Erik

    2009-09-01T23:59:59.000Z

    The Bonneville Power Administration (BPA) funded the development of two master plans which outline the rationale, and general approach, for implementing a defined group of projects that are an integral part of a comprehensive watershed goal to 'Protect, enhance and restore wild and natural populations of anadromous and resident fish within the Hood River Subbasin'. The Hood River Production Master Plan and the Pelton Ladder Master Plan were completed in 1991 and subsequently approved by the Northwest Power Planning Council in 1992. Action items identified in the two master plans, as well as in a later document entitled 'Hood River/Pelton Ladder Master Agreement' (ODFW and CTWSRO Undated), are designed to achieve two biological fish objectives: (1) to increase production of wild summer and winter steelhead (Oncorhynchus mykiss) to levels commensurate with the subbasins current carrying capacity and (2) re-establishing a self-sustaining population of spring chinook salmon (Oncorhynchus tshawytscha). Numerical fish objectives for subbasin escapement, spawner escapement, and subbasin harvest are defined for each of these species in Coccoli (2000). Several projects are presently funded by the BPA to achieve the Hood River subbasin's numerical fish objectives for summer and winter steelhead and spring chinook salmon. They include BPA project numbers 1998-021-00 (Hood River Fish Habitat), 1998-053-03 (Hood River Production Program - CTWSRO: M&E), 1998-053-07 (Parkdale Fish Facility), 1998-053-08 (Powerdale/Oak Springs O&M), and 1998-053-12 (Hood River Steelhead Genetics Study). Collectively, they are implemented under the umbrella of what has come to be defined as the Hood River Production Program (HRPP). The HRPP is jointly implemented by the Oregon Department of Fish and Wildlife (ODFW) and The Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO). Strategies for achieving the HRPP's biological fish objectives for the Hood River subbasin were initially devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the following annual progress reports: Olsen et al. (1994), Olsen et al

  3. Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA)

    E-Print Network [OSTI]

    Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA) P.O. Box 2065 integrity of the White River ecosystem. To successfully accomplish the vision of UWRWA, a 16-county was formed. It exists to improve and protect water quality on a watershed basis in the larger Upper White

  4. Three Rivers Builders The Three Rivers House Project Summary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama)TechnologyPhoenix,Further ThirdDOEThree Rivers

  5. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect (OSTI)

    Robert Caldwell

    1998-04-01T23:59:59.000Z

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  6. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  7. Hood River and Pelton Ladder Evaluation Studies, 2008 Annual Report : October 2007 - September 2008.

    SciTech Connect (OSTI)

    Reagan, Robert E.; Olsen, Erik A. [Oregon Department of Fish and Wildlife

    2009-09-28T23:59:59.000Z

    This report summarizes the life history and production data collected in the Hood River subbasin during FY 2008. Included is a summary of jack and adult life history data collected at the Powerdale Dam trap on seventeen complete run years of winter steelhead, spring and fall chinook salmon, and coho salmon, and on fifteen complete run years of summer steelhead. Also included are summaries of (1) the hatchery winter steelhead broodstock collection program; (2) hatchery production releases in the Hood River subbasin; (3) subbasin wild summer and winter steelhead smolt production, (4) numbers of hatchery summer and winter steelhead smolts leaving the subbasin; (5) smolt migration timing past Bonneville Dam, (6) wild and hatchery steelhead smolt-to-adult survival rates; (7) wild summer and winter steelhead egg to smolt survival rates; and (8) streamflow at selected locations in the Hood River subbasin. Data will be used in part to (1) evaluate the HRPP relative to its impact on indigenous populations of resident and anadromous salmonids (see Ardren Draft), (2) evaluate the HRPP's progress towards achieving the biological fish objectives defined in the Hood River Subbasin Plan (Coccoli 2004) and the Revised Master Plan for the Hood River Production Program (HDR|FishPro, ODFW, and CTWSRO 2008), (3) refine spawner escapement objectives to more accurately reflect subbasin carrying capacity, and (4) refine estimates of subbasin smolt production capacity to more accurately reflect current and potential subbasin carrying capacity.

  8. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.

    SciTech Connect (OSTI)

    Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

    2000-11-01T23:59:59.000Z

    The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

  9. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  10. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  11. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    SciTech Connect (OSTI)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  12. Environmental monitoring at Hanford for 1987: Surface and Columbia River data

    SciTech Connect (OSTI)

    Jaquish, R.E.

    1988-08-01T23:59:59.000Z

    Environmental monitoring at the Hanford Site, located in southeastern Washington State is conducted for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor the status of chemicals on the site and in the Columbia River. This volume contains the actual raw data used to create the summaries in PNL--6464.

  13. Savannah River Tank Waste Residuals

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1SandraSavannah River Savannah

  14. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the mission ofEconomicSavannah River

  15. MERRIMACK COUNTY CLUB PROJECT OFFERINGS Location Club Project Offerings

    E-Print Network [OSTI]

    New Hampshire, University of

    , Crafts, Sewing, Cooking, Shooting Sports, Woodworking, Youth Leadership Epsom Merrimack River Valley Dairy Citizenship & Government, Dairy Cattle, Youth Leadership Loudon Happy Hill Community Service

  16. Columbia River Treaty Review #2 - April 2009.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Columbia River Treaty has provided signifi cant benefi ts to the United States and Canada through coordinated river management by the two countries. It remains the standard...

  17. PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...

    Office of Environmental Management (EM)

    Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear...

  18. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Broader source: Energy.gov (indexed) [DOE]

    System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

  19. CRAD, Conduct of Operations - Office of River Protection K Basin...

    Broader source: Energy.gov (indexed) [DOE]

    Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

  20. CRAD, Management - Office of River Protection K Basin Sludge...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

  1. CRAD, Occupational Safety & Health - Office of River Protection...

    Broader source: Energy.gov (indexed) [DOE]

    K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste...

  2. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  3. Independent Oversight Follow-up Review, Savannah River National...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

  4. PIA - Savannah River Operations Office Executive Commitment Action...

    Energy Savers [EERE]

    Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations...

  5. Independent Activity Report, Savannah River Site - May 2010 ...

    Broader source: Energy.gov (indexed) [DOE]

    May 2010 Independent Activity Report, Savannah River Site - May 2010 May 2010 Savannah River Site Salt Waste Processing Facility Construction Site Walkthrough The U.S. Department...

  6. Independent Activity Report, Savannah River Site - June 2010...

    Broader source: Energy.gov (indexed) [DOE]

    June 2010 Independent Activity Report, Savannah River Site - June 2010 June 2010 Savannah River Site Salt Waste Processing Facility Construction Site Orientation Visit The U.S....

  7. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  8. Independent Oversight Review, Savannah River Site - July 2011...

    Broader source: Energy.gov (indexed) [DOE]

    Independent Oversight Review, Savannah River Site - July 2011 July 2011 Review of Electrical System Configuration Management and Design Change Control at the Savannah River...

  9. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  10. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Energy Savers [EERE]

    Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

  11. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  12. allegheny river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  13. PIA - Savannah River Nuclear Solution SRNS Electronic Document...

    Office of Environmental Management (EM)

    Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear...

  14. Savannah River Remediation Intern Sees Nuclear Industry as Job...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis...

  15. Oversight Reports - Savannah River Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    April 22, 2013 Independent Activity Report, Savannah River Site - March 2013 Oversight Scheduling an Operational Awareness at the Savannah River Site HIAR-SRS-2013-03-25...

  16. OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    1 OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP) RECONSTRUCTION PROJECT 22 June and private infrastructure to Paducah, Kentucky, from flooding by the Ohio River through reconstruction

  17. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  18. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Office of Environmental Management (EM)

    Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

  19. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    of the dimmer switch 150 3 lb Effect of age on expected location of the dimmer switch 150 31c Effect of years of driving experience on expected location of the dimmer switch. 151 31d Effect of miles driven in the past year on expected location... IOO. C Sn. i 36. 2 8/. 5 80. 0 87. 5 A=/0. 0 ZD. D 50. 0 0. 0 /0 D 12 5 2D. O 30. 0 0. 0 80. 0 80. 0 62 IDD. O 100. 0 10[. 0 Bn. o o. o 7. 5 20. 0 40. 0 37'. 5 85. 0 23 3 17. 5 16. / 74. 2 42. 5 SZ. 5 Climate C ntrol 17. 2 43. 0 36...

  20. Geologic setting of the New Production Reactor within the Savannah River Site

    SciTech Connect (OSTI)

    Price, V. [Westinghouse Savannah River Co., Aiken, SC (United States); Fallaw, W.C. [Furman Univ., Greenville, SC (United States). Dept. of Geology; McKinney, J.B. [Exploration Resources, Inc., Athens, GA (United States)

    1991-12-31T23:59:59.000Z

    The geology and hydrology of the reference New Production Reactor (NPR) site at Savannah River Site (SRS) have been summarized using the available information from the NPR site and areas adjacent to the site, particularly the away from reactor spent fuel storage site (AFR site). Lithologic and geophysical logs from wells drilled near the NPR site do not indicate any faults in the upper several hundred feet of the Coastal Plain sediments. However, the Pen Branch Fault is located about 1 mile south of the site and extends into the upper 100 ft of the Coastal Plain sequence. Subsurface voids, resulting from the dissolution of calcareous portions of the sediments, may be present within 200 ft of the surface at the NPR site. The water table is located within 30 to 70 ft of the surface. The NPR site is located on a groundwater divide, and groundwater flow for the shallowest hydraulic zones is predominantly toward local streams. Groundwater flow in deeper Tertiary sediments is north to Upper Three Runs Creek or west to the Savannah River Swamp. Groundwater flow in the Cretaceous sediments is west to the Savannah River.

  1. California's Russian River: A Conservation Partnership

    E-Print Network [OSTI]

    . Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

  2. CedarCreekanticlineCedarCreekanticline Yellowstone River

    E-Print Network [OSTI]

    Principal Aquifer Systems in the Williston and Powder River Structural Basins, United States and Canada #12;Cover. Conceptual block diagram of groundwater flow in the Williston structural basin. #12;Conceptual Model of the Uppermost Principal Aquifer Systems in the Williston and Powder River Structural Basins

  3. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  4. Restoring our Rivers By Bridget Avila

    E-Print Network [OSTI]

    Palmer, Margaret A.

    , the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

  5. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-10-01T23:59:59.000Z

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  6. Leak locating microphone, method and system for locating fluid leaks in pipes

    DOE Patents [OSTI]

    Kupperman, David S. (Oak Park, IL); Spevak, Lev (Highland Park, IL)

    1994-01-01T23:59:59.000Z

    A leak detecting microphone inserted directly into fluid within a pipe includes a housing having a first end being inserted within the pipe and a second opposed end extending outside the pipe. A diaphragm is mounted within the first housing end and an acoustic transducer is coupled to the diaphragm for converting acoustical signals to electrical signals. A plurality of apertures are provided in the housing first end, the apertures located both above and below the diaphragm, whereby to equalize fluid pressure on either side of the diaphragm. A leak locating system and method are provided for locating fluid leaks within a pipe. A first microphone is installed within fluid in the pipe at a first selected location and sound is detected at the first location. A second microphone is installed within fluid in the pipe at a second selected location and sound is detected at the second location. A cross-correlation is identified between the detected sound at the first and second locations for identifying a leak location.

  7. Transportation Networks and Location A Geometric Approach

    E-Print Network [OSTI]

    Palop del Río, Belén

    Transportation Networks and Location A Geometric Approach Belén Palop1,2 1Departamento de March 2009 Florida State University #12;Belén Palop, UVa, SUNY Outline Transportation Network Model;Transportation Network Model Belén Palop, UVa, SUNY Outline Transportation Network Model Network placement

  8. OPTIMAL LOCATION OF ISOLATION VALVES IN WATER

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 7 OPTIMAL LOCATION OF ISOLATION VALVES IN WATER DISTRIBUTION SYSTEMS: A RELIABILITY systems to serve expanding population centers. Both the adaptation of existing technologies in water supply systems account for the largest cost item in future maintenance budgets. The aging

  9. Recycling Bin Guide Locations and prices

    E-Print Network [OSTI]

    Kirschner, Denise

    Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

  10. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  11. Wabash River Coal Gasification Repowering Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-01-15T23:59:59.000Z

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million.

  12. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  13. Disposal of Draeger Tubes at Savannah River Site

    SciTech Connect (OSTI)

    Malik, N.P.

    2000-10-13T23:59:59.000Z

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

  14. Bull Trout Population Assessment in the Columbia River Gorge : Annual Report 2000.

    SciTech Connect (OSTI)

    Byrne, Jim; McPeak, Ron

    2001-02-01T23:59:59.000Z

    We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were <15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m{sup 2} in Trappers Creek, 2.6 fish/100m{sup 2} on Clearwater Creek, and 0.4 fish/100m{sup 2} in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem Klickitat to determine the distribution of bull trout throughout the drainage and to determine the extent of hybridization with brook trout.

  15. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-07T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  16. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect (OSTI)

    Geist, David R.

    1999-05-01T23:59:59.000Z

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

  17. Annual Tour Ready to Explore New Mexico's Lower Pecos River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

  18. Columbia-Snake River Irrigators Association Eastern Oregon Irrigators Association

    E-Print Network [OSTI]

    to river flows, reservoir elevations and hydroelectric power production. Its results are currently being

  19. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  20. Pecos River Watershed Protection Plan Update

    E-Print Network [OSTI]

    Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

    2013-01-01T23:59:59.000Z

    that connects the pump, distribution tank and holding ponds. As of April 15, 2013, three of the ponds were completed and have been lined with a synthetic liner to prevent seepage and leakage as this was a major problem in early projects. Pecos River WPP...Pecos River Watershed Protection Plan Update Funding Provided by the Texas State Soil and Water Conservation Board through a Clean Water Act §319(h) Nonpoint Source Grant from the U.S Environmental Protection Agency TR-447 October 2013 Pecos River...

  1. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15T23:59:59.000Z

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  2. Commodity/Vendor Purchasing Matrix Vendor Location

    E-Print Network [OSTI]

    Swaddle, John

    Commodity/Vendor Purchasing Matrix Commodity Vendor N am e and A ddress Vendor N am e in eVA Vendor sheets of paper and bring to business office for payment. Vendor Purchasing Matrix 090413 Page 1 of 4 #12;Commodity Vendor N am e and A ddress Vendor N am e in eVA Vendor Location in eVA PO C ategory eVA PO needed

  3. Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.

    2007-02-01T23:59:59.000Z

    In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8°C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

  4. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  5. Diurnal evapotranspiration estimates in the Walnut River Watershed.

    SciTech Connect (OSTI)

    Song, J.

    1998-10-05T23:59:59.000Z

    Evapotranspiration is an essential component of the surface hydrological balance, but obtaining accurate estimates of the water vapor flux over large terrestrial areas can be difficult because of the substantial temporal and spatial variability in surface moisture conditions that can occur. This variability is often very large in the Great Plains and other portions of the Mississippi River Basin. Nevertheless, variations in soil moisture content, groundwater levels, and runoff in streams and rivers cannot be fully assessed without some knowledge of evapotranspiration rates. Here, observations made at the Walnut River Watershed (WRW), which is near Wichita, Kansas, and has an area of approximately 5000 km{sup 2}, are used to improve and test a modeling system that estimates long-term evapotranspiration with use of satellite remote sensing data with limited surface measurements. The techniques may be applied to much larger areas. As is shown in Fig. 1, the WRW is located in the Red River Basin and is enclosed by the southern Great Plains Clouds and Radiation Testbed (CART) of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. The functional relationships involving the satellite data, surface parameters, and associated subgrid-scale fluxes are modeled in this study by the parameterization of subgrid-scale surface (PASS) fluxes scheme (Gao, 1995; Gao et al., 1998), which is used in a modified and improved form (PASS2). The advantage of this modeling system is that it can make effective use of satellite remote sensing data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. In this study, the normalized difference vegetation index (NDVI) or simple ratio (SR) and surface brightness temperature at each pixel for the WRW were derived from advanced very high resolution radiometers data collected by a ground station at Argonne National Laboratory from the National Oceanic and Atmospheric Administration's NOAA-12 and NOAA-14 satellites. The satellite data were subjected to atmospheric corrections for three intensive observation days of the 1997 Cooperative Atmosphere-Surface Exchange Study (CASES-97) experiment, which was conducted in cooperation with the Argonne Boundary Layer Experiments (ABLE) effort and the ARM Program.

  6. RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

    E-Print Network [OSTI]

    Levinson, David M.

    RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

  7. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01T23:59:59.000Z

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  8. Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

  9. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01T23:59:59.000Z

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  10. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  11. Savannah River Technology Center, monthly report

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

  12. Microsoft Word - CX_Okanogan_River.docx

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

  13. Lower Columbia River Estuary Partnership. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of land on the north side of the Columbia River in Cowlitz County, Wash., to protect fish habitat. An additional 75 acres of land will be donated by the Port of Longview. BPA...

  14. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  15. Flint River Drought Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

  16. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    Site's H Canyon Work Ensures Future Missions for Facility Restoration of a 90-acre powerhouse ash basin at the Savannah River Site, pictured here, is under way as workers remove...

  17. The Ecology of the Navasota River, Texas

    E-Print Network [OSTI]

    Clark, W. J.

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

  18. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  19. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  20. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

  1. Think water : reconditioning the Malden River

    E-Print Network [OSTI]

    Oda, Kazuyo, 1969-

    2003-01-01T23:59:59.000Z

    The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

  2. PARSII - New Reports and Reports With New Reporting Folder Location...

    Energy Savers [EERE]

    - New Reports and Reports With New Reporting Folder Location More Documents & Publications PARSII - New Reports and Reports With New Reporting Folder Location Slide 1 Slide 1...

  3. The Pecos River Ecosystem Project Progress Report

    E-Print Network [OSTI]

    Hart, C.

    to administer the project. Phase one of the project began in October 1999. During the initial meetings to begin planning the process of saltcedar removal, several major concerns emerged. First, the treatment method selected should provide a high rate...SR- 2004-01 The Pecos River Ecosystem Project Progress Report C. Hart Texas Water Resources Institute Texas A&M University 1 2003 The Pecos River Ecosystem Project...

  4. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  5. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23T23:59:59.000Z

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  6. Savannah River Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah River Site

  7. Savannah River Site | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah River

  8. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    MOR type magmatic He again implying an active volcanic source possibly a "leaky" transform related to the San Andreas Fault System. Raft River contains only crustal He...

  9. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Development at the Raft River Geothermal Field, Idaho Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Desert Peak EGS Project...

  10. Fracture characteristics and their relationships to producing...

    Open Energy Info (EERE)

    area Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River...

  11. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has been applied to Raft River geothermal well RRG-9,...

  12. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  13. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  14. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    SciTech Connect (OSTI)

    Jenkins, J.B.

    1996-05-21T23:59:59.000Z

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability.

  15. E-Print Network 3.0 - assessment columbia river Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: assessment columbia river Page: << < 1 2 3 4 5 > >> 1 352000 Columbia river Basin Fish and Wildlife Program "...the Council is adopting Summary: 352000 Columbia river Basin...

  16. Location of laccase in ordered mesoporous materials

    SciTech Connect (OSTI)

    Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

    2014-11-01T23:59:59.000Z

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  17. Property:UtilityLocation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:TechnologyUtilityLocation Jump to:

  18. Productivity of the aquatic macrophyte community of the Holston River: implications to hypolimnetic oxygen depletions of Cherokee Reservoir

    SciTech Connect (OSTI)

    Young, R.C.; Dennis, W.M.

    1983-02-01T23:59:59.000Z

    Studies were initiated in 1979 to evaluate the extensive aquatic macrophyte beds on the Holston River in upper east Tennessee. The primary aim of these studies was to determine if allochthonous input from drifting aquatic plant debris was a significant factor contributing to low dissolved oxygen (DO) levels in Cherokee Reservoir located downstream. This report presents the results of studies conducted in 1979-1980 to obtain refined estimate of the impact of allochthonous aquatic macrophyte input on DO levels in Cherokee Reservoir. The report also details phenological aspects of the growth and reproduction of the various species that comprise the submersed aquatic macrophyte community of the Holston River above Cherokee Reservoir and discusses the contribution of each to net primary productivity of the river. 31 references, 9 figures, 4 tables.

  19. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    SciTech Connect (OSTI)

    Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01T23:59:59.000Z

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  20. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29T23:59:59.000Z

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  1. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect (OSTI)

    Paller, M.

    1990-11-01T23:59:59.000Z

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

  2. Location-Tracking Applications ecent technological advances in wireless loca-

    E-Print Network [OSTI]

    Gruteser, Marco

    areas they have visited. #12;Location-Tracking Applications broker as part of their service contract

  3. Locating a Recycling Center: The General Density Case Jannett Highfill

    E-Print Network [OSTI]

    Mou, Libin

    Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

  4. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

    2002-09-09T23:59:59.000Z

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  5. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  6. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  7. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  9. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  10. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01T23:59:59.000Z

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  11. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13T23:59:59.000Z

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  12. A Statistical Analysis of Characteristics of Mesoscale Convective System Mountain Initiation Location Clusters in the Arkansas-Red River Basin

    E-Print Network [OSTI]

    Callen, Elisabeth F.

    2012-12-31T23:59:59.000Z

    to anticipate flooding events that can occur with these systems. The multi-sensor precipitation data, a combination of satellite, radar, and rain gage data, was used in Tucker and Li (2009). The MCSs initiating west of 104? W in the warm season (April...

  13. The Savannah River Site (SRS) is located in south-central South Carolina approximately 100 miles from the Atlantic Coast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe Life of EnricoFlickrPhysics

  14. The Savannah River Site (SRS) is located in south-central South Carolina approximately 100 miles from the Atlantic Coast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe Life of

  15. Savannah River Site (SRS) environmental overview

    SciTech Connect (OSTI)

    O'Rear, M.G. (USDOE Savannah River Operations Office, Aiken, SC (USA)); Steele, J.L.; Kitchen, B.G. (Westinghouse Savannah River Co., Aiken, SC (USA)) (eds.)

    1990-01-01T23:59:59.000Z

    The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

  16. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect (OSTI)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01T23:59:59.000Z

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  17. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    SciTech Connect (OSTI)

    Chen, K.

    2011-10-24T23:59:59.000Z

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  18. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    SciTech Connect (OSTI)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31T23:59:59.000Z

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one adult Pacific lamprey was trapped and released above the Westland ladder this year. The Threemile Dam west bank juvenile bypass was opened on March 11, 2008 in conjunction with water deliveries and continued through the summer. West Extension Irrigation District (WEID) discontinued diverting live flow on June 24, 2008 but the bypass remained open throughout the project year. The juvenile trap was not operated this project year.

  19. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30T23:59:59.000Z

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  20. TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA

    SciTech Connect (OSTI)

    PETERSEN SW

    2008-11-05T23:59:59.000Z

    Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.