Sample records for location alaska exploration

  1. Geothermal Exploration In Akutan, Alaska, Using Multitemporal...

    Open Energy Info (EERE)

    Akutan, Alaska, Using Multitemporal Thermal Infrared Images Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geothermal Exploration In...

  2. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04T23:59:59.000Z

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. Currently, State of Alaska agencies use multiple, independent systems to identify, authenticate, and authorize customers for online transactions. Consumers of online state services may be required to manage multiple online ''profiles,'' and during a permit review process valuable time may be lost verifying identity or reconciling differences in applicant information when agency records disagree. The state's Information Technology Group is developing a shared applicant profile system that will provide an additional opportunity to demonstrate data sharing between agencies.

  3. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

  4. Geothermal Exploration At Akutan, Alaska- Favorable Indications...

    Open Energy Info (EERE)

    industry have a combined peak demand of 7-8 MWe which is currently supplied by diesel fuel. The exploration program included practical access assessments, a geologic...

  5. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31T23:59:59.000Z

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  6. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎Alaska < RAPID‎ |

  7. Exploring Energy Options for Rural Alaska | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of Energy 088: FederalEconomicEnergy ConsumersExploring

  8. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30T23:59:59.000Z

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  9. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop blind geothermal resources.

  10. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  11. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    SciTech Connect (OSTI)

    Jaffe, Todd

    2012-01-01T23:59:59.000Z

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  12. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    These shapefiles was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  13. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  14. Explores Dam Removal Located in Southwest Ohio, Buck Creek and its

    E-Print Network [OSTI]

    Bogaerts, Steven

    OHIO Researcher Explores Dam Removal Located in Southwest Ohio, Buck Creek and its tributary, Beaver Creek, run through a series of low-head dams in Springfield, Ohio. Historically, the four dams of the four dams. This will help restore the natural flow of sediments and fish along the entire river

  15. Alaska: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

  16. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Center for Energy and Power (ACEP). The Energy Department is supporting geothermal exploration at lower temperatures, thanks to a technology breakthrough that allows...

  17. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-02-01T23:59:59.000Z

    Title: Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado Tags: Colorado, lineaments, air-photo, geothermal Summary: These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Description: Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Projection Information: UTM Zone 13 NAD 27 projection Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Funding was provided in part by DOE Grant DE-EEE0002828. Use Limitation These shapefiles was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  18. Alaska Energy Pioneer Summer 2015

    Energy Savers [EERE]

    Welcome to the U.S. Department of Energy (DOE) Office of Indian Energy's quarterly newsletter for Alaska Native villages and others who are partnering with us to explore and pursue...

  19. The Outlier State: Alaskas FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    rankings of Alaskas oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  20. The Outlier State: Alaskas FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    State: Alaskas FY 2012 Budget themselves Alaskans United toJ. (2011) What Recession? Alaskas 2011 Budget, in AnnualWestern States Budget Review, and California Journal of

  1. Planning Amid Abundance: Alaskas FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    2011) The Outlier State: Alaskas FY 2012 Budget, AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaskas FY 2013 Budget Process Abstract: This

  2. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

  3. E-Print Network 3.0 - alaska installation restoration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creek Watershed Restoration Juneau, Alaska Duck Creek is a small, anadromous fish stream located... Sediment removal from channel Wetlands revegetation NOAA Community-Based...

  4. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

  5. Alaska Forum on the Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Forum on the Environment (AFE) is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders,...

  6. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  7. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  8. Mendenhall Glacier Juneau, Alaska

    E-Print Network [OSTI]

    Raina, Ramesh

    #12;V1 Mendenhall Glacier Juneau, Alaska 404 Alaskan Frontiers & Glaciers V1 PRSRTSTD U blend of nature and modern culture. Marvel at the spectacular Hubbard Glacier, the longest tidewater glacier in Alaska and visit Icy Strait Point, a seaport nestled in the lush, seemingly endless northern

  9. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    Recession? Alaskas FY 2011 Budget Jerry McBeath Universityexplaining Alaskas FY 2011 budget process and out- comes.It introduces the governors budget requests, legislative

  10. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  11. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  12. ALASKA STATE LEGISLATURE

    Energy Savers [EERE]

    FE-50 Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 RE: Alaska LNG Project LLC, Docket No. l4-96-LNG Support of Application for Long-Term Authorization to...

  13. Interconnection Guidelines (Alaska)

    Broader source: Energy.gov [DOE]

    In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

  14. america project alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

  15. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  16. Alaska Native Village CEO Association 2015 Conference

    Broader source: Energy.gov [DOE]

    The Alaska Native Village Corporation Association is hosting its 7th Annual 2015 Conference in Anchorage, Alaska. The two-day conference includes a State of Alaska update, board election best practices, Alaska's economic future, Alaska Native subsistence co-management, and more.

  17. The feasibility of residential development in the newly master planned Ship Creek area of Anchorage, Alaska

    E-Print Network [OSTI]

    Debenham, Shaun T. (Shaun Todd), 1973-

    2004-01-01T23:59:59.000Z

    The aim of this thesis is to determine if a 40 unit condominium complex located in the Ship Creek area in Anchorage, Alaska, is financially feasible. Historically, Ship Creek has been an industrial area but recently the ...

  18. Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms

    E-Print Network [OSTI]

    Kaba, Christina Marie

    2004-01-01T23:59:59.000Z

    Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

  19. Alaska Native Village Energy Development Workshop Agenda

    Broader source: Energy.gov [DOE]

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  20. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  1. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  2. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    SciTech Connect (OSTI)

    Bob Busey; Larry Hinzman

    2012-04-01T23:59:59.000Z

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  3. Recovery Act State Memos Alaska

    Energy Savers [EERE]

    generation plant, district heating system, and interconnection which will help provide energy to eight communities in the Northern Bristol Bay area. The University of Alaska...

  4. 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge

    E-Print Network [OSTI]

    Wagner, Diane

    Nixle 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge 4. Enter a Location Enter of Certified Government Agencies & Organizations will load. #12;3 Nixle 401 Rasmuson Library 450-8300 102

  5. alaska forest service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

  6. anchorage alaska installation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

  7. alaska science center: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska Legislative Audit Cook Inlet Aquaculture Association Student Ickert-Bond, Steffi 11 University of Alaska...

  8. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2013-01-16T23:59:59.000Z

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  9. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15T23:59:59.000Z

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  10. ARM - Kiosks - Barrow, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska Outreach Home Room News Publications

  11. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  12. Planning Amid Abundance: Alaskas FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

  13. Planning Amid Abundance: Alaskas FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies position on LNG exports with the states (unclear whether a large LNG project would be feasible and

  14. The Outlier State: Alaskas FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    has three pivots: the oil and gas industry, the AlaskaThen, in March, the Spanish oil and gas company Repsol, anaffiliate of Armstrong Oil and Gas, announced it would spend

  15. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  16. Graduate Programs University of AlaskaFairbanks

    E-Print Network [OSTI]

    Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

  17. Alaska Solar Energy Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Ave. Anchorage, AK 99501 Organized by the Alaska Center for Energy and Power, the Alaska Solar Energy Workshop is a forum to exchange ideas and information about best practices,...

  18. Status and Trends of Alaska NPS Glaciers: Workplan and Early Results Michael G. Loso1 Chris Larsen2 Anthony Arendt2 Nate Murphy2 Justin Rich2

    E-Print Network [OSTI]

    Loso, Michael G.

    Status and Trends of Alaska NPS Glaciers: Workplan and Early Results Michael G. Loso1 Chris the Project Glaciers cover about 75,000 km2 of Alaska's land surface and approximately one-quarter of those glaciers are located within National Park boundaries. To develop a more comprehensive understanding

  19. AL ASK A SALMON alaska Salmon

    E-Print Network [OSTI]

    of residents and visitors to Alaska. Alaska native peoples and their heritage have a long, colorful bond with salmon as an economic, cultural, and subsistence necessity. This heritage incorporated some of the most of a major down- turn in productivity of Alaska salmon. Historical commercial landings show a distinct cyclic

  20. 8:30, 9:30 and 10:30am -Various 30-minute Departmental Tours and Career Exploration Activities. Visit various campus locations utilizing your own transportation.

    E-Print Network [OSTI]

    Liu, Taosheng

    :30am and 2:30pm Location: Room 147 of the Natural Science Building (288 Farm Lane). Participants:00pm - Lunch on your own. Dining hall rates for children ages 5-9 is $4.75. For a complete list of on-campus dining halls, visit: www.eatatstate.msu.edu. 1:30 & 2:30pm - Various 30-minute Departmental Tours

  1. Alaska START | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaska START Alaska START

  2. A Heart Health Alaska Natives

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

  3. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

  4. Alaska Native Village Renewable Energy Project Development Workshop...

    Energy Savers [EERE]

    Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

  5. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Energy Savers [EERE]

    OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project LLC ) Docket No. 14-96-LNG JOINT MOTION TO INTERVENE AND COMMENTS OF THE STATE OF ALASKA AND THE ALASKA GASLINE...

  6. Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska

    E-Print Network [OSTI]

    Wood, Stephen L.

    Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel. The overall design concept, modeling, and simulation for the AUV is discussed along with the design of the AUV drilling and exploration efforts are underway and expanding. Currently, the Mineral Management Service (MMS

  7. Explore This!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore these Topics Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Explore This Science is far deeper and wider...

  8. DOE Alaska Native Village Renewable Energy Project Development...

    Energy Savers [EERE]

    Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

  9. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Alaska Native Village Renewable Energy Project Development Workshop in Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM...

  10. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Alaska Native Village Renewable Energy Project Development Workshop in Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015...

  11. aleutian islands alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF ALASKA ANCHORAGE Vol. 15, No. 2 Physics Websites Summary: agencies, urban police departments and several federal agen- cies in Alaska reveal that the employment of...

  12. Alaska Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery &...

  13. Alaska Facility- and Community-Scale Project Development Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska. Photo by Sherry Stout, NREL. Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge Sharing Community-Scale Project Development and Finance Workshop: Oklahoma...

  14. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

  15. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  16. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  17. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  18. Applications for Alaska Strategic Technical Assistance Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Native communities to Image of a building under construction. advance their clean energy technology and infrastructure projects. One example is Minto, a small Alaska Native...

  19. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  20. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25T23:59:59.000Z

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  1. Alaska Chapter of ASA 2006 Meeting

    E-Print Network [OSTI]

    Speaker | Current Agenda | Registration | Short Course Outline | Accommodations Guest Speaker and Short1 of 1 Alaska Chapter of ASA 2006 Meeting Juneau, Alaska July 2006 Short Course | 2006 Guest. This cost covers both the short course and the sessions. You do not have to be a member to attend

  2. Geothermal Exploration In Pilgrim, Alaska- First Results From...

    Open Energy Info (EERE)

    of the geothermal system. We used all available cloud-free summer-time thermal infrared (TIR) images from the Landsat data archive to detect and map the surface thermal...

  3. Geothermal Exploration At Akutan, Alaska- Favorable Indications For A

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to library WebWesternLondon, United

  4. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen andHydropower is one

  5. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎

  6. Geothermal Exploration In Akutan, Alaska, Using Multitemporal Thermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |InformationInfrared Images | Open Energy

  7. Geothermal Exploration In Pilgrim, Alaska- First Results From Remote

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |InformationInfrared Images | Open EnergySensing

  8. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111 ~IIIIIIIIIIIIIIIIIHIIIIIJ~~Amchitka, Alaska,

  9. Alaska START | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska STARTSTART

  10. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30T23:59:59.000Z

    The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

  11. Explore Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Science is thinking in an organized way about things...

  12. Alternative Fuels Data Center: Alaska Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Alaska, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  13. 2013 Alaska Federation of Natives Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  14. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    development of oil and gas resources in the Alaska OCS isthe state for non-oil/gas resource development was mining.resources (ABR, March 4, 2010, 2). Others questioned whether oil and

  15. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  16. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  17. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov (indexed) [DOE]

    interpretations) * Reduce exploration and development costs Innovation * Numerical optimization of multicomponent chemical geothermometry at multiple locations * Integration with...

  18. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01T23:59:59.000Z

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  19. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  20. Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

  1. A comparison of cloud properties at a coastal and inland site at the North Slope of Alaska

    E-Print Network [OSTI]

    Jakob, Christian

    (Barrow) and an inland (Atqasuk) location on the North Slope of Alaska using microwave radiometer (MWR) data collected by the U.S. Department of Energy's Atmospheric Radiation Measurement Program contaminated by wet windows on the MWRs were employed to extract high-quality data suitable for this study

  2. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR,

    E-Print Network [OSTI]

    Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska of Volcanology and Geothermal Research 150 (2006) 186­201 www.elsevier.com/locate/jvolgeores #12;imagery have al., 2001), poroelastic rebound (Peltzer et al., 1996), cooling lava (Stevens et al., 2001

  3. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.

  4. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: Shale natural

  5. 2014 Alaska Native Village Energy Development Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Resources for Alaska Native Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy...

  6. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Energy Savers [EERE]

    Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm...

  7. Chemical Hygiene Planh UNIVERSITY OF AlASKA

    E-Print Network [OSTI]

    Hartman, Chris

    Chemical Hygiene Planh UNIVERSITY OF AlASKA FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO ................................................................................................................... 5 B Personal Hygiene

  8. COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1

    E-Print Network [OSTI]

    Pantaleone, Jim

    context of Alaska oil production taxes, comparing MAPA and ACES to the original petroleum profits tax (PPT1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21

  9. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  10. Alaska Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division

  11. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division2)

  12. Alaska Meeting #1 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska

  13. Alatna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind

  14. Alaska Solar Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-SourceAlaska START Alaska

  15. Thursday, December 27, 2012 Federal Fisheries Permit 1 of 69 NOAA Fisheries Service -Alaska Region

    E-Print Network [OSTI]

    =Pollock Trawl AHL=Atka Mackerel Hook & Line APT=Atka Mackerel Pot ATW=Atka Mackerel Trawl Permit Vessel Name CG BRENNAN, KELLY C CAT,GOA,HAL 2046 ALASKA BEAUTY 544967 22011 98 125 ALASKA BEAUTY LLC ATW ALASKA DAWN 1051463 69765 90 55 ALASKA DAWN LLC ATW,BSA,CAT,CNE,CPP,CTW,GOA,POT,PTW,TRW 6202 ALASKA

  16. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  17. UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY

    E-Print Network [OSTI]

    Wagner, Diane

    UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

  18. Indicators of recent environmental change in Alaska

    SciTech Connect (OSTI)

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31T23:59:59.000Z

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  19. Alaska Regional High School Science Bowl | U.S. DOE Office of...

    Office of Science (SC) Website

    Alaska Regions Alaska Regional High School Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals...

  20. Effects and impacts of vessel activity on the Kittlitz's Murrelet (Brachyramphus brevirostris) in Glacier Bay, Alaska

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ) in Glacier Bay, Alaska Alison M. Agness A thesis submitted in partial fulfillment of the requirements (Brachyramphus brevirostris) in Glacier Bay, Alaska.....35 Summary

  1. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Development and Finance Workshop Agenda and Presentations 2015 Alaska Project Development and Finance Workshop Agenda and Presentations The DOE Office of Indian Energy...

  2. 2015 Alaska Regional Energy Workshops | Department of Energy

    Energy Savers [EERE]

    of Indian Energy hosted three back-to-back Renewable Energy Project Development and Finance Workshops in Alaska. Download the agenda and the presentations. Addthis Related...

  3. Alaska Administrative Code - Title 17, Chapter 10, Section 11...

    Open Energy Info (EERE)

    1 - Types of Encroachments Authorized Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Alaska Administrative Code - Title...

  4. anwr northeastern alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

  5. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

  6. alaska fairbanks fairbanks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

  7. Alaska Administrative Code - Title 17, Chapter 10, Section 12...

    Open Energy Info (EERE)

    RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

  8. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  9. Comments, Protests and Interventions for Alaska LNG Project LLC...

    Broader source: Energy.gov (indexed) [DOE]

    Begich and Congressman Don Young, Alaska Congressional Delegation Letter in Support of LNG Export Application 2. 102414 Pentair Vavles & Controls, Randy Akers, Technical Sales...

  10. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Broader source: Energy.gov (indexed) [DOE]

    guarantee program to encourage the construction of a pipeline that will bring Alaskan natural gas to the continental United States. The pipeline will provide access to Alaska's...

  11. alaska seafood processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  12. alaska exxon valdez: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth to climate variability in interior Alaska Andrea is to determine the climatic controls over the growth of white spruce (Picea glauca (Moench) Voss) at the warmest...

  13. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    like oil production requires some knowledge or assumptionlike oil production requires some knowledge or assumptionAlaska Oil Production We use the standard assumption that

  14. Preserving Alaska's early Cold War legacy.

    SciTech Connect (OSTI)

    Hoffecker, J.; Whorton, M.

    1999-03-08T23:59:59.000Z

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  15. A 2000 year varve-based climate record from the central Brooks Range, Alaska

    SciTech Connect (OSTI)

    Bird, B.W.; Abbott, M.B.; Finney, B.P.; Kutchko, Barbara

    2009-01-01T23:59:59.000Z

    Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r2 = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varve-temperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhanced precipitation.

  16. alaska native people: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

  17. Alaska Justice Forum Page 1 INSIDE THIS ISSUE

    E-Print Network [OSTI]

    Pantaleone, Jim

    describes use of the death penalty in the United States (page 2). An international perspective on capital Unit ALASKA JUSTICE FORUM Homicide in Alaska While the rate of homicide in the nation as a whole has murders were reported in the state. This figure results in a rate of 10.8 per 100,000. The 8 additional

  18. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01T23:59:59.000Z

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  19. alaska natural gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska natural gas First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Natural Gas Development...

  20. Control Strategies for Late Blight in the Alaska Potato Crop

    E-Print Network [OSTI]

    Wagner, Diane

    Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

  1. Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    Alaska Region-Granite Construction Company, Michael D. Miller, Business Development Manager/Estimator

  2. ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co

    E-Print Network [OSTI]

    Wagner, Diane

    Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

  3. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31T23:59:59.000Z

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940s and was severely weathered. The composition of this dead Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  4. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  5. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    and production. Taxes on oil and gas (royalties, severanceincreased tax credits for oil and gas exploration activity,the refuge off limits for oil and gas exploration (FDNM,

  6. Wind Energy Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird,Wilsonville, Oregon: EnergyWind Energy Alaska Place:

  7. START Program: Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913||Sys.pdfEarlyProgram: Alaska START

  8. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S.: ShaleAlaska

  9. Alaska START Application | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska START

  10. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking CloudsMoving Water

  11. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes: Title 38Alaska/Wind

  12. Kasilof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,Kaolin AD JumpKasilof, Alaska:

  13. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: Energy ResourcesAlaska: Energy Resources Jump

  14. START Program 2013: Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergyDepartmentDepartment of Energy A view ofSSL28,Alaska

  15. Ninilchik, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: EnergyNinilchik, Alaska: Energy

  16. BLM Alaska State Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: Energy Resources JumpPáginasLeasingBLM Alaska

  17. Alaska START Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S. DepartmentFebruaryAlaska

  18. Fox, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCornersFox River, Alaska:

  19. Etherthreads : an infrastructure for location-based messages

    E-Print Network [OSTI]

    Lassey, Bradford, 1980-

    2004-01-01T23:59:59.000Z

    This thesis proposes an infrastructure for location-based services for Bluetooth enabled cellular phones. Specifically, it explores the use of this architecture in a location-based messaging application. A user can send ...

  20. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect (OSTI)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01T23:59:59.000Z

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  1. Explore Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1 BeamlineExplore Explore

  2. Exploration Geochemistry

    E-Print Network [OSTI]

    Michelson, David G.

    and environmental constraints. eter Winterburn #12;M D R U Societal demands for mineral resources continue to spur and restrictive policy changes. The discovery of new mineral resources requires increasing risk, increasing costs ­ Global Exploration for Vale. His research interests centre on innovation of cost-effective, robust

  3. Underground Exploration

    E-Print Network [OSTI]

    Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . 14 Use rail to support tunnel boring machine operation . . . . . . . . . 14 Excavate smaller diameter tunnels outside the portal-to-portal loop . 15 Use a tunnel boring machine to excavate the core test area

  4. alaska linking wildlife: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Cooperative Fish and Wildlife Research Unit Annual Research Report--2011 Environmental Sciences and...

  5. Climate Change Adaptation for an At Risk Community Shaktoolik Alaska

    Broader source: Energy.gov [DOE]

    The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change. University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

  6. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  7. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  8. Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...

    Open Energy Info (EERE)

    Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

  9. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG ProjectLLC submits this application requesting long-term authorization to export 20...

  10. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

  11. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

  12. Microsoft Word - Alaska LNG Export License Letter November 14...

    Broader source: Energy.gov (indexed) [DOE]

    Washington, DC 20026-4375 Sent via email to: fergas@hq.doe.gov Re: FE Docket No: 14-96-LNG To Whom It May Concern: Please accept the following comments from the Alaska State...

  13. QER- Comment of Alaska Department of Natural Resources

    Broader source: Energy.gov [DOE]

    To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

  14. Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...

    Energy Savers [EERE]

    in Action: Akiak Reaps Benefits of PCE Technical Assistance Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical Assistance March 11, 2015 - 1:16pm Addthis Ruth Gilila...

  15. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    Chao, Y. 2012. Modeling the mesoscale eddy field in the GulfShriver, J. F. 2001. Mesoscale variability in the boundaryof the Gulf of Alaska mesoscale circulation. Progress in

  16. alaska initiative fact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  17. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  18. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14T23:59:59.000Z

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  19. Provenance and diagenesis of the Ivishak Sandstone, northern Alaska

    E-Print Network [OSTI]

    Burch, Gary Kenneth

    1984-01-01T23:59:59.000Z

    PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURCH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for tbe degree of MASTER OF SCIENCE... August 1984 Major Subject: Geology PROVENANCE AND DIAGENESIS OF THE IVISHAK SANDSTONE, NORTHERN ALASKA A Thesis by GARY KENNETH BURGH Approved as to style and content by: Jam . Mazzullo (Chairman of Committee) Robert R. Berg (Member) Robert C...

  20. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08T23:59:59.000Z

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oildiesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 34 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  1. Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

  2. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

  3. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Office of Environmental Management (EM)

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) No reports submitted....

  4. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect (OSTI)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01T23:59:59.000Z

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  5. (Bradfield Electric and Alaska Power Authority Presidential permit): Finding of no significant impact (FONSI)

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Economic Regulatory Administration (ERA) of the Department of Energy (DOE) is considering an application by Bradfield Electric, Inc. (Bradfield), and the Alaska Power Authority (APA) for a Presidential permit to construct, operate, maintain and connect a 69-kilovolt (kV) transmission line which would extend from the APA's Tyee Lake Hydroelectric Power Project located near Wrangell, Alaska, to a point on the US-Canadian international border just east of the South Fork Craig River. The DOE has reviewed an environmental assessment (EA) prepared by the US Forest Service (USFS) in connection with its issuance of a special use permit to construct the proposed line through the Tongass National Forest. Based on this EA, the USFS issued a decision notice and a finding of no significant impact (FONSI) for the proposed project on May 9, 1988. The DOE is adopting this EA as DOE/EA-0375 in partial satisfaction of its responsibilities under the National Environmental Policy Act of 1969 (NEPA) regarding the issuance of a Presidential permit.

  6. Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

    E-Print Network [OSTI]

    542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

  7. Alaska: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

  8. Physical and Chemical Implications of Mid-Winter Pumping of Trunda Lakes - North Slope, Alaska

    SciTech Connect (OSTI)

    Hinzman, Larry D. (University of Alaska Fairbanks, Water and Environmental Research Center); Lilly, Michael R. (Geo-Watersheds Scientific); Kane, Douglas L. (University of Alaska Fairbanks, Water and Environmental Research Center); Miller, D. Dan (University of Alaska Fairbanks, Water and Environmental Research Center); Galloway, Braden K. (University of Alaska Fairbanks, Water and Environmental Research Center); Hilton, Kristie M. (Geo-Watersheds Scientific); White, Daniel M. (University of Alaska Fairbanks, Water and Environmental Research Center)

    2005-09-30T23:59:59.000Z

    Tundra lakes on the North Slope, Alaska, are an important resource for energy development and petroleum field operations. A majority of exploration activities, pipeline maintenance, and restoration activities take place on winter ice roads that depend on water availability at key times of the winter operating season. These same lakes provide important fisheries and ecosystem functions. In particular, overwintering habitat for fish is one important management concern. This study focused on the evaluation of winter water use in the current field operating areas to provide a better understanding of the current water use practices. It found that under the current water use practices, there were no measurable negative effects of winter pumping on the lakes studied and current water use management practices were appropriately conservative. The study did find many areas where improvements in the understanding of tundra lake hydrology and water usage would benefit industry, management agencies, and the protection of fisheries and ecosystems.

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Valdez NTMS Quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Valdez NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System (GJOIS) at Oak Ridge National Laboratory (ORNL). Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A to D describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others (1981a) into groups of stream sediment, lake sediment, stream water, lake water, and ground water samples.

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    Results of a hydrogeochemical and stream sediment reconnaissance of the Philip Smith Mountains NTMS quadrangle, Alaska are presented. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. In this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data were subsetted by one of the Los Alamos National Laboratory (LANL) sorting programs into groups of stream sediment and lake sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report.

  11. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARMs third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  12. Assessment of New Approaches in Geothermal Exploration Decision...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    approaches were investigated to develop a best-practices methodology for objective geothermal exploration decision making at a given location, including gono-go decision points...

  13. A Compilation and Review of Alaska Energy Projects

    SciTech Connect (OSTI)

    Arlon Tussing; Steve Colt

    2008-12-31T23:59:59.000Z

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  14. Wind energy resource atlas. Volume 10. Alaska region

    SciTech Connect (OSTI)

    Wise, J.L.; Wentink, T. Jr.; Becker, R. Jr.; Comiskey, A.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-12-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in each subregion of Alaska. Background is presented on how the wind resource is assessed and on how the results of the assessment should be interpreted. A description of the wind resource on a state scale is given. The results of the wind energy assessments for each subregion are assembled into an overview and summary of the various features of the Alaska wind energy resource. An outline to the descriptions of the wind resource given for each subregion is included. Assessments for individual subregions are presented as separate chapters. The subregion wind energy resources are described in greater detail than is the Alaska wind energy resource, and features of selected stations are discussed. This preface outlines the use and interpretation of the information found in the subregion chapters.

  15. Exploration of Compact Stellarators as Power Plants

    E-Print Network [OSTI]

    California at San Diego, University of

    Exploration of Compact Stellarators as Power Plants: Initial Results from ARIES-CS Study Farrokh, see: http://aries.ucsd.edu/ #12;Exploration and Optimization of Compact Stellarators as Power Plants in the context of power plant studies, e.g., particle loss Divertor (location, particle and energy distribution

  16. Alaska Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaska Division of

  17. Alaska Village Cooperative Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska DepartmentAlaskaVillage

  18. Alaska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaskaAlaska/Wind Resources/Full

  19. Alaska Electric & Energy Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong MachineAlaskaAlaska

  20. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  1. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  2. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  3. Alaska Native Village Renewable Energy Project Development Workshop in Bethel

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  4. Alaska Native Village Renewable Energy Project Development Workshop in Juneau

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOEs National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  5. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  6. SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)

    E-Print Network [OSTI]

    Pantaleone, Jim

    , a modest increase in oil investment would create more state revenues under SB21 than ACES. New money #12;Switch to MAPA & New Investment #12;Job Creation in the Oil Patch #12;Job Creation from State into the oil patch creates long lasting jobs and increased consumer purchasing power. #12;Alaska Constitution

  7. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    2010-03-05T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  8. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  9. First Regional Super ESPC: Success on Kodiak Island, Alaska

    SciTech Connect (OSTI)

    Federal Energy Management Program

    2001-05-16T23:59:59.000Z

    This case study about energy saving performance contacts (ESPCs) presents an overview of how the Coast Guard at Kodiak Island, Alaska, established an ESPC contract and the benefits derived from it. The Federal Energy Management Program instituted these special contracts to help federal agencies finance energy-saving projects at their facilities.

  10. Kenneth J. Krieger Auke Bay laboratory. Alaska Fisheries Science Center

    E-Print Network [OSTI]

    Gulf of Alaska to observe spatial distribu- tions of Pacific ocean perch Sebastes alutus and other observed from the sub- mersible were Pacific ocean perch. Most adult Pacific ocean perch were in groups into the current, and 0-7 m above bot- tom. Most juvenile Pacific ocean perch, and juveniles and adults of other

  11. Status Review of Southeast Alaska Herring (Clupea pallasi)

    E-Print Network [OSTI]

    of extinction throughout all or a significant portion of its range." The term threatened species is definedStatus Review of Southeast Alaska Herring (Clupea pallasi) Threats Evaluation and Extinction Risk of this report. NMFS gratefully acknowledges the commitment and efforts of the Extinction Risk Assessment (ERA

  12. Rope Culture of the Kelp Laminaria groenlandica in Alaska

    E-Print Network [OSTI]

    Rope Culture of the Kelp Laminaria groenlandica in Alaska ROBERT J. ELLIS and NATASHA I. CALVIN beach and subtidal area. Introduction The brown seaweed or kelp, Lam- inaria groenlandica, which, Clupea harengus pallasi, eggs on kelp in Prince William Sound. In British Columbia, L. groen- landica

  13. Accomplishments of the Alaska Region's Habitat Conservation Division

    E-Print Network [OSTI]

    -Stevens Fishery Conservation and Management Act, Fish and Wildlife Coordination Act, National Environmental Policy and conservation of Essential Fish Habitat (EFH) through fishery management, and environmental review of nonAccomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2006

  14. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  15. ABR, Inc Morning Star Ranch Alaska Airlines NANA Management Services

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Pipeline Riverboat Discovery Baker Hughes RJG, A Professional Corporation Big Brothers Big Sisters Conservation Association Design Alaska Tanana Chiefs Conference Dolin Gold TDL Staffing, Inc Doyon Utilities, Inc U.S. National Park Services Glacier Services U.S. Navy Granite Construction U.S. Peace Corps

  16. Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance

    E-Print Network [OSTI]

    Oregon, University of

    in SPUR Oregon-Chile International REU Program University of Oregon, Eugene OR 97403-1254 phone (541 Undergraduate Researchers in SPUR (OURS) spur.uoregon.edu Oregon-Chile International REU Program (OC-iREU) spurSummer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site

  17. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  18. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  19. Post-Cleanup Communication and Records Plan for Project Chariot, Alaska

    SciTech Connect (OSTI)

    None

    2005-01-01T23:59:59.000Z

    The Project Chariot Site resides in a remote and isolated area in the Cape Thompson region of northwest Alaska (Figure 1-1). The Project Chariot Site was a proposed test location for the U.S. Atomic Energy Commission (AEC) Plowshare Program in 1958. In 1962, the United States Geological Survey (USGS) conducted environmental studies using less than 30 mCi of short-lived mixed fission products. The location of the studies was about 0.75 mile (1.2 km) north of the Project Chariot Site base camp. Radioactive material was spread over the 12 test plots: 10 were used for overland transport tracer tests, one for a sediment transport experiment, and one for an 18-hour percolation test. The 11 test plots constituted an area less than 0.9 percent of an acre. At the conclusion of the August 1962 tracer test, USGS scraped the ground surface of the test plots and the percolation test location. The scraped soil and vegetation were mixed with native soil, deposited in a mound on two of the plots, and covered with 4 ft (1.22 m) of uncontaminated soil (DOE 1993).

  20. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  1. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    SciTech Connect (OSTI)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  2. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  3. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  4. UNIVERSITY OF ALASKA ANCHORAGE INTERNSHIP REPORT

    E-Print Network [OSTI]

    Mock, Kenrick

    locations: FBI Headquarters in Washington, DC, the FBI Academy in Quantico, VA, or the Criminal Justice division within the FBI, performing many critical tasks for the bureau, as well as many other law Fingerprint Identification System (IAFIS). Every day, the FBI receives over 55,000 fingerprint card requests

  5. Title 5 Alaska Administrative Code Section 95.011 Waters Important...

    Open Energy Info (EERE)

    Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  6. E-Print Network 3.0 - anchorage alaska usa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ecology 4 Volunteers removing sandbags Completed project site Summary: Campbell Creek Restoration Anchorage, Alaska Campbell Creek is an anadromous fish stream that flows...

  7. Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

  8. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  9. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

  10. Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar

    2008-12-31T23:59:59.000Z

    Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

  11. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01T23:59:59.000Z

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  12. SURFACE REMEDIATION IN THE ALEUTIAN ISLANDS: A CASE STUDY OF AMCHITKA ISLAND, ALASKA

    SciTech Connect (OSTI)

    Giblin, M. O.; Stahl, D. C.; Bechtel, J. A.

    2002-02-25T23:59:59.000Z

    Amchitka Island, Alaska, was at one time an integral player in the nation's defense program. Located in the North Pacific Ocean in the Aleutian Island archipelago, the island was intermittently inhabited by several key government agencies, including the U.S. Army, the U.S. Atomic Energy Commission (predecessor agency to the U.S. Department of Energy), and the U.S. Navy. Since 1993, the U.S. Department of Energy (DOE) has conducted extensive investigations on Amchitka to determine the nature and extent of contamination resulting from historic nuclear testing. The uninhabited island was the site of three high-yield nuclear tests from 1965 to 1971. These test locations are now part of the DOE's National Nuclear Security Administration Nevada Operations Office's Environmental Management Program. In the summer of 2001, the DOE launched a large-scale remediation effort on Amchitka to perform agreed-upon corrective actions to the surface of the island. Due to the lack of resources available on Amchitka and logistical difficulties with conducting work at such a remote location, the DOE partnered with the Navy and U.S. Army Corps of Engineers (USACE) to share certain specified costs and resources. Attempting to negotiate the partnerships while organizing and implementing the surface remediation on Amchitka proved to be a challenging endeavor. The DOE was faced with unexpected changes in Navy and USACE scope of work, accelerations in schedules, and risks associated with construction costs at such a remote location. Unfavorable weather conditions also proved to be a constant factor, often slowing the progress of work. The Amchitka Island remediation project experience has allowed the DOE to gain valuable insights into how to anticipate and mitigate potential problems associated with future remediation projects. These lessons learned will help the DOE in conducting future work more efficiently, and can also serve as a guide for other agencies performing similar work.

  13. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect (OSTI)

    Hiester, T.R.

    1980-06-01T23:59:59.000Z

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  14. Alaska Energy Pioneer Summer 2015 Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgricultural Outlook Forum AgriculturalAirAlaska

  15. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  16. Anchorage, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuringNovember2008 |2008

  17. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03T23:59:59.000Z

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  18. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  19. Distribution of Clay Minerals in Lower Cook Inlet and Kodiak Shelf Sediment, Alaska

    E-Print Network [OSTI]

    Distribution of Clay Minerals in Lower Cook Inlet and Kodiak Shelf Sediment, Alaska James R. llein-five surface samples from lower Cook Inlet and forty-three from Kodiak shelf, Alaska, were analyzed for clay percentages of clay minerals. This is because modern ocean currents vigorously rework surficial sediment

  20. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony Bryant Senior Project Alaska Pacific University May 5, 2010 #12;Running head: GEOTHERMAL POWER PRODUCTION January 2009. This paper researches the possibility of using geothermal energy as an alternative energy

  1. Valuable research assistance was provided by Chloe Tanaka and Sohrab Pathan Current and Future Medical Costs of Childhood Obesity in Alaska

    E-Print Network [OSTI]

    Pantaleone, Jim

    Medical Costs of Childhood Obesity in Alaska Prepared by: Mouhcine Guettabi Prepared for: Alaska of childhood obesity in Alaska, today and in the future. We estimate that 15.2% of those ages 2 to 19 in Alaska are obese. Using parameters from published reports and studies, we estimate that the total excess medical

  2. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  3. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2009-05-15T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  4. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  5. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  6. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  7. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  8. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse...

  9. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse...

  10. Geophysical Exploration (Montana)

    Broader source: Energy.gov [DOE]

    An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas...

  11. H. R. 3277: Trans-Alaska Pipeline System Reform Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, September 14, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The bill would improve Federal laws relating to the Trans-Alaska Pipeline System in light of the recent Valdez oil spill and its environmental consequences. The bill explains provisions for the Trans-Alaska Pipeline System fund and liability; the Trans-Alaska Pipeline System trust fund; improvement of the pipeline system (establishes a Presidential task force); Alaska oil spill recovery institute; penalties; provisions applicable to Alaska natives; and state laws and programs.

  12. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  13. Natural Gas Exploration

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    . Exploration and extraction of natural gas from the Marcellus shale is a potentially valuable economic stimulus for landowners. You might be wondering how the nation's economic situation is affecting the market for naturalNatural Gas Exploration: A Landowners Guide to Financial Management Natural Gas Exploration

  14. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect (OSTI)

    Glenn, R.K.; Allen, W.W.

    1992-12-01T23:59:59.000Z

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  15. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    SciTech Connect (OSTI)

    Schiff, C J; Kaufman, D S; Wallace, K L; Werner, A; Ku, T L; Brown, T A

    2007-02-25T23:59:59.000Z

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS {sup 14}C ages, along with the {sup 137}Cs and {sup 210}Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of sediment, and to determine the age of each tephra deposit. The age model is based on a cubic smooth spline function that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages {+-} 105 yr (1{sigma}). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7 per 500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of once every 130 yr.

  16. Uranium hydrogeochemical and stream sediment reconnaissance of the Arctic NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Arctic NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  17. Monitoring change in the Bering Glacier region, Alaska: Using Landsat TM and ERS-1 imagery

    SciTech Connect (OSTI)

    Payne, J.F. [Bureau of Land Management, Anchorage, AK (United States); Coffeen, M. [Bureau of Land Management, Glennallen, AK (United States); Macleod, R.D. [Ducks Unlimited, Inc., Sacramento, CA (United States)] [and others

    1997-06-01T23:59:59.000Z

    The Bering Glacier is the largest (5,180 km{sup 2}) and longest (191 km) glacier in continental North America. This glacier is one of about 200 temperate glaciers in the Alaska/Canada region that are known to surge. Surges at the Bering Glacier typically occur on a 20-30 year cycle. The objective of this project was to extract information regarding the position of the terminus of the glacier from historic aerial photography, early 20{sup th} century ground photography, Landsat Thematic Mapper (TM) satellite data, and European Space Agency, Synthetic Aperture RADAR (ERS-1 SAR) data and integrate it into a single digital database that would lend itself to change detection analysis. ERS-1 SAR data was acquired from six dates between 1992-95 and was terrain corrected and co-registered A single Landsat TM image from June 1991 was used as the base image for classifying land cover types. Historic locations of the glacier terminus were generated using traditional photo interpretation techniques from aerial and ground photography. The result of this platform combination, along with the historical data, is providing land managers with the unique opportunity to generate complete assessments of glacial movement this century and determine land cover changes which may impact wildlife and recreational opportunities.

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Table Mountain NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Youngquist, C.A.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L. (comps.) [comps.

    1981-09-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Table Mountain NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form through the Grand Junction Office Information System at Oak Ridge National Laboratory. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume. These data are, however, available on the magnetic tape. Appendix A describes the sample media and summarizes the analytical results for each medium. The data were subdivided by one of the Los Alamos National Laboratory (LANL) sorting programs of Zinkl and others into stream sediment samples. For the group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1000000 scale maps of pertinent elements have been included in this report. In addition, maps showing results of multivariate statistical analyses have been included. Further information about the HSSR program in general, or about the LANL portion of the program in particular, can be obtained in quarterly or semiannual program progress reports on open-file at DOE's Technical Library in Grand Junction. Information about the field and analytical procedures used by LANL during sample collection and analysis may be found in any HSSR data release prepared by the LANL and will not be included in this report.

  19. Record of Decision for Amchitka Surface Closure, Alaska

    SciTech Connect (OSTI)

    None

    2008-08-01T23:59:59.000Z

    This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

  20. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  1. Order 3643: Alaska LNG Project, LLC | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online1 MarchOpti-MNOptional43: Alaska

  2. Alaska Department of Environmental Conservation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department of Environmental

  3. Alaska Department of Fish and Game | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department of

  4. Alaska Department of Transportation and Public Facilities | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department ofInformation

  5. Alaska Division of Mining Land and Water | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska Department

  6. Alaska's At-large congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)AirwaysourceAlaska

  7. Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear (Million Cubic Feet) Alaska

  8. START Alaska Historical Energy Usage Spreadsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913||Sys.pdfEarly LessonsAlaska

  9. Alaska Energy Champion: Craig Moore | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |Alamo Area CouncilAlaska

  10. Alaska Strategic Energy Plan and Planning Handbook | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03Energy AdvancedJudge |AlamoofAlaska

  11. Alaska Power and Telephone Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone Co (Redirected from Alaska Power

  12. Alaska Public Participation in APDES Permitting Process | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone Co (Redirected from Alaska

  13. Alaska Request for SHPO Section 106 Review | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone Co (Redirected from AlaskaSHPO

  14. Alaska Village Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin Seikiand Telephone CoStatutes: Title 38 JumpAlaska

  15. Alaska Energy Champion: David Pelunis-Messier | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACTAgenda:Methane Recovery |Alaska

  16. Alaska Strategic Energy Plan and Planning Handbook | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT S HEET FACTAgenda:MethaneEnergyBtuAlaska

  17. MHK Projects/Alaska 24 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project State/Province Alaska

  18. MHK Projects/Alaska 28 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project State/Province Alaska°

  19. MHK Projects/Alaska 31 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07)AK Project State/Province Alaska°°,

  20. City of Petersburg, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, MississippiPetersburg, Alaska (Utility

  1. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer,City ofSeattle,Seward, Alaska

  2. Alaska Plans Geothermal Leasing at Volcano | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystemsProgram OverviewAdvocate - Issue 55-JulyBurden RFI | TSAlaskaAlaska

  3. South Naknek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix JapanCalifornia:(RECP)Naknek, Alaska: Energy

  4. Alaska Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » HighAbstracts ChemicalAlaska Regions National

  5. Aleutians East Borough, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisin SeikiandAlcopar Jump to:Alden,East Borough, Alaska:

  6. Alaska State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Buildinginaugural U.S.Energy Alaska State

  7. Bear Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro, MassachusettsCreek, Alaska:

  8. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline PermittingAir Quality <Alaska

  9. RAPID/BulkTransmission/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnline PermittingAir QualityAlaska <

  10. RAPID/Geothermal/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ | Geothermal JumpAlaska

  11. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <Washington <Alaska <

  12. Fox River, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga, NewCornersFox River, Alaska: Energy

  13. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department ofU.S. Offshore U.S. State Offshore FederalJuneAlaska

  14. Alaska Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills,OesteAkrong MachineAlaska

  15. Analysis of the premitting processes associated with exploration of Federal OCS leases. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Under contract to the Office of Leasing Policy Development (LPDO), Jack Faucett Associates is currently undertaking the description and analysis of the Outer Continental Shelf (OCS) regulatory process to determine the nature of time delays that affect OCS production of oil and gas. This report represents the results of the first phase of research under this contract, the description and analysis of regulatory activity associated with exploration activities on the Federal OCS. Volume 1 contains the following three sections: (1) study results; (2) Federal regulatory activities during exploration of Federal OCS leases which involved the US Geological Survey, Environmental Protection Agency, US Coast Guard, Corps of Engineers, and National Ocean and Atmospheric Administration; and (3) state regulatory activities during exploration of Federal OCS leases of Alaska, California, Louisiana, Massachusetts, New Jersey, North Carolina, and Texas. Volume II contains appendices of US Geological Survey, Environmental Protection Agency, Coast Guard, Corps of Engineers, the Coastal Zone Management Act, and Alaska. The major causes of delay in the regulatory process governing exploration was summarized in four broad categories: (1) the long and tedious process associated with the Environmental Protection Agency's implementation of the National Pollutant Discharge Elimination System Permit; (2) the lack of mandated time periods for the completion of individual activities in the permitting process; (3) the lack of overall coordination of OCS exploratory regulation; and (4) the inexperience of states, the Federal government and industry relating to the appropriate level of regulation for first-time lease sale areas.

  16. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    None

    2012-09-30T23:59:59.000Z

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska?s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska?s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009 reconnaissance surveys provided a strong impetus to visit this area in 2010. The seismic methods applied in Lake Teshekpuk were able to image pockmarks, widespread shallow gas in the sediments, and the relationship among different sediment packages on the lake?s bottom, but even boomer seismics did not detect permafrost beneath the northern part of the lake. By characterizing the biogeochemistry of shallow TKL with methane seeps we showed that the radical seasonal shifts in ice cover and temperature. These seasonal environmental differences result in distinct consumption and production processes of biologically-relevant compounds. The combined effects of temperature, ice-volume and other lithological factors linked to seepage from the lake are manifest in the distribution of sedimentary methane in Lake Q during icecovered and ice-free conditions. The biogeochemistry results illustrated very active methanotrophy in TKLs. Substantial effort was subsequently made to characterize the nature of methanotrophic communities in TKLs. We applied stable isotope probing approaches to genetically characterize the methanotrophs most active in utilizing methane in TKLs. Our study is the first to identify methane oxidizing organisms active in arctic TKLs, and revealing that type I methanotrophs and type II methanotrophs are abundant and active in assimilating methane in TKLs. These organisms play an important role in limiting the flux of methane from these sites. Our investigations indicate that as temperatures increase in the Arctic, oxidation rates and active methanotrophic populations will also shift. Whether these changes can offset predicted increases in methanogenesis is an important question underlying models of future methane flux and resultant climate change. Overall our findings indicate that TKLs and their ability to act as both source and sink of methane are exceedingly sensitive to environmental change.

  17. Roadmap for Venus Exploration Roadmap for Venus Exploration

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Roadmap for Venus Exploration May 2014 #12;ii Roadmap for Venus Exploration At the VEXAG meeting in November 2013, it was resolved and Investigations for Venus Exploration (GOI), (2) develop a Roadmap for Venus exploration

  18. mineral grains pore spaces Subsurface Geology and Resource Exploration

    E-Print Network [OSTI]

    Li, X. Rong

    mineral grains pore spaces Subsurface Geology and Resource Exploration Locating earth resources deals with the exploration for oil, which is important to Louisiana, the Gulf of Mexico area oil (petroleum) and natural gas, that are refined for use as fuels. When sediments are deposited

  19. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01T23:59:59.000Z

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  20. Investigation of gas hydrate-bearing sandstone reservoirs at the "Mount Elbert" stratigraphic test well, Milne Point, Alaska

    SciTech Connect (OSTI)

    Boswell, R.M.; Hunter, R. (ASRC Energy Services, Anchorage, AK); Collett, T. (USGS, Denver, CO); Digert, S. (BP Exploration (Alaska) Inc., Anchorage, AK); Hancock, S. (RPS Energy Canada, Calgary, Alberta, Canada); Weeks, M. (BP Exploration (Alaska) Inc., Anchorage, AK); Mt. Elbert Science Team

    2008-01-01T23:59:59.000Z

    In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), Inc., and the U.S. Geological Survey conducted an extensive data collection effort at the "Mount Elbert #1" gas hydrates stratigraphic test well on the Alaska North Slope (ANS). The 22-day field program acquired significant gas hydrate-bearing reservoir data, including a full suite of open-hole well logs, over 500 feet of continuous core, and open-hole formation pressure response tests. Hole conditions, and therefore log data quality, were excellent due largely to the use of chilled oil-based drilling fluids. The logging program confirmed the existence of approximately 30 m of gashydrate saturated, fine-grained sand reservoir. Gas hydrate saturations were observed to range from 60% to 75% largely as a function of reservoir quality. Continuous wire-line coring operations (the first conducted on the ANS) achieved 85% recovery through 153 meters of section, providing more than 250 subsamples for analysis. The "Mount Elbert" data collection program culminated with open-hole tests of reservoir flow and pressure responses, as well as gas and water sample collection, using Schlumberger's Modular Formation Dynamics Tester (MDT) wireline tool. Four such tests, ranging from six to twelve hours duration, were conducted. This field program demonstrated the ability to safely and efficiently conduct a research-level openhole data acquisition program in shallow, sub-permafrost sediments. The program also demonstrated the soundness of the program's pre-drill gas hydrate characterization methods and increased confidence in gas hydrate resource assessment methodologies for the ANS.

  1. Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental JusticeInteragency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

  2. Pick any region of the US from Alaska to Florida to New Mexico, and determine

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Research: Pick any region of the US from Alaska to Florida to New Mexico, and determine the most to store this energy effectively. Therefore, your task is to think of new ways to store renewable energy

  3. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization Human Capacity Development

    SciTech Connect (OSTI)

    Wiita, Joanne

    2013-07-30T23:59:59.000Z

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  4. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    SciTech Connect (OSTI)

    Zwink, AB; Turner, DD

    2012-03-19T23:59:59.000Z

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatch controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.

  5. Mitochondrial-DNA variation among populations of Peromyscus from Yukon, Canada and southeastern Alaska

    E-Print Network [OSTI]

    Wike, Melanie Joy

    1998-01-01T23:59:59.000Z

    MITOCHONDRIAL-DNA VARIATION AMONG POPULATIONS OF PEROMYSCUS FROM YUKON, CANADA AND SOUTHEASTERN ALASKA A Thesis by MELANIE JOY WIKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1998 Major Subject: Genetics MITOCHONDRIAL-DNA VARIATION AMONG POPULATIONS OF PEROMYSCUS FROM YUKON, CANADA AND SOUTHEASTERN ALASKA A Thesis by MELANIE JOY WIKE Submitted to Texas A&M University in partial...

  6. igure 1. Map of N. Alaska and NW Canada Showing the Locations of the NPR-A,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444B (11-19-10)Fuel

  7. First regional super ESPC a success on Kodiak Island, Alaska

    SciTech Connect (OSTI)

    Epstein, K.

    2000-12-23T23:59:59.000Z

    The Coast Guard military base on Kodiak Island, Alaska, is the largest Coast Guard base in the world. By taking a leadership role in a pilot program to streamline Federal financing and procurement for energy saving projects, the Coast Guard is saving more than $220,000 a year in energy costs at this base. Using the Super ESPC (Energy Savings Performance Contracting) program, the Coast Guard was able to quickly contract with an experienced contractor with energy savings expertise. Working with ERI, one of FEMP's (Federal Energy Management Program) approved energy services contractors, the Coast Guard determined areas of potential energy savings and designed a retrofit to upgrade inefficient equipment and infrastructure. When energy-efficient modifications are complete, the base will be 30% more cost effective.

  8. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect (OSTI)

    Ronnert, L.; Mickelson, D.M. (Univ. of Wisconsin, Madison (United States))

    1992-09-01T23:59:59.000Z

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  10. Design exploration: engaging a larger user population

    E-Print Network [OSTI]

    Moore, John Michael

    2009-06-02T23:59:59.000Z

    an interface on a physical shared table space. Whereas PICTIVE requires physical co-location, TelePICTIVE [Miller et al. 1992] and PICTIOL [Farrell et al. 2006] moves the shared space to a collaborative computer application. While GUI developers are still... of DOCTOR OF PHILOSOPHY August 2007 Major Subject: Computer Science DESIGN EXPLORATION: ENGAGING A LARGER USER POPULATION A Dissertation by JOHN MICHAEL MOORE Submitted to the Office of Graduate Studies of Texas A&M University...

  11. RMOTC - Testing - Exploration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    click here. RMOTC's extensive exploration-related data sets, including 3D and 2D seismic, wells and logging data, and cores - both physical core samples, stored in Casper,...

  12. Exploration Best Practices

    Broader source: Energy.gov [DOE]

    The purpose of this project is to provide an overview of currentt geoth thermall explloratiti on bbestt practi tices andd a baseline values for exploration (both non-drilling and drilling) success rates in the U.S.

  13. Alum Innovative Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Alum. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

  14. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  15. Uranium hydrogeochemical and stream-sediment reconnaissance of the Bettles NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    D'Andrea, Jr., R. F.; Zinkl, R. J.; Shettel, Jr., D. L.; Langfeldt, S. L.; Hardy, L. C. [comps.

    1982-02-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bettles NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  16. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31T23:59:59.000Z

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  17. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  18. Precision zero-home locator

    DOE Patents [OSTI]

    Stone, W.J.

    1983-10-31T23:59:59.000Z

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  19. Understanding The Chena Hot Springs, Alaska, Geothermal System...

    Open Energy Info (EERE)

    varying pressure versus depth characteristics and can be used alone in cases where staged drilling is not practical. The extensive exploration activities helped define optimal...

  20. Analysis of the permitting processes associated with exploration of Federal OCS leases. Final report. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Under contract to the Office of Leasing Policy Development (LPDO), Jack Faucett Associates is currently undertaking the description and analysis of the Outer Continental Shelf (OCS) regulatory process to determine the nature of time delays that affect OCS production of oil and gas. This report represents the results of the first phase of research under this contract, the description and analysis of regulatory activity associated with exploration activities on the Federal OCS. Volume 1 contains the following three sections: (1) study results; (2) Federal regulatory activities during exploration of Federal OCS leases which involved the US Geological Survey, Environmental Protection Agency, US Coast Guard, Corps of Engineers, and National Ocean and Atmospheric Administration; and (3) state regulatory activities during exploration of Federal OCS leases of Alaska, California, Louisiana, Massachusetts, New Jersey, North Carolina and Texas. Volume II contains appendices of US Geological Survey, Environmental Protection Agency, Coast Guard, Corps of Engineers, the Coastal Zone Management Act, and Alaska. The major causes of delay in the regulatory process governing exploration was summarized in four broad categories: (1) the long and tedious process associated with the Environmental Protection Agency's implementation of the National Pollutant Discharge Elimination System Permit; (2) thelack of mandated time periods for the completion of individual activities in the permitting process; (3) the lack of overall coordination of OCS exploratory regulation; and (4) the inexperience of states, the Federal government and industry relating to the appropriate level of regulation for first-time lease sale areas.

  1. Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003

    E-Print Network [OSTI]

    Jones, Ian L.

    Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959 and to investigate the biology and demography of the Norway rat population. Moors and Atkinson (1984) suggested

  2. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

  3. University of Alaska Coastal Marine Institute annual report number 5, fiscal year 1998

    SciTech Connect (OSTI)

    Alexander, V.

    1998-12-18T23:59:59.000Z

    The University of Alaska Coastal Marine Institute (CMI) was created by a cooperative agreement between the University of Alaska and the Minerals Management Service (MMS) in June 1993 and the first full funding cycle began late in (federal) fiscal year 1994. CMI is pleased to present this 1998 Annual Report for studies ongoing in Oct 1997--Sep 1998. Only abstracts and study products for ongoing projects are included here. They include: An Economic Assessment of the Marine Biotechnology; Kachemak Bay Experimental and Monitoring Studies; Historical Changes in Trace Metals and Hydrocarbons in the Inner Shelf Sediments; Beaufort Sea: Prior and Subsequent to Petroleum-Related Industrial Developments; Physical-Biological Numerical Modeling on Alaskan Arctic Shelves; Defining Habitats for Juvenile Flatfishes in Southcentral Alaska; Relationship of Diet to Habitat Preferences of Juvenile Flatfishes, Phase 1; Subsistence Economies and North Slope Oil Development; Wind Field Representations and Their Effect on Shelf Circulation Models: A Case Study in the Chukchi Sea; Interaction between Marine Humic Matter and Polycyclic Aromatic Hydrocarbons in Lower Cook Inlet and Port Valdez, Alaska; Correction Factor for Ringed Seal Surveys in Northern Alaska; Feeding Ecology of Maturing Sockeye Salmon (Oncorhynchus nerka) in Nearshore Waters of the Kodiak Archipelago; and Circulation, Thermohaline Structure, and Cross-Shelf Transport in the Alaskan Beaufort Sea.

  4. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01T23:59:59.000Z

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  5. Innovative Exploration Technologies Subprogram Overview

    Broader source: Energy.gov (indexed) [DOE]

    * Gathering data from the projects - Analyzing what works and what doesn't * Expand resource assessment and NGDS * Exploration best practices study * Baseline exploration...

  6. Exploration for Uranium Ore (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

  7. Exploration Incentive Tax Credit (Montana)

    Broader source: Energy.gov [DOE]

    The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

  8. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31T23:59:59.000Z

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  9. The US Geological Survey-Bureau of Land Management cultural resources program in the National Petroleum Reserve in Alaska, 1977-1981

    SciTech Connect (OSTI)

    Hall, E.S. Jr.; Gal, R.

    1989-01-01T23:59:59.000Z

    Utilization of northern Alaska's riches long predates the recent oil exploration program in the National Petroleum Reserve in Alaska (NPRA). Though the earliest known archaeological site in the reserve dates back only 7600 yr, most archaeologists believe human groups first occupied the area at least 4000 yr earlier. The as-yet-undiscovered physical remains left behind by these first inhabitants of the area, as well as the known and unknown traces of the peoples who succeeded them through time, constitute the cultural resources of the NPRA. First among the laws protecting cultural resources is the Antiquities Act of 1906, which provides for the establishment of national monuments by Presidential proclamation, sets up a permit system for the scientific investigation of cultural resources on Federal land, and details penalities for unauthorized disturbance of archaeological remains. The Archaeological and Historic Preservation Act of 1974, which extended the earlier Reservoir Salvage Act of 1960, authorizes funds for the preservation of historical and archaeological data that otherwise might be lost through any Federal construction project or federally licensed or assisted activity or program. The National Historic Preservation Act of 1966 established the National Register of Historic Places and a National Advisory Council to assist all Federal agencies in evaluating the effects of their actions on properties included, or eligible for inclusion, in the National Register. Finally, Executive Order 11593 of May 13, 1971, requires all Federal agencies to inventory cultural resources on lands they manage or affect in order to determine eligibility for the National Register, and to use due caution in regard to those resources until the inventory, evaluation, and nomination processes are completed. The oil exploration program in the NPRA is subject to this body of law for cultural resource protection.

  10. Exploring Functional Mellin Transforms

    E-Print Network [OSTI]

    J. LaChapelle

    2015-01-08T23:59:59.000Z

    We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

  11. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  12. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect (OSTI)

    East, J.

    1982-04-01T23:59:59.000Z

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  13. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect (OSTI)

    Kimberly Carlo

    2012-07-07T23:59:59.000Z

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  14. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01T23:59:59.000Z

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the right sized harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  15. Options for Gas-to-Liquids Technology in Alaska

    SciTech Connect (OSTI)

    Robertson, Eric Partridge

    1999-10-01T23:59:59.000Z

    The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  16. Options for gas-to-liquids technology in Alaska

    SciTech Connect (OSTI)

    Robertson, E.P.

    1999-12-01T23:59:59.000Z

    The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  17. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01T23:59:59.000Z

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  18. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  19. Exploring new energy alternatives.

    SciTech Connect (OSTI)

    LePoire, D.J. (Environmental Science Division)

    2011-09-01T23:59:59.000Z

    What is most likely to satisfy our energy needs in the future - wind farms and photovoltaic arrays, or something yet to be invented? Options for the world's energy future may include surprises, thanks to innovative research under way around the world. The article focuses on the energy sources alternatives in the U.S. It explores innovations for energy sources such as wind farms, solar thermal concentrators, solar cells, and geothermal energy production. It states that the attainment of energy efficiency through conversation or improved technology allows to extract more applied energy. It points out that techniques are being explored to expand the possible fuel materials to includes other types of uranium and thorium. Furthermore, it discusses the capability of nanotechnology in offering a tool which could help create designs that convert energy more efficiently.

  20. EXPLORATION Actual Estimate

    E-Print Network [OSTI]

    FY 2015 FY 2016 FY 2017 FY 2013 President's Budget Request 3,821.2 3,712.8 3,932.8 4,076.5 4,076.5 4 Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2013EXPLORATION EXP-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014

  1. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15T23:59:59.000Z

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  2. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    SciTech Connect (OSTI)

    RUCKER DF; MYERS DA

    2011-10-04T23:59:59.000Z

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  3. The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska

    SciTech Connect (OSTI)

    Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

    2004-07-01T23:59:59.000Z

    The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

  4. Synchronized sampling improves fault location

    SciTech Connect (OSTI)

    Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-04-01T23:59:59.000Z

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  5. Wellsite Geologist/ Mudlogger Job Location

    E-Print Network [OSTI]

    Seamons, Kent E.

    Description: Entry level positions are available for persons in oil and gas exploration. Mud Loggers required for logger and well site geology positions under direction of experienced personnel. All training.S./B.A. Degree in Geology, Earth Science, Engineering, or Applied Science Exceptional problem solving skills

  6. Location logistics of industrial facilities

    E-Print Network [OSTI]

    Hammack, William Eugene

    1981-01-01T23:59:59.000Z

    of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

  7. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01T23:59:59.000Z

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  8. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    to find and evaluate oil reserves, development costs toand likely holds oil reserves that may be produced in theare located above the oil reserve while others are above the

  9. Building Address Locations -Assumes entire

    E-Print Network [OSTI]

    Guenther, Frank

    Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

  10. Boston, Massachusetts Location: Boston, MA

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -recovery ventilation and water-source heat pumps Each unit has fresh air ducted independently. Each residence is warmed by a heat pump that taps the Trigen Energy Corporation steam lines that run underneath the street. #12;WallsBoston, Massachusetts #12;Location: Boston, MA Building type(s): Multi-unit residential, Retail 350

  11. Exploring colourful holographic superconductors

    E-Print Network [OSTI]

    Kasper Peeters; Jonathan Powell; Marija Zamaklar

    2009-07-09T23:59:59.000Z

    We explore a class of holographic superconductors built using non-abelian condensates on probe branes in conformal and non-conformal backgrounds. These are shown to exhibit behaviour of the specific heat which resembles that of heavy fermion compounds in the superconducting phase. Instead of showing BCS-like exponential behaviour, the specific heat is polynomial in the temperature. It exhibits a jump at the critical temperature, in agreement with real-world superconductors. We also analyse the behaviour of the energy gap and the AC and DC conductivities, and find that the systems can be either semi-conducting or metallic just above the critical temperature.

  12. About | DOE Data Explorer

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Garyand TechnicalAbout About DOE Data Explorer The DOE

  13. Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

  14. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  15. Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska

    E-Print Network [OSTI]

    Ingólfsson, ?lafur

    stimu- lated and thermoluminescence (IRSL and TL) techniques. Analy- sis of modern and 14 C-dated of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of

  16. Moraine chronosequence of the Donnelly Dome region, Alaska A. Matmon a,

    E-Print Network [OSTI]

    Briner, Jason P.

    GEOLOGIC Inc., PO Box 52, 12021 Middle Bay Drive, Kodiak, AK 99615, USA d Department of Geology and SchoolMoraine chronosequence of the Donnelly Dome region, Alaska A. Matmon a, , J.P. Briner b , G. Carver, Jerusalem 91904, Israel b Department of Geology, University at Buffalo, Buffalo, NY 14260, USA c CARVER

  17. Biology of the Ribbon Seal in Alaska National Marine Fisheries Service

    E-Print Network [OSTI]

    the front of the ice pack in late winter and spring (Burns 1981). They rely on sea ice to provide a platform in association with sea ice in Alaska; these are the ringed seal (Phoca hispida), spotted seal (P. largha weeks. Breeding and molting occur before the sea ice recedes (Burns 1981). The distribution of ribbon

  18. Revised 1/11/05 SPOTTED SEAL (Phoca largha): Alaska Stock

    E-Print Network [OSTI]

    during the breeding season, and only spotted seals are strongly associated with pack ice (Shaughnessy conducted over the Bering Sea pack ice in spring and along the western Alaska coast during summer (Rugh et overwinter in the Bering Sea along the ice edge and make east-west movements along the edge (Lowry et al

  19. Revised 1/11/05 BEARDED SEAL (Erignathus barbatus): Alaska Stock

    E-Print Network [OSTI]

    ) that are at least seasonally ice covered. During winter they are most common in broken pack ice (Burns 1967) and in some areas also inhabit shorefast ice (Smith and Hammill 1981). In Alaska waters, bearded seals of between 70% and 90% sea Figure 12. Approximate distribution of bearded seals (shaded ice coverage

  20. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations

    E-Print Network [OSTI]

    Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change M . T. VA N W I J K *w , K, Darwin Building, King Buildings, Mayfield Road, Edinburgh EH9 3JU, UK, wThe Ecosystem Center, Marine

  1. Akiak School 2009 We are a small school in Western Alaska.

    E-Print Network [OSTI]

    Pantaleone, Jim

    Akiak School 2009 We are a small school in Western Alaska. Students are predominantly Yupik. We engagement in a network have on your school improvement efforts? ·It helped us focus on what our school of leadership have become visible:.. a. in your direct work at your school? ·We have paraprofessionals covering

  2. Accomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2004

    E-Print Network [OSTI]

    Conservation and Management Act, Fish and Wildlife Coordination Act, National Environmental Policy Act, FederalAccomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2004 This report provides a summary of Habitat Conservation Division (HCD) activities in support of the sustainable

  3. Accomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2005

    E-Print Network [OSTI]

    Conservation and Management Act, Fish and Wildlife Coordination Act, National Environmental Policy Act, FederalAccomplishments of the Alaska Region's Habitat Conservation Division in Fiscal Year 2005 This report provides a summary of Habitat Conservation Division (HCD) activities in support of the sustainable

  4. Alpine field, Alaska: openhole completion and wellbore cleanup methods in an Artic environment

    E-Print Network [OSTI]

    Leeftink, Gerrit J.

    2001-01-01T23:59:59.000Z

    This study compares the practices used to drill and complete three horizontal, openhole wells in the Alpine field on the north slope of Alaska. This study is a continuation of the work performed in conjunction with CEA-73. In the first phase of CEA...

  5. EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

  6. ABILITY OF MALE KING CRAB, PARALITHODES CAMTSCHATICA, TO MATE REPEATEDLY, KODIAK, ALASKA, 1973

    E-Print Network [OSTI]

    , and Buss'). I Alaska Dept. of Fish & Game. Commercial Fisheries Diy.. Box 686. Kodiak. AK 99615. 2 Bio. Rothschild. and James A. Buss. 1972. A studY of king. PlIrt/IiI/lOd"s C(III/IS/wI/ClI (Tilesius) hrook stocks

  7. Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind-Diesel Hybrid Options for Remote Villages in Alaska Mia Devine Dr. James Manwell University patterns, wind energy resource potential, and wind-diesel hybrid power options for remote communities and the exposure to fuel price volatility. Demonstration wind-diesel hybrid systems are currently operating

  8. INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP

    E-Print Network [OSTI]

    space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. · Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting

  9. Innovative Exploration Technologies Subprogram Overview

    Broader source: Energy.gov [DOE]

    This overview of GTP's Innovative Exploration Technologies subprogram was given at the GTP Program Peer Review on May 18, 2010.

  10. Validation of Innovative Exploration Technologies for Newberry Volcano

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.

  11. Blended Shelf: Reality-based Presentation and Exploration of Library

    E-Print Network [OSTI]

    Reiterer, Harald

    Blended library; shelf browsing; digital library ACM Classification Keywords H.5.2. [InformationBlended Shelf: Reality-based Presentation and Exploration of Library Collections Abstract We location of the library. Blended Shelf offers a 3D visualization of library collections

  12. Joint microseismic event location with uncertain velocity

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01T23:59:59.000Z

    We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...

  13. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01T23:59:59.000Z

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  14. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  15. Asymptotic analysis of an optimal location problem

    E-Print Network [OSTI]

    2003-05-13T23:59:59.000Z

    Asymptotic analysis of an optimal location problem. One considers the problem of optimal location of masses(say production centers) in order to approximate a...

  16. The Extreme Physics Explorer

    E-Print Network [OSTI]

    Martin Elvis

    2006-08-25T23:59:59.000Z

    Some tests of fundamental physics - the equation of state at supra-nuclear densities, the metric in strong gravity, the effect of magnetic fields above the quantum critical value - can only be measured using compact astrophysical objects: neutron stars and black holes. The Extreme Physics Explorer is a modest sized (~500 kg) mission that would carry a high resolution (R ~300) X-ray spectrometer and a sensitive X-ray polarimeter, both with high time resolution (~5 ?s) capability, at the focus of a large area (~5 sq.m), low resolution (HPD~1 arcmin) X-ray mirror. This instrumentation would enable new classes of tests of fundamental physics using neutron stars and black holes as cosmic laboratories.

  17. Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

    E-Print Network [OSTI]

    Lah, Mike M. (Mike Myoung)

    2007-01-01T23:59:59.000Z

    In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

  18. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  19. Analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle, southern Alaska

    SciTech Connect (OSTI)

    Madden, D.J.; Arbogast, B.F.; O'Leary, R.M.; Van Trump, G. Jr.; Silberman, M.L.

    1989-01-01T23:59:59.000Z

    A U.S. Geological Survey report give the analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle in southern Alaska is presented.

  20. Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Locate and drill two exploration wells that will be used to define the nature and extent of the geothermal resources on Jemez Pueblo in the Indian Springs area.

  1. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect (OSTI)

    Procopio, Michael J.

    2010-04-01T23:59:59.000Z

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  2. University of Alaska Fairbanks Summer Sessions Syllabus and Course Outline

    E-Print Network [OSTI]

    Sikes, Derek S.

    (a non-credit workshop) Course Title: Fly Fishing Weekend Pre-requisites: None Location: Room 344 of Alaskan fly fishing. Fly fishing is both a meditative and a scientific pursuit. From the end of a line effects on fish habitat, angling tactics and fly fishing techniques. Course Objective(s): Students

  3. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  4. Connections between scientific disciplines can emerge in unexpected ways. In 2004, mineralogists rushed to their libraries to locate a some-

    E-Print Network [OSTI]

    Duffy, Thomas S.

    rushed to their libraries to locate a some- what obscure 40-year-old paper1 that described an unusual in the exploration of deep planetary interiors and the wider high-pressure realm. In the laboratory, sustained

  5. Cooper Landing, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Exploration

  6. Radioisotopes: Energy for Space Exploration

    ScienceCinema (OSTI)

    Carpenter, Bob; Green, James; Bechtel, Ryan

    2013-05-29T23:59:59.000Z

    Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

  7. Exploring Dark Energy with SNAP

    E-Print Network [OSTI]

    Aldering, G.

    2009-01-01T23:59:59.000Z

    weak lensing survey. The planned dark energy program forthe Joint Dark Energy Mission (JDEM) will produce a treasureLBNL- 58276 Exploring Dark Energy with SNAP G. Aldering

  8. Oil and natural gas from Alaska, Canada, and Mexico: only limited help for US

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-09-11T23:59:59.000Z

    The gap between US oil and natural gas consumption and production is expected to continue, even widen during the 1980s. Although Alaska's resources appear promising, minimum time for development will limit its contribution. Canadian oil exports are being phased out, and its optimistic gas potential is not expected to result in large exports in this century. Mexico will probably become a primary source of US oil imports over the next decade. Even so, anticipated oil and gas from Alaska, Canada, and Mexico will not be sufficient to offset anticipated domestic production declines. Synfuels probably will not alleviate the decline in US production development during the 1980s. Unconventional gas production, however, appears to offer higher potential for development in this time frame.

  9. Uranium hydrogeochemical and stream sediment reconnaissance of the Bradfield Canal NTS quadrangle, Alaska. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.; Zinkl, R.J.; Hensley, W.K.; Thomas, G.J.; Martell, C.J.; Maassen, L.W. (comps.)

    1981-11-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Bradfield Canal NTMS quadrangle, Alaska. In addition to this abbreviaed data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory (see, for example, Planner and others, 1981), and will not be included in this report.

  10. Task 3.14 - Demonstration of Technologies for Remote Power Generation in Alaska

    SciTech Connect (OSTI)

    Michael L. Jones

    1998-02-01T23:59:59.000Z

    In over 165 villages in Alaska, the use of fossil fuel supplies or renewable energy resources could greatly reduce the cost of electricity and space heating. Currently, diesel generators are the most commonly used electrical generating systems; however, high fuel costs result in extremely high electrical power costs reIative to the lower 48 states. The reduction of fuel costs associated with the use of indigenous, locally available fuels running modular, high-efficiency power- generating systems would be extremely beneficial.

  11. Aboveground tree biomass on productive forest land in Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Yarie, J.; Mead, D.R.

    1982-08-01T23:59:59.000Z

    Total aboveground woody biomass of trees on forest land that can produce 1.4 cubic meters per hectare per year of industrial wood in Alaska is 1.33 billion metric tons green weight. The estimated energy value of the standing woody biomass is 11.9 x 10 Btu's. Statewide tables of biomass and energy values for softwoods, hardwoods, and species group are presented.

  12. Preliminary results of microearthquake survey, Northern Adak Island, Alaska

    SciTech Connect (OSTI)

    Mackelprang, Claron E.

    1982-01-01T23:59:59.000Z

    Nine MEQ-800 portable seismic systems were emplaced and recordings taken during the 30 day period between September 5 to October 4, 1982. During this interval 190 events were correlated on two or more stations by Mincomp. Twenty four of these, seen on four or more stations and considered to be local in origin, yielded, according to Mincomp, reasonable hypocenters and origin times using a homogeneous earth model having a velocity of 5 km/sec. A plot of these hypocenters showed much of the microearthquake activity recorded during the survey to be located beneath Mt. Adagdak. This is different from the events located by the Butler and Keller (1974) microearthquake survey which placed hypocenters beneath the sea in Andrew Bay north and northwest of Mt. Adagdak. Butler and Keller did project a fault plane to the surface which would project southwest through Mt. Adagdak and Andrew Bay Volcano. ESL hypocenter locations using the layered earth model show many of the identified events to occur on the northeast corner of the island at focal depths of 8-10 km. It is not obvious that the observed events are related to a single active fault. If so, the fault must be at a low dip angle as shown by the least-squares-fit to the data on Figure 3. Alternatively, the majority of the events occurring within a fairly restrictive range of focal depths may be more indicative of a magma chamber and the movement of magma. Further interpretation of the microearthquake data obtained during 1982 is, however, outside the scope of this report. The relatively small error ellipses for hypocenter locations, compared to the distribution of hypocenters shown on Plates V and VI lead us to question the validity of the projection of all hypocenters to define a single fault location and orientation. It is apparent that two or more structures could be indicated by the present data and that these structures intersect near the north end of Adak island. The occurrence of most events in a narrow depth range would lead to considerable error in projecting a single fault plane to its surface intersection.

  13. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30T23:59:59.000Z

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  14. Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia

    SciTech Connect (OSTI)

    Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

    1993-04-01T23:59:59.000Z

    All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

  15. Little Ice Age Glaciation in Alaska: A record of recent global climatic change

    SciTech Connect (OSTI)

    Calkin, P.E.; Wiles, G.C.

    1992-03-01T23:59:59.000Z

    General global cooling and temperature fluctuation accompanied by expansion of mountain glaciers characterized the Little Ice Age of about A.D. 1200 through A.D. 1900. The effects of such temperature changes appear first and are strongest at high latitudes. Therefore the Little Ice Age record of glacial fluctuation in Alaska may provide a good proxy for these events and a test for models of future climatic change. Holocene expansions began here as early as 7000 B.P. and locally show a periodicity of 350 years after about 4500 years B.P. The Little Ice Age followed a late Holocene interval of minor ice advance and a subsequent period of ice margin recession lasting one to seven centuries. The timing of expansions since about A.D. 1200 have often varied between glaciers, but these are the most pervasive glacial events of the Holocene in Alaska and frequently represent ice marginal maxima for this interval. At least two major expansions are, apparent in forefields of both land-terminating and fjord-calving glaciers, but the former display the most reliable and detailed climatic record. Major maxima occurred by the 16th century and into the mid-18th century. Culmination of advances occurred throughout Alaska during the 19th century followed within a few decades by general glacial retreat. Concurrently, equilibrium line altitudes have been raised 100-400 m, representing a rise of 2-3 deg C in mean summer temperature.

  16. Anchor Point, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring And After

  17. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring AndDecember 2008 |

  18. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring AndDecember 2008

  19. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring AndDecember

  20. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring AndDecemberJanuary

  1. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuring

  2. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuringNovember 2008 | Open

  3. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuringNovember 2008 |

  4. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteInExplorationDuringNovember 2008

  5. Alternative Fuels Data Center: Alaska Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2 andIndependence andStateLocateFuels

  6. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  7. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  8. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31T23:59:59.000Z

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  9. Abstract Beringia, including Alaska and North-Eastern Siberia, has long been a focal point for biogeographical research in a wide range of plant and animal taxa.

    E-Print Network [OSTI]

    Taylor, Lee

    Jzsef Geml, Rodham E. Tulloss, Gary A. Laursen, Nina A. Sazanova, and D. Lee Taylor J.C. Habel and T Alaska and along the coast of Southeast Alaska and British Columbia. J. Geml( ) Institute of Arctic East Branch of Russian Academy of Sciences, Portovaya Str. 18, Magadan, 685000, Russia D.L. Taylor

  10. INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH Last year the Alaska Legislature made a controversial change in the oil production tax, the state's

    E-Print Network [OSTI]

    Pantaleone, Jim

    ;INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH 2 HOW THE PRODUCTION TAX WORKS Since 2007 the petroleum production change in the oil production tax, the state's largest source of oil revenue. The old tax, known as ACES (Alaska's Clear and Equitable Share), was replaced with MAPA (More Alaska Production Act, or SB21). How

  11. SFU Library Ask. Explore. Discover.

    E-Print Network [OSTI]

    SFU Library Ask. Explore. Discover. SFU Library Annual Report 2007-08 #12;SFU Library Annual Report..................................................................................................... 8 WAC BENNETT LIBRARY................................................................................... 9 SAMUEL AND FRANCES BELZBERG LIBRARY............................................... 10 FRASER

  12. Edinburgh Research Explorer Statistical Constraints

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Statistical Constraints Citation for published version: Rossi, R that links statistics and constraint programming. We dis- cuss two novel statistical constraints and some, Prestwich, S & Tarim, SA 2014, 'Statistical Constraints' Paper presented at 21st biennial European

  13. Silver Peak Innovative Exploration Project

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

  14. Dopant location identification in Nd3+ -doped TiO2 nanoparticles

    E-Print Network [OSTI]

    Frenkel, Anatoly

    Dopant location identification in Nd3+ -doped TiO2 nanoparticles W. Li Department of Materials. The identification of dopant position and its local environ- ment are essential to explore the effect of doping. X and Technology, Gaithersburg, Maryland 20899, USA C. Ni Department of Materials Science and Engineering

  15. a space for you to enjoy Direction and location of car park

    E-Print Network [OSTI]

    a space for you to enjoy Direction and location of car park: Jeskyns Community Woodland, Henhurst. Wildlife Protect and respect our wildlife, plants and trees. riders #12;Jeskyns, a space to play, relax, exercise, watch, learn, dream, explore, enjoy. A special space from the past, for the present

  16. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01T23:59:59.000Z

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  17. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  18. Location theory and the location of industry along an interstate highway

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    to determine the significance of these locational factors among plants with different characteristics that have located in certain localities should provide pertinent information with both practical and theoretical implications. Since 1956, approximately 64... Summary of Plant Location Theory Cost Fac'tots . . . . . . . . . . . . . ~ The Importance of 'the Demand Factor Greenhut's General Theory of Plant Location and the Intangible Factor Location Factors as Revealed by Empirical Study Greenhut's Case...

  19. Simulations of Variable Bottomhole Pressure Regimes to Improve Production from the Double-Unit Mount Elbert, Milne Point Unit, North Slope Alaska Hydrate Deposit

    SciTech Connect (OSTI)

    Myshakin, Evgeniy; Anderson, Brian; Rose, Kelly; Boswell, Ray

    2011-01-01T23:59:59.000Z

    Gas production was predicted from a reservoir model based on the Mount Elbert gas hydrate accumulation located on the Alaska North slope at various simulator submodels and production scenarios. Log, core, and fluid measurements were used to provide a comprehensive reservoir description. These data were incorporated with experimentally derived saturations, porosities, permeability values, parameters for capillary pressure, and relative permeability functions. The modeled reservoir exposed to depressurization at a constant bottomhole pressure (2.7 MPa) has shown limited production potential due to its low temperature profile. To improve production the bottomhole pressure was allowed to vary from 2.7 (above the quadruple point) to 2.0 MPa over a 15-year period. The results indicate that gas production was nearly doubled in comparison with a constant-pressure regime. Extensive ice formation and hydrate reformation that could severely hinder gas production were avoided in the variable-pressure regime system. A use of permeability variation coupled with porosity change is shown to be crucial to predict those phenomena at a reservoir scale.

  20. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    SciTech Connect (OSTI)

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01T23:59:59.000Z

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  1. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  2. AS 42.05, Alaska Public Utilities Regulatory Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S.ratios inAS 42.05, Alaska Public

  3. 2015 ALASKA REGIONAL ENERGY WORKSHOPS Facility- and Community-Scale Project Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)DepartmentVery LargeStandards40NaturalALASKA

  4. 20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformation 2-MInformation 25 Alaska

  5. Title 41 Alaska Statutes Chapter 6 Water Use Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen| Open EnergyPrograms:1 Alaska

  6. Title 41 Alaska Statutes Section 06.060 Geothermal Resources Definitions |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen| Open EnergyPrograms:1 AlaskaOpen

  7. RAPID/Geothermal/Transmission Siting & Interconnection/Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevadaTexas <Information Alaska

  8. Regenerator Location Problem in Flexible Optical Networks

    E-Print Network [OSTI]

    BARIS YILDIZ

    2014-11-22T23:59:59.000Z

    Nov 22, 2014 ... Abstract: In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand,...

  9. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

  10. Dominica Grants Geothermal Exploration and Development License...

    Office of Environmental Management (EM)

    Dominica Grants Geothermal Exploration and Development License to Caribbean Company Dominica Grants Geothermal Exploration and Development License to Caribbean Company July 23,...

  11. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25T23:59:59.000Z

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the footprint of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the Presidents Climate Action Plan.

  12. Automated Fault Location In Smart Distribution Systems

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    ............................................................................................................................ 88 x LIST OF FIGURES Page Figure 1 Multiple possible fault location estimation for a fault at node A ........................ 7 Figure 2 Simple faulted network model [1] [2011] IEEE ............................................ 40 Figure 3... Types C and D voltage sags for different phases [51] [2003] IEEE .............. 42 Figure 4 Rf estimation procedure [1] [2011] IEEE ...................................................... 45 Figure 5 Flow chart of the fault location algorithm [1...

  13. RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED

    E-Print Network [OSTI]

    Miami, University of

    RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

  14. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report by the Concurrent Technologies Corporation (CTC) and the Power Systems Engineering Research Center (PSERC). NeitherOptimized Fault Location Final Project Report Power Systems Engineering Research Center A National

  15. Locating and tracking assets using RFID

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    , this research presents a mathematical model of using RFID (both handheld readers and stationary readers) for e?cient asset location. We derive the expected cost of locating RFIDtagged objects in a multiarea environment where handheld RF readers are used. We...

  16. Location Privacy and the Personal Distributed Environment

    E-Print Network [OSTI]

    Atkinson, Robert C

    Location Privacy and the Personal Distributed Environment Robert C Atkinson, Swee Keow Goo, James-- The Personal Distributed Environment is a new concept being developed within the Mobile VCE Core 3 research, wherever their location: ubiquitous access. Devices are co-ordinated by Device Management Entities (DMEs

  17. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26T23:59:59.000Z

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165???????????????????????????????°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250???????????????¢???????????????????????????????? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ???????????????¢????????????????????????????????center???????????????¢??????????????????????????????? of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165???????????????????????????????°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  18. Rapidly-Exploring Roadmaps: Weighing Exploration vs. Refinement in Optimal Motion Planning

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Rapidly-Exploring Roadmaps: Weighing Exploration vs. Refinement in Optimal Motion Planning Ron of already explored regions to find better paths. We present the rapidly- exploring roadmap (RRM), a new to explore further or to refine the explored space by adding edges to the current roadmap to find higher

  19. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01T23:59:59.000Z

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  20. Ecosystem Approaches for Fisheries Management 609 Alaska Sea Grant College Program AK-SG-99-01, 1999

    E-Print Network [OSTI]

    Ecosystem Approaches for Fisheries Management 609 Alaska Sea Grant College Program AK-SG-99-01, 1999 Ecosystem Considerations and the Limitations of Ecosystem Models in Fisheries Management: Insights for the implementation of ecosystem approaches. The major criticism of single- species models is that they cannot predict

  1. Real-Time C-Band Radar Observations of 1992 Eruption Clouds from Crater Peak, Mount Spurr Volcano, Alaska

    E-Print Network [OSTI]

    Rose, William I.

    Survey (USGS), and the Federal Aviation Administration (FAA) at Anchorage provides for the exchange of the eruptions has had a considerable impact on commercial aviation in south- central Alaska, particularly of measuring and tracking ash clouds, in order to advise the aviation community about how to avoid ash clouds

  2. State Sea Grant Program Federal Funding Match Funding Project Titles AK Alaska Sea Grant $255,010 $40,543

    E-Print Network [OSTI]

    Social Dimensions of Offshore Wind Power Development off the Delmarva Peninsula Extending modelsState Sea Grant Program Federal Funding Match Funding Project Titles AK Alaska Sea Grant $255 to Integrate Sea-Level Rise Adaptation into Existing Land Use Plans Marine Extension and Education Graduate

  3. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

    2014-05-07T23:59:59.000Z

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPCs TidGen Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Projects economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  4. The Construction of Locative Situations: Locative Media and the Situationist International, Recuperation or Redux?

    E-Print Network [OSTI]

    McGarrigle, Conor

    2009-01-01T23:59:59.000Z

    closely aligned to the SI's construction of situations. ThisG (1957) Report on the Construction of Situations and on theThe Construction of Locative Situations: Locative Media and

  5. SFSU Building Coordinators List College or Administrative Unit Location(s)

    E-Print Network [OSTI]

    SFSU Building Coordinators List College or Administrative Unit Location(s) Building Coordinator81193 cathym@sfsu.edu GYM 102B Student Services Building SSB Mirel Tikkanen x53566 mtikkane@sfsu.edu SSB

  6. Centauri Dreams Imagining and Planning Interstellar Exploration

    E-Print Network [OSTI]

    Arizona, University of

    and steep terrain to explore them. Airships would be particularly useful in environments like Titan, where

  7. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  8. THE PLANAR HUB LOCATION PROBLEM: A PROBABILISTIC ...

    E-Print Network [OSTI]

    2012-11-21T23:59:59.000Z

    Nov 5, 2012 ... Aykin and Brown, [4]. ...... [8] J.F. Campbell, Integer programming formulations of discrete hub location problems, European J. of O.R.. 72(1994)...

  9. Developing a theory of nightclub location choice

    E-Print Network [OSTI]

    Crim, Stephen J. (Stephen Johnson)

    2008-01-01T23:59:59.000Z

    This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

  10. Techniques for Mobile Location Estimation in UMTS

    E-Print Network [OSTI]

    Thomas, Nicholas J

    The subject area of this thesis is the locating of mobile users using the future 3rd generation spread spectrum communication system UMTS. The motivation behind this work is twofold: firstly the United States Federal ...

  11. Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1 degree by 3 degree quadrangles, Seward Peninsula, Alaska

    SciTech Connect (OSTI)

    Smith, S.C.; King, H.D.; O'Leary, R.M.

    1989-01-01T23:59:59.000Z

    Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.

  12. Alum Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.

  13. New River Geothermal Exploration (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2013-11-15T23:59:59.000Z

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  14. New River Geothermal Exploration (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

  15. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  16. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er... assessment of automotive industry practices in 1971 and concluded that only 50% of controls/displays on various models could be said to have a common location. Perel (1974) reviewed prior research and found that it would be difficult to pinpoint...

  17. Locating Boosted Kerr and Schwarzschild Apparent Horizons

    E-Print Network [OSTI]

    Mijan F. Huq; Matthew W. Choptuik; Richard A. Matzner

    2000-02-22T23:59:59.000Z

    We describe a finite-difference method for locating apparent horizons and illustrate its capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild metric. We apply a Lorentz boost to this spacetime metric and then carry out a 3+1 decomposition. The result is a slicing of Kerr/Schwarzschild in which the black hole is propagated and Lorentz contracted. We show that our method can locate distorted apparent horizons efficiently and accurately.

  18. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Sharma, G.D.

    1995-07-01T23:59:59.000Z

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  19. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect (OSTI)

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01T23:59:59.000Z

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  20. A comprehensive approach for stimulating produced water injection wells at Prudhoe Bay, Alaska

    SciTech Connect (OSTI)

    Fambrough, J.D.; Lane, R.H.; Braden, J.C.

    1995-11-01T23:59:59.000Z

    The paper presents a three-component approach to removing damage from produced water injection wells of Prudhoe Bay Field, Alaska: (1) identification of plugging material, (2) evaluation and selection of potential treatment chemicals, and (3) design and implementation of a well treatment and placement method. Plugging material was sampled anaerobically and kept frozen prior to identification and evaluation. Appropriate treatment chemicals were determined through a series of solvation, filtration, and weight-loss tests. Field treatments were designed so that the treating chemicals entered the formation under normal operating conditions, i.e., at pressures and rates similar to those present during produced water injection. A number of treatments improved injection rates and profiles, but continued injection of oil and solids-laden water caused deterioration of well performance at rates that precluded general application of the treatment at Prudhoe Bay.

  1. Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska)

    SciTech Connect (OSTI)

    Bolotina, N. B.; Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Kashaev, A. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-07-15T23:59:59.000Z

    The mineral cymrite from the Ruby Creek deposit (Alaska) was reinvestigated by X-ray diffraction in a pseudo-orthorhombic unit cell with a = 5.3350(1) A, b = 36.9258(8) A, c = 7.6934(1) A, {beta} = 90.00(1){sup o}. A twin law corresponding to a sixfold axis was revealed for the first time. The structure was refined in the monoclinic space group P12{sub 1}1 to the R factor of 5.4%. The Al and Si atoms are assumed to be ordered within a double layer. The rotation of the cation sublattice by 60{sup o} around the c axis leads to the disorder of the T sites in the crystal structure (T = Al, Si).

  2. Geologic map of the Gulkana B-1 quadrangle, south-central Alaska

    SciTech Connect (OSTI)

    Richter, D.H.; Ratte, J.C.; Schmoll, H.R.; Leeman, W.P.; Smith, J.G.; Yehle, L.A.

    1989-01-01T23:59:59.000Z

    The quadrangle includes the Capital Mountain Volcano and the northern part of Mount Sanford Volcano in the Wrangell Mountains of south-central Alaska. The Capital Mountain volcano is a relatively small, andesitic shield volcano of Pleistocene age, which contains a 4-km-diameter summit caldera and a spectacular post-caldera radial dike swam. Lava flows from the younger Pleistocene Mount Sanford Volcano overlap the south side of the Capital Mountain Volcano. Copper-stained fractures in basaltic andesite related to a dike-filled rift of the North Sanford eruptive center are the only sign of mineralization in the quadrangle. Rock glaciers, deposits of Holocene and Pleistocene valley glaciers and Pleistocene Copper River basin glaciers mantle much of the volcanic bedrock below elevations of 5,500 ft.

  3. Integrated Geologic and Geophysical Assessment of the Eileen Gas Hydrate Accumulation, North Slope, Alaska

    SciTech Connect (OSTI)

    Timothy S. Collett; David J. Taylor; Warren F. Agena; Myung W. Lee; John J. Miller; Margarita Zyrianova

    2005-04-30T23:59:59.000Z

    Using detailed analysis and interpretation of 2-D and 3-D seismic data, along with modeling and correlation of specially processed log data, a viable methodology has been developed for identifying sub-permafrost gas hydrate prospects within the Gas Hydrate Stability Zone (HSZ) and associated ''sub-hydrate'' free gas prospects in the Milne Point area of northern Alaska (Figure 1). The seismic data, in conjunction with modeling results from a related study, was used to characterize the conditions under which gas hydrate prospects can be delineated using conventional seismic data, and to analyze reservoir fluid properties. Monte Carlo style gas hydrate volumetric estimates using Crystal Ball{trademark} software to estimate expected in-place reserves shows that the identified prospects have considerable potential as gas resources. Future exploratory drilling in the Milne Point area should provide answers about the producibility of these shallow gas hydrates.

  4. Sea Water Radiocarbon Evolution in the Gulf of Alaska: 2002 Observations

    SciTech Connect (OSTI)

    Guilderson, T P; Roark, E B; Quay, P D; Flood-Page, S R; Moy, C

    2005-04-08T23:59:59.000Z

    Oceanic uptake and transport of bomb radiocarbon as {sup 14}CO{sub 2} created by atmospheric nuclear weapons testing in the 1950s and 1960s has been a useful diagnostic to determine the carbon transfer between the ocean and atmosphere. In addition, the distribution of radiocarbon in the ocean can be used as a tracer of oceanic circulation. Results obtained from samples collected in the Gulf of Alaska in the summer of 2002 provide a direct comparison with results in the 1970s during GEOSECS and in the early 1990s during WOCE. The open gyre values are 20-40{per_thousand} more negative than those documented in 1991 and 1993 (WOCE) although the general trends as a function of latitude are reproduced. Surface values are still significantly higher than pre-bomb levels ({approx}-105{per_thousand} or lower). In the central gyre, we observe {Delta}{sup 14}C-values that are lower in comparison to GEOSECS (stn 218) and WOCE P16/P17 to a density of {approx}26.8{sigma}t. This observation is consistent with the overall decrease in surface {Delta}{sup 14}C values, and reflects the erosion of the bomb-{sup 14}C transient. We propose that erosion of the bomb-{sup 14}C transient is accomplished by entrainment of low {sup 14}C water via vertical exchange within the Gulf of Alaska and replenishment of surface and sub-thermocline waters with waters derived from the far northwest Pacific.

  5. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30T23:59:59.000Z

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  6. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01T23:59:59.000Z

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  7. Report on geologic exploration activities

    SciTech Connect (OSTI)

    Breslin, J.; Laughon, R. B.; Hall, R. J.; Voss, J. W. [comps.

    1980-01-01T23:59:59.000Z

    This report provides an overview of the geological exploration activities being carried out as part of the National Waste Terminal Storage (NWTS) Program, which has been established by the US Department of Energy (DOE) to develop the technology and provide the facilities for the safe, environmentally acceptable isolation of civilian high-level and transuranic nuclear wastes, including spent fuel elements, for which the Federal government is responsible. The principal programmatic emphasis is on disposal in mined geologic repositories. Explorations are being conducted or planned in various parts of the country to identify potential sites for such repositories. The work is being undertaken by three separate but coordinated NWTS project elements. Under the Basalt Waste Isolation Project (BWIP), basalt formations underlying DOE's Hanford Reservation are being investigated. Granite, tuff, and shale formations at the DOE Nevada Test Site (NTS) are being similarly studied in the Nevada Nuclear Waste Storage Investigations (NNWSI). The Office of Nuclear Waste Isolation (ONWI) is investigating domed salt formations in several Gulf Coast states and bedded salt formations in Utah and Texas. The ONWI siting studies are being expanded to include areas overlying crystalline rocks, shales, and other geohydrologic systems. The current status of these NWTS efforts, including the projected budgets for FY 1981, is summarized, and the criteria and methodology being employed in the explorations are described. The consistency of the overall effort with the recommendations presented in the Report to the President by the Interagency Review Group on Nuclear Waste Management (IRG), as well as with documents representing the national technical consensus, is discussed.

  8. Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace CenterEverlightOpen EnergyExploration

  9. Synchrotrons Explore Water's Molecular Mysteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...SuccessSurprisingSynchrotrons Explore Water's Molecular

  10. Synchrotrons Explore Water's Molecular Mysteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...SuccessSurprisingSynchrotrons Explore Water's

  11. Reconstructing Spatial Distributions from Anonymized Locations

    SciTech Connect (OSTI)

    Horey, James L [ORNL] [ORNL; Forrest, Stephanie [University of New Mexico, Albuquerque] [University of New Mexico, Albuquerque; Groat, Michael [University of New Mexico, Albuquerque] [University of New Mexico, Albuquerque

    2012-01-01T23:59:59.000Z

    Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstruction algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.

  12. Location theory and the location of industry along an interstate highway

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    a greater gamble. This sect. ion has been devoted to s review of the fundamental factors underlying all plant location ss recognised in location theory. The next section will review some recent. empirical attempts to determine the actual... for this thesis was possible through the assistance provided )ointly by the Texas Highway Department and the Bureau of Public Roads. i. v TABLE OF CONTENTS Chapter Page INTRODUCTION Purpose Plan of Study REVIEW OF PLANT LOCATION CONCEPTS Introduction...

  13. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02T23:59:59.000Z

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  14. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01T23:59:59.000Z

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  15. Multi-Attribute Tradespace Exploration for Survivability

    E-Print Network [OSTI]

    Ross, Adam Michael

    2013-11-19T23:59:59.000Z

    Multi-Attribute Tradespace Exploration for Survivability is a system design and analysis methodology that incorporates survivability considerations into the tradespace exploration process (i.e., a solution-generating and ...

  16. Characterizing and Modeling Arctic Shrub Expansion on the North Slope of Alaska, USA

    E-Print Network [OSTI]

    Naito, Adam Takashi

    2014-07-30T23:59:59.000Z

    plain of ANWR .................................................................... 279 Figure A-29 Location of the flightlines for the 1984/1985 ANWR images... ....................................................................................... 280 Figure A-30 Location of the flightlines for the 1984/1985 ANWR images, subsection 1 ................................................................. 281 Figure A-31 Location of the flightlines for the 1984/1985 ANWR...

  17. XXX TJ1100-03 April 24, 2004 20:29 Exploring the Selenium Phytoremediation Potential

    E-Print Network [OSTI]

    XXX TJ1100-03 April 24, 2004 20:29 Exploring the Selenium Phytoremediation Potential of Transgenic and E. A. H. Pilon-Smits1 QUERY SHEET Q1: Au: Please provide location of Dept. 0 #12;XXX TJ1100-03 April WORDS: selenium, Indian mustard, Brassica juncea, phytoremediation. #12;XXX TJ1100-03 April 24, 2004 20

  18. Where are the Academic Jobs? Interactive Exploration of Job Advertisements in Geospatial and Topical Space

    E-Print Network [OSTI]

    Menczer, Filippo

    Data Preparation and Analysis NNature.com Job Postings Location Text Description Levels on Geospatial Map LevelsWhere are the Academic Jobs? Interactive Exploration of Job Advertisements in Geospatial of such data can: provide overviews and details of complex phenomena,p p p , facilitate trend analysis

  19. Exploration of Short Reads Genome Mapping in Hardware Edward Fernandez, Walid Najjar

    E-Print Network [OSTI]

    Lonardi, Stefano

    Exploration of Short Reads Genome Mapping in Hardware Edward Fernandez, Walid Najjar Department, such as Illumina/Solexa Genome Analyzer and ABI SOLiD, can generate hundreds of millions of short DNA "reads" from a single run. These reads must be matched against a reference genome to identify their original location

  20. Compte-rendu Mission d'exploration

    E-Print Network [OSTI]

    Vigny, Christophe

    une session d'1h. 12/12 : Exploration du profil d'Esmeralda, `a environ 80 km au Sud de Taltal jour. Exploration de la route B955, qui part de la Route 5 vers l'Est, au Nord du profil d'Esmeralda Esmeralda, et installation -enfin...- du point ESMA. Mesure sur 1h. Exploration autour de la sortie d

  1. Response of the engraver beetle, IPS perturbatus, to semiochemicals in white spruce stands of interior Alaska. Forest Service research paper

    SciTech Connect (OSTI)

    Werner, R.A.

    1993-05-01T23:59:59.000Z

    Field tests on the efficacy of various scolytid bark beetle pheromones to attract Ips perturbatus (Eichhoff) were conducted from 1977 through 1992 in stands of white spruce (Picea glauca (Moench) Voss) in interior Alaska. Several pheromones attracted high numbers of I. perturbatus and species of the predator Thanasimus to baited funnel traps. Test results also indicated that attacks by I. perturbatus may be deferred by certain semiochemicals.

  2. Locating and tracking assets using RFID

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . 10 C. Different Technologies for Asset Tracking / Locating . . . . 10 1. Hand-held Reader . . . . . . . . . . . . . . . . . . . . 11 2. Fixed Reader Installed in Area . . . . . . . . . . . . . 11 3. Fixed Reader Installed at Chokepoint... . . . . . . . . . . . 34 a. CaseofInstallingtheFixedReaderintheMost Probable Area . . . . . . . . . . . . . . . . . . . . 35 b. Case of Installing the Fixed Reader in the Far- thest Area . . . . . . . . . . . . . . . . . . . . . . 36 3. Extension of Experiments...

  3. Recycling Bin Guide Locations and prices

    E-Print Network [OSTI]

    Kirschner, Denise

    Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) Why

  4. Ontology-based Disambiguation of Spatiotemporal Locations

    E-Print Network [OSTI]

    Hyvnen, Eero

    , in the semantic portal MuseumFinland3 [7] a location parton- omy4 was used for annotating museum artifacts. #12;A problem when creating a semantic cultural heritage portal is that places, both modernFinland originate from regions that no longer exist and/or are not part of Finland but of Russia with new names

  5. Transportation Networks and Location A Geometric Approach

    E-Print Network [OSTI]

    Palop del Río, Belén

    Transportation Networks and Location A Geometric Approach Belén Palop1,2 1Departamento de March 2009 Florida State University #12;Belén Palop, UVa, SUNY Outline Transportation Network Model;Transportation Network Model Belén Palop, UVa, SUNY Outline Transportation Network Model Network placement

  6. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  7. Geothermal Exploration Case Studies on OpenEI (Presentation)

    SciTech Connect (OSTI)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01T23:59:59.000Z

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  8. The use of exploration 3D seismic data to optimise oil exploration in OPL 210 deepwater, Nigeria

    SciTech Connect (OSTI)

    Nelson, L.C.; Lilletveit, R.; Sandvoll, T. [Statoil and BP Alliance, Stavanger (Norway)] [and others

    1995-08-01T23:59:59.000Z

    Allied Energy and the Statoil and BP Alliance are currently partners in the OPL 210 license, in deepwater Nigeria. The license has a 5 year initial exploration phase which carries a two well commitment. To optimize the location of these wells in this challenging and costly drilling environment the partnership has decided to acquire extensive exploration 3D seismic data within the block. Interpretation of the first of two planned 3D surveys has led to a much clearer understanding of: (a) The structural segmentation of the prospect and thus a clearer idea of the likely hydrocarbon pool size. (b) The distribution of amplitude anomalies and thus, hopefully, a superior understanding of reservoir distribution and hydrocarbons. Here the limiting factor is clearly the lack of deepwater geophysical calibration, due to the absence of wells. Consequently, conclusions at this stage, are qualitative either than quantative. Combined with detailed seismic stratigraphic and high tech geophysical analysis, these two aspects will assist in the highgrading of segments in the prospect, prior to final decisions on the well locations. The first well, planned for 1995, will be one of the first wells drilled in the Nigerian deepwater area. Examples of both 2D and 3D data will be used to demonstrate the above and some of the first well results will be integrated into our interpretation to highlight how some of our perceptions may have changed.

  9. RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

    E-Print Network [OSTI]

    Levinson, David M.

    RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

  10. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15T23:59:59.000Z

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  11. Status of exploration in the Mediterranean and future activity

    SciTech Connect (OSTI)

    Villa, C. (AGIP, Milan (Italy))

    1988-08-01T23:59:59.000Z

    During the past ten years hydrocarbon exploration in the Mediterranean region has been carried out with a reasonably enthusiastic effort. The level of offshore drilling cannot compare to the North Sea, where the number of completed wildcats has been about three times the completions registered in the Mediterranean Sea. However, only 20% of the approximate 2.5 million km{sup 2} of the Mediterranean has water depths of less than 200 m. The remaining 80% of the area is covered by deep to mostly very deep water and today is still considered a long-range frontier target for petroleum exploration. Since the major extensions of the prospective shelves are located in Italy, Libya, Tunisia, and Spain, it is logical that most of the offshore exploration has been carried out in these countries. In particular, more than 40% of these exploratory wells have been drilled in Italian waters during the past decade. Even though a couple of significant discoveries have been found, the remaining recoverable reserves have slowly and continuously diminished. Most of the Mediterranean shelf is relatively unexplored, yet future discoveries are projected to be of minor proportions.

  12. Automated Fault Location In Smart Distribution Systems

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    Quality Meters (PQM), are installed to capture harmonics and certain disturbances for analyzing the power quality indices. Digital Protective Relays are utilized to detect occurrence of the faults and isolate faulted section as fast as possible. Digital... Protective Relays) use synchronous methods [28]. Therefore, if the available data is provided by RTUs, fault location methods that operate based on direct comparison of the input samples cannot be 17 utilized. However, if the data could be gathered from...

  13. Evaluation of workplace air monitoring locations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. (Pacific Northwest Lab., Richland, WA (United States)); Aldrich, L.K. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-10-01T23:59:59.000Z

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  14. EIS-0463: Notice of Public Meeting Location Change | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location Change EIS-0463: Notice of Public Meeting Location Change Presidential Permit Application for Northern Pass Transmission, New Hampshire On September 6, 2013, DOE...

  15. Optimization Online - p-facility Huff location problem on networks

    E-Print Network [OSTI]

    Rafael Blanquero

    2014-10-30T23:59:59.000Z

    Oct 30, 2014 ... Abstract: The p-facility Huff location problem aims at locating facilities on a competitive environment so as to maximize the market share.

  16. On map exploration, validation and self-location in a graph-like Centre for Intelligent Machines

    E-Print Network [OSTI]

    , Ontario, Canada {jenkin,eem}@cs.yorku.ca wilkes@cs.toronto.edu (416)-736-5053 (416)-978-7726 Abstract

  17. Chemical contaminants in gray whales (eschichtius robustus) stranded in Alaska, Washington, and California, USA. Technical memo

    SciTech Connect (OSTI)

    Varanasi, U.; Stein, J.E.; Tilbury, K.L.; Meador, J.P.; Sloan, C.A.

    1993-08-01T23:59:59.000Z

    The concentrations of chlorinated hydrocarbons (CHs) such as polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethanes (DDTs), 1,1-dichloro-2,2-bis(p- chlorophenyl) ethenes (DDEs), and chlordanes, and essential (e.g., zinc, selenium, copper) and toxic (e.g., mercury, lead) elements were measured in tissues and stomach contents from 22 gray whales (Eschrichtius robustus) stranded between 1988 and 1991. The stranding sites ranged from the relatively pristine areas of Kodiak Island, Alaska, to more urbanized areas in Puget Sound, Washington, and San Francisco Bay, California, with the majority of the sites on the Washington outer coast and in Puget Sound. Similar to concentrations in tissues, no significant differences were observed in concentrations of elements in stomach contents between whales stranded in Puget Sound and whales stranded at the more pristine sites. The lack of data from apparently healthy gray whales limits the assessment of whether the levels of anthropogenic contaminants found in tissues may have deleterious effects on the health of gray whales.

  18. Community Energy Systems and the Law of Public Utilities. Volume Four. Alaska

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Alaska governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  19. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  20. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.